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SUMMARY
This paper gives an introductory overview of constraint satisfaction and illustrates its relevance to
business modelling. Constraint satisfaction involves assigning values, often from finite domains, to a
given set of variables, satisfying a set of constraints, which could take arbitrary form. Constraint
Satisfaction is a general problem that appears in many commercial applications. The technology
has matured and it supports a multi-million Pounds business. In this paper, we provide a brief
survey on basic constraint satisfaction techniques. We then use an example to illustrate how
business processes can be modelled with constraints. This leads to the definition of the Open
Constraint Satisfaction Problem, a branch of constraints research. Finally, we set the research
agenda by identifying some of the important areas in Open Constrained Optimization research. By
modelling business problems as constraint satisfaction problems, one may learn from a wide range

of techniques from constraint programming research.
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1. Introduction — What is Constraint Satisfaction?

Many problems can be cast as Constraint Satisfaction Problems [Tsang 1993; Freuder & Mackworth
1994]. A constraint satisfaction problem involves assigning values to variables, satisfying a set of
constraints, which may take arbitrary form (such as databases or functions). For convenience, we call the
assignment of a value v to a variable x a label, denoted by <x, v>. A set of labels (one for each distinct
variable) together is called a compound label, denoted by (<x;, vi> <X,, V,> ...<Xy, Vi>). More formally, a

Constraint Satisfaction Problems is defined as a triple [Tsang 1993]:
(Z,D, C)

where Z is a set of variables. D is a function that maps each variable in Z to a domain, which is a set of
values of arbitrary type (such as integers, people, days of the week). In most constraint satisfaction
research, domains are finite. C is a set of constraints. Each constraint ¢ in C restricts the values that a
subset of variables S in Z may take simultaneously; ¢ maps each compound label for S to true (satisfied)
or false (unsatisfied). An example of a constraint is “the sum of x, y and z must be an even number”. The
task is to find a compound label for all variables in Z, such that all constraints in C are satisfied. Such a
compound label is called a solution tuple. In some problems, some solutions are better than others. In that

case, the constraint satisfaction problem is extended to a constrained optimisation problem:
(Z,D,C, /)

where (Z, D, C) is a standard constraint satisfaction problem and f'is a function that maps every compound

label to a numerical value. The task is to find a solution tuple that maximizes or minimizes f.

Constraint satisfaction is a very general problem. In research, constraint programming plays a central part
in logic programming [Marriott 1998]. Many traditional operational research problems, such as the
travelling salesman problem, vehicle routing problem, can be cast as constraint satisfaction problems
[Voudouris 1997; Kilby et al 2000]. Other example applications are. Constraint programming is a multi-
million Pounds business. Systems such as ILOG [Puget 1995] and ECLiPSe [Lever et al 1995] have been
applied to a variety of applications, such as resource allocation, car manufacturing, staff timetabling,
airline scheduling and satellite tasks scheduling. Constraint technology has been used by companies such

as British Telecom, British Airway, French Railway, Cathay Pacific and Port of Singapore.



2. Basic Constraint Satisfaction Techniques, an Overview

A large number of techniques have been invented for constraint satisfaction. In this section, we shall
introduce some of them. Constraint-solving techniques can be classified into three categories:

(a) Problem reduction — to reduce the given problem to one that is hopefully easier to solve;

(b) Search — to actively look for solution tuples, either systematically or stochastically;

(c) Solution synthesis — to build up the set of all solutions systematically.
Most work so far falls into the problem reduction and search categories, which will be elaborated in the

following sub-sections.

2.1. Problem Reduction in Constraint Satisfaction

Problem reduction builds on the idea of constraint propagation. A value is redundant if it is provable that
it will appear in no solutions. Problem reduction attempts to achieve the following goals:
(a) To remove redundant values from domains, with the hope to reduce the problem to one that is
easier to solve, partly because the remaining problem is smaller in size;
(b) To tighten constraints, so that constraints can be propagated more effectively in the remaining
problem
(c) To prove that no solutions exist, hence no more effort should be wasted.
As an example, let us assume that one is given the following constraint satisfaction problem:
Variables: X, y, z
Domains: all three variables have the same domain {1, 2, 3, 4}
Constraints: x <y and y < z.
If we focus on the constraint x <y, we shall see that 4 may be removed from the domain of x. This is
because if x takes the value 4, no value in the domain of y would satisfy this constraint. In this case, we
say that the label <x, 4> has no support from y. Similarly, 1 can be removed from the domain of y as it

has no support from x in the constraint x <y. At this point, the domains of the variables are reduced to:

Variables Domains
X {1,2,3}
y 12,3,4}

Z {1’ 2’ 3’ 4}



The idea of removing unsupported values is simple. However, propagating constraints efficiently is far
from straightforward. Following from the above example, the constraint y < z will enable one to remove 4

from the domain of y and both 1 and 2 from the domain of z, leaving one with the following domains:

Variables Domains
X {1,2,3}
y 12, 3}
z {3, 4}

Now that the value 4 has been removed from the domain of y, <x, 3> loses its support from y. Therefore,
constraints must be re-checked repeatedly until no more redundant values are found.

The above example shows a problem reduction strategy that maintains a property called arc-consistency
in the remaining problem. In general, by investing more time in computation, one may detect and remove
more redundant values. A large amount of effort has been spent to find algorithms to propagate constraints
efficiently, e.g. see [Tsang 1993].

In fact, removing redundant values is not the only way to reduce the problem. Another way of reducing a
problem is to tighten constraints. For example, from the constraints x <y and y < z together, one may
create the constraint x < z — 1. This may be used to tighten any existing constraint between x and z, which
may be useful under certain circumstances [Borrett 1998].

Problem reduction alone does not normally produce solutions, though it may help to find solutions more

efficiently through searching. In the next section, we shall explain how this could be done.

2.2. Complete Search Methods

The majority of research in constraint satisfaction focuses on backtracking search. One variable x is
picked at a time. Each value v is examined in turn, to see if <x, v> together with all the labels committed
to so far satisfy all the relevant constraints. The search backtracks if all values have been examined and
concluded nonviable. If needed, the search enumerates all combinations of labels for all variables.
Therefore, solutions will be found if they exist, hence these methods are complete.

Various techniques have been developed to enhance backtrack search. They exploit the nature of
constraint satisfaction [Tsang 1993]. Some of such techniques are described below. It is worth pointing

out that (a) this is not meant to be an exhaustive list; and (b) these techniques may work together:



1. Lookahead search
After committing to each label, the remaining problem is reduced using the principles described
above. Problem reduction helps to detect dead-ends early, so as not to waste search effort
[Haralick & Elliott 1980]. Lookahead exploits the fact that all constraints are well defined in
constraint satisfaction problems. In general terms, more computation leads to more propagation,
which leads to earlier detection of dead-end. One has to find a balance between the computation
cost and the benefit from problem reduction.

2. Learning-while-searching
Another class of search strategy is to analyse the culprits when dead-ends are encountered. This
allows one to backtrack past irrelevant labels, and revise those labels that lead to the dead-end. In
addition, one may record combinations of variable assignments, called “no goods”, which
together are known to lead to dead-ends (e.g. see [Dechter 1990] and No-good Backmarking
[Richards et al 1995]). Learning in this form helps avoiding re-discovery of no-goods repeatedly.
Learning exploits the fact that all choices (which are dictated by the domains) are fixed and
known in advance in constraint satisfaction.

3. Heuristics for ordering variables and values
It is commonly believed that, in constraint satisfaction, search efficiency is significantly affected
by the order in which the variables are ordered. One widely used heuristic is to label the variable
that has the smallest domain next. This heuristic works especially well with problem reduction,
where attempts are made to reduce the domains of the unlabelled variables after committing to
each label [Haralick & Elliott 1980]. Search efficiency is also affected by the order in which the
values are ordered. Effective value-ordering heuristics often comes from domain knowledge (e.g.

preference).

2.3. Stochastic constraint satisfaction methods

A complete search method will find a solution whenever one exists, given enough time. In reality, time is
always limited. The combinatorial explosion problem prevents complete methods from finding solutions
within the time available. Stochastic methods sacrifice completeness for speed [Freuder et al 1995]. Hill-
climbing algorithms such as Min-conflict Heuristic Repair [Minton 1992], GSAT [Selman et al 1992,

1993] and CLS [Prestwich 2001] have been designed for constraint satisfaction. GENET was a neural



network approach specifications designed for constraint satisfaction [Wang & Tsang 1991; Davenport et
al 1994].

Hill climbing algorithms may settle in local optima. Meta-heuristic methods, such as Simulated Annealing
[Kirkpatrick et al 1983], Tabu Search [Glover 1989], Guided Local Search [Voudouris 1997] and Genetic
Algorithms [Holland 1975] were designed for escaping local optima. These are general algorithms which
may be applied to a wide range of domains beyond constraint satisfaction. Details of them will not be

described here; see, e.g. [Reeves 1993].

3. Constraint-based Business Processes Modelling

3.1. Distributed Constraint Satisfaction, a Business Scenario

Business operations are subject to lots of constraints. For example, in a supermarket business, individual
stores have to fill their shelves with goods from various suppliers. Each store keeps its stock level of each
item according to its size, share of shelf space, sales forecast, replacement lead-time, etc. The store
manager has to negotiate, with some flexibility, with the delivery department on the timing of each
delivery. The opening hours and the staffing level are constraints to be taken into consideration. The store
manager may also have to negotiate with the suppliers or the central warehouse on the quantity of each
item to be delivered. The task of the store manager is to maximize its profit, subject to its constraints. This

problem may be formulated as a constraint satisfaction or a constrained optimization problem.

The transportation department, the suppliers and the central warehouse will all have their own constraints
and objective functions to optimize. For practical reasons, it is often impractical for each store or
department to provide the other parties (whether the management or the suppliers) with full information
on its own constraints. This may be due to complexity or the dynamic nature of the situation. Each store,
department or supplier has to solve its constraint satisfaction problem without complete knowledge. The

problem cannot be optimized centrally.

3.2. Open Constraint Satisfaction

Many practical constraint satisfaction techniques, such as Forward Checking [Haralick & Elliott 1980]

and MAC [Sabin & Freuder 1994], depend on constraint propagation. The problem described above



involves variables beyond a constraint problem solver’s control. Some constraints are also unknown to the

problem solver. We shall define such problems as Open Constraint Satisfaction Problems as follows:
(Z,D,C,E)

Here (Z, D, C) is a standard constraint satisfaction problem as defined above. E is a set of external

constraints. Each external constraint € in E applies to a subset of variables S in Z; € maps a compound

label for S to true if this compound label satisfies the external constraint that &€ implements. Operationally,

checking this constraint may involve communicating with another agent.

3.3. Near-optimal solutions are preferred

Open Constraint Satisfaction Problems can be extended to Open Constrained Optimisation Problems:
(Z,D,C,E,

where fmaps every compound label to a numerical value. The task is to maximize or minimize f.

Many techniques in constraint satisfaction are designed to find solutions that satisfy constraints. These
include most complete search methods such as Forward Checking [Haralick & Elliott 1980] and MAC
[Sabin & Freuder 1994] and stochastic methods such as GSAT [Selman et al 1992, 1993] and GENET
[Wang & Tsang 1991; Davenport et al 1994]. In many business processes modelling problems, including
the scenario described above, one has an objective function to optimize. In some domains, if near-optimal
solutions are much easier to find, which is normally the case, then one may be prepared to accept near-

optimal solutions.

3.4. Open Constraint Satisfaction Models
One could define an Open Constraint Satisfaction Model to model the business processes of an agent:
(Z,D, C,E, f, Ag, EtA, CP)
where:
= (Z,D,C,E,}f)is an Open Constrained Optimization Problems
=  Agis aset of Agents: some variables in Z are shared with other agents.

= EtA, a function that maps every external constraint € in E to an agent in Ag; EtA: E 2> Ag.



= Communication protocol (CP), which comprises:

o Communication timing: i.e. when an agent should communicate with another. For
example, a service department (e.g. transportation) may pay a passive role. It would
only formulate its Open Constrained Optimization Problem after it receives an order
from other departments. Then it will negotiate values for the shared variables (e.g.

delivery time).

o Constraints resolution protocol: One must also define the protocol for resolving
constraints. For example, in some organizations, agent A may have higher priority than
agent B in assigning values to their shared variables; agent B may only reject the values

proposed by A if they violate hard constraints in B.

The communication protocol may be specified verbally rather than mathematically.

4. Research Areas in Open Constraint Satisfaction

Research in distributed constraint satisfaction started over a decade ago [Prosser 1990; Luo et al 1992].
The importance of constraint satisfaction in agent technology has been recognized for some time [Yokoo
et al 1991]. Researchers in the distributed artificial intelligence (DAI) community focus on aspects such as
communication; some assume that individual constraint-solvers use standard constraint programming
algorithms [Durfee 1999]. In the constraint satisfaction community, Yokoo invented efficient algorithms
for distributed constraint satisfaction [Yokoo 1994]. However, he assumed very naive communication
algorithms. Tel [1999] introduced a distributed AC-4 constraint propagation algorithm, with the Support
List” removed. The result of this is that agents must broadcast to all other agents, instead of

communicating to the relevant agents only.

We argue that a stand-alone constraint solver should be very different from a constraint solver in a
distributed environment. The latter does not necessarily know any of the constraints held by other agents.
The situation could be more complex if each agent has its own (not necessarily compatible) goals. A
constraint solver should, for example, remember the results of previous communications and predict the

possibility of certain values being acceptable by other agents. The Open Constrained Optimization



Problem is more complex than a standard Constrained Optimization Problem. In the following sections,

we highlight some of the research areas that require special attention.

4.1. Modelling

Modelling is the key to Constraint Satisfaction [Freuder 1999; Borrett & Tsang 2001]. This is no
exception for Open Constraint Satisfaction and Open Constrained Optimization. The questions that one
must ask are: which agent are we modelling? What should be modelled as variables? What are their
domains? What are the constraints? What are the objective functions? What is the communication
protocol? Answers to these questions determine whether the problem can be tackled by constraint
satisfaction techniques. It also has significant influence on how efficient this problem can be solved, as it
is the case for standard constraint satisfaction problems. The definition of the communication protocol is
particularly relevant to the management of a company, who would want to use the protocol to help

achieving the company goals.

4.2. Taking Communication Cost into Consideration

Open Constraint Satisfaction Problems differ from standard constraint satisfaction problems in the way
that checking constraints in E normally involves communication with other systems. Such communications

are normally costly in terms of time and therefore should be kept to a minimal.

There may be hard constraints restricting the maximum amount of time/iterations that agents may take to
agree on labels. In other occasions, the objective function may be augmented by the time that it takes to
arrive at a decision — the more time it takes to arrive at a decision, the higher the cost may be. Research

related to such situation can be found in the literature, e.g. Korf’s Real-time IDA* [1985].

4.3. Algorithms

In Open Constraint Satisfaction Problems, one cannot fully propagate constraints to all the variables
without incurring high communication costs. However, partial constraint propagation should still be

considered. More research is needed in effective and efficient partial constraint propagation algorithms.

Another practical strategy in the literature is to record combinations of variable assignments, called “no

goods”, which together are known to lead to dead-ends. The application of such strategies, for example
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No-good Backmarking [Richards et al 1995], to Open Constraint Satisfaction Problems should be looked

at more carefully.

A class of population-based stochastic algorithms called Estimation Of Distribution Algorithms (EDAs)
[Muelenbein et al 1996; Larranaga & Lozano 2001] has been adopted in many optimization problems. Ant
Colony Optimization (ACO) methods [Dorigo 1999] could be regarded as an EDA algorithm for graph
problems. The application of EDAs to Open Constrained Optimization Problems deserves close

investigation.

4.4. Reliability

Through communication, a constraint solver may learn that some values stand better chance of being
accepted by other agents. These values should be preferred to those which have been rejected. Freuder
and his team have conducted preliminary research in reliability in constraint satisfaction [Eaton et al
1998]. Their work focuses on dynamic problems, where some feasible solutions in the current problem
may become infeasible when the problem is changed. Their work may shed some light on this research
aspect of Open Constraint Optimization. EDAs mentioned above has been applied to incremental learning
[Baluja 1994], which is highly relevant to value-selection in the Open Constrained Optimization Problem

here.

5. Conclusion

Constraint satisfaction is a general problem. Constraint programming has found applications in many
commercial domains. In this paper, we have defined the Open Constraint Satisfaction Problem and the
Open Constrained Optimization Problem, in which some variables and constraints are not within the
problem solver’s control. By modelling business processes as Open Constrained Optimization Problems,
one opens oneself to a huge body of techniques in the constraints literature. We have set the research

agenda by identifying some of the important areas in Open Constrained Optimization research.
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