
Science and Engineering Magazine, University of Essex Publication, No.6, 1992, p. 14-17

Problem Solving with Genetic Algorithms page 1 Edward Tsang

Problem Solving with Genetic Algorithms
Edward P K Tsang

Department of Computer Science
University of Essex

Colchester CO4 3SQ
tel: 01206 872774

email: edward@essex
http://cswww.essex.ac.uk/CSP/edward/edward.html

I. Inspiration from nature

Nature is full of inspirations for human beings. This article describes a class of computer
algorithms called the Genetic Algorithms (GAs), which are inspired by evolution.

Many problems are intractable for the methods developed so far. One well known exam-
ple is the Travelling Salesman Problem (TSP): given a set of cities and the distance between
each pair of them, the problem is to find a tour which visits all the cities with the minimal dis-
tance to be travelled. A problem with 10 cities may not be too difficult to deal with. But what
about problems with 50, 100 or 500 cities? For large problems, it is often intractable for con-
ventional algorithms to find optimal solutions. To tackle these problems, techniques have been
developed to find near-optimal solutions within an acceptable period of time. GA is one such
class of techniques.

The idea of GAs comes from natural selection. Nature is very effective in selecting the
best species. Species adapt to the environment, and pass their features to their offspring via
genes. Is it possible for us to learn from nature, and develop an “environment” which, like
nature, allows near-optimal or optimal solutions to be “evolved”? Furthermore, can programs
be “cultivated”, instead of being painstakingly written? Apart from being interesting, could
this idea be developed into robust, efficient and effective tools for problem solving? In 1975,
John Holland proposed that at least for some problems, this is possible. The idea was not met
by great enthusiasm in the first ten years of its introduction, but research in this line has
received more and more attention in recent years.

The proposal is to encode solution candidates as strings of building blocks. A string is
analogous to a chromosome and a building block is analogous to a gene in molecular biology.
In nature, each gene may take one of several possible values, called alleles. In GAs, binary
values (0’s and 1’s) are the most commonly used, though sometimes multiple values are used.
Each string is evaluated and assigned a numerical value which is called the fitness of this
string. For a GA to work, the fitness of a string must be dependent solely on the values that its
building blocks take. In optimization problems, the fitness is normally the function which is to
be optimized. For example, in the travelling salesman problem, each string may represent a
tour which visits all the cities, and the fitness of it may be the negation of the total distance to
be travelled in the tour. In that case, the goal is to find a string which has the maximum fitness.
Figure 1 summarizes the terminologies introduced so far. The problem is then about how to
manipulate such strings in a way which mimics evolution, so as to “cultivate” strings of high
fitness.

II. The Genetic Algorithms

The basic algorithm works as follows. A set of strings, which is called a population, is
maintained. The population evolves by allowing pairs of members to combine and transform

Science and Engineering Magazine, University of Essex Publication, No.6, 1992, p. 14-17

Problem Solving with Genetic Algorithms page 2 Edward Tsang

in order to generate new offspring. This is often called mating and reproduction. The fitter a
string is, the more chance it is given to mate and to reproduce. Therefore, patterns of building
blocks which appear in fitter strings will get better chances of being retained. Patterns of build-
ing blocks which appear in weaker strings are in greater danger of being eliminated.

To help the readers understand the algorithms, let us first look at one possible way of
combining strings. It is observed that in nature, chromosomes exchange part of their genes
during reproduction. This is mimicked by a simple artificial combination operation, which is
called crossover: given a pair of parent strings, an arbitrary cutoff point is picked. Then the
two parents exchange their building blocks at the cutoff point. An example of crossover is
shown in figure 2. There the parent strings are 1000110 and 0011011. The cutoff point is in
this example is between the 4th and 5th building blocks. The first offspring, 1000011, is pro-
duced by taking the first 4 blocks of parent 1, and the last three blocks of parent 2. The second
offspring is produced by taking the remaining building blocks.

