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Abstract

The Traveling Salesman Problem (TSP) is one of the most famous problems in

combinatorial optimization. In this paper, we are going to examine how the techniques

of Guided Local Search (GLS) and Fast Local Search (FLS) can be applied to the

problem. Guided Local Search sits on top of local search heuristics and has as a main

aim to guide these procedures in exploring efficiently and effectively the vast search

spaces of combinatorial optimization problems. Guided Local Search can be

combined with the neighborhood reduction scheme of Fast Local Search which

significantly speeds up the operations of the algorithm.

The combination of GLS and FLS with TSP local search heuristics of different

efficiency and effectiveness is studied in an effort to determine the dependence of

GLS on the underlying local search heuristic used. Comparisons are made with some

of the best TSP heuristic algorithms and general optimization techniques which

demonstrate the advantages of GLS over alternative heuristic approaches suggested

for the problem.

Keywords: Heuristics, Combinatorial Optimization, Traveling Salesman, Guided

Local Search, Tabu Search.
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1. Introduction

The Traveling Salesman Problem or TSP for short is one of the most famous

combinatorial optimization problems. The problem is known to be NP-hard and over

the years has been the testing ground for numerous techniques inspired from a variety

of sources. Nowadays, TSP plays a very important role in the development, testing

and demonstration of new optimization techniques. In this context, we are presenting

the application to the TSP of a new metaheuristic approach called Guided Local

Search (GLS) and its accompanying neighborhood reduction scheme called Fast

Local Search (FLS).

Guided Local Search originally proposed by Voudouris and Tsang [47] is a

general optimization technique suitable for a wide range of combinatorial

optimization problems. Successful applications of the technique so far include

practical problems such as Frequency Allocation [47], Workforce Scheduling [45] and

Vehicle Routing [2, 25] and also classic problems such as the Traveling Salesman

Problem (TSP), Quadratic Assignment Problem (QAP) and Global Optimization [48].

In this paper, we present the technique to the wider Operations Research audience by

explaining its application to the TSP, a widely known problem in the OR community.

Guided Local Search (GLS) belongs to a class of techniques known as

Metaheuristics [37, 38, 40]. Prominent members of this class include Tabu Search

[12-18], Simulated Annealing [1, 9, 26, 28], GRASP [10], Genetic Algorithms [8, 19,

39], Scatter Search [13] and others. Metaheuristics aim at enhancing the performance

of heuristic methods in solving large and difficult combinatorial optimization

problems.
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In the case of GLS, the main focus is on the exploitation of problem and

search-related information to effectively guide local search heuristics in the vast

search spaces of NP-hard optimization problems. This is achieved by augmenting the

objective function of the problem to be minimized with a set of penalty terms which

are dynamically manipulated during the search process to steer the heuristic to be

guided. Higher goals, such as the distribution of the search effort to the areas of the

search space according to the promise of these areas to contain high quality solutions,

can be expressed and pursued.

GLS is closely related to the Frequency-Based Memory approaches introduced

in Tabu Search [14, 18], extending these approaches to take into account the quality of

structural parts of the solution and also react to feedback from the local optimization

heuristic under guidance.

The paper is structured as follows. We first describe the basics of local search

which is the foundation for most metaheuristics. Following that we explain the

different components of GLS and how it can be combined with the sister scheme of

Fast Local Search particularly suited for speeding up the search of neighborhoods

when GLS is used. The rest of the paper is devoted to the application of GLS and FLS

to the famous Traveling Salesman Problem when these are combined with commonly

used heuristics such as 2-Opt, 3-Opt and Lin-Kernighan. The benefits from using GLS

and FLS with these heuristics are demonstrated and the dependence of GLS on them

is investigated. Conclusions are drawn on the relation between GLS and the

underlying local search procedures. Finally comparisons are conducted with other well

known general or TSP-specific metaheuristic techniques such as Simulated

Annealing, Tabu Search, Iterated Lin-Kernighan and Genetic Algorithms. GLS is

shown to perform equally well compared with state-of-the-art specialized methods
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while outperforming classic variants of well known general optimization techniques.

In all cases, publicly available TSP instances are used for which the optimal solutions

are known so that the performance of algorithms can be measured with respect to

approximating the optimal solutions.

2. Local Search

Local Search, also referred to as Neighborhood Search or Hill Climbing, is the basis

of many heuristic methods for combinatorial optimization problems. In isolation, it is

a simple iterative method for finding good approximate solutions. The idea is that of

trial and error. For the purposes of explaining local search, we will consider the

following definition of a combinatorial optimization problem.

A combinatorial optimization problem is defined by a pair (S, g), where S is

the set of all feasible solutions (i.e. solutions which satisfy the problem constraints)

and g is the objective function that maps each element s in S to a real number. The

goal is to find the solution s in S that minimizes the objective function g. The problem

is stated as:

min g(s), sÎS.

In the case where constraints difficult to satisfy are also present, penalty terms may be

incorporated in g(s) to drive toward satisfying these constraints. A neighborhood N for

the problem instance (S, g) can be defined as a mapping from S to its powerset:

N: S ® 2S.

N(s) is called the neighbourhood of s and contains all the solutions that can be reached

from s by a single move. Here, the meaning of a move is that of an operator which
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transforms one solution to another with small modifications. A solution x is called a

local minimum of g with respect to the neighborhood N iff:

( ) ( )g x g y y N x£ " Î, ( ) .

Local search is the procedure of minimizing the cost function g in a number of

successive steps in each of which the current solution x is being replaced by a solution

y such that: ( ) ( )g y g x y N x< Î, ( ) .

A basic local search algorithm begins with an arbitrary solution and ends up in

a local minimum where no further improvement is possible. In between these stages,

there are many different ways to conduct local search. For example, best improvement

(greedy) local search replaces the current solution with the solution that improves

most in cost after searching the whole neighborhood. Another example is first

improvement local search which accepts a better solution when it is found. The

computational complexity of a local search procedure depends on the size of the

neighborhood and also the time needed to evaluate a move. In general, the larger the

neighborhood, the more the time one needs to search it and the better the local

minima.

Local minima are the main problem with local search. Although these

solutions may be of good quality, they are not necessarily optimal. Furthermore if

local search gets caught in a local minimum, there is no obvious way to proceed any

further toward solutions of better cost. Metaheuristics are trying to remedy that. One

of the first methods in this class is Repeated Local Search where local search is

restarted from a new arbitrary solution every time it reaches a local minima until a
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number of restarts is completed. The best local minimum found over the many runs is

returned as an approximation of the global minimum. Modern metaheuristics tend to

be much more sophisticated than repeated local search pursuing a range objectives

that go beyond simply escaping from local minima. Also, the way they utilize local

search may vary and not limited to applying it to a single solution but to a population

of solutions as it is the case in some Hybrid Genetic Algorithms.

3. Guided Local Search

Guided Local Search has its root in a Neural Network architecture named GENET

developed by Wang and Tsang [49]. GENET is applicable to a class of problems

known as Constraint Satisfaction Problems [46] which are closely related to the class

of SAT problems. GLS generalizes some of the elements present in the GENET

architecture and applies them to the general class of combinatorial optimization

problems. For more information on GENET and related techniques for CSP and SAT

problems the reader can refer to the following publications [7, 36, 43].

GLS augments the cost function of the problem to include a set of penalty

terms and passes this, instead of the original one, for minimization by the local search

procedure. Local search is confined by the penalty terms and focuses attention on

promising regions of the search space. Iterative calls are made to local search. Each

time local search gets caught in a local minimum, the penalties are modified and local

search is called again to minimize the modified cost function.

3.1 Solution Features

GLS employs solution features to characterize solutions. A solution feature can be any

solution property that satisfies the simple constraint that is a non-trivial one. What it is
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meant by that is that not all solutions have this property. Some solutions have the

property while others do not. Solution features are problem dependent and serve as the

interface between the algorithm and a particular application.

Constraints on features are introduced or strengthened on the basis of

information about the problem and also the course of local search. Information

pertaining to the problem is the cost of features. The cost of features represents the

direct or indirect impact of the corresponding solution properties on the solution cost.

Feature costs may be constant or variable. Information about the search process

pertains to the solutions visited by local search and in particular local minima. A

feature fi is represented by an indicator function in the following way:

( )I s
s i

i = ìíî1

0

,

,

solution  has property 

otherwise
, sÎS.

The notion of solution features is very similar to the notion solution attributes

used in Tabu Search. The only difference is that features, as considered in here, are

always associated with a binary state given by their indicator function. They also have

certain properties such as their penalty and cost. The indicator functions of features

are directly incorporated in the problem’s cost function to produce the augmented cost

function. The augmented cost function replaces the objective function of the problem

during the search process and it is dynamically manipulated by GLS to guide the local

optimization algorithm used. In the next paragraph, we explain constrains on features

and the augmented cost function.
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3.2 Augmented Cost Function

Constraints on features are made possible by augmenting the cost function g of the

problem to include a set of penalty terms. The new cost function formed is called the

augmented cost function and it is defined as follows:

( ) ( )h s g s p I si i
i

M

( ) = + × ×
=
ål

1

,                                                    (1)

where M is the number of features defined over solutions, pi is the penalty parameter

corresponding to feature fi and l (lambda) a parameter for controlling the strength of

constraints with respect to the actual solution cost. The penalty parameter pi gives the

degree up to which the solution feature fi is constrained. The parameter l represents

the relative importance of penalties with respect to the solution cost and it provides a

means to control the influence of the information on the search process. We are going

to further explain the role of l later in this paper when we refer to the application of

the algorithm on the TSP. For an in depth analysis of the role of the parameter l the

reader is directed to [48].

GLS iteratively uses local search passing it the augmented cost function for

minimization and it simply modifies the penalty vector p given by:

p = (p1, ..., pM)

each time local search settles in a local minimum. Modifications are made on the basis

of information. Initially, all the penalty parameters are set to 0 (i.e. no features are

constrained) and a call is made to local search to find a local minimum of the

augmented cost function. After the first local minimum and every other local

minimum, the algorithm takes a modification action on the augmented cost function

and re-applies local search, starting from the previously found local minimum. The
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modification action is that of simply incrementing by one the penalty parameter of one

or more of the local minimum features. Prior and historical information is gradually

utilized to guide the search process by selecting which penalty parameters to

increment. Sources of information are the cost of features and the local minimum

itself. Let us assume that each feature fi defined over the solutions is assigned a cost ci.

