
GUIDED LOCAL SEARCH

Christos Voudouris, Edward P. K. Tsang and Abdullah Alsheddy

Abstract Combinatorial explosion problem is a well known phenomenon that pre-
vents complete algorithms from solving many real-life combinatorial optimization
problems. In many situations, heuristic search methods are needed. This chapter de-
scribes the principles of Guided Local Search (GLS) and Fast Local Search (FLS)
and surveys their applications. GLS is a penalty-based meta-heuristic algorithm that
sits on top of other local search algorithms, with the aim to improve their efficiency
and robustness. FLS is a way of reducing the size of the neighbourhood to improve
the efficiency of local search. The chapter also provides guidance for implement-
ing and using GLS and FLS. Four problems, representative of general application
categories, are examined with detailed information provided on how to build a GLS-
based method in each case.

Key words: Heuristic Search, Meta-Heuristics, Penalty-based Methods, Guided
Local Search, Tabu Search, Constraint Satisfaction.

1 INTRODUCTION

Many practical problems are NP-hard in nature, which means complete, construc-
tive search is unlikely to satisfy our computational demand. For example, suppose

Christos Voudouris
Group Chief Technology Office, BT plc, Orion Building, mlb1/pp12, Marthlesham Heath, Ipswich,
IP5 3RE, United Kingdom, e-mail: chris.voudouris@bt.com

Edward P. K. Tsang
Department of Computer Science, Univeristy of Essex, Wivenhoe Park, Colchester, CO4 3SQ,
United Kingdom, e-mail: edward@essex.ac.uk

Abdullah Alsheddy
Department of Computer Science, Univeristy of Essex, Wivenhoe Park, Colchester, CO4 3SQ,
United Kingdom, e-mail: aalshe@essex.ac.uk

1

edward
Typewritten Text

edward
Typewritten Text
C.Voudouris, E.P.K. Tsang & A. Alsheddy, Guided local search, Chapter 11, in M. Gendreau & J-Y Potvin (ed.), Handbook of Metaheuristics, Springer, 2010, p.321-361



2 Christos Voudouris, Edward P. K. Tsang and Abdullah Alsheddy

we have to schedule 30 jobs on 10 machines, satisfying various production con-
straints. The search space has 1030 leaf nodes. Let us assume that we use a very
clever backtracking algorithm that explores only one in every 1010 leaf nodes. Let us
generously assume that our implementation examines 1010 nodes per second (with
today’s hardware, even the most naı̈ve backtracking algorithm should be expected
to examine only 105 nodes per second). This still leaves us with approximately 300
years to solve the problem, in the worst case. Many real life problems cannot be re-
alistically and reliably solved by complete search. This motivates the development
of local search, or heuristic methods.

In this paper, we describe GLS, a general meta-heuristic algorithm and its appli-
cations. GLS sits on top of other heuristic methods with the aim to improve their
efficiency or robustness. GLS has been applied to a non-trivial number of problems,
and found to be efficient and effective. It is relatively simple to implement and apply,
with only a few parameters to tune.

The rest of this chapter will be divided into two parts: the first part describes the
GLS and surveys its variants. The second part provides guidelines on how to use
GLS in practical applications.

PART I: SURVEY OF GUIDED LOCAL SEARCH

2 BACKGROUND

Local search (LS) is the basis of most heuristic search methods. It searches in the
space of candidate solutions, such as the assignment of one machine to each job
in the above scheduling example. The solution representation issue is significant,
though it is not the subject of our discussion here. Starting from a (possibly ran-
domly generated) candidate solution, LS moves to a “neighbour” that is “better”
than the current candidate solution according to the objective function. LS stops
when all neighbours are inferior to the current solution.

LS can find good solutions very quickly. However, it can be trapped in local
optima - positions in the search space that are better than all their neighbours, but not
necessarily representing the best possible solution (the global optimum). To improve
the effectiveness of LS, various techniques have been introduced over the years.
Simulated Annealing (SA), Tabu Search (TS) and Guided Local Search (GLS) all
attempt to help LS escape local optimum. This chapter focuses on GLS [81].

GLS can be seen as a generalization of techniques such as GENET [15, 78, 79,
87, 88] and the min-conflicts heuristic repair method by Minton et al. [56] devel-
oped for constraint satisfaction problems. GLS also relates to ideas from the area of
Search Theory on how to distribute the search effort (e.g. see [41, 68]).

The principles of GLS can be summarized as follows. As a meta-heuristic
method, GLS sits on top of LS algorithms. To apply GLS, one defines a set of
features for the candidate solutions. When LS is trapped in local optima, certain



GUIDED LOCAL SEARCH 3

features are selected and penalized. LS searches the solution space using the objec-
tive function augmented by the accumulated penalties. The novelty of GLS is in the
way that it selects features to penalize. GLS effectively distributes the search effort
in the search space, favouring promising areas.

3 GUIDED LOCAL SEARCH

As mentioned earlier, GLS augments the given objective function with penalties.
To apply GLS, one needs to define features for the problem. For example, in the
travelling salesman problem [21], a feature could be “whether the candidate tour
travels immediately from city A to city B”. GLS associates a cost and a penalty with
each feature. The costs can often be defined by taking the terms and their coefficients
from the objective function. For example, in the travelling salesman problem, the
cost of the above feature can simply be the distance between cities A and B. The
penalties are initialized to 0 and will only be increased when the local search reaches
a local optimum. Given an objective function g that maps every candidate solution
s to a numerical value, GLS defines a function h that will be used by LS (replacing
g):

h(s) = g(s)+λ × ∑
i is a feaure

(pi× Ii(s)) (1)

where s is a candidate solution, λ is a parameter of the GLS algorithm, i ranges over
the features, pi is the penalty for feature i (all pi’s are initialized to 0) and Ii is an
indication of whether s exhibits feature i:

Ii(s) = 1 if s exhibits feature i; 0 otherwise. (2)

Sitting on top of local search algorithms, GLS helps them to escape local optima
in the following way. Whenever the local search algorithm settles in a local opti-
mum, GLS augments the cost function by adding penalties to selected features. The
novelty of GLS is mainly in the way that it selects features to penalize. The intention
is to penalize “unfavourable features” or features that “matter most” when a local
search settles in a local optimum. A feature with high cost has more impact on the
overall cost. Another factor that should be considered is the current penalty value
of that feature. The utility of penalizing feature i, utili, under a local optimum s∗, is
defined as follows:

utili(s∗) = Ii(s∗)×
ci

1+ pi
(3)

where ci is the cost and pi is the current penalty value of feature i. In other words,
if a feature is not exhibited in the local optimum (indicated by Ii), then the utility of
penalizing it is 0. The higher the cost of this feature (the greater ci), the greater the
utility of penalizing it. Besides, the larger the number of times it has been penalized
(the greater pi), the lower the utility of penalizing it again. In a local optimum, the
feature with the greatest util value will be penalized. When a feature is penalized,



4 Christos Voudouris, Edward P. K. Tsang and Abdullah Alsheddy

its penalty value is always increased by 1. The scaling of the penalty is adjusted by
λ .

By taking the cost and current penalty into consideration in selecting the feature
to penalize, GLS focuses its search effort on more promising areas of the search
space: areas that contain candidate solutions that exhibit “good features”, i.e. fea-
tures involving lower cost. On the other hand, penalties help to prevent the search
from directing all effort to any particular region of the search space.

Naturally the choice of the features, their costs and the setting of λ may affect the
efficiency of a search. Experience shows that the features and their costs normally
come directly from the objective function. In many problems, the performance of
GLS is not too sensitive to the value λ . It means that not too much effort is required
to apply GLS to a new problem. In certain problems, one needs expertise in selecting
the features and the λ parameter. Research aiming to reduce the sensitivity of the λ

parameter in such cases is reported in [55].

4 IMPLEMENTING GUIDED LOCAL SEARCH

A local search procedure for the particular problem is required for the algorithm to
be implemented. Guided Local Search is repeatedly using this procedure to optimize
the augmented objective function of the problem. The augmented objective function
is modified each time a local minimum is reached by increasing the penalties of one
or more of the features present in the local minimum. These features are selected
by using the utility function (3) of section 3. The pseudo-code for implementing a
Guided Local Search method is presented and explained in the section below.

4.1 Pseudo-code for Guided Local Search

The pseudo-code for the Guided Local Search procedure is the following:

procedure GuidedLocalSeach(p, g, λ , [I1, . . . , IM], [c1, . . . ,cM], M)
begin

k← 0;
s0←ConstructionMethod(p);
/* set all penalties to 0 */
for i← 1 until M do

pi← 0;
/* define the augmented objective function */
h← g+λ ∗∑ pi ∗ Ii;
while StoppingCriterion do
begin

sk+1← ImprovementMethod(sk,h);



GUIDED LOCAL SEARCH 5

/* compute the utility of features */
for i← 1 until M do

utili← Ii(sk+1)∗ ci/(1+ pi);
/* penalize features with maximum utility */
for each i such that utili is maximum do

pi← pi +1;
k← k +1;

end
s∗← best solution found with respect to objective function g;
return s∗;

end

where p is the problem, g is the objective function, h is the augmented ob-
jective function, λ is a parameter, Ii is the indicator function of feature i, ci is
the cost of feature i, M is the number of features, pi is the penalty of feature i,
ConstructionMethod(p) is the method for constructing an initial solution for prob-
lem p, and ImprovementMethod(sk,h) is the method for improving solution sk ac-
cording to the augmented objective function h.

4.2 Guidelines for implementing the GLS pseudo-code

To understand the pseudo-code, let us first explain the methods for constructing and
improving a solution, as they are both prerequisites for building a GLS algorithm.

4.2.1 Construction method

As with other meta-heuristics, GLS requires a construction method to generate an
initial (starting) solution for the problem. In the pseudo-code, this is denoted by
ConstructionMethod. This method can generate a random solution or a heuristic
solution based on some known technique for constructing solutions for the particular
problem. GLS is not very sensitive to the starting solution given that sufficient time
is allocated to the algorithm to explore the search space of the problem.

4.2.2 Improvement method

A method for improving the solution is also required. In the pseudo-code, this is de-
noted by ImprovementMethod. This method can be a simple local search algorithm
or a more sophisticated one such as Variable neighbourhood Search [30], Variable
Depth Search [50], Ejection Chains [25] or combinations of local search methods
with exact search algorithms [60].



6 Christos Voudouris, Edward P. K. Tsang and Abdullah Alsheddy

It is not essential for the improvement method to generate high quality local min-
ima. Experiments with GLS and various local heuristics reported in [85] have shown
that high quality local minima take time to produce, resulting in less intervention by
GLS in the overall allocated search time. This may sometimes lead to inferior results
compared to a simple but more computationally efficient improvement method.

Note also that the improvement method is using the augmented objective function
instead of the original one.

4.2.3 Indicator functions and feature penalization

Given that a construction and an improvement method are available for the problem,
the rest of the pseudo-code is straightforward to apply. The penalties of features are
initialized to zero and they are incremented for features that maximize the utility
formula, after each call to the improvement method.

The indicator functions Ii for the features rarely need to be implemented. Look-
ing at the values of the decision variables can directly identify the features present
in a local minimum. When this is not possible, data structures with constant time
deletion/addition operations (e.g. based on double-linked lists) can incrementally
maintain the set of features present in the working solution, thus avoiding the need
for an expensive computation when GLS reaches a local minimum.

The selection of features to penalize can be efficiently implemented by using the
same loop for computing the utility formula for features present in the local mini-
mum (the other features can be ignored) and also placing features with maximum
utility in a vector. With a second loop, the features with maximum utility contained
in this vector have their penalties incremented by one.

4.2.4 Parameter λ

Parameter λ is the only parameter of the GLS method (at least in its basic version)
and in general is instance dependent. Fortunately, for several problems, it has been
observed that good values for λ can be found by dividing the value of the objective
function of a local minimum with the number of features present in it. In these prob-
lems, λ is dynamically computed after the first local minimum and before penalties
are applied to features for the first time. The user only provides parameter α , which
is relatively instance independent. The recommended formula for λ as a function of
α is the following:

λ = α ∗g(x∗)/(no. of features present in x∗) (4)

where g is the objective function of the problem and x∗ is a local minimum. Tuning
α can result in λ values, which work for many instances of a problem class.

Another benefit from using α is that, once tuned, it can be fixed in industrialized
versions of the software, resulting in ready-to-use GLS algorithms for the end-user.



GUIDED LOCAL SEARCH 7

4.2.5 Augmented objective function and move evaluations

With regard to the objective function and the augmented objective function, the
program should keep track of the actual objective value in all operations related to
storing the best solution or finding a new best solution. Keeping track of the value
of the augmented objective value (e.g. after adding the penalties) is not necessary
since local search methods will be looking only at the differences in the augmented
objective value when evaluating moves.

However, the move evaluation mechanism needs to be revised to work efficiently
with the augmented objective function. Normally, the move evaluation mechanism
is not directly evaluating the objective value of the new solution generated by the
move. Instead, it calculates the difference ∆g in the objective function. This differ-
ence should be combined with the difference in the amount of penalties. This can
be easily done and has no significant impact on the time needed to evaluate a move.
In particular, we have to take into account only features whose state changes (be-
ing deleted or added). The penalties of the features deleted are summed together.
The same is done for the penalties of added features. The change in the amount of
penalties due to the move is then simply given by the difference:

∑
over all features j added

p j− ∑
over all features k deleted

pk (5)

which then has to be multiplied by λ and added to ∆g.
Another minor improvement is to monitor the actual objective value not only for

the solutions accepted by the local search but also for those evaluated. Since local
search is using the augmented objective function, a move that generates a new best
solution may be missed. From our experience, this modification does not improve
significantly the performance of the algorithm although it can be useful when GLS
is used to find new best-known solutions to hard benchmark instances.

4.2.6 Stopping criterion

There are many choices possible for the StoppingCritetion. Since GLS is not
trapped in local minima, it is not clear when to stop the algorithm. Like other meta-
heuristics, we usually resort to a measure related to the length of the search process.
For example, we may choose to set a limit on the number of moves performed, the
number of moves evaluated, or the CPU time spent by the algorithm. If a lower
bound is known, we can utilize it as a stopping criterion by setting the gap to be
achieved between the best known solution and the lower bound. Criteria can also be
combined to allow for a more flexible way to stop the GLS method.

In the next section, we look at the combination of Guided Local Search with Fast
Local Search, a generalised algorithm for speeding up local search, resulting in the
Guided Fast Local Search method. Guided Fast Local Search addresses the issue



8 Christos Voudouris, Edward P. K. Tsang and Abdullah Alsheddy

of slow local search procedures and it is particularly useful when applying GLS to
tackle large scale problem instances.

5 GUIDED FAST LOCAL SEARCH

One factor which affects the efficiency of a local search algorithm is the size of
the neighbourhood. If too many neighbours are considered, then the search could
be very costly. This is especially true if the search takes many steps to reach a
local optimum, and/or each evaluation of the objective function requires a significant
amount of computation. Bentley presented in [5] the approximate 2-Opt method to
reduce the neighbourhood of 2-Opt in the TSP. We have generalised this method to a
method called Fast Local Search (FLS). The principle is to use heuristics to identify
(and ignore) neighbours that are unlikely to lead to improving moves in order to
enhance the efficiency of a search.

The neighbourhood choosen for the problem is broken down into a number of
small sub-neighbourhoods and an activation bit is attached to each one of them. The
idea is to scan continuously the sub-neighbourhoods in a given order, searching only
those with the activation bit set to 1. These sub-neighbourhoods are called active
sub-neighbourhoods. Sub-neighbourhoods with the bit set to 0 are called inactive
sub-neighbourhoods and they are not being searched. The neighbourhood search
process does not restart whenever we find a better solution but it continues with the
next sub-neighbourhood in the given order. This order may be static or dynamic (i.e.
change as a result of the moves performed).

Initially, all sub-neighbourhoods are active. If a sub-neighbourhood is examined
and does not contain any improving moves then it becomes inactive. Otherwise, it
remains active and the improving move found is performed. Depending on the move
performed, a number of other sub-neighbourhoods are also activated. In particular,
we activate all the sub-neighbourhoods where we expect other improving moves to
occur as a result of the move just performed. As the solution improves the process
dies out with fewer and fewer sub-neighbourhoods being active until all the sub-
neighbourhood bits turn to 0. The solution formed up to that point is returned as an
approximate local optimum.

The overall procedure could be many times faster than conventional local search.
The bit setting scheme encourages chains of moves that improve specific parts of
the overall solution. As the solution becomes locally better the process is settling
down, examining fewer moves and saving enormous amounts of time which would
otherwise be spent on examining predominantly bad moves.

Although fast local search procedures do not generally find very good solutions,
when they are combined with GLS they become very powerful optimization tools.
Combining GLS with FLS is straightforward. The key idea is to associate features
to sub-neighbourhoods. The associations to be made are such that for each feature
we know which sub-neighbourhoods contain moves that have an immediate effect
upon the state of the feature (i.e. moves that remove the feature from the solution).



GUIDED LOCAL SEARCH 9

By reducing the size of the neighbourhood, one may significantly reduce the
amount of computation involved in each local search iteration. The idea is to enable
more local search iterations in a fixed amount of time. The danger of ignoring certain
neighbours is that some improvements may be missed. The hope is that the gain in
“search speed” out-weighs the loss in “search quality”.

6 IMPLEMENTING GUIDED FAST LOCAL SEARCH

Guided Fast Local Search (GFLS) is more sophisticated than the basic GLS algo-
rithm as it uses a number of sub-neighbourhoods, which are enabled/disabled dur-
ing the search process. The main advantage of GFLS lies in its ability to focus the
search after the penalties of features are increased. This can dramatically shorten the
time required by an improvement method to re-optimize the solution each time the
augmented objective function is modified.

In the following sections, we provide the pseudo-code for the method and also
some suggestions on how to achieve an efficient implementation. We first look at the
pseudo-code for Fast Local Search, which is part of the overall Guided Fast Local
Search algorithm.

6.1 Pseudo-code for Fast Local Search

The pseudo-code for Fast Local Search is the following:

procedure FastLocalSeach(s, h, [bit1, . . . ,bitL], L)
begin

while ∃bit, bit = 1 do
/* i.e. while active sub-neighbourhood exists */

for i← 1 until L do
begin

if biti = 1 then
/* search sub-neighbourhood i */
begin

Moves←MovesForSubneighbourhood(i);
for each move m in Moves do
begin

s′← m(s);
/* s′ is the result of move m */
if h(s′) < h(s) then
/* minimization case is assumed here */
begin

/* spread activation */



10 Christos Voudouris, Edward P. K. Tsang and Abdullah Alsheddy

ActivateSet←
SubneighbourhoodsForMove(m);
for each sub-neighbourhood j in
ActivateSet do

bit j← 1;
s← s′;
goto ImprovingMoveFound

end
end
biti← 0; /* no improving move found */

end
ImprovingMoveFound:

continue;
end

return s;
end

where s is the solution, h is the augmented objective function, L is the number of
sub-neighbourhoods, biti is the activation bit for sub-neighbourhood i, MovesForSub-
neighbourhood(i) is the method which returns the set of moves contained in sub-
neighbourhood i, and SubneighbourhoodsForMove(m) is the method which returns
the set of sub-neighbourhoods to activate when move m is performed.

6.2 Guidelines for implementing the FLS pseudo-code

As explained in section 5, the problem’s neighbourhood is broken down into a num-
ber of sub-neighbourhoods and an activation bit is attached to each one of them.
The idea is to examine sub-neighbourhoods in a given order, searching only those
with the activation bit set to 1. The neighbourhood search process does not restart
whenever we find a better solution but it continues with the next sub-neighbourhood
in the given order. The pseudo-code given above is flexible since it does not specify
which bits are initially switched on or off, something which is an input to the pro-
cedure. This allows the procedure to be focused to certain sub-neighbourhoods and
not the whole neighbourhood, which may be a large one.

The procedure has two points that need to be customized. The first is the
breaking-down of the neighbourhood into sub-neighbourhoods (MovesForSubneigh-
borhood method in pseudo-code). The second is the mapping from moves to sub-
neighbourhoods for spreading activation (SubneighbourhoodsForMove method in
pseudo-code). Both points are strongly dependent on the move operator used.

In general, the move operator depends on the solution representation. Fortu-
nately, several problems share the same solution representation which is typically
based on some well-known simple or composite combinatorial structure (e.g. selec-
tion, permutation, partition, composition, path, cyclic path, tree, graph, etc.). This



GUIDED LOCAL SEARCH 11

allows us to use the same move operators for many different problems (e.g. 1-Opt,
2-Opt, Swaps, Insertions, etc.).

6.2.1 Breaking down the neighbourhood into sub-neighbourhoods

The method for mapping sub-neighbourhoods to moves, which is denoted in the
pseudo-code by SubneighbourhoodToMoves, can be defined by looking at the im-
plementation of a typical local search procedure for the problem. This implemen-
tation, at its core, will usually contain a number of nested for-loops for generating
all possible move combinations. The variable in the outer-most loop in the move
generation code can be used to define the sub-neighbourhoods. The moves in each
sub-neighbourhood will be those generated by the inner loops for the particular sub-
neighbourhood index value at the outer-most loop.

In general, the sub-neighbourhoods can be overlapping. Fast local search is usu-
ally examining a limited number of moves compared to exhaustive neighbourhood
search methods and therefore duplication of moves is not a problem. Moreover,
this can be desirable sometimes to give a greater range to each sub-neighbourhood.
Since not all sub-neighbourhoods are active in the same iteration, if there is no over-
lapping, some improving moves may be missed.

6.2.2 Spreading activation when moves are executed

The method for spreading activation, denoted by SubneighbourhoodsForMove, re-
turns a set of sub-neighbourhoods to activate after a move is performed. The lower
bound for this set is the sub-neighbourhood where the move originated. The upper
bound (although not useful) is all the sub-neighbourhoods in the problem.

A way to define this method is to look at the particular move operator used.
Moves will affect part of the solution directly or indirectly while leaving other parts
unaffected. If a sub-neighbourhood contains affected parts then it needs to be acti-
vated since an opportunity could arise there for an improving move as a result of the
original move performed.

The Fast Local Search loop is settling down in a local minimum when all the
bits of sub-neighbourhoods turn to zero (i.e. no improving move can be found in
any of the sub-neighbourhoods). Fast Local Search in that respect is similar to other
local search procedures. The main differences are that the method can be focused
to search particular parts of the overall neighbourhood and secondly, it is working
in an opportunistic way looking at parts of the solution which are likely to contain
improving moves rather than the whole solution. In the next section, we look at
Guided Fast Local Search, which uses Fast Local Search as its improvement method.



12 Christos Voudouris, Edward P. K. Tsang and Abdullah Alsheddy

6.3 Pseudo-code for Guided Fast Local Search

The pseudo-code for Guided Fast Local Search is given below:

procedure GuidedFastLocalSearch(p, g, λ , [I1, . . . , IM], [c1, . . . ,cM], M, L)
begin

k← 0;
s0←ConstructionMethod(p);
/* set all penalties to 0 */
for i← 1 until M do

pi← 0;
/* set all sub-neighbourhoods to the active state */
for i← 1 until L do

biti← 1;
/* define the augmented objective function */
h← g+λ ∗∑ pi ∗ Ii;
while StoppingCriterion do
begin

sk+1← FastLocalSearch(sk,h, [bit1, . . . ,bitL],L);
/* compute the utility of features */
for i← 1 until M do

utili← Ii(sk+1)∗ ci/(1+ pi);
/* penalize features with maximum utility */
for each i such that utili is maximum do
begin

pi← pi +1;
/* activate sub-neighbourhoods related
to penalized feature i */
ActivateSet← SubneighbourhoodsForFeature(i);
for each sub-neighbourhood j in ActivateSet do

bit j← 1;
end
k← k +1;

end
s∗← best solution found with respect to objective function g;
return s∗;

end

where FastLocalSearch(sk,h, [bit1, . . . ,bitL],L) is the fast local search method
as described in section 6.1, SubneighbourhoodsForFeature(i) is the method which
returns the set of sub-neighbourhoods to activate when feature i is penalized, and
the rest of the definitions are the same than those used in the pseudo-code for GLS
described in section 4.1.



GUIDED LOCAL SEARCH 13

6.4 Guidelines for implementing the GFLS pseudo-code

This pseudo-code is similar to that of Guided Local Search explained in section
4. All differences relate to the manipulation of activation bits for the purpose of
focusing Fast Local Search. These bits are initialized to 1. As a result, the first call
to Fast Local Search is examining the whole neighbourhood for improving moves.

Subsequent calls to Fast Local Search examine only part of the neighbourhood
and in particular all the sub-neighbourhoods that relate to the features penalized by
GLS.

6.4.1 Identifying sub-neighbourhoods to activate when features are penalized

Identifying the sub-neighbourhoods that are related to a penalized feature is the task
of SubneighbourhoodsForFeature method. The role of this method is similar to that
of SubneighbourhoodsForMove method in Fast Local Search (see section 6.2.2).

The SubneighbourhoodsForFeature method is usually defined based on an anal-
ysis of the move operator. After the application of penalties, we are looking for
moves which remove or have the potential to remove penalized features from the
solution. The sub-neighbourhoods, which contain such moves, are prime candidates
for activation. Specific examples will be given later in the chapter and in the context
of GLS applications.

Guided Fast Local Search is much faster than basic Guided Local Search espe-
cially in large problem instances when repeatedly and exhaustively searching the
whole neighbourhood is computationally expensive.

7 GLS AND OTHER METAHEURISTICS

GLS is closely related to other heuristic and meta-heuristic methods. In this section,
we shall discuss the relationship between GLS and Tabu Search (TS), GLS and
Genetic Algorithms (GA) and also review the different hybrids and extensions of
GLS and FLS that have been developed in recent years.

7.1 GLS and TABU Search

GLS is closely related to Tabu Search (TS). For example, penalties in GLS can be
seen as soft taboos in TS that guide LS away from local minima. There are many
ways to adopt TS ideas in GLS. For example, taboo lists and aspiration ideas have
been used in later versions of GLS. Penalties augment the original objective func-
tion. They help the local search to escape local optima. However, if too many penal-
ties are built up during the search, the local search could be misguided. Resembling



14 Christos Voudouris, Edward P. K. Tsang and Abdullah Alsheddy

the tabu lists idea, a limited number of penalties are used when GLS is applied to
the radio link frequency assignment problem [58]. When the list is full, old penalties
are overwritten [83].

In another GLS work, aspiration (inspired by TS) is used to favour promising
moves [55].

7.2 GLS and Genetic Algorithms

As a meta-heuristic method, GLS can also sit on top of genetic algorithms (GA)
[27, 33]. This has been demonstrated in Guided Genetic Algorithm (GGA) [44, 45,
46, 47].

GGA is a hybrid of GA and GLS. It is designed to extend the domain of both GA
and GLS. One major objective is to further improve the robustness of GLS. It can be
seen as a GA with GLS to bring it out of local optima: if no progress has been made
after a specific of iterations (this number is a parameter of GGA), GLS modifies
the fitness function (which is the objective function) by means of penalties, using
the criteria defined in equation (3). GA will then use the modified fitness function
in future generations. The penalties are also used to bias crossover and mutation in
GA - genes that contribute more to the penalties are more likely to changed by these
two GA operators. This allows GGA to be more focussed in its search.

On the other hand, GGA can roughly be seen as a number of GLSs running in
parallel from different starting points and exchanging material in a GA manner. The
difference is that only one set of penalties is used in GGA whereas parallel GLS’s
could have used one independent set of penalties per run. Besides, learning in GGA
is more selective than parallel GLS: the updating of penalties is only based on the
best chromosome found at the point of penalization.

7.3 GLS Hybrids

Being simple and general, GLS ideas can easily be combined with other techniques.
GLS has been hybridized with several metaheuristics creating efficient frameworks
which were successfully applied to several applications. Below, we review and com-
ment on some of these hybrids of GLS.

GLS was hybridized with two major Evolutionary Computation (EC) techniques,
namely Estimate Distribution Algorithm (EDA) and Evolution Strategy (ES). The
hybrid of GLS with EDA was introduced by Zhang et al. [92]. They proposed a
framework that incorporates GLS within EDA, in which GLS is applied to each
solution in the population of EDA. The framework is successfully applied to the
Quadratic Assignment Problem. The results show the superiority of EDA/GLS over
GLS alone.



GUIDED LOCAL SEARCH 15

The hybrid of GLS with ES was first studied by Mester and Braysy [52]. The
resulting framework combines GLS and ES into an iterative two-stage procedure.
GLS is used in both phases to improve the local search in the first stage, and to
regulate the objective function and the neighbourhood of the modified ES in the
second stage. The principle of FLS is also incorporated into the idea of Penalty
Variable Neighbourhood in which the neighbourhood considered by the local search
is limited to a small set of the neighbours of the penalized feature.

GLS has also been hybridized with Variable Neighbourhood Search (VNS) and
Large Neighbourhood Search (LNS). Kytojoki et al. [42] combine GLS with VNS in
an efficient variable neighbourhood search heuristic, named Guided VNS (GVNS),
which was applied to the vehicle routing problem. The addition to VNS is the use of
GLS to escape local minima. The idea of threshold value borrowed from Threshold
Accepting (TA) is used as a termination condition for every GLS stage. The hybrid
of GLS with LNS is introduced in [89]. In the proposed framework, LNS is applied
when the GLS cannot escape a local optimum after a number of penalizations, with
the aim of increasing the diversity and exploring more promising parts of the search
space. The effectiveness of this hybrid was demonstrated through high quality re-
sults obtained in a planning optimization problem.

Guided Tabu Search (GTS) is a hybrid metaheuristic which combines GLS with
TS proposed by Tarantilis et al. [73, 74] to solve the vehicle routing problem with
heterogeneous fleet, and then extended to solve another variant of the same general
problem. The basic idea is to control the exploration of TS by a guiding mechanism,
based on GLS, that continuously modifies the objective function of the problem.
The authors propose a new arc (as a feature) selection strategy which consider the
relative arc length according to the rest of customers (di, j/avgi, j rather than di, j,
where avgi, j is the average value of all outgoing arcs from i and j). They argue that
this would lead to a more balanced arc selection, which should improve upon the
most frequently employed strategy based on di, j only. Experimental results confirm
the effectiveness of GTS, producing new best results for several benchmarks. De
Backer et al. [3] also proposed a Guided Tabu Search hybrid in their work on the
VRP.

GLS has been also successfully hybridized with Ant Colony Optimization (ACO)
by Hani et al. [29]. This hybrid algorithm was applied to the facility layout problem,
a variant of the Quadratic Assignment Problem (QAP). The basic idea is simple:
GLS sits on top of the basic LS in the ACO.

The hybridization of GLS and Constraint Programming (CP) was introduced by
Gomes et al. [28]. This method, named Guided Constraint Search, borrows ideas
from GLS to improve the efficiency of pure CP methods. The basic principle is to
use a fitness function to choose at each iteration only the N most promising values
of each variable’s domain, defining a sub-space for the CP method. The selection
strategy is inspired from GLS; for each pair, a utility function, penalty parameter
and cost are defined. At each iteration, those features (variable/value pairs) which
were considered but did not belong to a new best solution are deemed bad features,
and are penalized.



16 Christos Voudouris, Edward P. K. Tsang and Abdullah Alsheddy

7.4 Variations and Extensions

The success of GLS motivated researchers to invent new algorithms inspired from
GLS, borrowing the ideas of features, penalties, and utilities. Below, we briefly de-
scribe such GLS-inspired algorithms.

Partially based on GLS, which is a centralized algorithm, Basharu et al. [4] intro-
duce an improved version for solving distributed constraint satisfaction problems.
The Distributed Guided Local Search (Dis-GLS) incorporates additional heuristics
to enhance its efficiency in distributed scenarios. The algorithm has been success-
fully applied to the distributed version of the Graph Colouring problem producing
promising results compared to other distributed search algorithms.

Hifi et al. [32] introduced a variant of GLS by proposing a new penalization
strategy. The principle is to distinguish two phases in the search process, namely the
penalty and normal phases. The search process switches between the two phases in
order to either escape local optima or diversify the search to explore another feasible
space. The computational results confirm the high quality of solutions obtained by
the proposed variant.

Tamura et al. [72] propose an improved version of GLS, named the Objective
function Adjustment (OA) algorithm which incorporates the idea of features (from
GLS) alongside the concept of energy function.

PART II: APPLICATIONS OF GUIDED LOCAL SEARCH

8 OVERVIEW OF APPLICATIONS

GLS and its descendents have been applied to a number of non-trivial problems and
have achieved state-of-the-art results.

8.1 Radio Link Frequency Assignment Problem

In the radio link frequency assignment problem (RLFAP), the task is to assign avail-
able frequencies to communication channels satisfying constraints that prevent in-
terference [7]. In some RLFAPs, the goal is to minimize the number of frequencies
used. Bouju et al. [7] is an early work that applied GENET to radio length fre-
quency assignment. For the CALMA set of benchmark problems, which has been
widely used, GLS+FLS reported the best results compared to all work published
previously [84]. In the NATO Symposium on RLFAP in Denmark, 1998, GGA was
shown to improve the robustness of GLS [46]. In the same symposium, new and sig-
nificantly improved results by GLS were reported [83]. At the time, GLS and GGA
held some of the best known results in the CALMA set of benchmark problems.



GUIDED LOCAL SEARCH 17

8.2 Workforce Scheduling Problem

In the workforce scheduling problem (WSP) [2], the task is to assign technicians
from various bases to serve the jobs, which may include customer requests and re-
pairs, at various locations. Customer requirements and working hours restrict the
service times at which certain jobs can be served by certain technicians. The objec-
tive is to minimize a function that takes into account the travelling cost, overtime
cost and unserved jobs. In the WSP, GLS+FLS holds the best-published results for
the benchmark problem available to the authors [77].

8.3 Travelling Salesman Problem

The most significant results of GLS and FLS are probably in their application to the
travelling salesman problem (TSP). The Lin-Kernighan algorithm (LK) is a spe-
cialised algorithm for the TSP that has long been perceived as the champion of this
problem [50, 51]. We tested GLS+FLS+2Opt against LK [85] on a set of bench-
mark problems from a public TSP library [61]. Given the same amount of time,
GLS+FLS+2Opt found better results than LK on average. GLS+FLS+2Opt also
out-performed Simulated Annealing [36], Tabu Search [40] and Genetic Algorithm
[23] implementations for the TSP. One must be cautious when interpreting such em-
pirical results as they could be affected by many factors, including implementation
details. But given that the TSP is an extensively studied problem, it takes some-
thing special for an algorithm to out-perform the champions under any reasonable
measure (“find the best results within a given amount of time” must be a realistic
requirement). It must be emphasized that LK is specialized for the TSP but GLS and
FLS are much simpler general-purpose algorithms.

GLS hybrids have also been proposed for the TSP including the combination of
GLS with Memetic Algorithms [34] and also with the dynamic-programming based
Dynasearch technique with encouraging preliminary results reported in [12].

Padron and Balaguer [59] have applied GLS to the related Rural Postman Prob-
lem (RPP), Vansteenwegen et al. [80] applied GLS to the related Team Orienteering
Problem (TOP), and Mester et al. [53] applied the Guided Evolution Strategy hybrid
metaheuristic to a genetic ordering problem (a Unidimensional Wandering Salesper-
son Problem, UWSP).

8.4 Function Optimisation

GLS has been applied to general function optimisation problems to illustrate that ar-
tificial features can be defined for problems in which the objective function suggests
no obvious features. As expected, the results show that GLS spreads its search effort
across solution candidates depending on their quality (as measured by the objective



18 Christos Voudouris, Edward P. K. Tsang and Abdullah Alsheddy

function). Besides, GLS consistently found solutions in a landscape with many local
sub-optima [82].

8.5 Satisfiability and Max-SAT problem

Given a set of propositions in conjunctive normal form, the Satisfiability (SAT)
problem is to determine whether the propositions can all be satisfied. The MAX-
SAT problem is a SAT problem in which each clause is given a weight. The task is
to minimize the total weight of the violated clauses. In other words, the weighted
MAX-SAT problem is an optimisation problem. Many researchers believe that many
problems, including scheduling and planning can be formulated as SAT and MAX-
SAT problems, hence these problems have received significant attention in recent
years, e.g. see Gent et al. [24].

GLSSAT, an extension of GLS, was applied to both the SAT and weighted MAX-
SAT problem [54]. On a set of SAT problems from DIMACS, GLSSAT produced
more frequently better or comparable solutions than those produced by WalkSAT
[64], a variation of GSAT [65], which was specifically designed for the SAT prob-
lem.

On a popular set of benchmark weighted MAX-SAT problems, GLSSAT pro-
duced better or comparable solutions, more frequently than state-of-the-art algo-
rithms, such as DLM [66], WalkSAT [64] and GRASP [63].

8.6 Generalized Assignment Problem

The Generalized Assignment Problem is a generic scheduling problem in which the
task is to assign agents to jobs. Each job can only be handled by one agent, and
each agent has a finite resource capacity that limits the number of jobs that it can be
assigned to. Assigning different agents to different jobs bear different utilities. On
the other hand, different agents will consume different amounts of resources when
doing the same job. In a set of benchmark problems, GGA found results as good as
those produced by a state-of-the-art algorithm (which was also a GA algorithm) by
Chu and Beasley [11], with improved robustness [47].

GLS hybrids have been proposed for the related QAP. Zhang et al. [92] pro-
posed the GLS/EDA hybrid metaheuristic. In addition, the hybrid of GLS with ACO
(ACO GLS) has been applied to a variation of the QAP [29].



GUIDED LOCAL SEARCH 19

8.7 Processor Configuration Problem

In the Processor Configuration Problem, one is given a set of processors, each of
which with a fixed number of connections. In connecting the processors, one ob-
jective is to minimize the maximum distance between processors. Another possible
objective is to minimize the average distance between pairs of processors [9]. In
applying GGA to the Processor Configuration Problem, representation was a key
issue. To avoid generating illegal configurations, only mutation is used. GGA found
configurations with shorter average communication distance than those found by
other previously reported algorithms [45, 46].

8.8 Vehicle Routing Problem

In a vehicle routing problem, one is given a set of vehicles, each with its specific
capacity and availability, and a set of customers to serve, each with specific weight
and/or time demand on the vehicles. The vehicles are grouped at one or more depots.
Both the depots and the customers are geographically distributed. The task is to
serve the customers using the vehicles, satisfying time and capacity constraints.
This is a practical problem which, like many practical problems, is NP-hard.

Kilby et al. applied GLS to vehicle routing problems and achieved outstanding
results [38, 39]. As a result, their work was incorporated in Dispatcher, a commercial
package developed by ILOG [3].

Recently, the application of GLS and its hybrids to the VRP have been consid-
erably extended to several variants of the problem. GLS has been applied to the
vehicle routing problem with backhauls and time windows [93], and to the capac-
itated arc routing problem [6]. Guided Tabu Search has been applied to the VRP
with time window [73, 74], and also extended to other variants of the VRP, namely
the VRP with two-dimensional loading constraints [90], the VRP with simultaneous
pick up and delivery [91], and the VRP with Replenishment Facility [74]. GLS with
VNS [42], as well as GLS with ES [52] hybrids have been proposed to solve large
scale VRPs.

8.9 Constrained Logic Programming

Lee and Tam [48] and Stuckey and Tam [69] embedded GENET in logic program-
ming languages in order to enhance programming efficiency. In these logic pro-
gramming implementations, unification is replaced by constraint satisfaction [76].
This enhances efficiency and extends applicability of logic programming. Hoos and
Tsang [35] provide a good overview of local search in constraint programming.



20 Christos Voudouris, Edward P. K. Tsang and Abdullah Alsheddy

8.10 Other Applications of GENET and GLS

We have experimented with GLS and FLS on a variety of other problems, including
the Maximum Channel Assignment problem, a Bandwidth Packing problem variant,
graph colouring and the car sequencing problem. Some of their work are available
for download over the internet from Essex university’s website [26] but are largely
undocumented due to lack of time during the original development phase of the
algorithm.

GLS and FLS have been successfully applied to the 3-D Bin Packing Problem
and its variants [18, 19, 43], VLSI design problems [20] and network planning prob-
lems [22, 89]. GLS has been applied to the natural language parsing problem [14],
Graph Set T-colourings Problem [10], query reformulation [57]. Variations of GLS
have been applied to graph colouring [4], and the Multidimensional Knapsack prob-
lem [32]. Other applications of GENET include rail traffic control [37].

GLS and FLS have been incorporated into new software packages, namely iOpt
which is a software toolkit for heuristic search methods [86], and iSchedule [17],
which is an extension of iOpt for planning and scheduling applications (e.g. for
solving problems such as the VRP [16]).

9 USEFUL FEATURES FOR COMMON APPLICATIONS

Applying Guided Local Search or Guided Fast Local Search to a problem requires
identifying a suitable set of features to guide the search process. As explained in
section 3, features need to be defined in the form of indicator functions that, given a
solution, return 1 if the feature is present in the solution or 0 otherwise.

Features provide the heuristic search expert with quite a powerful tool since any
solution property can be potentially captured and used to guide local search. Usually,
we are looking for solution properties, which have a direct impact on the objective
function. These can be modeled as features with feature costs equal or analogous
to their contribution to the objective function value. By applying penalties to fea-
tures, GLS can guide the improvement method to avoid costly (“bad”) properties,
converging faster towards areas of the search space, which are of high quality.

Features are not necessarily specific to a particular problem and they can be used
in several problems of similar structure. Real world problems, which sometimes
incorporate elements from several academic problems, can benefit from using more
than one feature-set to guide the local search in better optimizing the different terms
of a complex objective function.

Below, we provide examples of features that can be deployed in the context of
various problems. The reader may find them helpful and use them in his/her own
optimization application.



GUIDED LOCAL SEARCH 21

9.1 Routing/Scheduling Problems

In routing/scheduling problems, one is seeking to minimize the time required by a
vehicle to travel between customers or for a resource to be setup from one activity to
the next. Problems in this category include the Traveling Salesman Problem, Vehicle
Routing Problem, Machine Scheduling with Sequence Dependent Set-up Times and
others.

Travel or setup times are modeled as edges in a path or graph structure commonly
used to represent the solution of these problems. The objective function (or at least
part of it) is given by the sum of lengths for the edges used in the solution.

Edges are ideal GLS features. A solution either contains an edge or not. Fur-
thermore, each edge has a cost equal to its length. We can define a feature for each
possible edge and assign a cost to it equal to the edge length. GLS quickly identifies
and penalizes long and costly edges guiding local search to high quality solutions,
which use as much as possible the short edges available.

9.2 Assignment Problems

In assignment problems, a set of items has to be assigned to another set of items (e.g.
airplanes to flights, locations to facilities, people to work etc.). Each assignment of
item i to item j usually carries a cost and depending on the problem, a number of
constraints are required to be satisfied (e.g. capacity or compatibility constraints).
The assignment of item i to item j can be seen as a solution property which is
either present in the solution or not. Since each assignment also carries a cost, this
is another good example of a feature to be used in a GLS implementation.

In some variations of the problem such as the Quadratic Assignment Problem,
the cost function is more complicated and assignments have an indirect impact on
the cost. Even in these cases, we found that GLS can generate good results by as-
signing the same feature costs to all features (e.g. equal to 1 or some other arbitrary
value). Although, GLS is not guiding the improvement method to good solutions
(since this information is difficult to extract from the objective function), it can still
diversify the search because of the penalty memory incorporated and it is capable
of producing results comparable to popular heuristic methods.

9.3 Resource Allocation Problems

Assignment problems can be used to model resource allocation applications. A spe-
cial but important case in resource allocation is when the resources available are
not sufficient to service all requests. Usually, the objective function will contain a
sum of costs for the unallocated requests, which is to be minimized. The cost in-



22 Christos Voudouris, Edward P. K. Tsang and Abdullah Alsheddy

curred when a request is unallocated will reflect the importance of the request or the
revenue lost in the particular scenario.

A possible feature to consider for these problems is whether a request is unal-
located or not. If the request is unallocated then a cost is incurred in the objective
function, which we can use as the feature cost to guide local search. The number
of features in a problem is equal to the number of requests that may be left unallo-
cated, one for each request. There may be hard constraints which state that certain
requests should always be allocated a resource, in which case there is no need to
define a feature for them. Problems in this category include the Path Assignment
Problem [1], Maximum Channel Assignment Problem [67], Workforce Scheduling
Problem [2] and others.

9.4 Constrained Optimization Problems

Constraints are very important in capturing processes and systems in the real world.
A number of combinatorial optimization problems deals with finding a solution,
which satisfies a set of constraints or, if that is not possible, minimizes the number
of constraint violations (relaxations). Constraint violations may have costs (weights)
associated with them, in which case the sum of constraint violation costs is to be
minimized.

Local search usually considers the number of constraint violations (or their
weighted sum) as the objective function even in cases where the goal is to find a
solution which satisfies all the constraints. Constraints by their nature can be easily
used as features. They can be modeled by indicator functions and they also incur a
cost (i.e. when violated/relaxed), which can be used as their feature cost. Problems
which can benefit from this modeling include the Constraint Satisfaction and Partial
Constraint Satisfaction Problem, the famous SAT and its MAX-SAT variant, Graph
Coloring, various Frequency Assignment Problems [58] and others.

The features exposed in the past sections will be used in the following case prob-
lems. In particular, we examine the application of GLS to the following problems:

• Traveling Salesman Problem (Routing/Scheduling category),
• Quadratic Assignment Problem (Assignment Problem category),
• Workforce Scheduling Problem (Resource Allocation category),
• Radio Link Frequency Assignment Problem (Constrained Optimization cate-

gory).

For each case problem, we provide a short problem description along with guide-
lines on how to build a basic local search procedure, implement GLS and also GFLS
when applicable.



GUIDED LOCAL SEARCH 23

10 TRAVELING SALESMAN PROBLEM (TSP)

10.1 Problem Description

There are many variations of the Traveling Salesman Problem (TSP). Here, we ex-
amine the classic symmetric TSP. The problem is defined by N cities and a symmet-
ric distance matrix D = [di j] which gives the distance between any two cities i and
j. The goal is to find a tour (i.e. closed path), which visits each city exactly once and
is of minimum length. A tour can be represented as a cyclic permutation π on the N
cities if we interpret π(i) to be the city visited after city i, i = 1, . . . ,N. The cost of a
permutation is defined as:

g(π) =
N

∑
i=1

diπ(i) (6)

and gives the cost function of the TSP.

10.2 Local Search

10.2.1 Solution Representation

The solution representation usually adopted for the TSP is that of a vector which
contains the order of the cities in the tour. For example, the i-th element of the
vector will contain an identifier for the i-th city to be visited. Since the solution of
the TSP is a closed path there is an edge implied from the last city in the vector to
the first one in order to close the tour. The solution space of the problem is made of
all possible permutations of the cities as represented by the vector.

10.2.2 Construction Method

A simple construction method is to generate a random tour. If the above solution
representation is adopted then all that is required is a simple procedure, which gen-
erates a random permutation of the identifiers of the cities. More advanced TSP
heuristics can be used if we require a higher quality starting solution to be gener-
ated [62]. This is useful in real time/online applications where a good tour may be
needed very early in the search process in case the user interrupts the algorithm.
If there are no such concerns, then a random tour generator suffices since the GLS
meta-heuristic tends to be relatively insensitive to the starting solution and capable
of finding high quality solutions even if it runs for a relatively short time.



24 Christos Voudouris, Edward P. K. Tsang and Abdullah Alsheddy

10.2.3 Improvement Method

Most improvement methods for the TSP are based on the k-Opt moves. Using k-Opt
moves, neighbouring solutions can be obtained by deleting k edges from the current
tour and reconnecting the resulting paths using k new edges. The k-Opt moves are
the basis of the three most famous local search heuristics for the TSP, namely 2-Opt
[13], 3-Opt [49] and Lin-Kernighan (LK) [50].

The reader can consider using the simple 2-Opt method, which in addition to its
simplicity is very effective when combined with GLS. With 2-Opt, a neighbouring
solution is obtained from the current solution by deleting two edges, reversing one
of the resulting paths and reconnecting the tour. In practical terms, this means re-
versing the order of the cities in a contiguous section of the vector or its remainder
depending on which one is the shortest in length.

Computing incrementally the change in solution cost by a 2-Opt move is rela-
tively simple. Let us assume that edges e1, e2 are removed and edges e3, e4 are
added with lengths d1, d2, d3, d4 respectively. The change in cost is the following:

d3+d4−d1−d2 (7)

When we discuss the features used in the TSP, we will explain how this evalua-
tion mechanism is revised to account for penalty changes in the augmented objective
function.

10.3 Guided Local Search

For the TSP, a tour includes a number of edges and the solution cost (tour length)
is given by the sum of the lengths of the edges in the tour (see equation (6)). As
mentioned in section 9.1, edges are ideal features for routing problems such as the
TSP. First, a tour either includes an edge or not and second, each edge incurs a cost
in the objective function which is equal to the edge length, as given by the distance
matrix D = [di j] of the problem. A set of features can be defined by considering
all possible undirected edges ei j (i = 1..N, j = i + 1..N, i 6= j) that may appear in a
tour with feature costs given by the edge lengths di j. With each edge ei j connecting
cities i and j is attached a penalty pi j initially set to 0 which is increased by GLS
during the search. When implementing the GLS algorithm for the TSP, the edge
penalties can be arranged in a symmetric penalty matrix P = [pi j]. As mentioned
in section 3, penalties have to be combined with the problem’s objective function
to form the augmented objective function which is minimized by local search. We
therefore need to consider the auxiliary distance matrix:

D′ = D+λ ·P = [di j +λ · pi j] (8)

Local search must use D′ instead of D in move evaluations. GLS modifies P and
(through that) D′ whenever the local search reaches a local minimum.



GUIDED LOCAL SEARCH 25

In order to implement this, we revise the incremental move evaluation formula
(7) to take into account the edge penalties and also parameter λ . If p1, p2, p3, p4
are the penalties associated with edges e1, e2, e3, and e4 respectively the revised
version of (7) is as follows:

(d3+d4−d1−d2)+λ ∗ (p3+ p4− p1− p2) (9)

Similarly, we can implement GLS for higher order k-Opt moves.
The edges penalized in a local minimum are selected according to the utility

function (3), which for the TSP takes the form:

Util(tour,ei j) = Iei j(tour) ·
di j

1+ pi j
, (10)

where

Iei j(tour) =
{

1, ei j ∈ tour
0, ei j /∈ tour (11)

The only parameter of GLS that requires tuning is parameter λ . Alternatively, we
can tune the parameter α parameter which is defined in section 4.2 and is relatively
instance independent. Experimenting with α on the TSP, we found that there is an
inverse relation between α and local search effectiveness. Not so effective local
search heuristics such as 2-Opt require higher α values compared to more effective
heuristics such as 3-Opt and LK. This is probably because the amount of penalty
needed to escape from local minima decreases as the effectiveness of the heuristic
increases explaining why lower values for α (and consequently for λ which is a
function of α) work better with 3-Opt and LK. For 2-Opt, the following range for α

generates high quality solutions for instances in the TSPLIB [61]:

1/8≤ α ≤ 1/2 (12)

The reader may refer to [85] for more details on the experimentation procedure
and the full set of results.

10.4 Guided Fast Local Search

We can exploit the way local search works on the TSP to partition the neighbour-
hood in sub-neighbourhoods as required by Guided Fast Local Search. Each city in
the problem may be seen as defining a sub-neighbourhood, which contains all 2-Opt
edge exchanges removing one of the edges adjacent to the city. For a problem with
N cities, the neighbourhood is partitioned into N sub-neighbourhoods, one for each
city in the instance.

The sub-neighbourhoods to be activated after a move is executed are those of the
cities at the ends of the edges removed or added by the move.



26 Christos Voudouris, Edward P. K. Tsang and Abdullah Alsheddy

Finally, the sub-neighbourhoods activated after penalization are those defined by
the cities at the ends of the edge(s) penalized. There is a good chance that these
sub-neighbourhoods will include moves that remove one or more of the penalized
edges.

11 QUADRATIC ASSIGNMENT PROBLEM (QAP)

11.1 Problem Description

The Quadratic Assignment Problem (QAP) is one of the most difficult problems in
combinatorial optimisation. The problem can model a variety of applications but
it is mainly known for its use in facility location problems. In the following, we
describe the QAP in its simplest form.

Given a set N = {1,2, . . . ,n} and n×n matrices A = [ai j] and B = [bkl ], the QAP
can be stated as follows:

min
p∈ΠN

n

∑
i=1

n

∑
j=1

ai j ·bp(i)p( j) (13)

where p is a permutation of N and ΠN is the set of all possible permutations. There
are several other equivalent formulations of the problem. In the facility location con-
text, each permutation represents an assignment of n facilities to n locations. More
specifically, each position i in the permutation represents a location and its contents
p(i) the facility assigned to that location. The matrix A is called the distance matrix
and gives the distance between any two of the locations. The matrix B is called the
flow matrix and gives the flow of materials between any two of the facilities. For
simplicity, we only consider the Symmetric QAP case for which both the distance
and flow matrices are symmetric.

11.2 Local Search

QAP solutions can be represented by permutations to satisfy the constraint that each
facility is assigned to exactly one location. A move commonly used for the problem
is simply to exchange the contents of two permutation positions (i.e. swap the fa-
cilities assigned to a pair of locations). A best improvement local search procedure
starts with a random permutation. In each iteration, all possible moves (i.e. swaps)
are evaluated and the best one is selected and performed. The algorithm reaches
a local minimum when there is no move, which improves further the cost of the
current permutation.

An efficient update scheme can be used in the QAP which allows evaluation
of moves in constant time. The scheme works only with best improvement local
search. Move values of the first neighbourhood search are stored and updated each



GUIDED LOCAL SEARCH 27

time a new neighbourhood search is performed to take into account changes from the
move last executed, see [71] for details. Move values do not need to be evaluated
from scratch and thus the neighbourhood can be fully searched in roughly O(n2)
time instead of O(n3)1. To evaluate moves in constant time, we have to examine all
possible moves in each iteration and have their values updated. Because of that, the
scheme can not be easily combined with Fast Local Search, which examines only
a number of moves in each iteration therefore preventing the problem to benefit
substantially from GFLS.

11.3 Guided Local Search

A set of features that can be used in the QAP is the set of all possible assignments
of facilities to locations (i.e. location-facility pairs). This kind of feature is general
and can be used in a variety of assignment problems as explained in section 9.2.
In the QAP, there are n2 possible location-facility combinations. Because of the
structure of the objective function, it is not possible to estimate easily the impact of
features and assign to them appropriate feature costs. In particular, the contribution
in the objective function of a facility assignment to a location depends also on the
placement of the other facilities with a non-zero flow to that facility.

Experimenting with the problem, we found that if all features are assigned the
same cost (e.g. 1), the algorithm is still capable of generating high quality solutions.
This is due to the ability of GLS to diversify search using the penalty memory. Since
features are considered of equal cost, the algorithm is distributing search efforts
uniformly across the feature set. Comparative tests we conducted between GLS and
the Tabu Search of [70] indicate that both algorithms are performing equally well
when applied to the QAPLIB instances [8] with no clear winner across the instance
set. GLS, although not using feature costs in this problem, is still very competitive
to state-of-the-art techniques such as Tabu Search.

To determine λ in the QAP, one may use the formula below, which was derived
experimentally:

λ = α ∗n∗ (mean flow)∗ (mean distance) (14)

where n is the size of the problem and the flow and distance means are computed
over the distance and flow matrices respectively (including any possible 0 entries
which are common in QAP instances). Experimenting with QAPLIB instances, we
found that optimal performance is achieved for α = 0.75.

1 To evaluate the change in the cost function (13) caused by a move normally requires O(n) time.
Since there are O(n2) moves to be evaluated, the search of the neighbourhood without the update
scheme requires O(n3) time.



28 Christos Voudouris, Edward P. K. Tsang and Abdullah Alsheddy

12 WORKFORCE SCHEDULING PROBLEM

12.1 Problem Description

We now look at how GLS can be applied to a real-word resource allocation problem
with unallocated requests called the Workforce Scheduling problem (WSP), see [77]
for more details. The problem is to schedule a number of engineers to a set of jobs,
minimizing the total cost according to a function, which is to be explained below.
Each job is described by a triple:

(Loc, Dur, Type) (15)

where Loc is the location of the job (depicted by its x and y co-ordinates), Dur is
the standard duration of the job and Type indicates whether this job must be done
in the morning, in the afternoon, as the first job of the day, as the last job of the day,
or “don’t care”.

Each engineer is described by a 5-tuple:

(Base, ST , ET , OT limit, Skill) (16)

where Base is the x and y co-ordinates of the engineer location, ST and ET are this
engineer’s starting and ending time, OT limit is his/her overtime limit, and Skill is
a skill factor between 0 and 1 which indicates the fraction of the standard duration
that this engineer needs to accomplish a job. The cost function to be minimized is
defined as follows:

TotalCost =
NoT

∑
i=1

TCi +
NoT

∑
i=1

OT 2
i +

NoJ

∑
j=1

(Dur j +Penalty)×UFj (17)

where

NoT = number of engineers,
NoJ = number of jobs,
TCi = Travelling Cost of engineer i,
OTi = Overtime of engineer i,
Dur j = Standard duration of job j,
UFj = 1 if job j is unallocated; 0 otherwise,
Penalty = constant (which is set to 60 in the tests).

The traveling cost between (x1,y1) and (x2,y2) is defined as follows:

TC((x1,y1),(x2,y2)) =


∆x
2 +∆y

8 , ∆x > ∆y
∆y
2 +∆x

8 , ∆y ≥ ∆x

(18)



GUIDED LOCAL SEARCH 29

Here ∆x is the absolute difference between x1 and x2, and ∆y is the absolute
difference between y1 and y2. The greater of the x and y differences is halved before
summing. The formula above was specifically designed for the benchmark used in
[77] to convert distances into approximate travel times as observed in realistic trips
conducted by engineers. Engineers are required to start from and return to their base
everyday. An engineer may be assigned more jobs than he/she can finish.

12.2 Local Search

12.2.1 Solution Representation

We represent a candidate solution (i.e. a possible schedule) by a permutation of the
jobs. Each permutation is mapped into a schedule using the deterministic algorithm
described below:

procedure Evaluation (input: one particular permutation of jobs)

1. For each job, order the qualified engineers in ascending order of the distances
between their bases and the job (such orderings only need to be computed once
and recorded for evaluating other permutations).

2. Process one job at a time, following their ordering in the input permutation. For
each job x, try to allocate it to an engineer according to the ordered list of quali-
fied engineers:

2.1. to check if engineer g can do job x, make x the first job of g; if that fails to
satisfy any of the constraints, make it the second job of g, and so on;

2.2. if job x can fit into engineer g’s current tour, then try to improve g’s new tour
(now with x in it): the improvement is done by a simple 2-opt algorithm (see
section 10), modified in a such a way that only better tours which satisfy the
relevant constraints will be accepted;

2.3. if job x cannot fit into engineer g’s current tour, then consider the next engineer
in the ordered list of qualified engineers for x; the job is unallocated if it cannot
fit into any engineer’s current tour.

3. The cost of the input permutation, which is the cost of the schedule thus created,
is returned.

12.2.2 Construction Method

The starting point of local search is generated heuristically and deterministically:
the jobs are ordered by the number of qualified engineers for them. Jobs that can be
served by the fewest number of qualified engineers are placed earlier in the permu-
tation.



30 Christos Voudouris, Edward P. K. Tsang and Abdullah Alsheddy

12.2.3 Improvement Method

Given a permutation, local search is performed in a simple way: the pairs of jobs
are examined one at a time. Two jobs are swapped to generate a new permutation if
the new permutation is evaluated (using the Evaluation procedure above) to a lower
cost than the original permutation. Note here that since the problem is also close
to the Vehicle Routing Problem (VRP), one may follow a totally different approach
considering VRP move operators such as insertions, swaps etc. In this case, the
solution representation and construction methods need to be revised. The reader
may refer to other work (e.g. [3]) for more information on the application of GLS
to the VRP.

12.3 Guided Local Search

In the workforce scheduling problem, we use the feature type recommended for re-
source allocation problems in section 9.3. In particular, the inability to serve jobs
incurs a cost, which plays the most important part in the objective function. There-
fore, we intend to bias local search to serve jobs of high importance. To do so, we
define a feature for each job in the problem:

I job j(schedule) =
{

1, job j is unallocated in schedule
0, job j is allocated in schedule (19)

The cost of this feature is given by (Dur j + Penalty) which is equal to the cost
incurred in the cost function (17) when a job is unallocated.

The jobs penalized in a local minimum are selected according to the utility func-
tion (3) which for workforce scheduling takes the form:

Util(schedule, job j) = I job j(schedule) ·
(Dur j +Penalty)

1+ p j
. (20)

WSP exhibits properties found in resource allocation problems (i.e. unallocated
job costs) and also in routing problems (i.e. travel costs). In addition to the above
feature type and for better performance, we may consider introducing a second fea-
ture type based on edges as suggested in section 9.1 for routing problems and ex-
plained in section 10.3 for the TSP. This feature set can help to aggressively optimize
the travel costs also incorporated in the objective function (17). Furthermore, one or
both feature sets can be used in conjunction with a VRP based local search method.



GUIDED LOCAL SEARCH 31

12.4 Guided Fast Local Search

To apply Guided Fast Local Search to workforce scheduling, each job permutation
position defines a separate sub-neighbourhood. The activation bits are manipulated
according to the general FLS algorithm of section 5. In particular:

1. all the activation bits are set to 1 (or “on”) when GFLS starts;
2. the bit for job permutation position x will be switched to 0 (or “off”) if every

possible swap between the job at position x and the other jobs under the current
permutation has been considered, but no better permutation has been found;

3. the bit for job permutation position x will be switched to 1 whenever x is involved
in a swap which has been accepted.

Mapping penalized jobs to sub-neighbourhoods is straightforward. We simply
activate the sub-neighbourhoods corresponding to the permutation positions of the
penalized jobs. This essentially forces Fast Local Search to examine moves, which
swap the penalized jobs.

13 RADIO LINK FREQUENCY ASSIGNMENT PROBLEM

13.1 Problem Description

The Radio Link Frequency Assignment Problem (RLFAP) [58, 75] is abstracted
from the real life application of assigning frequencies to radio links. The problem
belongs to the class of constraint optimization problems mentioned in section 9.4. In
brief, the interference level between the frequencies assigned to the different links
has to be acceptable; otherwise communication will be distorted. The frequency as-
signments have to comply with certain regulations and physical characteristics of
the transmitters. Moreover, the number of frequencies is to be minimized, because
each frequency used in the network has to be reserved at a certain cost. In certain
cases, some of the links may have pre-assigned frequencies which may be respected
or preferred by the frequency assignment algorithm. Here, we examine a simplified
version of the problem considering only the interference constraints. Information on
the application of GLS to the full problem can be found in [83]. A definition of the
simplified problem is the following.

We are given a set L of links. For each link i, a frequency fi has to be chosen from
a given domain Di. Constraints are defined on pairs of links that limit the choice of
frequencies for these pairs. For a pair of links {i, j} these constraints are either of
type

| fi− f j|> di j (21)

or of type
| fi− f j|= di j (22)



32 Christos Voudouris, Edward P. K. Tsang and Abdullah Alsheddy

for a given distance di j ≥ 0. Two links i and j involved in a constraint of type (21)
are called interfering links, and the corresponding di j is the interfering distance.
Two links bound by a constraint of type (22) are referred to as a pair of parallel
links; every link belongs to exactly one such pair.

Some of the constraints may be violated at a certain cost. Such restrictions are
called soft, in contrast to the hard constraints, which may not be violated. The con-
straints of type (22) are always hard. Interference costs ci j for violating soft con-
straints of type (21) are given. An assignment of frequencies is complete if every
link in L has a frequency assigned to it. We denote by C the set of all soft interfer-
ence constraints.

The goal is to find a complete assignment that satisfies all hard constraints and is
of minimum cost:

min∑
C

ci j ·δ (| fi− f j| ≤ di j) (23)

subject to hard constraints:

| fi− f j|> di j : for all pairs of links {i, j} involved in the hard constraints,
| fi− f j|= di j : for all pairs of parallel links {i, j},
fi ∈ Di : for all links i ∈ L,

where δ (.) is 1 if the condition within brackets is true and 0 otherwise.

We look next at a local search procedure for the problem.

13.2 Local Search

13.2.1 Using an Alternate Objective Function

When using heuristic search to solve a combinatorial optimization problem, it is not
always necessary to use the objective function as dictated in the problem formula-
tion. Objective functions based on the original one can be devised which result in
smoother landscapes. These objective functions can sometimes generate solutions
of higher quality (with respect to the original objective function) than if the original
one is used.

In the RLFAP, we can define and use a simple objective function g, which is given
by the sum of all constraint violation costs in the solution with all the constraints
contributing equally to the sum instead of using weights as in (23). This objective
function is as follows for a given solution s:

g(s) = ∑
C∪CHard

δ (| fi(s)− f j(s)| ≤ di j) (24)

subject to hard constraints:



GUIDED LOCAL SEARCH 33

fi(s) ∈ D′i: for all links i ∈ L,

where δ (.) is 1 if the condition within brackets is true and 0 otherwise, fi(s) is
the frequency assigned to link i in solution s, CHard is the set of hard inequality
constraints, C is the set of soft inequality constraints and D′i is the reduced domain
for link i containing only frequencies which satisfy the hard equality constraints.

A solution s with cost 0 with respect to g is satisfying all hard and soft constraints
of the problem.

The motivation to use an objective function such as (24) is closely related to the
rugged landscapes formed in RLFAP, if the original cost function is used. In partic-
ular, high and very low violation costs are defined for some of the soft constraints.
This leads to even higher violation costs to be defined for hard constraints. The
landscape is not smooth but full of deep local minima mainly due to the hard and
soft constraints of high cost. Soft constraints of low cost are buried under these high
costs.

A similar objective function replacement approach has been used successfully
by [54] in the MAX-SAT problem suggesting the universal appeal of the idea in
constrained optimization problems.

13.2.2 Solution Representation

An efficient solution representation for the problem takes into account the fact that
each link in RLFAP is connected to exactly one other link via a hard constraint of
type (22). In particular, we can define a decision variable for each pair of parallel
links bound by an equality constraint (22). The domain of this variable is defined as
the set of all pairs of frequencies from the original domains of the parallel links that
satisfy the hard equality constraint.

13.2.3 Construction Method

A construction method can be implemented by assigning to each decision variable
(which assigns values to a pair of links) a random value from its domain. In large
problem instances, it is beneficial to consider a domain pre-processing and reduc-
tion phase. Sophisticated techniques based on Arc-Consistency can be utilized dur-
ing that phase to reduce the domain based on the problem’s hard constraints. These
domains can then be used instead of the original ones for the random solution gen-
eration and also by the improvement method.



34 Christos Voudouris, Edward P. K. Tsang and Abdullah Alsheddy

13.2.4 Improvement Method

An improvement method can be based on the min-conflicts heuristic of Minton et
al. [56] for Constraint Satisfaction Problems. A 1-optimal type move is used which
changes the value of one variable at a time. Starting from a random and complete
assignment of values to variables, variables are examined in an arbitrary static order.
Each time a variable is examined, the current value of the variable changes to the
value (in the variable’s domain) which yields the minimum value for the objective
function. Ties are randomly resolved allowing moves to solutions with equal cost.
These moves are called sideways moves [65] and enable the local search to examine
plateaus of solutions that occur in the landscapes of many constrained optimization
problems.

13.3 Guided Local Search

The most important cost factor in the RLFAP is the constraint violation costs defined
for soft inequality constraints. Inequality constraints can be used to define a basic
feature set for the RLFAP. Each inequality constraint is interpreted as a feature with
the feature cost given by the constraint violation cost ci j as defined in the problem’s
original cost function (23).

Hard inequality constraints are also modelled as features by assigning to them
an infinite cost. This results in their utility to be penalised to also tend to infinity.
To implement this in the code, hard constraints are simply given priority over soft
constraints when penalties are applied. This basically forces local search to return
back to a feasible region where penalising soft constraints can resume.

GLS is especially suited to use the alternate objective function (24) because of the
definition of the feature costs described above. The application of penalties can still
force the local search toward solutions which satisfy constraints with high violation
costs while the algorithm is benefiting from the smoother landscape introduced by
(24).

The λ parameter can be set to 1 provided that we use (24) as the objective func-
tion. The same value for λ has also been used in MAX-SAT problems in [54] where
the same approach is followed with respect to smoothing the landscape.

A variation of the GLS method which seems to significantly improve perfor-
mance in certain RLFAP instances is to decrease penalties and not only increase
them [83]. More specifically, the variant uses a circular list to retract the effects of
penalty increases made earlier in the search process, in a way that very much re-
sembles a tabu list. In particular, increased penalties are decreased after a certain
number of increases. The scheme uses an array of size t where the t most recent
features penalised are recorded. The array is treated as a circular list, adding ele-
ments in sequence in positions 1 through t and then starting over at position 1. Each
time the penalty of a feature is increased (by one unit), the feature is inserted in
the array and the penalty of the feature previously stored in the same position is



GUIDED LOCAL SEARCH 35

decreased (by one unit). The rationale behind the strategy is to allow GLS to return
to regions of the search visited earlier in the search process, so introducing a search
intensification mechanism.

13.4 Guided Fast Local Search

Best improvement local search for the RLFAP as used in the context of Tabu Search
( for an example, see [31]), evaluates all possible 1-optimal moves over all variables
before selecting and performing the best move. Given the large number of links
in real world instances, greedy local search is a computationally expensive option.
This is especially the case for the RLFAP where we cannot easily devise an incre-
mental move update mechanism (such as the one for the QAP) for all the problem’s
variations. The local search procedure described in section 13.2 is already a faster
alternative than best improvement. Using Guided Fast Local Search, things can be
improved further.

To apply Guided Fast Local Search to RLFAP, each decision variable defines a
sub-neighbourhood and has a bit associated with it. Whenever a variable is examined
and its value is changed (i.e. the variable’s parallel links are assigned to another pair
of frequencies because of an improving or sideway move) the activation bit of the
variable remains to 1 otherwise it turns to 0 and the variable is excluded in future
iterations of the improvement loop. Additionally, if a move is performed, activation
spreads to other variables which have their bits set to 1. In particular, we set to 1
the bit of variables for which improving moves may occur as a result of the move
just performed. They are the variables for which one of their links is connected via
a constraint to one of the links of the variable with a modified value. There are five
potential schemes for propagating activation after changing the value of a variable.
They are the following:

1. Activate all variables connected via a constraint to the variable with a modified
value.

2. Activate only variables that are connected via a constraint which is violated. This
resembles CSP local search methods where only variables in conflict have their
neighbourhood searched.

3. Activate only variables that are connected via a constraint which has become
violated as a result of the move (subset of condition 2 and also condition 4).

4. Activate only variables that are connected via a constraint that changed from
violated to satisfied, or from satisfied to violated, as a result of the move (superset
of condition 3).

5. Activate variables that fall under either condition 2 or 4.

Experimentation suggests that scheme 5 tends to produce better results for the
real world instances of RLFAP available in the literature. Fast local search stops
when all the variables are inactive or when a local minimum is detected by other



36 Christos Voudouris, Edward P. K. Tsang and Abdullah Alsheddy

means (i.e. a number of sideway moves is performed without an improving move
found).

Finally, when a constraint is penalized we activate the variables connected via
the constraint in an effort to find 1-Opt moves which will satisfy the constraint.

14 SUMMARY AND CONCLUSIONS

For many years, general heuristics for combinatorial optimisation problems, with
prominent examples such as Simulated Annealing and Genetic Algorithms, heavily
relied on randomness to generate good approximate solutions to difficult NP-Hard
problems. The introduction and acceptance of Tabu Search [25] by the Operations
Research community initiated an important new era for heuristic methods where
deterministic algorithms exploiting historical information started to appear and to
be used in real world applications.

Guided local search described in this chapter follows this trend. While Tabu
search is a class of algorithms (where a lot of freedom is given to the management
of the tabu list), GLS is more prescriptive (the procedures are more concretely de-
fined). GLS heavily exploits information (not only the search history) to distribute
the search effort in the various regions of the search space. Important structural
properties of solutions are captured by solution features. Solutions features are as-
signed costs and local search is biased to spend its efforts according to these costs.
Penalties on features are utilised for that purpose.

When local search settles in a local minimum, the penalties are increased for se-
lected features present in the local minimum. By penalising features appearing in
local minima, GLS escapes the local minima visited (exploiting historical informa-
tion) but also diversifies the choices, with regard to the various structural properties
of solutions, as captured by the solution features. Features of high costs are pe-
nalised more often than features of low cost: the diversification process is directed
and deterministic rather than undirected and random.

In general, several penalty cycles may be required before a move is executed out
of a local minimum. This should not be viewed as an undesirable situation. It is
caused by the uncertainty in the information as captured by the feature costs which
forces the GLS to test its decisions against the landscape of the problem.

The penalization scheme of GLS is ideally combined with FLS which limits the
neighbourhood search to particular parts of the overall solution leading to the GFLS
algorithm. GFLS significantly reduces the computation times required to explore
the area around a local minimum to find the best escape route allowing many more
penalty modification cycles to be performed in a given amount of running time.

The GLS and GFLS methods are still in their early stages and future research
is required to develop them further. The use of incentives implemented as negative
penalties, which encourage the use of specific solution features, is one promising
direction to be explored. Other interesting directions include fuzzy features with
indicator functions returning real values in the [0, 1] interval, automated tuning



GUIDED LOCAL SEARCH 37

of the λ or α parameters, definition of effective termination criteria, alternative
utility functions for selecting the features to be penalised and also studies about
the convergence properties of GLS.

It is relatively easy to adapt GLS and GFLS to the different problems examined
in this chapter. Although local search is problem dependent, the other structures
of GLS and also GFLS are problem independent. Moreover, a mechanical, step by
step procedure is usually followed when GLS or GFLS is applied to a new problem
(i.e. implement a local search procedure, identify features, assign costs, define sub-
neighbourhoods, etc.). This makes GLS and GFLS easier to use by non-specialist
software engineers.

References

1. Anderson, C.A., Fraughnaugh, K., Parker, M. and Ryan, J. (1993) Path assignment for call
routing: An application of tabu search. Annals of Operations Research 41, 301–312.

2. Azarmi, N. and Abdul-Hameed, W. (1995) Workforce scheduling with constraint logic pro-
gramming. BT Technology Journal 13:1, 81–94.

3. Backer, B.D., Furnon, V., Shaw, P., Kilby, P. and Prosser, P. (2000) Solving Vehicle Routing
Problems Using Constraint Programming and Metaheuristics. Journal of Heuristics 6:4, 501–
523.

4. Basharu, M., Arana, I. and Ahriz, H. (2005) Distributed guided local search for solving binary
DisCSPs. Proceedings of FLAIRS 2005, AAAI Press, 660–665.

5. Bentley, J.J. (1992) Fast algorithms for geometric traveling salesman problems. ORSA Jour-
nal on Computing 4, 387-411.

6. Beullens, P., Muyldermans, L., Cattrysse, D. and Van Oudheusden, D. (2003) A guided local
search heuristic for the capacitated arc routing problem. European Journal of Operational
Research 147:3, 629–643.

7. Bouju, A., Boyce, J.F., Dimitropoulos, C.H.D., vom Scheidt, G. and Taylor, J.G. (1995) In-
telligent search for the radio link frequency assignment problem. Proceedings of the Interna-
tional Conference on Digital Signal Processing, Cyprus.

8. Burkard, R.E., Karisch, S. E. and Rendl F. (1997) QAPLIB - A Quadratic Assignment Prob-
lem Library. Journal of Global Optimization 10, 391–403.

9. Chalmers, A.G. (1994) A minimum path parallel processing environment. Research Mono-
graphs in Computer Science, Alpha Books.

10. Chiarandini, M. and Stutzle, T. (2007) Stochastic Local Search Algorithms for Graph Set
T-colouring and Frequency Assignment. Constraints, 12:3, 371–403.

11. Chu, P. and Beasley, J.E. (1997) A genetic algorithm for the generalized assignment problem.
Computers and Operations Research 24, 17–23.

12. Congram, R.K. and Potts, C.N., (1999) Dynasearch Algorithms for the Traveling Sales-
man Problem. Presentation at the Travelling Salesman Workshop, CORMSIS, University of
Southampton.

13. Croes, A. (1958) A Method for Solving Traveling-Salesman Problems. Operations Research
5, 791–812.

14. Daum, M. and Menzel, W. (2002) Parsing Natural Language using Guided Local Search.
Proc. 15th European Conference on Artificial Intelligence (ECAI-2002), 435–439.

15. Davenport, A., Tsang, E.P.K., Wang, C.J. and Zhu, K. (1994) GENET: a connectionist ar-
chitecture for solving constraint satisfaction problems by iterative improvement. Proc., 12th
National Conference for Artificial Intelligence (AAAI), 325–330.



38 Christos Voudouris, Edward P. K. Tsang and Abdullah Alsheddy

16. Dorne, R., Mills, P. and Voudouris, C. (2007) Solving Vehicle Routing Using iOpt. Meta-
heuristics: Progress in Complex Systems Optimization, eds. Doerner et al., Operations Re-
search/Computer Science Interfaces Series, Vol. 39, 389–408.

17. Dorne, R., Voudouris, C., Liret, A., Ladde, C. and Lesaint, D. (2003) iSchedule An Optimi-
sation Tool-Kit Based on Heuristic Search to Solve BT Scheduling Problems. BT Technology
Journal 21:4, 50–58.

18. Egeblad, J., Nielsen, B. and Odgaard, A. (2007) Fast neighbourhood search for two- and
three-dimensional nesting problems. European Journal of Operational Research 183:3, 1249–
1266.

19. Faroe, O., Pisinger, D. and Zachariasen, M (1999) Guided Local Search for the Three-
Dimensional Bin Packing Problem. Tech. Rep. 99-13, Department of Computer Science, Uni-
versity of Copenhagen.

20. Faroe, O., Pisinger, D. and Zachariasen, M. (2003) Guided Local Search for Final Placement
in VLSI Design. Journal of Heuristics 9, 269–295.

21. Flood, M.M. (1956) The traveling-salesman problem, Operations Research 4, 61-75.
22. Flores Lucio, G., Reed, M. and Henning, I. (2007) Guided local search as a network plan-

ning algorithm that incorporates uncertain traffic demands. Computer Networks 51:11, 3172–
3196.

23. Freisleben, B. and Merz, P. (1996) A genetic local search algorithm for solving symmetric
and asymmetric travelling salesman problems. Proceedings of the 1996 IEEE International
Conference on Evolutionary Computation, IEEE Press, 616–621.

24. Gent, I.P., van Maaren, H. and Walsh, T. (2000) SAT2000, Highlights of satisfiability research
in the year 2000. Frontiers in Artificial Intelligence and Applications, IOS Press.

25. Glover, F. and Laguna, M. (1997) Tabu Search. Kluwer Academic Publishers, Boston.
26. GLS Demos (2008), http://cswww.essex.ac.uk/CSP/glsdemo.html.
27. Goldberg, D.E. (1989) Genetic algorithms in search, optimization, and machine learning.

Reading, MA, Addison-Wesley Pub. Co., Inc.
28. Gomes, N., Vale, Z., and Ramos, C. (2003) Hybrid Constraint algorithm for the maintenance

scheduling of electric power units. Proc. Of International Conference on Intelligent Systems
Application to Power Systems (ISAP 2003), Lemnos, Greece.

29. Hani, Y., Amodeo, L., Yalaoui, F. and Chen, H. (2007) Ant colony optimization for solving
an industrial layout problem. European Journal of Operational Research 183:2, 633–642.

30. Hansen, P. and Mladenovic, N. (1999) An Introduction to Variable neighbourhood Search.
Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization eds. S.
Voss, S. Martello, I.H. Osman, and C. Roucairol, pp. 433–458. Kluwer, Boston.

31. Hao J.-K., Dorne, R. and Galinier, P. (1998) Tabu Search for Frequency Assignment in Mobile
Radio Networks. Journal of Heuristics 4:1, pp. 47–62.

32. Hifi, M., Michrafy, M. and Sbihi, A. (2004) Heuristic algorithms for the multiple-choice
multidimensional knapsack problem. Journal of the Operational Research Society 55, 1323–
1332.

33. Holland, J.H. (1975) Adaptation in natural and artificial systems. University of Michigan
Press, Ann Arbor, MI.

34. Holstein, D. and Moscato, P. (1999) Memetic Algorithms using Guided Local Search: A case
study. New Ideas in Optimisation eds. D. Corne, F. Glover, and M. Dorigo, pp. 235–244,
McGraw-Hill, London.

35. Hoos, H. and Tsang, E.P.K. (2006) Local search for constraint satisfaction, Chapter 5, F.
Rossi, P. van Beek & T. Walsh (ed.), Handbook of Constraint Programming, Elsevier, 245–
277.

36. Johnson, D. (1990) Local optimization and the traveling salesman problem. Proceedings of
the 17th Colloquium on Automata Languages and Programming, Lecture Notes in Computer
Science 443, 446–461, Springer-Verlag.

37. Jose, R. and Boyce, J. (1997) Appication of connectionist local search to line management
rail traffic control. Proceedings of International Conf. on Practical Applications of Constraint
Technology (PACT’97), London.



GUIDED LOCAL SEARCH 39

38. Kilby, P., Prosser, P., and Shaw, P. (1999) Guided local search for the vehicle routing prob-
lem with time windows, in Voss, S., Martello, S., Osman, I.H., and Roucairol, C. (eds.),
Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization, Kluwer
Academic Publishers, 473–486.

39. Kilby, P., Prosser, P., and Shaw, P. (2000) A comparison of traditional and constraint-based
heuristic methods on vehicle routing problems with side constraints. Constraints 5:4, 389–
414.

40. Knox, J. (1994) Tabu Search Performance on the Symmetric Traveling Salesman Problem.
Computers Ops Res. 21:8, 867–876.

41. Koopman, B.O. (1957) The theory of search, part III, the optimum distribution of search
effort. Operations Research 5, 613–626.

42. Kytjoki, J., Nuortio, T., Brysy, O. and Gendreau, M. (2007) An efficient variable neighbour-
hood search heuristic for very large scale vehicle routing problems. Computers & Operations
Research 34:9, 2743–2757.

43. Langer, Y., Bay, M., Crama, Y., Bair, F., Caprace, J.D. and Rigo, P. (2005) Optimization of
Surface Utilization Using Heuristic Approaches. Proceedings of the International Conference
COMPIT’05, 419–425.

44. Lau, T.L. (1999) Guided Genetic Algorithm. PhD Thesis, Department of Computer Science,
University of Essex, Colchester, UK.

45. Lau, T.L. and Tsang, E.P.K. (1997) Solving the processor configuration problem with
a mutation-based genetic algorithm. International Journal on Artificial Intelligence Tools
(IJAIT) 6:4, 567–585.

46. Lau, T.L. and Tsang, E.P.K. (1998) Guided genetic algorithm and its application to the radio
link frequency allocation problem. Proceedings of NATO symposium on Frequency Assign-
ment, Sharing and Conservation in Systems (AEROSPACE), AGARD, RTO-MP-13, paper
No. 14b.

47. Lau, T.L. and Tsang, E.P.K. (1998) The guided genetic algorithm and its application to the
general assignment problem. IEEE 10th International Conference on Tools with Artificial
Intelligence (ICTAI’98), Taiwan, 336–343.

48. Lee, J.H.M. and Tam, V.W.L. (1995) A framework for integrating artificial neural networks
and logic programming. International Journal on Artificial Intelligence Tools 4, 3–32.

49. Lin, S. (1965) Computer Solutions of the Traveling-Salesman Problem. Bell Systems Tech-
nical Journal 44, 2245–2269.

50. Lin, S. and Kernighan, B. W. (1973) An effective heuristic algorithm for the traveling sales-
man problem. Operations Research 21, 498–516.

51. Martin, O., and Otto, S.W. (1966) Combining Simulated Annealing with Local Search Heuris-
tics. G. Laporte and I. H. Osman (eds.), Metaheuristics in Combinatorial Optimization, An-
nals of Operations Research 63.

52. Mester, D. and Brysy, O. (2005) Active guided evolution strategies for large-scale vehicle
routing problems with time windows. Computers & Operations Research 32:6, 1593–1614.

53. Mester, D.I., Ronin, Y. I., Nevo, E. and Korol, A. B. (2004) Fast and high precision algorithms
for optimization in large-scale genomic problems. Computational Biology and Chemistry
28:4, 281–290.

54. Mills, P. and Tsang, E. P. K. (2000) Guided local search for solving SAT and weighted MAX-
SAT problems. Journal of Automated Reasoning 24, 205–223.

55. Mills P., Tsang E. and Ford J. (2003) Applying an Extended Guided Local Search to the
Quadratic Assignment Problem. Annals of Operations Research 118:1-4, 121–135.

56. Minton S., Johnston, M. D., Philips A. B. and Laird, P. (1992) Minimizing conflicts: a heuris-
tic repair method for constraint satisfaction and scheduling problems. Artificial Intelligence
58, Nos.1-3, (Special Volume on Constraint Based Reasoning), 161–205.

57. Moghrabi, I. (2006) Guided Local Search for Query Reformulation Using Weight Propa-
gation. International Journal of Applied Mathematics and Computer Science (AMCS) 16:4,
537-549.



40 Christos Voudouris, Edward P. K. Tsang and Abdullah Alsheddy

58. Murphey, R. A., Pardalos, P. M., and Resende, M. G. C. (1999) Frequency Assignment Prob-
lems. Handbook of Combinatorial Optimization eds. D.-Z Du and P. Pardalos, Vol. 4, Kluwer
Academic Publishers.

59. Padron, V. and Balaguer, C. (2000) New Methodology to solve the RPP by means of Iso-
lated Edge. 2000 Cambridge Conference Tutorial Papers ed. A. Tuson, Young OR 11, UK
Operational Research Society.

60. Pesant, G. and Gendreau, M. (1999) A Constraint Programming Framework for Local Search
Methods. Journal of Heuristics 5:3, 255–279.

61. Reinelt, G. (1991) A Traveling Salesman Problem Library. ORSA Journal on Computing 3,
376–384.

62. Reinelt, G. (1995) The Traveling Salesman: Computational Solutions for TSP Applications.
Lecture Notes in Computer Science 840, Springer Verlag.

63. Resende, M.G.C. and Feo, T.A. (1996) A GRASP for satisfiability. Cliques, coloring, and sat-
isfiability: Second DIMACS Implementation Challenge eds. D.S. Johnson and M.A. Trick,
DIMACS Series on Discrete Mathematics and Theoretical Computer Science, American
Mathematical Society, Vol. 26, 1996, 499–520.

64. Selman, B. and Kautz, H. (1993) Domain-independent extensions to GSAT: solving large
structured satisfiability problems. Proc. of 13th International Joint Conference on AI, 290–
295.

65. Selman, B., Levesque, H. J., and Mitchell, D. G. (1992) A new method for solving hard
satisfiability problems. Proceedings of AAAI-92, 440–446.

66. Shang, Y. and Wah, B.W. (1998) A discrete lagrangian-based global-search method for solv-
ing satisfiability problems, Journal of Global Optimization 12:1, 61–99.

67. Simon, H. U. (1989) Approximation algorithms for channel assignment in cellular radio net-
works. Proceedings 7th International Symposium on Fundamentals of Computation Theory,
Lecture Notes in Computer Science 380, pp. 405–416, Springer-Verlag.

68. Stone, L.D. (1983) The process of search planning: current approaches and continuing prob-
lems. Operations Research 31, 207–233.

69. Stuckey, P. and Tam, V. (1998) Semantics for using stochastic constraint solvers in constraint
logic programming. Journal of Functional and Logic Programming 2.

70. Taillard, E. (1991) Robust taboo search for the QAP. Parallel Computing 17, 443–455.
71. Taillard, E. (1995) Comparison of Iterative Searches for the Quadratic Assignment Problem.

Location Science 3, 87–105.
72. Tamura, H., Zhang, Z., Tang, Z., Ishii, M. (2006) Objective Function Adjustment Algorithm

for Combinatorial Optimization Problems. IEICE Transactions on Fundamentals of Electron-
ics, Communications and Computer Sciences E89-A:9, 2441–2444.

73. Tarantilis, C.D., Zachariadis, E.E. and Kiranoudis, C.T. (2007) A guided tabu search for the
heterogeneous vehicle routeing problem. Journal of the Operational Research Society.

74. Tarantilis, C.D., Zachariadis, E.E. and Kiranoudis, C.T. (2008) A Hybrid Guided Local Search
for the Vehicle-Routing Problem with Intermediate Replenishment Facilities. INFORMS
Journal on Computing 20:1, 154–168.

75. Tiourine, S., Hurkins, C. and Lenstra, J. K. (1995) An overview of algorithmic approaches to
frequency assignment problems. EUCLID CALMA Project Overview Report, Delft Univer-
sity of Technology, The Netherlands.

76. Tsang, E.P.K. (1993) Foundations of constraint satisfaction, Academic Press, London.
77. Tsang, E. P. K. and Voudouris, C. (1997) Fast local search and guided local search and their

application to British Telecom’s workforce scheduling problem. Operations Research Letters
20:3, 119–127.

78. Tsang, E.P.K. and Wang, C.J. (1992) A generic neural network approach for constraint satis-
faction problems. Neural network applications ed. J.G. Taylor, Springer-Verlag, 12–22.

79. Tsang, E.P.K., Wang, C.J., Davenport, A., Voudouris, C. and Lau,T.L.,(1999) A family of
stochastic methods for constraint satisfaction and optimisation. Proceedings of the First In-
ternational Conference on The Practical Application of Constraint Technologies and Logic
Programming (PACLP), London, 359–383.



GUIDED LOCAL SEARCH 41

80. Vansteenwegen, P., Souffriau, W., Berghe, G. and Oudheusden, D. (2008) A guided local
search metaheuristic for the team orienteering problem. European Journal of Operational Re-
search, In Press.

81. Voudouris, C. (1997) Guided Local Search for Combinatorial Optimisation Problems. PhD
Thesis, Department of Computer Science, University of Essex, Colchester, UK.

82. Voudouris, C. (1998) Guided Local Search An illustrative example in function optimisation.
BT Technology Journal 16:3, 46–50.

83. Voudouris, C. and Tsang, E. (1998) Solving the Radio Link Frequency Assignment Problems
using Guided Local Search. Proceedings of NATO symposium on Frequency Assignment,
Sharing and Conservation in Systems (AEROSPACE), AGARD, RTO-MP-13, paper No. 14a.

84. Voudouris, C. and Tsang, E.P.K. (1996) Partial constraint satisfaction problems and guided
local search. Proceedings of PACT’96, London, 337–356.

85. Voudouris, C. and Tsang, E.P.K. (1999) Guided Local Search and its application to the Trav-
elling Salesman Problem. European Journal of Operational Research 113:2, 469–499.

86. Voudouris, C., Dorne, R., Lesaint, D. and Liret, A. (2001) iOpt: A Software Toolkit for
Heuristic Search Methods. Practice of Constraint Programming - CP 2001 ed. Walsh, T.,
Lecture Notes in Computer Science, vol. 2239, 716–729.

87. Wang, C.J. and Tsang, E.P.K. (1991) Solving constraint satisfaction problems using neural-
networks. Proceedings of the IEE Second International Conference on Artificial Neural Net-
works, 295–299.

88. Wang, C.J. and Tsang, E.P.K. (1994) A cascadable VLSI design for GENET. VLSI for Neural
Networks and Artificial Intelligence eds. J.G. Delgado-Frias and W.R. Moore, Plenum Press,
New York, 187–196.

89. Xiaohu, T. and Haubrich, H.-J. (2005) A hybrid metaheuristic method for the planning of
medium-voltage distribution networks. Proceedings of 15th Power Systems Computation
Conference (PSCC 2005), Liege, Belgium.

90. Zachariadis, E., Tarantilis, C., Kiranoudis, C. (2008) A Guided Tabu Search for the Vehicle
Routing Problem with two-dimensional loading constraints. European Journal of Operational
Research, To Appear.

91. Zachariadis, E., Tarantilis, C., Kiranoudis, C. (2008) A hybrid metaheuristic algorithm for
the vehicle routing problem with simultaneous delivery and pick-up service. Expert Systems
with Applications, To Appear.

92. Zhang, Q., Sun, J., Tsang, E.P.K, Ford, J. (2003) Combination of Guided Local Search and
Estimation of Distribution Algorithm for Solving Quadratic Assignment Problem. Bird of a
Feather Workshops, Genetic and Evolutionary Computation Conference.

93. Zhong, Y., Cole, M. H. (2005) A vehicle routing problem with backhauls and time windows:
a guided local search solution. Transportation Research Part E: Logistics and Transportation
Review 41:2, 131–144.