It is observed that in nature, some genes mutate occasionally. This is mimicked by chang-
ing the values of building blocks occasionally in GAs. Figure 3 shows a string being mutated.
A random block position is picked, and a random value (in this case, a different value) is
assigned to it. We have used binary values in our examples, but in general, there could be more
possible values for each building block.

The basic control strategy of GAs is summarized in figure 4. To start, an initial population
of strings is generated. For the time being, we can imagine the members of this population

Figure 1 — Representation of candidate solutions in GA:

string in GA:
(chromosome in genetics)

building blocks in GA
(genes in genetics)

values in GA (often 0/1’s)
(alleles in genetics)

������� number

evaluation
function

(fitness)

Figure 2 — The Crossover (strings combination) Operator

cut-off point

parent 1:
offspring

(randomly selected)

1 0 0 0 1 1 0

0 0 1 1 0 1 1

1 0 0 0 0 1 1

0 0 1 1 1 1 0parent 2:

Science and Engineering Magazine, University of Essex Publication, No.6, 1992, p. 14-17

Problem Solving with Genetic Algorithms page 3 Edward Tsang

being generated randomly. Then the population is manipulated in as many iterations as neces-
sary to generate acceptable solutions for the problem or until resources, such as time, have run
out.

In each iteration, a mating pool is picked from the current population. Members of the
current population are picked weighted randomly: the fitter a member, the more chance it is
given to enter the mating pool. One may allow the same member of the current population to
be picked repeatedly, thus allowing more than one copy of it in the mating pool. Then a new
population is generated from the mating pool.

To generate the new population, a pair of strings is picked from the mating pool at a time
to form the parents. Parents are crossed over using the method described above to generate
new offspring. Mutation is allowed to happen occasionally to the offspring so as to allow new
patterns of building blocks to appear. This process is repeated until the new population con-
tains as many members as the original one.

Figure 4 shows the data to be manipulated, the control flow (the arrows) and the major
GA operators:

(1) initialization — to generate the initial population;

(2) reproduction — to create the mating pool from the current population;

(3) parents selection — to pick parents from the mating pool;

(4) crossover — to generate offspring from parents;

(5) mutation — to change values of the building blocks in the offspring.
It should be emphasized that different GAs may vary (sometimes significantly) in these

operators. For example, in order to allow all patterns to be generated, (so that the optimal solu-
tion is at least given a chance to emerge without relying on mutation), one may ensure that
every possible value for every building block appears in at least one member of the initial pop-
ulation. For example, in a binary coding, one may want to ensure that for every building block
both 0 and 1 are present in at least one string.

In the reproduction operation, different weights can be assigned to the strings. For exam-
ple, instead of using the absolute values of the fitness, the strings may be ranked by their fit-
ness in the population; the higher a string ranks, the greater weight it is given.

In the selection of parents, one may decide to pick the parents weighted randomly instead
of just randomly. In crossover, preference may be given to certain cutoff positions. One may
also crossover the parents in more than one cutoff point. One may want to apply different
mutation rates under different situations (in nature, species mutate more frequently in adverse
environments). It is even possible to modify the control flow in such a way that no mating pool
is formed: in each iteration, a number of (weak or randomly selected) strings in the population
are replaced by new offspring.

Figure 3 — The Mutation Operator

mutated blockrandom block picked

1 0 0 0 0 1 1 1 0 1 0 0 1 1

Science and Engineering Magazine, University of Essex Publication, No.6, 1992, p. 14-17

Problem Solving with Genetic Algorithms page 4 Edward Tsang

�������

�������

Initial

Popul-

New

Population

generated

Mating

Pool
�������

Figure 4 — Overview of the basic control flow and operations in typical GAs

ation

offspring

= GA Operators

Initialization

Reproduction

Mutation

Crossover

selected

parents

Selection
(members often picked

(members often picked
weighted randomly)

(applied occasionally)

randomly)

= Data to be manipulated

Science and Engineering Magazine, University of Essex Publication, No.6, 1992, p. 14-17

Problem Solving with Genetic Algorithms page 5 Edward Tsang

III. A Genetic Algorithm in action

We shall use a simple example to illustrate the GA operators described above. In fact, the
problem in this example is so simple that it could have been solved by other methods. Of
course, it is the GA operations that we want to show here, not the answer of the problem.

