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Abstract

Guided Local Search (GLS) is an intelligent search scheme for combinatorial optimization
problems. A main feature of the approach is the iterative use of local search. Information is
gathered from various sources and exploited to guide local search to promising parts of the
search space. The application of the method to the Travelling Salesman Problem and the
Quadratic Assignment Problem is examined. Results reported show that the algorithm
outperforms or compares very favorably with well-known and established optimization
techniques such as simulated annealing and tabu search. Given the novelty of the approach
and the very encouraging results, the method could have an important contribution to the
development of intelligent search techniques for combinatorial optimization.

1. Introduction

Guided Local Search is the outcome of a research project with main aim to extend the GENET
neural network [29,26,5] for constraint satisfaction problems to partial constraint satisfaction
[6,26] and combinatorial optimization problems. Beginning with GENET, we developed a
number of intermediate algorithms such as the Tunneling Algorithm [28] to conclude with
Guided Local Search (GLS) presented in this paper. In contrast to its predecessors, GLS is a
general and compact optimization technique suitable for a wide range of combinatorial
optimization problems.

The method takes advantage of problem and search related information to guide local search
[17] in a search space. This is made possible by augmenting the cost function of the problem to
include a set of penalty terms. Local search is confined by the penalty terms and focuses
attention on promising regions of the search space. Iterative calls are made to local search.
Whenever local search gets caught in a local minimum, the penalties are modified and local
search is called again to minimize the modified cost function. Penalty modifications regularize
the solutions generated by local search to be in accordance to prior or gathered during search
information. The approach taken by GLS is similar to that of regularization methods for ‘ill-
posed’ problems [25,10]. The idea behind regularization methods and GLS up to an extent is
the use of prior information to help us solve an approximation problem. Prior information
translates to constraints which further define our problem reducing so the number of candidate
solutions to be considered.

Generally speaking, GLS objectives are similar to those of a wider class of combinatorial
optimization algorithms known as tabu search [7,8,9]. In fact, GLS could be classified as a
tabu search method though there are many and distinct differences with the other methods
developed so far within that framework. To mention a few, GLS is a compact algorithm that
can be used without any modifications for a range of problems. This contrasts with variants of
tabu search which are mainly problem specific. Constraints in tabu search (also called tabu
restrictions) refer to moves and they are usually implemented as lists (tabu lists). In contrast to
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that, constraints in GLS refer to solutions (solution features to be precise) and take the form of
penalties that augment the cost function. In tabu search, constraints are hard and can be only
overridden by the complementary mechanism of aspiration criteria. On the other hand, GLS
constraints are soft and as such can be overridden by definition. Last but not least, GLS
provides the necessary mechanisms absent in other methods to capture and exploit problem and
search related information

This paper is structured as follows. First, we take a quick look at local search the basis of
GLS. After that, the augmentation of the cost function with penalty terms is described.
Following that, the basic GLS algorithm and improvements in the basic scheme are depicted. In
the applications section, we give an account of the application of the method to the Traveling
Salesman and Quadratic Assignment problems. The report concludes with identifying future
research directions pertinent to GLS.

2. Local Search

Local search is the basis of many heuristic methods for combinatorial optimization problems.
Alone, it is a simple iterative method for finding good approximate solutions. The idea is that
of trial and error. Let's consider an instance of a combinatorial optimization problem defined by
the pair (S, g) where S is the set of all feasible solutions and g is the objective function that
maps each element s in S to a real value. The goal is to find the solution s in S that minimizes
the objective function g. The problem is stated as:

min g(s), s∈S                                                   (1-1)

A neighborhood N for the problem instance (S, g) is given by a mapping from S to its powerset:

N: S → 2S                                                     (1-2)

N(s) is called the neighborhood of s and contains all the solutions that can be reached from s
by a single move. The meaning of the move here is that of an operator which transforms one
solution to another with small modifications. A solution x is called a local minimum of g with
respect to the neighborhood N iff:

( ) ( )g x g y y N x≤ ∀ ∈, ( )                                           (1-3)

Local search is the procedure of minimizing the cost function g in a number of  successive
steps in each of which the current solution x is being replaced by a solution y such that:

( ) ( )g y g x y N x< ∈, ( )                                             (1-4)

In most cases, local search begins with an arbitrary solution and ends up in a local minimum.
There are many different ways to conduct local search. For example, best improvement
(greedy) local search replaces the current solution with the solution that improves most in cost
after searching the whole neighborhood. Another example is first improvement local search
which accepts a better solution when it is found. In the general case, the computational
complexity of a local search procedure depends on the size of the neighborhood set and also the
time needed to evaluate a move. The larger the neighborhood set, the longer the time needed to
search it, the better the local minima.

A variety of moves and local search procedures have been used for the problems in this
paper. For the purpose of describing GLS in the general case, local search is considered a
general procedure of the form:
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s2 ←  procedure LocalSearch(s1,g)

where s1 is the initial solution, s2 the final solution (local minimum) and g the cost function to
be minimized.

GLS makes iterative calls to such a procedure modifying the cost function between
successive calls. Before that, the cost function of the problem is augmented to include a set of
penalty terms which enable us to dynamically constrain solutions. This augmentation of the
cost function with penalty terms is explained in the next section.

3. Solution Features and the Augmented Cost Function

GLS employs solution features as the means to characterize solutions. A solution feature can
be any solution property that satisfies the simple constraint that is a non-trivial one. What is
meant by that is that not all solutions have this property. Some solutions have the property
others do not. Solution features are problem dependent and serve as the interface of the
algorithm with a particular application.

Constraints on features are introduced or strengthened on the basis of information about the
problem and also the course of the local search. Information pertaining to the problem is the
cost of features. The cost of features represents direct or indirect impact of the corresponding
solution properties on the solution cost. Feature costs may be constant or variable. Information
about the search process pertains to the solutions visited by local search and in particular local
minima.

A feature fi is represented by an indicator function in the following way:

( )I s
s i

i = ⎧
⎨
⎩

1

0

,

,

solution  has property 

otherwise
, s∈S                            (1-5)

Constraints on features are made possible by augmenting the cost function g of the problem to
include a set of penalty terms. The new cost function formed is called the augmented cost
function and it is defined as follows:

( ) ( )h s g s p I si i
i

M

( ) = + ⋅ ⋅
=
∑λ

1

                                         (1-6)

where M is the number of features defined over solutions, pi is the penalty parameter
corresponding to feature fi and λ is the regularization parameter. The penalty parameter pi

gives the degree up to which the solution feature fi is constrained. The regularization parameter
λ represents the relative importance of penalties with respect to the solution cost and is of great
significance because it provides the means to control the influence of the information on the
search process.

GLS iterativelly uses local search and is simply modifying the penalty vector p given by:

p = (p1, ..., pM)                                                      (1-7)

each time local search settles down in a local minimum. Modifications are made on the basis of
information. This will be explained in the next section describing the GLS method.
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4. Guided Local Search

The role of constraints on features is to guide local search on the basis of information not
incorporated in the cost function at the first place because either it was ambiguous or unknown
at the time. Given a specific application, we often have some idea about what makes a bad or
good solution. The cost function of the problem formulates that in a mathematical way.
However, there are many cases where is not possible to include in the cost function all the
available information about the problem. The information not included is mainly of uncertain
nature.

For example, in the Traveling Salesman Problem, we know that long edges are undesirable
though we can not exclude them from the beginning because they may be needed to connect
remote clusters of cities in the problem. Besides, extra information becomes available during
search. For instance, if a solution is visited then we can exclude this and possibly other
solutions (e.g. with higher cost) from being searched in the future (branch and bound algorithm
and other exact methods make use of that).

GLS paves the way to exploit such information. Information is converted into constraints on
features which then are incorporated in the cost function using the modifiable penalty terms.
Constraints confine local search to the promising solutions with respect to the information. Our
method in its present stage exploits two pieces of information which are the cost of features and
also the local minima visited by local search. To exploit this information, GLS provides a
simple mechanism for introducing or strengthening constraints on solutions features. In
particular, each time local search is trapped in a local minimum, GLS can increment the
penalty parameter of one or more of the features defined over solutions. If the penalty
parameter of a feature is incremented (the feature is said to be penalized) then the solutions that
have this feature are avoided by local search. A first priority is to avoid the local minimum that
trapped local search. Therefore, the feature or features penalized should be between those
exhibited by the local minimum. Furthermore, features of high cost (bad features) should take
precedence over low cost features (good features) in being penalized. Let’s examine the scheme
in detail.

Initially, all the penalty parameters are set to 0 (i.e. no features are constrained) and a call is
made to local search to find a local minimum of the augmented cost function. After the first
local minimum and every other local minimum, the algorithm takes a modification action on
the augmented cost function and again uses local search starting from the previously found
local minimum. The modification action consists in incrementing by one the penalty parameter
of one or more of the local minimum features. Information is gradually inserted in the
augmented cost function by selecting which penalty parameters to increment. An overview of
the approach is given in figure 1.

Sources of information are the cost of features and the local minimum itself. Let’s consider
that each feature fi defined over the solutions is assigned a cost ci.. This cost may be constant or
variable. In order to simplify our analysis, we consider feature costs to be constant and given
by the cost vector c:

c = (c1, ...,cM)                                                     (1-8)

which contains positive or zero elements.
A particular local minimum solution exhibits a number of features. If the feature fi is

exhibited by a local minimum solution s* the following holds:

( )I si * = 1                                                       (1-9)
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Thus, the vector b of the indicator function values in the local minimum s*:

( ) ( ) ( )( )b s I s I sM* * *, ,= 1 ...                                        (1-10)

contains all the feature related information about the local minimum (i.e. gives the features of
the local minimum).

In a local minimum s*, the penalty parameters are incremented by one for all features fi that
maximize the utility expression:

( ) ( )util s f I s
c

pi i
i

i
* *, = ⋅

+1
                                      (1-11)

In other words, incrementing the penalty parameter of the feature fi  is considered an action
with utility given by (1-11). In a local minimum, the actions with maximum utility are firstly
selected and then performed.

The utility function (1-11) makes full use of the information carrying vectors b(s*) and c.
The penalty parameter pi is incorporated in (1-11) to prevent the scheme from being totally
biased towards penalising features of high cost. The role of the penalty parameter in (1-11) is
that of a counter which counts how many times a feature has been penalised. If a feature is

penalized many times over a number of iterations then the term 
c

p
i

i1 +
 in (1-11) decreases for

the feature diversifying choices and giving the chance to others features to be also penalized.
The policy implemented is that features are penalized with a frequency proportional to their
cost. Due to (1-11), features of high costs are penalized more frequently than those of low costs
and the opposite. The search effort is distributed according to promise as it is expressed by the
feature costs and the already visited local minima.

Incremental distribution of the search effort according to information though in a
probabilistic framework can be found in a class of methods deriving themselves from the
optimal search theory of Koopman [13,22]. Also, counter based schemes for search
diversification like that of GLS are used under the name counter-based exploration in
reinforcement learning [24].

Something that has been left out from the so far analysis is the regularization parameter λ in
the augmented cost function (1-6). This parameter determines the degree up to which
constraints on features are going to affect local search. Let’s examine how the regularization

GLS

Local
Search

Problem
Information

constraints

operator (i.e. move)

local minima

augmented cost functioncost function

feature costs

Prior Information Search Information

Figure 1. A schematic view of the GLS approach to combinatorial optimization problems.
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parameter is going to affect the moves performed by a local search method. A move alters the
solution, adding new features, removing existing features whilst leaving other features
unchanged.  In the general case, the difference Δh in the value of the augmented cost function
due to a move is given by the following difference equation:

Δ Δ Δh g p Ii
i

M

i= + ⋅
=
∑λ

1

                                      (1-12)

As we can see in (1-12), if λ is large then the selected moves will solely remove the penalized
features from the solution and the information will fully determine the course of local search.
This introduces risks because information may be wrong. Conversely, if λ is 0 then local
search will not be able to escape from local minima. However, if λ is small and comparable to
Δg then the moves selected will aim at the combined objective to improve the solution (taking
into account the gradient) and also remove the penalized features (taking into account the
information). Since the difference Δg is problem dependent, the regularization parameter is also
problem dependent. Some ways of tuning this parameter will be discussed in the applications
section.

The GLS in pseudocode as it has been described so far is given in figure 2. In this figure,
the StoppingCriterion can be defined by a limit on the number of iterations, a time
budget, an upper bound on cost or combinations of the above.

5. GLS Improvements and Fast Local Search

There are both minor and major alterations that improve the method. For example, instead of
calculating the utilities (1-11) for all the features, we can restrict ourselves to the local
minimum features because for not local minimum features the utility function (1-11) takes the
value 0. Also, the evaluation mechanism for moves should be changed. Usually, this
mechanism is not evaluating directly the cost of the new solution generated by the move but it
calculates the difference Δg caused to the cost function. This difference in cost should be
combined with the difference in penalty as this is shown in (1-12). This can be done easily and
has no significant impact on the time needed to evaluate a move. In particular, we have to take
into account only the features that change state (being removed or added). The penalty

procedure GLS(S, g, λ, [I1, ...,IN], [c1,...,cN], M)
begin

k ← 0;
s0 ← arbitrary solution in S;
for i ←1 until M do

pi  ← 0;
h ← g + λ * ∑pi*Ii ;
while StoppingCriterion do
begin

sk+1 ← LocalSearch(sk, h);
for i ←1 until M do

utili ← Ii(sk+1) * ci / (1+pi);
for each i such that utili is maximum do

pi ← pi + 1;
k ← k+1;

end
s* ← best solution found with respect to cost function g;
return s*;

end

Figure 2. The GLS algorithm in pseudocode.
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parameters of the features removed are summed together. The same is done for the penalty
parameters of features added. The change in penalty due to the move is then simply given by
difference:

− +∑ ∑p pj k
over all features j added over all features k removed

                                (1-13)

Leaving behind the minor improvements, we turn our attention to the major improvements.
In fact, these improvements do not directly refer to GLS but to local search. Greedy local
search searches to find the best solution in the whole neighborhood. This is very time
consuming especially if we are dealing with large instances of problems. We present here fast
local search (FLS) which drastically speeds up the neighborhood search process. The method
is a generalization of the approximate 2-opt method proposed by Bentley [2] for the TSP.

Fast local search works as follows. The problem’s neighborhood is broken down to a
number of small sub-neighborhoods and an activation bit is attached to each one of them. The
idea is to continuously scan the sub-neighborhoods in a given order, searching only those with
the activation bit set to 1. These sub-neighborhoods are called active sub-neighborhoods. Sub-
neighborhoods with the bit set to 0 are called inactive sub-neighborhoods and they are not
being searched. The process does not restart whenever we find a better solution but it continues
with the next sub-neighborhood in the given order. This order may be static or dynamic (i.e.
change as a result of the moves performed).

Initially, all sub-neighborhoods are active. If a sub-neighborhood is examined and does not
contain any improving moves then it becomes inactive. Otherwise, it remains active and the
improving move found is performed. Depending on the move performed, a number of other
sub-neighborhoods are possibly activated. In particular, we activate all the sub-neighborhoods
where we expect other improving moves to occur as a result of the move just performed. As the
solution improves the process dies out with fewer and fewer sub-neighborhoods being active
until all the sub-neighborhood bits turn to 0. The solution formed up to that point is returned as
a local minimum.

The overall procedure is many times faster than conventional local search. The bit setting
scheme encourages chains of moves that improve specific parts of the overall solution. As the
solution becomes locally better the process is fading down examining fewer moves saving
enormous amounts of time otherwise spent on examining predominantly bad moves. A concrete
example of fast local search is given in the continue.

Let’s consider the very common case where solutions are given by permutations. A ‘2-opt’
type move can be used for the problem which exchanges (i.e. swaps) the contents of two
positions in the permutation. The sub-neighborhoods in this case are defined by the permutation
positions. Each sub-neighborhood corresponds to a permutation position and contains all the
possible moves that exchange the contents of this position with any other position in the
permutation. In total, there are as many sub-neighborhoods as the size of the permutation
(dimension of the problem).

Initially all sub-neighborhoods are active. The permutation is continuously scanned from the
first to last position for active sub-neighborhoods. Each time an active sub-neighborhood is
found, it is examined for improving moves. If there is no improving move then the sub-
neighborhood becomes inactive. Otherwise, the improving move, in our case a swap, is
performed and the bits of the permutation positions involved in the swap are set to 1. This
causes the currently examined sub-neighborhood to remain active and also the sub-
neighborhood at the other end of the swap to become also active if it has been previously
inactivated. The scanning always continues with the next position in the permutation. The
process finally ends when all the bits have turned to 0 and the solution formed is returned as a
local minimum.
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Although, fast local search procedures like the above do not generally result to very good
solutions when combined with GLS become very powerful optimization tools. Combining GLS
with fast local search is straightforward. The key idea is to associate solution features to sub-
neighborhoods. The associations to be made are such that for each feature we know which sub-
neighborhoods contain moves that have an immediate effect upon the state of the feature (i.e.
moves that remove the feature from the solution).

In the beginning of GLS, all the bits of fast local search are set to 1 and fast local search is
left to reach the first local minimum (i.e. all bits 0). In the continue and whenever a feature is
penalized, the bits of the associated sub-neighborhoods and only these are set to 1. In this way,
after the first local minimum, fast local search calls examine only a number of sub-
neighborhoods and in particular those which associate to the features just penalized. This
dramatically speeds up GLS. Moreover, local search is focusing on removing the penalized
features from the solution instead of considering all possible modifications.

6. Applications

In the applications section, we examine how the method of GLS has been used to tackle two
well-known NP-hard problems, the Traveling Salesman Problem [14] and the Quadratic
Assignment Problem [3]. All experiments reported in this paper performed on a DEC Alpha
3000/600. Unless otherwise stated, the algorithms were implemented in C++.

6.1 Traveling Salesman Problem(TSP)

6.1.1 The Problem

There are many variations to the Traveling Salesman Problem (TSP). In this report, we
consider the classic Symmetric TSP. The problem is defined by N cities and a symmetric
matrix D=[dij] which gives the distance between any two cities i and j. The goal in TSP is to
find a tour (i.e. closed path) which visits each city exactly once and it is of minimum length. A
tour can be represented as a cyclic permutation π on the N cities if we interpret π(i) to be the
city visited after city i, i = 1,... ,N. The cost of a permutation is defined as:

          ( ) ( )g di i
i

N

π π=
=
∑

1

                                              (1-14)

and gives the cost function of the TSP [17].
An up to date and comprehensive survey of TSP methods is that by Reinelt [20]. The reader

may also refer to [14] for a classical text on the TSP. The state of the art is that problems up to
1.000.000 cities are within the reach of specialised approximation algorithms [2]. Moreover,
the optimal solutions have been found and proved for problems of size more than 4000 cities
[20]. Nowadays, TSP plays a very important role in the development and testing of new
optimization methods. In this context, we examine how guided local search has been applied to
the problem.

6.1.2 Local Search

Local search for the TSP is synonymous to the k-opt moves [15]. The simplest and less
expensive of the k-opt moves is the famous 2-opt. 2-opt removes two edges from the tour to
replace them with two new edges not previously included in the tour. Particular care is being
taken such that the tour remains closed after the exchange. Greedy local search usually starts
from a random tour. In every iteration, all possible edge exchanges are evaluated and the best is
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selected and performed. Local search terminates when no 2-opt move exists that improves the
tour further. The local minimum tour returned is called a 2-optimal tour.

6.1.3 Guided Local Search

A first step in the process of applying GLS to a problem is to find a set of solution features that
are responsible for part of the overall solution cost. For the TSP, a tour includes a number of
edges and the solution cost (tour length) is given by the sum of the lengths of the edges in the
tour. Edges are ideal features for the TSP. First, they can be used to define solution properties
(a tour either includes an edge or not) and second, they carry a cost given by their length. A set
of features can be defined by considering all possible edges that may appear in a tour with
feature costs given by edge lengths. Once features and their costs have been defined, GLS as
described in section 4 can be applied to the problem without any modifications. A fast local
search procedure already exists for the TSP and it is the approximate 2-opt suggested by
Bentley [2]. In the continue, we give a brief account of approximate 2-opt.

Each city in the instance defines a sub-neighborhood which contains all moves that
exchange one of the two edges adjacent to the city. In total, there are as many sub-
neighborhoods as the cities in the instance. The scanning of the cities is conducted in tour order.
Each time an active sub-neighborhood is found, it is searched for improving moves. The first
improving move found is performed and the algorithm then backtracks one city in the tour to
continue traversing the cities in tour order. Whenever a move is performed, the cities
(corresponding sub-neighborhoods) at the ends of the edges involved in the exchange are
activated. The process ends when a full rotation of the tour is completed with no active sub-
neighborhood being found. Interfacing GLS with the above fast local search procedure is
simple. Each time we penalize an edge, the sub-neighborhoods corresponding to the cities at the
ends of that edge are activated.

6.1.4 Results on Small to Medium Size TSPs

In the continue, we report results for GLS on known TSP instances from TSPLIB [19].
TSPLIB is a publicly available library of TSP problems. Most of the instances included in
TSPLIB have already been solved to optimality and they have been used in many works in the
past.

For each TSPLIB instance used in our experiments, ten runs performed from different
random solutions and the various performance measures (solution quality, running time etc.)
were averaged. The solution quality was measured by the percentage excess over the optimal
solution as it is given by the formula:

solution cost -  optimal cost

optimal cost
× 100                            (1-14)

The only parameter of GLS that required tuning was the regularization parameter λ. For the
TSP instances examined, the algorithm performed well for a range of values. This range is
roughly given by the following parametric equation:

λ = ⋅ ≤ <a
g

N
a

( )
,

2 - optimal tour
0 1                           (1-15)

where g(2-optimal tour) is the cost of a typical 2-optimal tour and N the number of cities in the
instance. Best performance was recorded for values of a around 0.3. For the results reported
here, the exact value of λ used in the final runs was manually determined by running a number
of test runs and observing the sequence of solutions generated by the algorithm. A well-tuned
algorithm generates a smooth sequence of gradually improving solutions. A not so well tuned



Guided Local Search

10

algorithm either progresses very slowly (λ is lower than it should be) or very quickly finding no
more than a handful of good local minima (λ is higher than it should be).

The set of problems used in the first part of the experiments consisted of 28 small to
medium size TSPs from 48 to 318 cities all from TSPLIB. The stopping criterion used was a
limit on the number of iterations not to be exceeded. An iteration for GLS with greedy local
search was considered one local search iteration and for GLS with fast local search, a call to
fast local search (i.e. as in fig. 2). The iteration limit for both algorithms was set to 200K
iterations. In both cases, we tried to provide the algorithms with plenty of resources in order to
reach the maximum of their performance. The results obtained on this first set are presented in
Table 1.

Problem
Name

GLS with
 greedy local search

GLS with
 fast local search

optimal
runs
out of 10

mean per.
excess (%)

mean CPU
time (sec)

optimal
runs
out of 10

mean per.
excess(%)

mean CPU
time (sec)

att48 10 0.0 0.77 10 0.0 0.4
eil51 10 0.0 1.62 10 0.0 0.46
st70 10 0.0 7.68 10 0.0 1.2
eil76 10 0.0 3.83 10 0.0 0.97
pr76 10 0.0 15.1 10 0.0 3.01
gr96 10 0.0 16.48 10 0.0 2.26
kroA100 10 0.0 11.27 10 0.0 1.25
kroB100 10 0.0 16.36 10 0.0 2.46
kroC100 10 0.0 12.2 10 0.0 0.74
kroD100 10 0.0 12.94 10 0.0 1.78
kroE100 10 0.0 35.68 10 0.0 2.46
rd100 10 0.0 10.75 10 0.0 2.74
eil101 10 0.0 19.49 10 0.0 2.37
lin105 10 0.0 17.46 10 0.0 2.06
pr107 10 0.0 150.28 10 0.0 5.41
pr124 10 0.0 22.47 10 0.0 1.56
bier127 10 0.0 254.36 10 0.0 24.67
pr136 9 0.0009 416.78 10 0.0 32.16
gr137 10 0.0 66.54 10 0.0 7.82
pr144 10 0.0 52.84 10 0.0 6.95
kroA150 10 0.0 257.06 10 0.0 7.03
kroB150 10 0.0 289.02 10 0.0 44.85
u159 10 0.0 74.35 10 0.0 6.9
rat195 8 0.01 525.48 10 0.0 55.15
d198 0 0.08 1998.37 0 0.05 353.97
kroA200 10 0.0 614.6 10 0.0 50.16
kroB200 10 0.0 665.3 10 0.0 61.79
lin318 8 0.01 4484.4 9 0.005 346.44

Table 1. GLS variants on small to medium size TSP instances.

Both the GLS variants found solutions with cost equal to the optimal cost in the majority of
the runs. GLS with greedy local search failed to find the optimal solutions (as reported by
Reinelt [19][20]) in only 15 out of the total 280 runs. From another viewpoint, the algorithm
was successful in finding the optimal solution in 94.6% of the runs. Ten out of the 14 failures
referred to the single instance namely d198 though the solutions found for d198 were of high
quality and on average within 99.92% of optimality.
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GLS with fast local search found the optimal solutions in 3 more runs than GLS with
greedy local search missing the optimal solution in only 11 out of the 280 runs (96.07%
success rate). In particular, the algorithm missed only once the optimal solution for lin318 but
still no optimal solution found for d198 which proved to be a relatively ‘hard’ problem for both
variants. GLS using fast local search was on average ten times faster than GLS using greedy
local search without compromising on solution quality. In the worst case (att48), it was two
times faster while in the best case (kroA150) it was thirty seven times faster. Remarkably, GLS
with fast local search was able in most problems to find a solution with cost equal to the
optimum in less than 10 seconds of CPU time on the DEC Alpha 3000/600 machines used for
experiments.

6.1.5 Other General Methods for the TSP

The above performance of GLS is remarkable considering that GLS is not an exact method and
that it only uses the short-sighted 2-opt heuristic. Searching the relating to the TSP literature,
we could not find any other approximation method that uses only the simple 2-opt move and
consistently finds optimal solutions for problems up to 318 cities. Only the iterated Lin-
Kernighan algorithm [11] shares the same consistency in reaching the optimal solutions [20]
though it uses k-opt moves of higher order.

A meaningful comparison that can be made is between GLS and other general methods that
also use the 2-opt move. For that reason, we implemented simulated annealing and a tabu
search variant for the TSP suggested by Glover [7].

6.1.5.1 Simulated Annealing

The Simulated Annealing (SA) algorithm implemented for the TSP is the one described by
Johnson [11] and uses geometric cooling schedules. The algorithm generates random 2-opt
moves. If a move improves the cost of the current solution then it is always accepted. Moves
that do not improve the cost of the current solution are accepted with probability:

e T

−Δ

where Δ is the difference in cost due to the move and T is the current temperature. In the final
runs, we started the algorithm from a high temperature (around 50% of moves were accepted).
At each temperature level the algorithm was allowed to perform a constant number of trials to
reach equilibrium. After reaching equilibrium, the temperature was multiplied by the cooling
rate a which was set to a high value (a = 0.9) . To stop the algorithm, we used the scheme with
the counter described in [12].

6.1.5.2 Tabu Search

The tabu search variant implemented is using a combination of tabu restrictions and
aspiration level criteria that bias the algorithm towards favoring short edges and avoiding long
edges. The tabu search variant is briefly described here. For more information on this
particular tabu search variant the reader is referred to [7].

Tabu search performs greedy local search selecting the best move in the neighborhood but
only amongst those not characterized as tabu. Determining the tabu status of a move is very
important in tabu search and holds the key to the development of efficient search schemes. To
define tabu status for 2-opt moves, the scheme implemented uses an aspiration function A(e)
which for each edge e gives the aspiration level for that edge. Four edges are involved in a 2-
opt exchange. To characterize a move as tabu (i.e. can not be performed), the cost of the
resulting tour after the exchange is evaluated and compared to the aspiration levels of the edges
in the exchange. If the cost of the resulting tour is greater than the aspiration level of at least



Guided Local Search

12

one of the edges involved then the move is characterized as tabu (other similar criteria are also
possible).

The manipulation of edge aspiration levels is a crucial part of the process. The mechanism
aims at excluding moves which lead to previously visited configurations and also biasing
search to avoid long edges while favoring short edges. These objectives are similar to those set
out above for GLS. Let’s see how they are accomplished in the tabu search variant.

Initially, all aspiration levels for edges are set to a large (“infinite”) value. Whenever a 2-opt
exchange is performed the aspiration levels of the edges in the exchange are set to
A(e)=min(A(e),g(s),g(s')) where g(s) is the tour length before the exchange and g(s') the tour
length after the exchange. The result of reducing the edge aspiration is that moves which
exchange these edges become tabu. To bias search, short edges removed and long edges added
have their aspiration levels reset (to the “infinite” value) quicker than short edges added and
long edges removed. Four tabu lists are set up one for each edge category (short-removed, long-
removed, short-added, long-added). Short edges removed and long edges added are inserted to a
short tenure tabu list while long edges removed and short edges added are inserted to a longer
tenure tabu list. In this way, the algorithm is biased to favour short edges and avoid long edges
by simply differentiating on the reset periods for edge aspiration levels. For the experiments
reported here, the tabu list size was set to N/2 for the short tenure tabu lists (short-removed and
long-added edges) and to 3/4N for the long tenure tabu lists (short-added and long-removed
edges) where N the number of cities in the instance. Tabu search was left to run for 200K
iterations which is equivalent in terms of number of moves evaluated to the number of
iterations GLS with greedy local search was given on the same instances.

6.1.5.3 Simulated Annealing and Tabu Search Compared with GLS

Simulated annealing and tabu search were tested on 8 instances from the greater set of 28
instances mentioned above. The results were averaged as with GLS. Table 2 illustrates the
results for simulated annealing and tabu search compared with those from GLS with fast local
search on the same instances. Results are also contrasted with the best solution found by
repeating 2-opt until a total of 200K local search iterations were completed.

Problem
Name

GLS - fast local search Simulated Annealing Tabu Search Repeated 2-opt
(200K iterations)

mean
per.

excess
(%)

mean
CPU time

(sec)

mean
per.

excess
(%)

mean
CPU time

(sec)

mean
per.

excess
(%)

mean
CPU time

(sec)

per.
excess

(%)

CPU time
(sec)

eil51 0.0 0.46 0.73 6.34 0.00 21.70 0.23 42.4
eil76 0.0 0.97 1.21 18.0 0.00 31.84 1.85 153.45
eil101 0.0 2.37 1.76 33.29 0.06 80.02 3.97 319.15
kroA100 0.0 1.25 0.42 37.36 0.50 103.24 0.34 706.35
kroC100 0.0 0.74 0.80 36.58 1.22 138.38 0.33 1301.98
kroA150 0.0 7.03 1.86 103.32 3.45 466.61 1.41 3290.95
kroA200 0.0 50.16 1.04 229.38 6.01 312.53 1.7 731.1
lin318 0.005 346.44 1.34 829.46 6.05 978.85 3.11 9771.28

Table 2. GLS, Simulated Annealing, Tabu Search on TSP instances.

The superiority of GLS is evident. The tabu search variant although found easily the optimal
solutions for small problems, it scaled badly for problems of size greater than 100 cities.
Simulated annealing had a more consistent behaviour finding good solutions for all problems in
the range but failed to reach the optimal solutions in all but 3 runs.
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6.1.6 Results on Large TSP Instances

Encouraged by the remarkable performance of GLS on small to medium size problems, we
tested GLS with fast local search on a second set of larger instances from 532 to 2392 cities
again from TSPLIB for which the optimal solutions are also known. For problems of that size
what it is usually required is high quality solutions in reasonable time. We considered as a
satisfactory solution to be one within 99% of optimality (percentage excess ≤ 1%) and left GLS
with fast local search to run on the instances until that solution quality was reached. Five runs
performed on each of the five problems from random tours. Remarkably, GLS managed to
reach the desired solution quality in all 25 runs. The running times required for that varied from
around a minute for the smallest of the problems to less than an hour for the largest. These
running times are presented in Table 3.

Problem Name Mean CPU time (min:sec)
att532 1:15
gr666 1:53
rat783 2:47
u1432 7:56
pr2392 52:21

Table 3. GLS running times to reach a solution within 99% of optimality.

One of the problems in this second set is the famous 532-city problem (att532) due to Padberg
and Rinaldi [16] which is considered a very difficult problem for both exact and approximate
methods [11]. A further 5 longer runs (400.000 iterations) were performed on this particular
instance using GLS with fast local search. The result was that GLS found the optimal solution
in one out of the five runs. The time needed for that was 53 minutes. The average solution
quality on att532 for the long runs was at 0.03%.

6.1.7 Evaluation of GLS Performance on the TSP

The results reported thus far for GLS provide strong evidence that GLS is able to find high
quality solutions in short time even for large TSP instances. GLS was compared and proved
superior to simulated annealing and a tabu search variant. Despite the fact that our technique
uses the simple 2-opt, solutions with cost equal to optimal found for problems of size up to half
thousand cities including the famous and difficult 532-city problem of Padberg and Rinaldi.
Fast local search effectively speeded up the algorithm without any impact on solution quality.
GLS with fast local search was capable to find solutions with cost equal to optimal in a few
CPU seconds for many of the small to medium size instances while high quality solutions
within 99% of optimality were reached in reasonable time for problems of size up to 2392
cities. Because of its simplicity and effectiveness, GLS could be considered as an ideal method
for the TSP especially when no programming effort can be devoted in implementing one of the
complex specialized TSP algorithms.

6.2 Quadratic Assignment Problem(QAP)

6.2.1 The Problem

Quadratic Assignment Problem (QAP) is one of the most difficult problems in combinatorial
optimization. The problem can model a variety of applications but it is mainly known for its
use in facility location problems. For a recent QAP survey, the reader is referred to Pardalos,
Rendl and Wolkowicz [18]. In the following, we describe the QAP in its simple form.
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Given a set N = {1, 2, ..., n} and n × n matrices A= [ aij] and B = [bkl], the QAP can be
stated as follows:

( )min ( )p
ij p i p j

j

n

i

n

N

A B
∈

==

⋅∑∑Π
11

                                      (1-16)

where p is a permutation of N and ΠN  is the set of all possible permutations. There are several
other equivalent formulations of the problem. In the facility location context, each permutation
represents an assignment of n facilities to n locations. The matrix A is called the distance
matrix and gives the distance between any two of the locations. The matrix B is called the flow
matrix and gives the flow of materials between any two of the facilities. Both matrices are
considered symmetric.

6.2.2 Local Search

QAP solutions are represented by permutations. A move commonly used for the problem is
simply to exchange (i.e. swap) the contents of two permutation positions. A best improvement
local search procedure starts with a random permutation. In every iteration, all swaps are
evaluated and the best is selected and performed. The algorithm reaches a local minimum when
there is no swap which improves further the cost of the current permutation. A fast local search
method for the QAP has been already described in section 5 and it is the general one for
permutation-based representations.

Evaluating a swap can be made in constant time for best improvement local search (see [1]).
Unfortunately, the scheme requires all possible swaps to be evaluated before a move is
performed and therefore can not be used in the case of fast local search which for the QAP
requires O(n) operations to evaluate a move. As a result of that, the benefits from fast local
search are limited in this problem.

6.2.3 Guided Local Search

Applying GLS to the QAP is again a simple process of identifying the solution features to be
used and assigning costs to them. The features used for the QAP were all the possible location-
facility pairs (other features are also possible). This kind of feature is general and can be used
for a variety of other assignment problems where a number of variables are assigned values
from finite domains. In the QAP, there are n2 possible location-facility combinations (features).

After deciding on the features, the next step is to assign costs to them. Assignments of
facilities to locations are tightly coupled one to the other because of the problem’s cost
function. For that reason, it is difficult to isolate the effect particular assignments have on the
solution cost. To deal with this problem, we used variable feature costs where the cost of a
feature was evaluated in the context of the solution it appeared in. In particular, feature costs
were evaluated only for the features of the local minimum and their cost was given by the
expression:

( )( ) ( )c i p i A Bij p i p j
j

n

, ( )= ⋅
=

∑
1

                                       (1-17)

where i is the location and p(i) is the facility assigned to that location in the local minimum
solution. The above expression for the feature cost gives the cost arising from the flow of good
from facility p(i) to the other facilities with facility p(i) placed in location i. Features that
maximized the utility expression (1-11) were penalized and the corresponding location-facility
combinations were avoided. A modification of the GLS algorithm that appeared to improve
performance in this case was to reset the penalty parameters after a relatively long period of
time. In particular, the penalty parameters were reset (set to 0) every 5000 iterations.



Guided Local Search

15

6.2.4 Results

Before reporting the results, we first examine the scheme for determining the regularization
parameter of GLS for the QAP. We conducted a large number of test runs on problems from
the publicly available library of QAP instances, QAPLIB [4]. A relation similar to (1-11) used
in the TSP was also derived for the QAP case. In particular, we found that GLS performed
well for an λ given by the following parametric equation:

λ = ⋅ < ≤a
g

n
a

(
,

local minimum)
2

0 1                                 (1-18)

where g(local minimum) is the cost of the first local minimum found during a run and n the
size of the problem. A value of a equal to 0.5 gave very good results for all instances tested.
The final program incorporated these findings and the regularization parameter was
automatically calculated after the first local minimum by (1-18) with a=0.5.

Along with GLS, we implemented Taillard’s robust taboo search [23][9] a very effective
method for the QAP and also obtained the original code in C for reactive tabu search another
tabu search variant successfully applied to the problem [1]. Repeated local search was also
implemented. This last algorithm was simply restarting local search after a local minimum.
The methods were tested on 12 QAP of sizes from 15 to 50 locations all from QAPLIB. For
each algorithm, ten runs performed on each instance starting from random solutions. The
algorithms left to run for 100K iterations1 or until a solution with cost equal or less than the
best known solution2 was found. A run was characterized as successful if it resulted to the best
known solution. Table 4 illustrates the results obtained.

Problem
Name

best
known
solution
[4]

GLS Robust TS Reactive TS Repeated 2-opt

mean cost successful
runs

mean cost successful
runs

mean cost successful
runs

mean cost successful
runs

nug15 1150 1150 10 1150 10 1150 10 1150 10
nug20 2570 2570 10 2570 10 2583 2 2570 10
rou20 725522 725540 7 725522 10 725522 10 725919 4
nug30 6124 6124 10 6124 10 6151 1 6143 2
tho30 149936 149936 10 149936 10 149936 10 150469 1
kra30a 88900 88900 10 90089 4 89019 9 89759 3
kra30b 91420 91441 7 91452 8 91456 7 91569 0
ste36a 9526 9530.4 7 9547.8 7 9630.2 0 9635.4 0
ste36b 15852 16185.6 4 16291.8 5 15856 9 15943 3
tho40 240516 240751.6 0 240588.8 0 240572.6 3 242557.4 0
sko42 15812 15816 6 15816.2 5 15899.4 0 15943 0
wil50 48816 48843.4 0 48827.2 0 48934.6 0 48958.8 0
Total successes 81 out of 120 runs 79 out of 120 runs 61 out of 120 runs 33 out of 120 runs

Table 4. GLS, Robust TS, Reactive TS, and Repeated 2-opt on small to medium size QAP instances.

GLS and robust taboo search performed equally well finding the best known solution in
around 66% of the runs. Reactive tabu search came third at 50% with repeated 2-opt fourth at
25%. In fact, GLS found the best known solution in two more runs than any other method with

                                                       
1 Note here, that the three algorithms needed around the same time to complete an iteration. The dominant

computation was the evaluation of the N(n2) moves to search the neighborhood. This computation was
conducted in almost exactly the same way for all four methods.

2 Exact methods generally find it difficult to solve QAP problems of size greater than 20. QAPLIB includes many
instances with size greater than 20 and therefore out of range for exact methods. These problems have been
tackled in the past by many approximation methods and very good solutions are already known for them.
Whether these solutions are also optimal is an open question.
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close second the robust taboo search. For five of the problems, both GLS and robust taboo
found the best known solution in ten out of ten runs something very encouraging considering
that both are approximation algorithms. Overall, the results proved that GLS can perform
equally well to robust tabu which admittedly generates very good solutions for the QAP.
Reactive tabu search outperformed repeated 2-opt and overall had a very good performance
though found fewer best solutions than GLS or robust taboo search did.

A second set of runs was performed on large QAP instances. Thirteen instances from
QAPLIB were used with sizes from 42 to 100 which have been randomly generated (see [21]
for more). A limited amount of time equal to 5 minutes on a DEC Alpha 3000/600 was given
to each algorithm. Ten runs performed on each instance from random initial solutions. The
objective of this second experiment was to determine which of the algorithms will return the
best solution given a limited amount of time. The best solutions found by the methods are
reported in Table 5.

Problem best known
solution [4]

GLS Robust TS Reactive TS best solution
found by:

sko42 15812 15812 15812 15834 GLS, Robust TS
sko49 23386 23386 23386 23486 GLS, Robust TS
sko56 34458 34462 34462 34594 GLS, Robust TS
sko64 48498 48500 48498 48572 Robust TS
sko72 66256 66280 66298 66562 GLS
sko81 90998 91086 91008 91240 Robust TS
sko90 115534 115632 115624 116002 Robust TS
sko100a 152002 152144 152138 152520 Robust TS
sko100b 153890 153978 154038 154296 GLS
sko100c 147862 147992 147914 148300 Robust TS
sko100d 149576 149758 149762 150058 GLS
sko100e 149150 149282 149500 149726 GLS
sko100f 149036 149214 149258 149526 GLS

Table 5. GLS, Robust TS, and Reactive TS on large QAP instances.

The last column in this table gives the algorithm that found the best solution for each problem
over all algorithms and runs. GLS and robust taboo search had exactly the same number of
best solutions (i.e. 8 out of 13). Reactive tabu search did not find a best solution though the
solutions found by the method were very close to the best found either by robust taboo search
or GLS but in none of the cases were better. GLS and robust taboo search solutions were very
close and sometimes equal (for sko42 and sko49) to the best known solutions.

6.2.5 Evaluation of GLS Performance on the QAP

The results presented on QAP instances provide evidence that GLS is an effective method for
the QAP. The algorithm matched the performance of robust taboo search which is already
known to perform very well on QAPs while outperformed reactive tabu search a successful
tabu search variant and also repeated 2-opt. The algorithm consistently found the best known
solutions for small to medium size problems. Furthermore, the solutions found in large
problems where very close to the best known. Given the alternative settings that can be pursued
in the QAP (different features or other more effective expressions for the feature costs), the
performance of GLS could be further improved.

7. Conclusions and Future Research Directions

Guided local search is a novel approach that enables intelligent search schemes to be built that
exploit information to guide a local search algorithm in a search space. Constraints on solution
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features are introduced and dynamically manipulated to distribute the search effort over the
regions of a search space. Various search distribution policies can be implemented. In this
report, we examined the case of distributing the search effort according to feature costs either
predetermined or evaluated during search.

We demonstrated the effectiveness of the proposed method in two of the most prominent
problems in combinatorial optimization, the TSP and the QAP. Comparisons conducted with a
total of six other methods over many QAP and TSP instances. Results showed that the GLS
algorithm is from many times better to at least very competitive to these other methods.
Optimal or high quality solutions consistently found in a variety of problems from the problem
libraries TSPLIB and QAPLIB proving the robustness of GLS across combinatorial
optimization problems, problem instances and instance sizes. The reader may also refer to [27]
where further evidence is provided on the effectiveness of both GLS and fast local search this
time in the context of a real-world and difficult scheduling problem.

Future research on GLS will investigate the possiblity of learning feature costs and/or the
search policy. Alternative feature-cost settings will also be investigated for existing
applications of the method. The algorithm has only one parameter and from this proint of view,
tuning is a relatively easy task. Nevertheless, domain indepentant self-tuning mechanishms is
worthwhile to investigate.
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