This cost may be constant or variable. In order to simplify our analysis, we consider

feature costs to be constant and given by the cost vector c:

c = (c1, ...,cM)

which contains positive or zero elements.

Before explaining the penalty modification scheme in detail, we would like to

draw the reader’s attention to the meaning of local minima in the context of GLS. The

local minima encountered by local search when GLS is used are with respect to the

augmented cost function and may be different from the local minima with respect to

the original cost function of the problem. Hereafter and whenever we refer to a local

minimum in the context of GLS, we mean the former and not the later. Before any

penalties are applied, the two are identical but as the search progresses the local

minima with respect to the original cost function may not be local minima with

respect to the augmented cost function. This allows local search to escape from the

local minima of the original cost function since GLS is altering their local minimum

status under the augmented cost function using the penalty modification mechanism to

be explained next.
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3.3 Penalty Modifications

The penalty modification mechanism is responsible for manipulating the augmented

cost function when local search is trapped in a local minimum. A particular local

minimum solution s* exhibits a number of features and the indicators of the features fi

exhibited take the value 1 (i.e. ( )I si * = 1). When local search is trapped in s*, the

penalty parameters are incremented by one for all features fi that maximize the utility

expression:

( ) ( )util s f I s
c

pi i
i

i
* *, = × +1

 .                                                 (2)

In other words, incrementing the penalty parameter of the feature fi is considered an

action with utility given by (2). In a local minimum, the actions with maximum utility

are selected and then performed. The penalty parameter pi is incorporated in (2) to

prevent the scheme from being totally biased towards penalizing features of high cost.

The role of the penalty parameter in (2) is that of a counter which counts how many

times a feature has been penalized. If a feature is penalized many times over a number

of iterations then the term 
c

p
i

i1+  in (2) decreases for the feature, diversifying choices

and giving the chance for other features to also be penalized. The policy implemented

is that features are penalized with a frequency proportional to their cost. Due to (2),

features of high cost are penalized more frequently than those of low cost. The search

effort is distributed according to promise as it is expressed by the feature costs and

the already visited local minima, since only the features of local minima are penalized.

Depending on the value of l (i.e. strength of penalties) in (1) one or more

penalty modification iterations as described above may be required before a move is

made out of the local minimum. High values for l make the algorithm more
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aggressive escaping quickly out of the local minima encountered while low values for

l make the algorithm more cautious requiring more penalty increases before an escape

is achieved. Low values, although slow down the method in terms of escaping from

local minima, lead to a more careful exploration of the search space putting less

weight on the penalty part of the augmented cost function h(s) as given by (1).

Another issue to consider is the always increasing penalties for features and

what is the impact of that. Actually, as soon as penalties reach the same value for all

features in a vicinity of the search space, they tend to cancel out each other. For

example, if all the features have their penalties set to 1 this has the same effect as all

the features have their penalties set to 0. This is because moves look at the cost

differences from exchanging certain features with others rather than the actual costs

incurred. The basic GLS algorithm as described so far is depicted in Figure 1.

procedure GuidedLocalSeach(S, g, l, [I1, ...,IM], [c1,...,cM], M)
begin

k ¬ 0;
s0 ¬ random or heuristically generated solution in S;
for i ¬1 until M do /* set all penalties to 0 */

pi  ¬ 0;
while StoppingCriterion do
begin

h ¬ g + l * åpi*Ii ;
sk+1 ¬ LocalSearch(sk, h);
for i ¬1 until M do

utili ¬ Ii(sk+1) * ci / (1+pi);
for each i such that utili is maximum do

pi ¬ pi + 1;
k ¬ k+1;

end
s* ¬ best solution found with respect to cost function g;
return s*;

end

where S: search space, g: cost function, h: augmented cost function, l: lambda parameter, Ii:
indicator function for feature i, ci: cost for feature i, M: number of features, pi: penalty for
feature i.

Figure 1. Guided Local Search in pseudocode.
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Applying the GLS algorithm to a problem usually involves defining the

features to be used, assigning costs to the them and finally substituting the procedure

LocalSearch in the GLS loop with a local search algorithm for the problem in hand.

3.4 Fast Local Search and Other Improvements

There are both minor and major optimizations that significantly improve the basic

GLS method. For example, instead of calculating the utilities for all the features, we

can restrict ourselves to the local minimum features since for non-local minimum

features the utility as given by (2) takes the value 0. Also, the evaluation mechanism

for moves needs to be changed to work efficiently on the augmented cost function.

Usually, this mechanism is not directly evaluating the cost of the new solution

generated by the move but it calculates the difference Dg caused to the cost function.

This difference in cost should be combined with the difference in penalty. This can be

easily done and has no significant impact on the time needed to evaluate a move. In

particular, we have to take into account only features that change state (being deleted

or added). The penalty parameters of the features deleted are summed together. The

same is done for the penalty parameters of features added. The change in penalty due

to the move is then simply given by the difference:

- +å åp pj k
over all features j added over all features k deleted

.

Leaving behind the minor improvements, we turn our attention to the major

improvements. In fact, these improvements do not directly refer to GLS but to local

search. Greedy local search selects the best solution in the whole neighborhood. This

can be very time-consuming, especially if we are dealing with large instances of
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problems. Next, we are going to present Fast Local Search (FLS), which drastically

speeds up the neighborhood search process by redefining it. The method is a

generalization of the approximate 2-opt method proposed in [3] for the Traveling

Salesman Problem. The method also relates to Candidate List Strategies used in tabu

search [14].

FLS works as follows. The current neighborhood is broken down into a

number of small sub-neighborhoods and an activation bit is attached to each one of

them. The idea is to scan continuously the sub-neighborhoods in a given order,

searching only those with the activation bit set to 1. These sub-neighborhoods are

called active sub-neighborhoods. Sub-neighborhoods with the bit set to 0 are called

inactive sub-neighborhoods and they are not being searched. The neighborhood search

process does not restart whenever we find a better solution but it continues with the

next sub-neighborhood in the given order. This order may be static or dynamic (i.e.

change as a result of the moves performed).

Initially, all sub-neighborhoods are active. If a sub-neighborhood is examined

and does not contain any improving moves then it becomes inactive. Otherwise, it

remains active and the improving move found is performed. Depending on the move

performed, a number of other sub-neighborhoods are also activated. In particular, we

activate all the sub-neighborhoods where we expect other improving moves to occur

as a result of the move just performed. As the solution improves the process dies out

with fewer and fewer sub-neighborhoods being active until all the sub-neighborhood

bits turn to 0. The solution formed up to that point is returned as an approximate local

minimum.

The overall procedure could be many times faster than conventional local

search. The bit setting scheme encourages chains of moves that improve specific parts
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of the overall solution. As the solution becomes locally better the process is settling

down, examining fewer moves and saving enormous amounts of time which would

otherwise be spent on examining predominantly bad moves.

Although fast local search procedures do not generally find very good

solutions, when they are combined with GLS they become very powerful optimization

tools. Combining GLS with FLS is straightforward. The key idea is to associate

solution features to sub-neighborhoods. The associations to be made are such that for

each feature we know which sub-neighborhoods contain moves that have an

immediate effect upon the state of the feature (i.e. moves that remove the feature from

the solution). The combination of the GLS algorithm with a generic FLS algorithm is

depicted in Figure 2.

The procedure GuidedFastLocalSearch in Figure 2 works as follows. Initially,

all the activation bits are set to 1 and FLS is allowed to reach the first local minimum

(i.e. all bits 0). Thereafter, and whenever a feature is penalized, the bits of the

associated sub-neighborhoods and only those are set to 1. In this way, after the first

local minimum, fast local search calls examine only a number of sub-neighborhoods

and in particular those which associate to the features just penalized. This dramatically

speeds up GLS. Moreover, local search is focusing on removing the penalized features

from the solution instead of considering all possible modifications.
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procedure GuidedFastLocalSearch(S, g, l, [I1, ...,IM], [c1,...,cM], M, L)
begin

k ¬ 0; s0 ¬ random or heuristically generated solution in S;
for i ¬1 until M do pi  ¬ 0; /* set all penalties to 0 */
for i ¬1 until L do biti  ¬ 1; /* set all sub-neighborhoods to the active state */
while StoppingCriterion do
begin

h ¬ g + l * åpi*Ii ;
sk+1 ¬ FastLocalSearch(sk, h,[bit1, …,bitL], L);
for i ¬1 until M do utili ¬ Ii(sk+1) * ci / (1+pi);
for each i such that utili is maximum do
begin

pi ¬ pi + 1;
SetBits ¬ SubNeighbourhoodsForFeature(i);
/* activate sub-neighborhoods relating to feature i penalized */
for each bit b in SetBits do b ¬ 1;

end
k ¬ k+1;

end
s* ¬ best solution found with respect to cost function g;
return s*;

end

procedure FastLocalSeach(s, h, [bit1, …,bitL], L)
begin

while $bit, bit = l do
for i ¬1 until L do
begin

if biti = 1 then /* search sub-neighborhood for improving moves */
begin

Moves ¬ set of moves in sub-neighborhood i;
for each move m in Moves do
begin

s¢ ¬ m(s);
/* s¢ is the solution generated by move m when applied to s */
if h(s¢) < h(s) then /* for minimization */
begin

biti ¬ 1;
SetBits ¬ SubNeighbourhoodsForMove(m);
/* spread activation to other sub-neighborhoods */
for each bit b in SetBits do b ¬ 1;
s ¬ s¢;
goto ImprovingMoveFound

end
end
biti ¬ 0; /* no improving move found */

end
ImprovingMoveFound: continue;

end;
return s;

end

where S: search space, g: cost function, h: augmented cost function, l: GLS parameter, Ii: indicator
function for feature i, ci: cost for feature i, M: number of features, L: number of sub-neighborhoods, pi:
penalty for feature i, biti: activation bit for sub-neighborhood i, SubNeighbourhoodsForFeature(i):
procedure which returns the bits of the sub-neighborhoods corresponding to feature i, and
SubNeighbourhoodsForMove(m): procedure which returns the bits of the sub-neighborhoods to spread
activation to when move m is performed.

Figure 2. Guided Local Search combined with Fast Local Search in pseudocode.
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Apart from the combination of GLS with fast local search, other useful

variations of GLS include:

· features with variable costs where the cost of a feature is calculated during search

and in the context of a particular local minimum,

· penalties with limited duration ,

· multiple feature sets where each feature set is processed in parallel by a different

penalty modification procedure, and

· feature set hierarchies where more important features overshadow less important

feature sets in the penalty modification procedure.

More information about these variations can be found in [48]. Also for a combination

of GLS with Tabu Search the reader may refer to the work by Backer et. al [2].

4. Connections with Other General Optimisation Techniques

4.1 Simulated Annealing

Non-monotonic temperature reduction schemes used in Simulated Annealing (SA)

also referred to as re-annealing or re-heating schemes are of interest in relation to the

work presented in this paper. In these schemes, the temperature is decreased as well as

increased in a attempt to remedy the problem that the annealing process eventually

settles down failing to continuously explore good solutions. In a typical SA, good

solutions are mainly visited during the mid and low parts of the cooling schedule. For

resolving this problem, it has been even suggested annealing at a constant temperature

high enough to escape local minima but also low enough to visit them [5]. It is seems

extremely difficult to find such a temperature because it has to be landscape
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dependent (i.e. instance dependent) if not dependent of the area of the search space

currently searched.

Guided Local Search presented can be seen as addressing this problem of

visiting local minima but also being able to escape from them. Instead of random

up-hill moves, penalties are utilized to force local search out of local minima. The

amount of penalty applied is progressively increased in units of appropriate magnitude

(i.e. parameter l) until the method escapes from the local minimum. GLS can be seen

adapting to the different parts of the landscape. The algorithm is continuously visiting

new solutions rather than converging to any particular solution as SA does.

Another important difference between this work and SA is that GLS is a

deterministic algorithm. This is also the case for a wide number of algorithms

developed under the tabu search framework.

4.2 Tabu Search

GLS is directly related to Tabu Search and to some extent can be considered a Tabu

Search variant. Solution features are very similar to solution attributes used in Tabu

Search. Both Tabu Search and GLS impose constrains on them to guide the

underlying local search heuristics.

Tabu Search in its Short-Term Memory form of Recency-Based Memory is

imposing hard constraints on solutions attributes of recently visited solutions or

recently performed moves [14, 18]. This prevents local search from returning to

recently visited solutions. Local search is not getting trapped in a local minimum

given the duration of these constraints is long enough to lead to an area outside the

local minimum basin. Variable duration of these constraints is sometimes

advantageous allowing Tabu Search to adapt better to the varying radius of the
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numerous local minimum basins that could be encountered during the search [44].

Nonetheless, there is always the risk of cycling if all the escaping routes require

constraint duration longer than those prescribed in the beginning of the search.

The approach taken by GLS is not to impose hard constraints but instead to

leave local search to settle in a local minimum (of the augmented cost function) before

any of the guidance mechanisms are triggered. The purpose of doing that is to allow

GLS to explore a number of alternative escape routes from the local minimum basin

by first allowing local search to settle in that and consequently applying one or more

penalty modification cycles which depending on the structure of the landscape may or

may not result in a escaping move. Furthermore the continuous penalization procedure

has the effect of progressively  “filling up” the local minimum basin present in the

original cost function. The risks of cycling are minimized since penalties are not

retracted but are permanently marking substantially big areas of the search space that

incorporate the specific features penalized.  Local minima for the original cost

function may not have a local minimum status under the augmented cost function after

a number of penalty increases is performed. This allows local search to leave them

and start exploring other areas of the search space.

Long-Term Memory strategies for diversification used in Tabu Search such as

Frequency-Based Memory have many similarities to the GLS penalty modification

scheme. Frequency-Based Memory based on solution attributes is increasing the

penalties for attributes incorporated in a solution every time this is solution is visited

[14, 18]. This leads to a diversification function which guides local search towards

attributes not incorporated frequently in solutions.

GLS is also increasing the penalties for features though not in every iteration

but only in a local minimum. Furthermore not all features have their penalties
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increased but a selective penalization is implemented which bases its decisions on the

quality of the features (i.e. cost), decisions made by the algorithm in previous

iterations (i.e. penalties already applied) and also the current landscape of the problem

which may force more than one penalization cycles before a move to a new solution is

achieved. If GLS is used in conjunction with FLS, the different escaping directions

from the local minimum can be quickly evaluated allowing the selective

diversification of GLS to also direct local search through the moves evaluated and not

only through the augmented cost function.

In general, GLS can alone perform similar functions to those achieved by the

simultaneous use of both Recency-Based and Frequency-Based memory as this is the

case in many Tabu Search variants. Other elements like intensification based on elite

solution sets may well be incorporated in GLS as in Tabu Search.

Concluding, Tabu Search and GLS share a lot of common ground in both

taking the approach of constraining solution attributes (features) to guide a local

search procedure. Tabu Search mechanisms are usually triggered in every iteration and

local search is not allowed to settle in a local minimum. GLS mechanism are triggered

when local search settles in a local minimum and thereafter until it escapes. Usually,

Tabu Search uses a Short-Term Memory and a Long-Term Memory component, GLS

is not using separate components and it is trying to perform similar functions using a

single penalty modification mechanism. There is a lot of promise in investigating

hybrids that combine elements from both GLS and Tabu Search in a single scheme.

For an example, the reader can refer to the work by Backer et. al on the Vehicle

Routing Problem [2].



21

5. The Traveling Salesman Problem

In the previous sections, we examined the method of GLS and its generic framework.

We are now going to examine the application of the method to the well-known

Traveling Salesman Problem.  There are many variations of the TSP. In this work, we

examine the classic symmetric TSP. The problem is defined by N cities and a

symmetric distance matrix D=[dij] which gives the distance between any two cities i

and j. The goal in TSP is to find a tour (i.e. closed path) which visits each city exactly

once and is of minimum length. A tour can be represented as a cyclic permutation p
on the N cities if we interpret p(i) to be the city visited after city i, i = 1,... ,N. The cost

of a permutation is defined as:

( ) ( )g di i
i

Np p=
=
å

1

                                                      (3)

and gives the cost function of the TSP.

Recent and comprehensive surveys of TSP methods are those by Laporte [29],

Reinelt [42] and Johnson & McGeoch [21]. The reader may also refer to [30] for a

classical text on the TSP. The state of the art is that problems up to 1,000,000 cities

are within the reach of specialized approximation algorithms [3]. Moreover, the

optimal solutions have been found and proven for non-trivial problems of size up to

7397 cities [21]. Nowadays, TSP plays a very important role in the development and

testing of new optimization techniques. In this context, we examine how guided local

search and fast local search can be applied to this problem.
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6. Local Search Heuristics for the TSP

Local search for the TSP is synonymous with k-Opt moves. Using k-Opt moves,

neighboring solutions can be obtained by deleting k edges from the current tour and

reconnecting the resulting paths using k new edges. The k-Opt moves are the basis of

the three most famous local search heuristics for the TSP, namely 2-Opt [6], 3-Opt

[31] and Lin-Kernighan (LK) [32]. These heuristics define neighborhood structures

which can be searched by the different neighborhood search schemes described in

sections 2 and 3.4, leading to many local optimization algorithms for the TSP. The

neighborhood structures defined by 2-Opt, 3-Opt and LK are as follows [20]:

2-Opt. A neighboring solution is obtained from the current solution by

deleting two edges, reversing one of the resulting paths and reconnecting the tour (see

Figure 3). The worst case complexity for searching the neighborhood defined by 2-

Opt is O(n2).

Figure 3. k-Opt moves for the TSP.

3-Opt. In this case, three edges are deleted. The three resulting paths are put

together in a new way, possibly reversing one or more of them (see Figure 3). 3-Opt is

much more effective than 2-Opt, though the size of the neighborhood (possible 3-Opt

a) 2-Opt move b) 3-Opt move c) Non-sequential 4-Opt move
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moves) is larger and hence more time-consuming to search. The worst case

complexity for searching the neighborhood defined by 3-Opt is O(n3).

Lin-Kernighan (LK). One would expect “4-Opt” to be the next step after 3-

Opt but actually that is not the case. The reason is that 4-Opt neighbors can be

remotely apart because “non-sequential” exchanges such as that shown in Figure 3 are

possible for k ³ 4. To improve 3-Opt further, Lin and Kernighan developed a

sophisticated edge exchange procedure where the number k of edges to be exchanged

is variable [32]. The algorithm is mentioned in the literature as the Lin-Kernighan

(LK) algorithm and it was considered for many years to be the “uncontested

champion” of local search heuristics for the TSP. Lin-Kernighan uses a very complex

neighborhood structure which we will briefly describe here.

LK, instead of examining a particular 2-Opt or 3-Opt exchange, is building an

exchange of variable size k by sequentially deleting and adding edges to the current

tour while maintaining tour feasibility. Given node t1 in tour T as a starting point: In

step m of this sequential building of the exchange: edge (t1, t2m) is deleted, edge (t2m,

t2m+1) is added, and then edge (t2m+1, t2m+2) is picked so that deleting edge (t2m+1, t2m+2)

and joining edge (t2m+2, t1) will close up the tour giving tour Tm. The edge (t2m+2, t1) is

deleted if and when step m+1 is executed. The first three steps of this mechanism are

illustrated in Figure 4.

Figure 4. The first three steps of the Lin-Kernighan edge exchange mechanism.

m = 1 m = 2 m =3

t4

=
t3

=

t2

=

t1

=

t3

=
t4

=

t1

=
t2

=
t1

=
t2

=

t3

=
t4

=

t6

=

t5

=
t7

=

t8

=

t6

=

t5

=



24

As we can see in this figure, the method is essentially executing a sequence of

2-Opt moves. The length of these sequences (i.e. depth of search) is controlled by the

LK’s gain criterion which limits the number of the sequences examined. In addition

to that, limited backtracking is used to examine the sequences that can be generated if

a number of different edges are selected for addition at steps 1 and 2 of the process.

The neighborhood structure described so far, although it provides the depth

needed, is lacking breadth, potentially missing improving 3-Opt moves. To gain

breadth, LK temporarily allows tour infeasibility, examining the so-called

“infeasibility” moves which consider various choices for nodes t4 to t8 in the sequence

generation process, examining all possible 3-Opt moves and more. Figure 5 illustrates

the infeasibility-move mechanism.

Figure 5. Lin-Kerhighan’s infeasibility moves.

The interested reader may refer to the original paper by Lin and Kernighan [32] for a

more elaborate description of this mechanism. LK is the standard benchmark against

which all heuristic methods are tested. The worst case complexity for searching the

LK neighborhood is O(n5).

Implementations of 2-Opt, 3-Opt and LK-based local search methods may vary

in performance. A very good reference for efficiently implementing local search

procedures based on 2-Opt and 3-Opt is that by Bentley [3]. In addition to that,

Reinelt [42] and also Johnson and McGeoch [21] describe some improvements that

t4

=t3

=

t2

=

t1

=

t3

=

t4

=

t1

=
t2

=
t1

=
t2

=

t3

=

t4

=

t6

=
t5

=

t7

=
t8

=
t6

=

t5

=



25

are commonly incorporated in local search algorithms for the TSP. We will refer to

some of them later in this paper. The best reference for the LK algorithm is the

original paper by Lin and Kernighan [32]. In addition to that, Johnson and McGeoch

[21] provide a good insight into the algorithm and its operations along with

information on the many variants of the method. A modified LK version which avoids

the complex infeasibility moves without significant impact on performance is

described in [33].

Fast local search and guided local search can be combined with the

neighborhood structures of 2-Opt, 3-Opt and LK with minimal effort. This will

become evident in the next sections where fast local search and guided local search

for the TSP are presented and discussed.

6.1 Fast Local Search Applied to the TSP

A fast local search procedure for the TSP using 2-Opt has already been suggested by

Bentley [3]. Under the name Don’t Look Bits, the same approach has been used in the

context of 2-Opt, 3-Opt and LK by Codenotti et al. [4] to reduce the running times of

these heuristics in very large TSP instances. More recently, Johnson et al. [24] also

use the technique to speed up their LK variant (see [21]). In the following, we are

going to describe how fast local search variants of 2-Opt, 3-Opt and LK can be

developed on the guidelines for fast local search presented in section 3.4.

2-Opt, 3-Opt and LK-based local search procedures are seeking tour

improvements by considering for exchange each individual edge in the current tour

and trying to extend this exchange to include one (2-Opt), two (3-Opt) or more (LK)
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other edges from the tour. Usually, each city is visited in tour order and one or both1

the edges adjacent to the city are checked if they can lead to an edge exchange which

improves the solution.

We can exploit the way local search works on the TSP to partition the

neighborhood in sub-neighborhoods as required by fast local search. Each city in the

problem may be seen as defining a sub-neighborhood which contains all edge

exchanges originating from either one of the edges adjacent to the city. For a problem

with N cities, the neighborhood is partitioned into N sub-neighborhoods, one for each

city in the instance. Given the sub-neighborhoods, fast local search for the TSP works

in the following way (see also 3.4).

Initially all sub-neighborhoods are active. The scanning of the sub-

neighborhoods, defined by the cities, is done in an arbitrary static order (e.g. from 1st

to Nth city). Each time an active sub-neighborhood is found, it is searched for

improving moves. This involves trying either edge adjacent to the city as bases for 2-

Opt, 3-Opt or LK edge exchanges, depending on the heuristic used. If a sub-

neighborhood does not contain any improving moves then it becomes inactive (i.e. bit

is set to 0). Otherwise, the first improving move found is performed and the cities

(corresponding sub-neighborhoods) at the ends of the edges involved (deleted or

added by the move) are activated (i.e. bits are set to 1). This causes the sub-

neighborhood where the move was found to remain active and also a number of other

sub-neighborhoods to be activated. The process always continues with the next sub-

neighborhood in the static order. If ever a full rotation around the static order is

completed without making a move, the process terminates and returns the tour found.

                                                          
1 In our work, if approximations are used such as nearest neighbor lists or fast local search then both edges

adjacent to a city are examined, otherwise only one of the edges adjacent to the city is examined.
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The tour is declared 2-Optimal, 3-Optimal or LK-Optimal, depending on the type of

the k-Opt moves used.

6.2 Local Search Procedures for the TSP

Apart from fast local search, first improvement and best improvement local search

(see section 2) can also be applied to the TSP. First improvement local search

immediately performs improving moves while best improvement (greedy) local search

performs the best move found after searching the complete neighborhood.

Fast local search for the TSP described above can be easily converted to first

improvement local search by searching all sub-neighborhoods irrespective of their

state (active or inactive). The termination criterion remains the same with fast local

search: that is, to stop the search when a full rotation of the static order is completed

without making a move. The LK algorithm as originally proposed by Lin and

Kernighan [32] performs first improvement local search.

Fast local search can also be modified to perform best improvement local

search. In this case, the best move is selected and performed after all the sub-

neighborhoods have been exhaustively searched. The algorithm stops when a solution

is reached where no improving move can be found. The scheme is very time

consuming to be combined with the 3-Opt and LK neighborhood structures and it is

mainly intended for use with 2-Opt. Considering the above options, we implemented

seven local search variants for the TSP (implementation details will be given later).

These variants were derived by combining the different search schemes at the

neighborhood level (i.e. fast, first improvement, and best improvement local search)

with any of the 2-Opt, 3-Opt, or LK neighborhood structures. Table 1 illustrates the

variants and also the names we will use to distinguish them in the rest of the paper.
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7. Guided Local Search Applied to the TSP

7.1 Solution Features and Augmented Cost Function

The first step in the process of applying GLS to a problem is to find a set of solution

features that are accountable for part of the overall solution cost. For the TSP, a tour

includes a number of edges and the solution cost (tour length) is given by the sum of

the lengths of the edges in the tour (see (3)). Edges are ideal features for the TSP.

First, they can be used to define solution properties (a tour either includes an edge or

not) and second, they carry a cost equal to the edge length, as this is given by the

distance matrix D=[dij] of the problem. A set of features can be defined by

considering all possible undirected edges eij ( i = 1..N, j = i+1..N, i ¹ j ) that may

appear in a tour with feature costs given by the edge lengths dij. Each edge eij

connecting cities i and city j is attached a penalty pij initially set to 0 which is

increased by GLS during search. These edge penalties can be arranged in a symmetric

penalty matrix P=[pij]. As mentioned in section 3.2, penalties have to be combined

with the problem’s cost function to form the augmented cost function which is

minimized by local search. This can be done by considering the auxiliary distance

matrix:

D¢ = D + l×P = [dij + l×pij] .

Name Local Search Type Neighborhood Type
BI-2Opt Best Improvement 2-Opt
FI-2Opt First Improvement 2-Opt
FLS-2Opt Fast Local Search 2-Opt
FI-3Opt First Improvement 3-Opt
FLS-3Opt Fast Local Search 3-Opt
FI-LK First Improvement LK
FLS-LK Fast Local Search LK

Table 1. Local search procedures implemented for the study of GLS on the TSP.
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Local search must use D¢ instead of D in move evaluations. GLS modifies P and

(through that) D¢ whenever local search reaches a local minimum. The edges

penalized in a local minimum are selected according to the utility function (2), which

for the TSP takes the form: ( ) ( )Util tour e I tour
d

pij e

ij

ij
ij

, ,= × +1
                                         (4)

where

( )I tour
e tour

e toure

ij

ij
ij

= ÎÏìíî1

0

,

,
.

7.2 Combining GLS with TSP Local Search Procedures

GLS as depicted in Figure 1 makes no assumptions about the internal mechanisms of

local search and therefore can be combined with any local search algorithm for the

problem, no matter how complex this algorithm is.

The TSP local searches of section 6.2 to be integrated with GLS need only to

be implemented as procedures which, provided with a starting tour, return a locally

optimal tour with respect to the neighborhood considered. The distance matrix used

by local search is the auxiliary matrix D¢ described in the last section. A reference to

the matrix D is still needed to enable the detection of better solutions whenever moves

are executed and new solutions are visited. There is no need to keep track of the value

of the augmented cost function since local search heuristics make move evaluations

using cost differences rather than re-computing the cost function from scratch.

Interfacing GLS with fast local searches for the TSP requires a little more

effort (see also 3.4). In particular, each time we penalize an edge in GLS, the
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sub-neighborhoods corresponding to the cities at the ends of this edge are activated

(i.e. bits set to 1). After the first local minimum, calls to fast local search start by

examining only a number of sub-neighborhoods and in particular those which

associate to the edges just penalized. Activation may spread to a limited number of

other sub-neighborhoods because of the moves performed though, in general, local

search quickly settles in a new local minimum. This dramatically speeds up GLS,

forcing local search to focus on edge exchanges that remove penalized edges instead

of evaluating all possible moves.

7.3 How GLS Works on the TSP

Let us now give an overview of the way GLS works on the TSP. Starting from an

arbitrary solution, local search is invoked to find a local minimum. GLS penalizes one

or more of the edges appearing in the local minimum, using the utility function (4) to

select them. After the penalties have been increased, local search is restarted from the

last local minimum to search for a new local minimum. If we are using fast local

search then the sub-neighborhoods (i.e. cities) at the ends of the edges penalized need

also to be activated. When a new local minimum is found or local search cannot

escape from the current local minimum, penalties are increased again and so forth.

The GLS algorithm constantly attempts to remove edges appearing in local

minima by penalizing them. The effort invested by GLS to remove an edge depends

on the edge length. The longer the edge, the greater the effort put in by GLS. The

effect of this effort depends on the parameter l of GLS. A high l causes GLS

decisions to be in full control of local search, overriding any local gradient

information while a low l causes GLS to escape from local minima with great

difficulty, requiring many penalty cycles before a move is executed. However, there is
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always a range of values for l for which the moves selected aim at the combined

objective to improve the solution (taking into account the gradient) and also remove

the penalized edges (taking into account the GLS decisions). If longer edges persist in

appearing in solutions despite the penalties, the algorithm will diversify its choices,

trying to remove shorter edges too.

As the penalties build up for both bad and good edges frequently appearing in

local minima, the algorithm starts exploring new regions in the search space,

incorporating edges not previously seen and therefore not penalized. The speed of this

“continuous” diversification of search is controlled by the parameter l. A low l slows

down the diversification process, allowing the algorithm to spend more time in the

current area before it is forced by the penalties to explore other areas. Conversely, a

high l speeds up diversification, at the expense of intensification.

From another viewpoint, GLS realizes a “selective” diversification which

pursues many more choices for long edges than short edges by penalizing the former

many more times than the later. This selective diversification achieves the goal of

distributing the search effort according to prior information as expressed by the edge

lengths. Selective diversification is smoothly combined with the goal of intensifying

search by setting l to a value low enough to allow the local search gradients to

influence the course of local search. Escaping from local minima comes at no expense

because of the penalties but alone without the goal of distributing the search effort, as

implemented by the selective penalty modification mechanism, is not enough to

produce high quality solutions.
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8. Evaluation of GLS in the TSP

To investigate the behavior of GLS on the TSP, we conducted a series of experiments.

The results presented in subsequent sections attempt to provide a comprehensive

picture of the performance of GLS on the TSP. First, we examine the combination of

GLS with 2-Opt, the simplest of the TSP heuristics. The benefits from using fast local

search instead of best improvement local search are clearly demonstrated, along with

the ability of GLS to find high quality solutions in small to medium size problems.

These results for GLS are compared with results for Simulated Annealing and Tabu

Search when these techniques use the 2-Opt heuristic.

From there on, we focus on efficient techniques for the TSP based on GLS.

The different combinations of GLS with the local search procedures of 6.2 are

examined and conclusions are drawn on the relation between GLS and local search.

Efficient GLS variants are compared with methods based on the Lin-Kernighan

algorithm (known to be the best heuristic techniques for the TSP).

8.1 Experimental Setting

In the experiments conducted, we used problems from the publicly available library of

TSP problems, TSPLIB [41]. Most of the instances included in TSPLIB have already

been solved to optimality and they have been used in many papers in the TSP

literature.

For each algorithm evaluated, ten runs from different random initial solutions

were performed and the various performance measures (solution quality, running time

etc.) were averaged. The solution quality was measured by the percentage excess

above the best known solution (or optimal solution if known), as given by the

formula:
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excess = ´solution cost -  best known solution cost

best known solution cost
100 .             (5)

Unless otherwise stated, all experiments were conducted on DEC Alpha 3000/600

machines (175 MHz) with algorithms implemented in GNU C++.

8.2 Parameter ll
The only parameter of GLS which requires tuning is the parameter l. The GLS

algorithm performed well for a relatively wide range of values when we tested it on

problems from TSPLIB with either one of the 2-Opt, 3-Opt or LK heuristics.

Experiments showed that GLS is quite tolerant to the choice of l as long as l is equal

to a fraction of the average edge length in good solutions (e.g. local minima). These

findings were expressed by the following equation for calculating l:

l = ×a
g

N

( )local minimum
 ,                                              (6)

where g(local minimum) is the cost of a local minimum tour produced by local search

(e.g. first local minimum before penalties are applied) and N the number of cities in

the instance. Eq. (6) introduces a parameter a which, although instance-dependent,

results in good GLS performance for values in the more manageable range (0,1].

Experimenting with a, we found that it depends not only on the instance but also on

the local search heuristic used. In general, there is an inverse relation between a and

local search effectiveness. Not-so-effective local search heuristics such as 2-Opt

require higher a values than more effective heuristics such as 3-Opt and LK. This is

because the amount of penalty needed to escape from local minima decreases as the

effectiveness of the heuristic increases and therefore lower values for a have to be

used to allow the local gradients to affect the GLS decisions. For 2-Opt, 3-Opt and
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LK, the following ranges for a generated high quality solutions in the TSPLIB

problems.

The lower bounds of these intervals represent typical values for a that enable

GLS to escape from local minima at a tolerable rate. If values less than the lower

bounds are used, then GLS requires too many penalty cycles to escape from local

minima. In general, the lower bounds depend on the local search heuristic used and

also the structure of the landscape (i.e. depth of local minima). On the other hand, the

upper bounds give a good indication of the maximum values for a that can still

produce good solutions. If values greater than the upper bounds are used then the

algorithm is exhibiting excessive bias towards removing long edges and failing to

reach high quality local minima. In general, the upper bounds also depend on the local

search heuristic used but they are mainly affected by the quality of the information

contained in the feature costs (i.e. how accurate is the assumption that long edges are

preferable over short edges in the particular instance).

8.3 Guided Local Search and 2-Opt

In this section, we look into the combination of GLS with the simple 2-Opt heuristic.

More specifically, we present results for GLS with best improvement 2-Opt local

search (BI-2Opt) and fast 2-Opt local search (FLS-2Opt). The set of problems used in

the experiments consisted of 28 small to medium size TSPs from 48 to 318 cities all

from TSPLIB. The stopping criterion used was a limit on the number of iterations not

to be exceeded. An iteration for GLS with BI-2Opt was considered one local search

Heuristic Suggested range for a
2-Opt 1/8 £ a £ ½
3-Opt 1/10 £ a £ ¼

LK 1/12 £ a £ 1/6

Table 2. Suggested ranges for parameter a when GLS is combined with different TSP heuristics.



35

iteration (i.e. complete search of the neighborhood) and for GLS with FLS-2Opt, a

call to fast local search as in Figure 2. The iteration limit for both algorithms was set

to 200,000 iterations. In both cases, we tried to provide the GLS variants with plenty

of resources in order to reach the maximum of their performance.

The exact value of l used in the runs was manually determined by running a

number of test runs and observing the sequence of solutions generated by the

algorithm. A well-tuned algorithm generates a smooth sequence of gradually

improving solutions. A not so well tuned algorithm either progresses very slowly (l is

lower than it should be) or very quickly finds no more than a handful of good local

minima (l is higher than it should be). The values for l determined in this way were

corresponding to values for a around 0.3. Ten runs from different random solutions

were performed on each instance included in the set of problems and the various

performance measures (excess, running time to reach the best solution etc.) were

averaged. The results obtained are presented in Table 3.

Both GLS variants found solutions with cost equal to the optimal cost in the

majority of runs. GLS with BI-2Opt failed to find the optimal solutions (as reported

by Reinelt in [41] and also [42]) in only 15 out of the total 280 runs. From another

viewpoint, the algorithm was successful in finding the optimal solution in 94.6% of

the runs. Ten out of the 14 failures referred to a single instance namely d198.

However, the solutions found for d198 were of high quality and on average within

0.08% of optimality.
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GLS with FLS-2Opt found the optimal solutions in 3 more runs than GLS with

BI-2Opt, missing the optimal solution in only 11 out of the 280 runs (96.07% success

rate). In particular, the algorithm missed only once the optimal solution for lin318 but

still found no optimal solution for d198 which proved to be a relatively ‘hard’

problem for both variants. GLS using fast local search was on average ten times faster

than GLS using best improvement local search and that without compromising on

solution quality. In the worst case (att48), it was two times faster while in the best

case (kroA150) it was thirty seven times faster. Remarkably, GLS with fast local

search was able in most problems to find a solution with cost equal to the optimum

Problem GLS with BI-2Opt GLS with FLS-2Opt
optimal runs
out of 10

Mean
Excess (%)

Mean CPU
Time (sec)

optimal runs
out of 10

Mean
Excess(%)

Mean CPU
Time (sec)

att48 10 0.0 0.77 10 0.0 0.4
eil51 10 0.0 1.62 10 0.0 0.46
st70 10 0.0 7.68 10 0.0 1.2
eil76 10 0.0 3.83 10 0.0 0.97
pr76 10 0.0 15.1 10 0.0 3.01
gr96 10 0.0 16.48 10 0.0 2.26
kroA100 10 0.0 11.27 10 0.0 1.25
kroB100 10 0.0 16.36 10 0.0 2.46
kroC100 10 0.0 12.2 10 0.0 0.74
kroD100 10 0.0 12.94 10 0.0 1.78
kroE100 10 0.0 35.68 10 0.0 2.46
rd100 10 0.0 10.75 10 0.0 2.74
eil101 10 0.0 19.49 10 0.0 2.37
lin105 10 0.0 17.46 10 0.0 2.06
pr107 10 0.0 150.28 10 0.0 5.41
pr124 10 0.0 22.47 10 0.0 1.56
bier127 10 0.0 254.36 10 0.0 24.67
pr136 9 0.0009 416.78 10 0.0 32.16
gr137 10 0.0 66.54 10 0.0 7.82
pr144 10 0.0 52.84 10 0.0 6.95
kroA150 10 0.0 257.06 10 0.0 7.03
kroB150 10 0.0 289.02 10 0.0 44.85
u159 10 0.0 74.35 10 0.0 6.9
rat195 8 0.01 525.48 10 0.0 55.15
d198 0 0.08 1998.37 0 0.05 353.97
kroA200 10 0.0 614.6 10 0.0 50.16
kroB200 10 0.0 665.3 10 0.0 61.79
lin318 8 0.01 4484.4 9 0.005 346.44

Table 3. Performance of 2-Opt based variants of GLS on small to medium size TSP instances.



37

(already known) in less than 10 seconds of CPU time on the DEC Alpha 3000/600

machines used.

The results presented in this section clearly demonstrate the ability of GLS

even when combined with 2-Opt the simplest of TSP heuristics to find consistently

the optimal solutions for small to medium size TSPs. The use of fast local search

introduces substantial savings in running times without compromising in solution

quality.

8.4 Comparison with General Methods for the TSP

The above performance of GLS is remarkable considering that GLS is not an exact

method and that in this case it only used the short-sighted 2-Opt heuristic. Searching

the related TSP literature, we could not find any other approximation methods that use

only the simple 2-Opt move and consistently find optimal solutions for problems up to

318 cities. Only the Iterated Lin-Kernighan algorithm and its variants [20, 21, 24]

share the same consistency in reaching the optimal solutions. These algorithms will be

considered later in this chapter.

A meaningful comparison that can be made is between GLS using 2-Opt and

other general methods that also use the same heuristic. For that purpose, we

implemented simulated annealing [1, 9, 22, 23, 26, 28] and a tabu search variant for

the TSP suggested by Knox [27].

8.4.1 Simulated Annealing

The Simulated Annealing (SA) algorithm implemented for the TSP was the one

described by Johnson in [20] and uses geometric cooling schedules. The algorithm

generates random 2-Opt moves. If a move improves the cost of the current solution
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then it is always accepted. Moves that do not improve the cost of the current solution

are accepted with probability:

e T

-D

where D is the difference in cost due to the move and T is the current temperature. In

the final runs, we started the algorithm from a relatively high temperature (around

50% of moves were accepted). At each temperature level the algorithm was allowed

to perform a constant number of trials to reach equilibrium. After reaching

equilibrium, the temperature was multiplied by the cooling rate a which was set to a

high value (a = 0.9) . To stop the algorithm, we used the scheme with the counter

described in [22].

8.4.2 Tabu Search

The tabu search variant implemented was the one proposed by Knox [27] using a

combination of tabu restrictions and aspiration level criteria. The method is briefly

described in here.

Tabu search performs best improvement local search selecting the best move

in the neighborhood but only amongst those not characterized as tabu. Determining

the tabu status of a move is very important in tabu search and holds the key for the

development of efficient recency-based memory.

In this tabu search variant for the TSP, a 2-Opt move is classified as tabu only

if both added edges of the exchange are on the tabu list. If one or both of the added

edges are not on the tabu list, then the candidate move is not classified as tabu.

Updating the tabu list involves placing the deleted edges of the 2-Opt exchanges

performed on the list. If the list is full, the oldest elements of the list are replaced by

the new deleted edge information.
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In order for a 2-Opt exchange to override tabu status, both added edges of the

exchange must pass the aspiration test. An individual edge passes the aspiration test if

the new tour resulting from the candidate exchange is better than the aspiration values

associated with the edge. The aspiration values of edges are the tour cost which exists

prior to making the candidate 2-Opt move. Only edges deleted by the exchanges

performed have their values updated.

For the experiments reported here, the tabu list size was set to 3N (where N is

the number of cities in the problem) as suggested by Knox [27]. Tabu search was

allowed to run for 200,000 iterations which is equivalent in terms of number of moves

evaluated to the number of iterations GLS with BI-2Opt was given on the same

instances.

8.4.3 Simulated Annealing and Tabu Search Compared with GLS

Simulated annealing and tabu search were tested on 8 instances from the greater set of

28 instances mentioned above. The results were averaged as with GLS. Table 4

illustrates the results for simulated annealing and tabu search compared with those for

GLS with FLS-2Opt on the same instances. Results are also contrasted with the best

solution found by repeating BI-2Opt starting from random tours until a total of

200,000 local search iterations were completed.
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As we can see in Table 4, the superiority of GLS over the tabu search variant

and simulated annealing is evident. The tabu search variant found easily the optimal

solutions for small problems and it scaled well for larger problems. However, it was

many times slower than GLS and moreover failed to reach the solution quality of GLS

in the larger problems. Simulated annealing had a consistent behavior finding good

solutions for all problems but failed to reach the optimal solutions in all but 3 runs.

All three meta-heuristics significantly improved over the performance of repeated

2-Opt.

8.5 Efficient GLS Variants for the TSP

In order to study the combinations of GLS with higher order heuristics such as 3-Opt

and LK, a library of TSP local search procedures was developed in C++. The library

comprises all local search procedures of 6.2 and allows combinations of GLS with any

one of these procedures. Furthermore, a number of approximations (not used in the

GLS of section 8.3) are adopted which further reduce the computation times of local

search and GLS as reported in section 8.3. In the rest of the chapter, we will examine

and report results for these efficient variants of GLS.

Problem
Name

GLS with FLS-2Opt Simulated Annealing Tabu Search Repeated BI-2Opt
(200,000 iterations)

Mean
Excess
(%)

Mean
CPU
Time
(sec)

Mean
Excess
(%)

Mean
CPU
Time
(sec)

Mean
Excess
(%)

Mean
CPU
Time
(sec)

Mean
Excess
(%)

Mean
CPU
Time
(sec)

eil51 0.0 0.46 0.73 6.34 0.0 1.14 0.23 42.4
eil76 0.0 0.97 1.21 18.0 0.0 5.24 1.85 153.45
eil101 0.0 2.37 1.76 33.29 0.0 61.41 3.97 319.15
kroA100 0.0 1.25 0.42 37.36 0.0 21.34 0.34 706.35
kroC100 0.0 0.74 0.80 36.58 0.25 4.80 0.33 1301.98
kroA150 0.0 7.03 1.86 103.32 0.03 413.06 1.41 3290.95
kroA200 0.0 50.16 1.04 229.38 0.72 776.93 1.7 731.1
lin318 0.005 346.44 1.34 829.46 1.31 2672.80 3.11 9771.28

Table 4. GLS, Simulated Annealing, and Tabu Search performance on TSPLIB instances.
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The most significant approximation introduced is the use of a pre-processing

stage which finds and sorts by distance the 20 nearest neighbors of each city in the

instance. 2-Opt, 3-Opt and LK were considering in exchanges only edges to these 20

nearest neighbors (see also [21, 42]). Each time the penalty was increased for an edge,

the nearest neighbor lists of the cities at the ends of the edge were reordered though no

new neighbors were introduced.

To reduce the computation times required by 3-Opt, 3-Opt was implemented

as two locality searches each of which looks for a “short enough” edge to extend

further the exchange (see [3] for details). The LK implementation was exactly as

proposed by Lin and Kernighan [32] incorporating their lookahead and backtracking

suggestions (i.e. backtracking at the first two levels of the sequence generation,

considering at each step only the five smallest and available candidate edges that can

be added to the tour and taking into account in the selection of the edges to be added

the length of the edges to be deleted by these additions).

The library is portable to most UNIX machines though experiments reported in

here were solely performed on DEC Alpha workstations 3000/600 (175 MHz) using a

library executable generated by the GNU C++ compiler.

The set of problems used in the evaluation of the GLS variants included 20

problems from 48 to 1002 cities all from TSPLIB. For each variant tested, 10 runs

were performed and 5 minutes of CPU time were allocated to each algorithm in each

run. To measure the success of the variants, we considered the percentage excess

above the optimal solution as in (5). The normalized lambda parameter a was

provided as input to the program and l was determined after the first local minimum

using (6). For GLS variants using 2-Opt, a was set to a = 1/6 while the GLS variants

based on 3-Opt used the slightly lower value a = 1/8 and the LK variants the even
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lower value a = 1/10. The full set of results for the various combinations of GLS with

local search can be found in the Appendix. Next, we focus on selected results from

this set.

8.5.1 Results for GLS with First Improvement Local Search

Figure 6 graphically illustrates the results for the first improvement versions of 2-Opt,

3-Opt and LK when combined with GLS. In this figure, we see that the combination

of GLS with FI-3Opt and FI-LK significantly improves over the performance of GLS

with FI-2Opt especially when applied to large problems. FI-LK combined with GLS

achieved the best performance amongst the three methods tested.
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Figure 6. Performance of GLS variants using first improvement local search procedures.
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8.5.2 Results for GLS with Fast Local Search

Figure 7 graphically illustrates the results obtained for GLS when combined with the

fast local search variants of 2-Opt, 3-Opt and LK. GLS with FI-LK (found to be best

amongst the first improvement versions of GLS) is also displayed in the figure as a

point of reference. In this figure, we can see that the fast local search variants of GLS

are much better than the best of the first improvement local search variants (i.e.

GLS-FI-LK). Another far more important observation is that for fast local search the

2-Opt variant is better than the 3-Opt variant which in turn is better than the LK

variant. This is exactly the opposite order than one would have expected. One possible

explanation can be derived by considering the strength of GLS. More specifically,

FLS-2Opt allows GLS to perform many more penalty cycles in the time given than its

FLS-3Opt or FLS-LK counterparts. More GLS penalty cycles seem to increase

Figure 7. Performance of GLS variants using fast local search procedures.
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efficiency at a level which outweighs the benefits from using a more sophisticated

local search procedure such as 3-Opt or LK.

The remarkable effects of GLS on local search are further demonstrated in

Figure 8 where GLS with FLS-2Opt is compared against Repeated FLS-2Opt and

Repeated FI-LK. In Repeated FLS-2Opt and Repeated FI-LK, local search is simply

restarted from a random solution after a local minimum and the best solution found

over the many runs is returned. These two algorithms along with other versions of

repeated local search were tested under the same settings with the GLS variants. The

Appendix includes the full set of results for repeated local search. In Figure 8, we can

see the huge improvement in the basic 2-Opt heuristic when this is combined with

GLS. GLS is the only technique known to us which when applied to 2-Opt can

outperform the Repeated LK algorithm (and that without requiring excessive amounts

of CPU time) as illustrated in the same figure.
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8.6 Comparison with Specialised TSP algorithms

8.6.1 Iterated Lin-Kernighan

The Iterated Lin-Kernighan algorithm (not to be confused with Repeated LK) has

been proposed by Johnson [20] and it is considered to be one of the best if not the best

heuristic algorithm for the TSP [21]. Iterated LK uses LK to obtain a first local

minimum. To improve this local minimum, the algorithm examines other local

minimum tours “near” the current local minimum. To generate these tours, Iterated

LK first applies a random and unbiased non-sequential 4-Opt exchange (see Figure 3)

to the current local minimum and then optimizes this 4-Opt neighbor using the LK

algorithm. If the tour obtained by the process (i.e. random 4-Opt followed by LK) is

better than the current local minimum then Iterated LK makes this tour the current

local minimum and continues from there using the same neighbor generation process.

Otherwise, the current local minimum remains as it is and further random 4-Opt

moves are tried. The algorithm stops when a stopping criterion based either on the

number of iterations or computation time is satisfied. Figure 9 contains the original

description of the algorithm as given in [20].

1. Generate a random tour T.

2. Do the following for some prespecified  number M of iterations:

2.1. Perform an (unbiased) random 4-Opt move on T, obtaining T¢.
2.2. Run Lin-Kernighan on T¢, obtaining T².
2.3. If length(T²) £ length (T¢), set T = T².

3. Return T¢.

Figure 9. Iterated Lin-Kernighan as described by Johnson in [20].
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The random 4-Opt exchange performed by Iterated LK is mentioned in the

literature as the “double-bridge” move and plays a diversification role for the search

process, trying to propel the algorithm to a different area of the search space

preserving at the same time large parts of the structure of the current local minimum.

Martin et al. [35] describe this action as a “kick” and show that can be also used with

3-Opt in the place of LK. The same authors also suggest the combination of the

method with Simulated Annealing (Long Markov Chains method). Martin and Otto

[34] further demonstrate the efficiency of this last algorithm on the TSP and also the

Graph Partitioning problem though they admit that simulated annealing does not

significantly improve the method for TSP problems up to 783 cities. Finally, Johnson

and McGeoch [21] review Iterated LK and its variants and provide results for both

structured and random TSP instances.

Iterated LK or Iterated 3-Opt share some of the principles of GLS in the sense

that they produce a sequence of diversified local minima though this is conducted in a

random rather than a systematic way. Furthermore, iterated local search accepts the

new solution, produced by the 4-Opt exchange and the subsequent LK or 3-Opt

optimization, only if it improves over the current local minimum (or it is slightly

worse in the case of Large Markov Chains Method which uses simulated annealing) .

Iterated LK outperforms Repeated LK previously thought to be the

“champion” of TSP heuristics and also long simulated annealing runs [34]. More

recent experiments show that even sophisticated tabu search variants of LK cannot

improve over Iterated LK [50] which rightly deserves the title of the “champion” of

TSP meta-heuristics.
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To compare Iterated LK and its other variants such as Iterated 3-Opt with

GLS, we extended our C++ library mentioned above to allow the iterated local search

scheme to be combined with the local search procedures of Table 1 included in the

library. In particular, a random and unbiased Double-Bridge (DB) move was

performed in a local minimum. The solution obtained was optimized by either one of

the procedures of Table 1 before compared against the current local minimum. The

new solution was accepted only if it improved over the current local minimum. To

combine iterated local search with fast local search procedures, we activated the sub-

neighborhoods corresponding to the cities at the ends of the edges involved in the

Double-Bridge move (see also [4]). The above extensions to the library made

available a general meta-heuristic method applicable to all the local search procedures

of Table 1. We will refer to this method as the Double-Bridge (DB) meta-heuristic.

We tested all the possible combinations of the DB meta-heuristic with the

local searches of Table 1 (except for BI-2Opt) on the set of 20 problems used to test

the GLS combinations. The same time limit (5 minutes of CPU time on DEC Alpha

3000/600 machines) was used and ten runs were performed on each instance in the

set. The percentage excess was averaged in each problem for each DB variant. The

best combination proved to be that of the DB heuristic with FLS-LK which

outperformed DB with FI-LK (this last algorithm is similar to the original method

proposed by Johnson [20]). The results for the various combinations of DB with local

search are included in the Appendix.
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Table 5 presents the results obtained for DB with FLS-LK and DB with FI-LK

compared with those for GLS with FLS-2Opt found to be the best GLS variant. As a

point of reference, we also provide results for FI-LK when repeated from random

starting points and for the same amount of time. As we can see in Table 5, GLS with

FLS-2Opt is better on average than both DB with FLS-LK and DB with FI-LK. The

solution quality improvement over these methods although small it is very significant

given that these methods are amongst the best heuristic techniques for the TSP. Note

here that GLS with FLS-2Opt is by far a simpler method requiring only a fraction of

the programming effort required to develop the DB variants based on LK.

To further test GLS against the DB variants of LK, we used a set of 66

TSPLIB problems from 48 to 2392 cities but this time we performed longer runs

lasting 30 minutes of CPU time each. Because of the large number of instances used

Problem Mean Excess (%) over 10 runs
GLS with FLS-2Opt DB with FLS-LK DB with FI-LK Repeated FI-LK

att48 0 0 0 0
eil76 0 0 0 0
kroA100 0 0 0 0
bier127 0 0 0 0.0301
kroA150 0 0 0 0.00226
u159 0 0 0 0
kroA200 0 0 0 0.02452
gr202 0 0 0.00921 0.14143
gr229 0.00431 0.00475 0.01412 0.0977
gil262 0.00421 0 0.01682 0.05467
lin318 0.02641 0.24079 0.25578 0.62957
gr431 0.02392 0.22239 0.3327 0.67964
pcb442 0.04431 0.08173 0.06637 0.48525
att532 0.08994 0.08163 0.22502 0.53023
u574 0.14144 0.0924 0.11435 0.73838
rat575 0.09892 0.09745 0.13731 0.80762
gr666 0.20628 0.17587 0.41888 0.83762
u724 0.16822 0.16655 0.35696 0.93367
rat783 0.16125 0.15331 0.24075 1.00045
pr1002 0.62063 0.44633 1.04742 1.5046
Average Excess 0.07949 0.08816 0.16178 0.42488

Table 5. GLS with FLS-2Opt compared with variants of Iterated Lin-Kernighan.
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and the long time the algorithms were allowed to run, one run was performed on each

instance. The results from the experiments are presented in Table 6.

Even in these longer runs, GLS with FLS-2Opt still finds better solutions than

the DB variants of LK. This result is of great significance since it further supports our

claim that the application of GLS on FLS-2Opt successfully converted the method to a

powerful algorithm. As we can see in Table 6, the method is able to compete and even

outperform highly specialized heuristic methods for the TSP.

The relative gains from the GLS and also DB meta-heuristic are further

illustrated in Figure 10. In this figure, we give the absolute improvement in average

Problem GLS with
FLS-2Opt

DB with
FLS-LK

DB with FI-
LK

Problem GLS with
FLS-2Opt

DB with
FLS-LK

DB with
FI-LK

Excess (%) in one run per instance Excess (%) in one run per instance
att48 0 0 0 pr264 0 0 0
eil51 0 0 0 pr299 0 0 0
st70 0 0 0 lin318 0 0.27124 0
eil76 0 0 0 fl417 0.00843 0.00843 0.42998
pr76 0 0 0 gr431 0 0 0.01458
gr96 0 0 0 pr439 0.00653 0.04104 0
rat99 0 0 0 pcb442 0.01182 0 0
kroA100 0 0 0 d493 0.02 0.00857 0.09142
kroB100 0 0 0 att532 0.06501 0 0.04696
kroC100 0 0 0 ali535 0.02323 0.01433 0.01433
kroD100 0 0 0 u574 0 0.08129 0.10568
kroE100 0 0 0 rat575 0.04429 0.08859 0.05906
rd100 0 0 0 p654 2.04659 2.27174 0.04619
eil101 0 0 0 d657 0.0184 0.0368 0.13289
lin105 0 0 0 gr666 0.00612 0.09988 0.20315
pr107 0 0 0 u724 0.05727 0.09783 0.04534
pr124 0 0 0 rat783 0 0.06814 0.01136
bier127 0 0 0 dsj1000 0.31222 0.40289 0.88742
pr136 0 0 0 pr1002 0.12315 0.07566 0.11658
gr137 0 0 0 u1060 0.05132 0.15663 0.43285
pr144 0 0 0 pcb1173 0.14765 0.02461 0.43767
kroA150 0 0 0 d1291 0.22244 0.63581 1.16139
kroB150 0 0 0 rl1304 0.20241 0 0.50366
pr152 0.18458 0 0 rl1323 0.18542 0.14027 0.22909
u159 0 0 0 fl1400 1.56009 2.58359 3.11025
rat195 0 0 0 u1432 0.05295 0.27783 0.30464
d198 0 0 0 d1655 0.40722 0.27846 1.19753
kroA200 0 0 0 vm1748 0.33219 0.32387 0.75678
kroB200 0 0 0 u1817 0.57517 0.3916 1.02096
gr202 0 0 0 rl1889 0.37279 0.90953 0.52443
pr226 0 0 0 u2152 0.61476 0.46379 0.75327
gr229 0 0 0 u2319 0.00726 0.25229 0.28729
gil262 0 0 0 pr2392 0.35209 0.27458 0.90019

Mean 0.12138 0.15575 0.20947
Standard
Deviation

0.33047 0.43627 0.47296

Table 6. GLS with FLS-2Opt compared with variants of Iterated Lin-Kernighan (long runs).
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solution quality (i.e. excess above the optimal solution) by the GLS and DB variants

over the corresponding repeated local search variants in the set of 20 problems from

TSPLIB.

As shown in Figure 10, the DB meta-heuristic is more effective than GLS

when combined with LK. In fact, GLS when combined with FI-LK is even worse than

Repeated FI-LK. This situation dramatically changes for fast local search variants

where GLS is better than DB when combined with the FLS-3Opt or FLS-2Opt local

searches improving the solution quality over repeated local search up to 5.14% in the

case of FLS-2Opt. The overall ranking of all the variants developed in terms of

average excess in the set of 20 TSPLIB problems is given Figure 11. GLS with FLS-

2Opt was found to be best amongst the 18 algorithms tested.
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8.6.2 Genetic Local Search

In an effort to further improve the LK heuristic, Genetic Algorithms recently appeared

which internally use LK for improving offspring solutions generated by crossover

operations. An example of such a technique is the Genetic Local Search algorithm

proposed by Freisleben and Merz [11]. This method, in addition to using LK for

improving offspring solutions, uses a mutation operator which performs first an 4-Opt

exchange on a population solution and then runs LK to convert this solution to a local

minimum. Iterated LK mentioned above can be seen as a special case of this method.

In [11], results are reported for Genetic Local Search on TSPLIB instances. The

authors consider the results produced by the technique as superior to those published
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for any GA approaches known to them and comparable to top quality non-GA

heuristic techniques. Fortunately, the experiments in [11] were also conducted on a

DEC Alpha workstation running at 175 MHz. This permits a meaningful comparison

between this GA variant and GLS. We ran GLS-FLS-2Opt on the same instances with

a = 1/6 and for an equal number of times as the GA approach. In Table 7, the results

from [11] are compared with those we obtained for GLS using FLS-2Opt.

Except for d198 which is a hard instance for GLS (see results in section 8.3),

GLS was better than the GA approach finding solutions of better quality for att532

and rat783 while running faster between 1.7 to 6.9 times. Note here that the GA is

using the best heuristic for the TSP (i.e. DB followed by LK) while GLS the worst

(i.e. 2-Opt). Another remarkable result which emerged from these experiments was

that GLS with FLS-2Opt can consistently find the optimal solutions for problems

att532 and rat783. As far as we know, optimal solutions to such large problems can be

consistently found only by heuristic methods that are using LK (e.g. Iterated LK or its

variant Large-Step Markov Chains method).

In fact, GLS was able to find the optimal solution in even larger problems. For

example, GLS with FLS-3Opt found the optimal solution for a 2319-city problem

from TSPLIB (u2319) in less than 20 minutes while GLS with FLS-2Opt found the

optimal solution to a 1002-city problem from TSPLIB (pr1002) in 14 hours of CPU

Problem GLS with FLS-2Opt Genetic Local Search

Mean Excess Mean CPU
time (sec)

Mean Excess Mean CPU
time (sec)

eil51 (20 runs) 0% 1.2 0% 6
kroA100 (20 runs) 0% 1.59 0% 11
d198(20 runs) 0% 435 0% 253
att532 (10 runs) 0% 3526 0.05% 6076
rat783 (10 runs) 0% 5232 0.04% 14925

Table 7. GLS with FLS-2Opt compared with Genetic Local Search on five TSPLIB instances.
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time despite running on Sparcstation 5 workstation which is much slower than the

DEC Alpha machines used in the rest of the experiments.

9. Summary and Conclusions

In this paper, we described the technique of GLS in detail and examined its

application to the Traveling Salesman Problem. Eight combinations of GLS with

commonly used TSP heuristics were described and evaluated on publicly available

instances of the TSP. GLS with FLS-2Opt was found to be the best GLS variant for

the TSP. The variant was compared and found to be superior to commonly used

variants of general search methods such as simulated annealing and tabu search.

Furthermore, we demonstrated that GLS with FLS-2Opt is highly competitive (if not

better) than some of the best specialized algorithms for the TSP such as Iterated Lin-

Kernighan and Genetic Local Search. In total sixteen alternative TSP algorithms were

compared against the GLS variants and many of the GLS variants were found to

outperform or perform equally well to all these techniques. In total 24 algorithms for

the TSP considered and extensive results were presented on publicly available

instances of the problem.

Experimental results should be treated with care. Experimentation no matter

how elaborate and extensive it may be, it can only give indications of which

algorithms are better than others and that because of the many parameters involved in

the algorithms, differences in implementation, and the limited number of instances

used in experiments.

We can safely conclude that the evidence provided in this paper is enough to

place GLS amongst what somebody will characterize as efficient and effective

methods for the TSP. Given the simplicity of the algorithm and the ease of tuning (i.e.
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single parameter), GLS with FLS-2Opt could be considered as an ideal practical

method for the TSP especially when no programming effort can be devoted in

implementing one of the complex specialized TSP algorithms.

More generally, GLS is applicable not only to TSP but to a range of other

problems in combinatorial optimization. Open research issues include the use of

incentives implemented as negative penalties which encourage the use of specific

solution features is one promising direction to be explored. Other potentially

interesting research directions include automated tuning of the parameter lambda,

definition of effective termination criteria, and different utility functions for selecting

the features penalized. GLS could also be used to distribute the search effort in other

techniques such as Genetic Algorithms.

Finally, from our experience on the TSP and other domains we found it very

easy to adapt GLS and FLS to problem in hand something which suggests that it may

be possible to built a generic software platform for combinatorial optimization based

on GLS. Although local search is problem dependent, most of the other structures of

GLS and also FLS are problem independent. Furthermore, a step by step procedure is

usually followed when GLS is applied to a new problem (i.e. identify features, assign

costs, etc.) something which makes easier the use of the technique by OR practitioners

and Optimization Systems engineers.
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Appendix

The set of problems used in the evaluation of the Repeated Local Search, Guided

Local Search and Iterated Local Search (using the Double Bridge move) variants on

the TSP included 20 problems from 48 to 1002 cities all from TSPLIB. For each

variant tested, 10 runs were performed from random solutions and 5 minutes of CPU

time were allocated to each algorithm in each run on a DEC Alpha 3000/600

(175MHz) machine. To measure the success of the variants, we considered the

percentage excess above the optimal solution as in (5). For GLS variants, the

normalized lambda parameter a was provided as input and l was determined after the

first local minimum using (6). For GLS variants using 2-Opt, a was set to a = 1/6

while the GLS variants based on 3-Opt used the slightly lower value a = 1/8 and the

LK variants the even lower value a = 1/10. Results for GLS are shown in Table A.1.

Iterated Local Search was using the Double Bridge move. No simulated

annealing was used which is roughly equivalent to the Large-Markov Chains Methods

with temperature T set to 0. Results for Iterated Local Search are shown in Table A.2.

Finally, Repeated Local Search was restarting from a random solution

whenever local search was reaching a local minimum. Results for Repeated Local

Search are shown in Table A.3. The names of the variants were formed according to

the following convention:

<meta-heuristic>-<local search type>-<neighbourhood type>.
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Problem No.Cities Mean Excess (%) over 10 runs
DB-FI-LK DB-FI-3Opt DB-FI-2Opt DB-FLS-LK DB-FLS-3Opt DB-FLS-2Opt

att48 48 0 0 0 0 0 0

eil76 76 0 0 0 0 0 0

kroA100 100 0 0 0 0 0 0

bier127 127 0 0 0 0 0 0

kroA150 150 0 0.001508 0.003393 0 0 0

u159 159 0 0 0 0 0 0

kroA200 200 0 0.077295 0.10113 0 0.004767 0.075252

gr202 202 0.009213 0.088396 0.457171 0 0.155129 0.257719

gr229 229 0.014116 0.157576 0.382387 0.004755 0.064115 0.124515

gil262 262 0.016821 0.20185 0.626577 0 0.075694 0.475189

lin318 318 0.255776 0.719027 1.14588 0.240786 0.279093 0.3519

gr431 431 0.332703 0.94403 2.13495 0.222386 0.394192 0.615294

pcb442 442 0.066367 0.368861 1.8961 0.081728 0.309977 0.684745

att532 532 0.225023 1.03554 2.64971 0.08163 0.270534 0.422957

u574 574 0.114348 1.20038 2.94269 0.092399 0.404823 0.553042

rat575 575 0.13731 1.15016 3.75904 0.097446 0.445888 0.649638

gr666 666 0.418878 1.25178 3.27054 0.175874 0.359528 0.816489

u724 724 0.356955 1.43617 3.94106 0.166547 0.367693 0.627535

rat783 783 0.240745 1.79764 5.00454 0.153305 0.516693 0.744947

pr1002 1002 1.04742 2.05625 5.19902 0.446332 0.872049 1.05727

Average Excess 0.161784 0.624323 1.675709 0.088159 0.226009 0.372825

Table A.2 Results for Iterated Local Search on the TSP.

Problem No.Cities Mean Excess (%) over 10 runs
GLS-FI-LK GLS-FI-3Opt GLS-FI-2Opt GLS-FLS-LK GLS-FLS-3Opt GLS-FLS-2Opt

att48 48 0 0 0 0 0 0

eil76 76 0 0 0 0 0 0

kroA100 100 0 0 0 0 0 0

bier127 127 0.218207 0.116586 0.019699 0.206625 0.002198 0

kroA150 150 0.029784 0.084075 0.000754 0.001508 0.001131 0

u159 159 0 0.460551 0.225285 0 0 0

kroA200 200 0.436189 0.526083 0.257083 0.088872 0.00681 0

gr202 202 0.732321 0.406375 0.309512 0.252988 0.011703 0

gr229 229 0.392788 0.468195 0.381644 0.152969 0.015007 0.004309

gil262 262 0.328007 0.723297 0.428932 0.084104 0.046257 0.004205

lin318 318 1.00264 1.74284 1.33884 0.583407 0.129197 0.02641

gr431 431 1.69438 2.71862 2.34071 0.563665 0.134003 0.023919

pcb442 442 0.966363 0.80783 1.36634 0.38816 0.038403 0.044311

att532 532 1.04746 2.28599 2.52871 0.386116 0.224662 0.089937

u574 574 1.36892 2.81263 3.66807 0.580951 0.278824 0.141444

rat575 575 0.806142 1.77174 2.25011 0.287908 0.171268 0.098922

gr666 666 1.66056 4.38707 6.00476 0.855251 0.497863 0.206279

u724 724 1.02505 2.25101 3.03054 0.61298 0.336674 0.168218

rat783 783 0.897116 2.24052 3.36929 0.511015 0.285033 0.161254

pr1002 1002 1.97877 3.31969 5.54336 1.04229 0.945357 0.620626

Average Excess 0.729235 1.356155 1.653182 0.32994 0.15622 0.079492

Table A.1 Results for GLS on the TSP.
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Problem No.Cities Mean Excess (%) over 10 runs
REP-FI-LK REP-FI-3Opt REP-FI-2Opt REP-FLS-LK REP-FLS-3Opt REP-FLS-2Opt

att48 48 0 0 0 0 0 0

eil76 76 0 0 1.35688 0 0 1.48699

kroA100 100 0 0.39564 0.222254 0 0.225543 0.215205

bier127 127 0.030098 0.403696 1.19629 0.027899 0.370386 1.29513

kroA150 150 0.002262 0.8317 2.00912 0.002262 0.8038 2.01553

u159 159 0 0.30038 1.62619 0 0.265447 2.05894

kroA200 200 0.024517 1.00688 3.30768 0.004767 0.922092 3.23583

gr202 202 0.141434 1.22958 3.58591 0.129731 1.19995 3.68352

gr229 229 0.097695 1.36774 3.40129 0.094427 1.27301 3.56443

gil262 262 0.054668 1.3709 5.12195 0.054668 1.2868 5.77796

lin318 318 0.629565 2.17992 4.37936 0.636703 2.022676 4.9128

gr431 431 0.679641 2.07801 5.33877 0.665232 2.20915 5.97495

pcb442 442 0.48525 1.77636 6.65012 0.516956 1.72417 7.19544

att532 532 0.530232 2.29033 6.28368 0.579354 2.29141 7.13899

u574 574 0.738382 2.91397 7.46674 0.703157 2.6934 8.4788

rat575 575 0.807618 2.69895 7.69231 0.887347 2.70781 8.61066

gr666 666 0.837619 3.18259 8.14712 0.847811 2.97203 9.94096

u724 724 0.933667 2.90551 7.76903 1.0241 2.87473 8.83202

rat783 783 1.00045 3.2864 8.46468 1.06518 3.39882 9.38792

pr1002 1002 1.5046 3.50511 8.62028 1.39138 3.59138 10.5847

Average Excess 0.424885 1.686183 4.631983 0.431549 1.64163 5.219539

Table A.3 Results for Repeated Local Search on the TSP.