The problem is to find a value for x between 0 and 31 such that f(x) = 100 + 28x - x2 is
maximized. The first step is to find a representation which suits GAs. One possibility is to use
bit patterns to represent the values that x can take. Since x is between 0 and 31, a 5 bits string
should be sufficient. For example, the binary string 10101 represents the value 24. Next, an
evaluation function is required to evaluate the fitness of each string. Since this is a maximiza-
tion problem, the evaluation function can simply be f(x), the function which is to be maxi-
mized. This representation and evaluation function satisfy the requirement that the fitness is
computed solely from the values of a string’s build blocks.

For simplicity, let us assume that a population contains four members only. Let the strings
in column (b) of Table 1 be created:

Column (c) of Table 1 shows the decimal values of the binary numbers shown in column
(b). Let us assume that strings are selected for the mating pool weighted randomly, where the
weights are derived directly from the fitness of the strings. Column (d) shows the fitness of the
individual strings. To assign relative weights to the strings, we sum the fitness values (which

Table 1: Initial Population

(a)
string

number

(b)
strings

(c)
dec. numbers
represented

(d)
f(x) =

100 + 28x - x2

(e)
relative weights

(f)
accumulated

weights

1 01010 10 280 (280/1018) = 28 28

2 01101 13 295 (295/1018) = 29 57

3 11000 24 196 (196/1018) = 19 76

4 10101 21 247 (247/1018) = 24 100

accum: 1018
average: 254.5

100

24% 28%

29%19%

(01010)

(01101)(11000)

(10101)

Figure 5 — roulette wheel for selecting strings for the mating pool

Science and Engineering Magazine, University of Essex Publication, No.6, 1992, p. 14-17

Problem Solving with Genetic Algorithms page 6 Edward Tsang

gives 1018), and divide each of the fitness values by it. This gives the values in column (e). To
form the mating pool, one random number between 0 and 100 is generated at a time. Let us
assume that the number 43 is generated. Since 43 is between 28 and 57, the second string is
selected (refer to column (f) of Table 1). The effect is equivalent to dividing up a roulette
wheel by the weights as it is shown in figure 5, and decide which string to pick by rolling the
wheel and checking where the ball stops. Naturally, the first and the second strings have better
chance of being selected, as they have bigger shares of the wheel. Let us assume that four
strings are put into the mating pool, and the random numbers 43, 27, 89 and 14 are generated.
This gives two copies of string 1, and one copy of strings 2 and 4. The mating pool created is
shown in Table 2.

Assume that strings m3 and m4 in the mating pool are picked randomly to form parents.
Assume further that the randomly picked cutoff point is between building blocks 2 and 3. The

Table 2: Example of a Mating Pool

(a)
string references

(b)
strings

(c)
decimal numbers represented

m1 01101 13

m2 01010 10

m3 10101 21

m4 01010 10

Figure 6 — Example showing the generation of four offspring, which form the new population

cutoff point

parents offspring

(randomly selected)

1 0 1 0 1

0 1 0 1 0

1 0 0 1 0

0 1 1 0 1

number fitness of

18

13

280

295

represented

cutoff point
(randomly selected)

0 1 0 1 0

0 1 1 0 1

0 1 0 0 1

0 1 1 1 0

9

14

271

296

by offspring
offspring

m1:

m4:

m3:

m4:

(100+28x-x2)

1142sum of fitness:
285.5average fitness:

Science and Engineering Magazine, University of Essex Publication, No.6, 1992, p. 14-17

Problem Solving with Genetic Algorithms page 7 Edward Tsang

result of crossover is shown in the upper part of figure 6. A mutation rate may be set to one in
every thousand offspring generated. If, say, the offspring 10010 is selected for mutation, a ran-
dom bit in it will have its value changed. Example of an outcome is 11010 (value of the second
bit changed).

To complete our example of generating the next population, let us assume that stings m1
and m4 are picked from the mating pool as parents for generating the next pair of offspring.
Let the cutoff point be between building blocks 3 and 4 this time. The result of the crossover is
shown in the lower part of figure 6. The four offspring shown in figure 6 form the new popula-
tion. The whole process of population generation can be repeated as many times as necessary,
or until resources have run out.

In figure 6, we have computed the fitness of all the offspring and the sum and average fit-
ness of the population. After the iteration shown in this example, the average fitness of the
population is improved from 254.5 (refer to column (d) of Table 1) to 285.5. This in fact
shows a typical picture of GAs: it is provable that in GAs, the average fitness of the population
tend to grow over iterations. Therefore, the more iterations a GA is allowed to run, the more
chance it has in finding fitter strings.

IV. Performance of GAs

The GAs outlined above are very simple to implement. But how well do they work? What
have they been applied to? The answer is that GAs have been applied to a wide variety of
problems, and more and more success have been reported. GAs have out-performed many
conventional methods in terms of robustness, efficiency and effectiveness.

GAs have been applied successfully to optimization problems. For example, a GA has
been applied to travelling salesman problems (TSPs) with 500 cities and found better results
than conventional methods developed for tackling TSPs. GAs have also been applied to Quad-
ratic Assignments Problems (QAPs) (the assignment of n values to n variables optimizing
complex cost functions), and outperformed specialized mathematical methods developed for
tackling them. Such results are remarkable because both the TSP and the QAP are very gen-
eral problems and years of research have been spent on each of the conventional methods
developed specifically for tackling them. In contrast, GAs are general methods which are
adapted to tackle these problems. More remarkably, GAs require less time to find better solu-
tions than most conventional methods in these problems.

In many expert systems knowledge is encoded in condition-action rules. One important
application of GA is in generating such rules. Writing down rules for an expert system is well
known to be both laborious and error-prone. Very often, even experts in their fields cannot
encode their knowledge as rules. Besides, it is difficult to know whether all the important and
relevant rules have been written down. GAs have been used to “cultivate” rules for such sys-
tems. This can be done by either using each string to represent a set of rules (in which case the
string would normally be quite long) or to have the population as a whole representing a set of
rules. Rule sets generated by GAs are called classifier systems. Robustness is one of the
strength of using GAs to generate classifier systems.

One successful example of applying GAs to generate rules is the Prisoners’ Dilemma
Problem. Given a payoff table, the problem is to find a strategy which maximizes a player’s
payoff. A strategy is basically a program which responds under various situations. A GA has
successfully generated a strategy which behaves very similarly to the best strategy found so
far (for readers who are interested, the best strategy found so far is called tit-for-tac). Research
in using GAs for other applications is abundant, some of which are shown to be more promis-

Science and Engineering Magazine, University of Essex Publication, No.6, 1992, p. 14-17

Problem Solving with Genetic Algorithms page 8 Edward Tsang

ing than others. Examples of other GA applications in which success have been reported are
scheduling, structural optimization, etc. Some GA-based schedulers have outperformed both
human and computer schedulers that they are developed to replace, both in schedules genera-
tion times and the quality of the schedules generated. In the University of Essex, current
research in GAs includes applying GAs to neural network configuration, scheduling and con-
straint satisfaction. Besides, two graduate students are doing their projects on evolution mod-
elling.

V. Summary

Genetic Algorithms (GAs) are computer algorithms which are inspired by evolution in
nature. They have been applied to a large number of optimization problems and rules genera-
tion problems. Remarkable success has been achieved.

In order to apply GAs, one needs to be able to encode the candidate solutions by strings
of building blocks and evaluate the quality of a string solely by the values that its building
blocks take. A GA works by manipulating populations of such strings in search of quality
strings. The simplicity, robustness, efficiency and effectiveness of GAs make them promising
tools for complex applications. �

