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7.5 Experimentation with the F6 Function

Following Davis [Dav91], we used 22-bits for representing each variable. An equal

number of features was used to cover the domain of each variable (n=m). The

algorithm was relatively insensitive to the parameter λ and performed well for values

of λ greater than 0.2. The value 0.25 for λ was used in the tests. Experiments were

performed for varying n (i.e. number of features per variable) to determine how this

parameter affects GLS. The values tried for n were 5, 10, 15, 20, 50, and 100. Fifty

runs from random solutions (random binary strings) were performed for each value of

n considered with the iteration limit set to 10,000 local search improvement cycles.

Table 7.1 ill ustrates the results obtained. The best setting proved to be n=m=5. Under

this setting, the algorithm succeeded in finding the exact optimal solution (0,0) in

100% of 50 runs. Under all settings, the algorithms found the exact optimum many

times.

This performance further improves if more time is given to the algorithm. For

example, in the case (n=m=100) where most failures occurred (28 out of 50 runs), we

performed the same experiment but this time allowed the algorithm to complete

100,000 local search iterations. The performance of GLS significantly improved and

the algorithm found the exact optimum in 50 out of 50 runs (no failures).

 No. of features n=m=5 n=m=10 n=m=15 n=m=20 n=m=50 n=m=100

Mean Cost 0.00E+00 4.55E-11 3.19E-10 2.73E-10 1.97E-04 3.21E-04

Best Solution 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Worst Solution 0.00E+00 2.28E-09 2.28E-09 2.28E-09 9.72E-03 9.72E-03

Mean Iterations 2287.32 2566.22 2954.08 3526.9 4132.66 3738.48

Mean Time 2.823333 3.150668 3.634334 4.382333 5.188333 4.654

Mean Funct. Eval. 104958.6 117778.8 135588 161878.4 189675.6 171578.5

Optimal Runs 50 49 43 44 31 22

Total runs 50 50 50 50 50 50

Table 7.1 GLS performance on F6 (Time in CPU seconds on a DEC Alpha 3000/600 175MHz).
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The main observation made was that GLS performance degraded as the number of

features used increased. More features meant more effort to leave a particular area but

also more careful exploration. For this particular function, diversification of search to

sample the whole search space proved important to find the global minimum quickly.

The distribution of points visited for n=m=10 during 10,000 iterations of local search

is shown in Figure 7.3. During the particular run that generated Figure 7.3, the optimal

solution was found early and after 1965 iterations. Despite that, the algorithm was

allowed to continue until 10,000 iterations were completed to get a better picture of

the solutions visited by the algorithm. As one can see in Figure 7.3, the algorithm

distributed its efforts over the whole of the search space but visited mainly local

minima. That is why points in are arranged in concentric cycles around the point (0,0).
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0

50

100

-100 -50 0 50 100

Figure 7.3 All the points visited during the first 10,000 iterations of local search
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This is more clearly demonstrated in Figure 7.4 where a 3-D view of the visited points

is shown. The shape formed is exactly the bottom part of F6 which suggests that the

points are actually local minima in the great majority. Note here, that GLS is exploring

binary space and not numeric space. In general, local minima and their attraction

basins in the binary space are different from the local minima and their attraction

basins appearing in the numeric space. Because of the symmetrical landscape, the

binary encoding used and the structure of the GLS features, the majority of the

solutions visited by GLS in the case of F6 have the property of being numeric local

minima as ill ustrated in Figures 1.3 and 1.4. This is not necessarily the case for

functions with non-symmetrical landscapes. In these cases, grey encodings (see

[BT94] for example) and/or features of different structure may yield better

performance than the encoding scheme and features used in this chapter.
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Figure 7.4 3-D View of Figure 7.3
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7.6 Conclusions

In this chapter, we have shown that GLS has the potential to be utili sed in the

optimisation of real-valued functions with numerous local minima, which are

considered to be diff icult for gradient-based methods. The application of GLS to

optimise the F6 function, a benchmark for Genetic Algorithms, has been examined.

GLS repeatedly located the exact global optimum of the function. The chapter also

serves in demonstrating how artificial solution features can be created when no

features can be deduced from the structure of the objective function, which adds

support to our claim that GLS has wide applications.
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8. Summary and Conclusions

Chapter 8

Summary and Conclusions

This study demonstrated the effectiveness and eff iciency of the GLS approach to

combinatorial optimisation alone or when combined with FLS. We demonstrated that

the use of information significantly improves simple local search heuristics

transforming them to powerful optimisation algorithms able to compete or even

outperform state of the art specialised methods. Furthermore, we demonstrated that

the proposed approach is general enough to be applicable to a diversity of problem

from the famous TSP and QAP to RFLAP and Workforce Scheduling and even to

continuous optimisation problems. In this last chapter, we summarise the research

conducted, conclude on GLS and FLS and also discuss the prospects of future

research on the subject.
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8.1 Summary of the Research Conducted

Guided local search is a novel approach which facilit ates the engineering of intelli gent

search schemes which exploit problem and history information to guide a local search

algorithm in a search space. Constraints on solution features are introduced and

dynamically manipulated. The objectives of search intensification and diversification

are unified in the single objective of distributing the search effort according to

information. Various search distribution policies can be implemented. In this study,

we examined the case of distributing the search effort according to feature costs either

predetermined or evaluated during search.

We demonstrated the effectiveness of the proposed technique in two of the most

prominent problems in combinatorial optimisation, the TSP and the QAP.

Comparisons conducted with a total of f ifteen methods for the TSP and four methods

for the QAP showed that the GLS algorithm is better than or at least very competitive

to many state of the art algorithms for the problems. Optimal or high quality solutions

were consistently found in a variety of instances from the problem libraries TSPLIB

and QAPLIB proving the robustness of GLS across these two landmark problems in

combinatorial optimisation.

The application of the method to real world problems with various objectives and

constraints was also studied in the context of the constrained optimisation problems of

Radio Link Frequency Assignment and Workforce Scheduling. GLS was compared

with twelve methods for the Radio Link Frequency Assignment Problem and five

methods for the Workforce Scheduling problem. These comparisons clearly

demonstrated the advantages of using GLS both in terms of solution quality and

running times. Solutions found in the benchmark instances of RLFAP and Workforce

Scheduling are amongst the best found so far for these problems. The applicabilit y of
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GLS to NonConvex optimisation problems was also demonstrated laying the

foundations for the development of new methods based on GLS for this very

important class of problems.

The technique of FLS was also presented and the benefits from combining it with

GLS were studied in the TSP, RLFAP and Workforce Scheduling. The GLS-FLS

combination leads to highly eff icient variants of GLS which are many times faster

than basic GLS without sacrificing solution quality.

Summarising the contents of the thesis, GLS was presented along with FLS. The

method was applied to five combinatorial optimisation problems and compared with

35 algorithms including some of the best heuristic methods for these problems.

Variants of almost all the general optimisation methods mentioned in the introduction

were compared with GLS in at least one of the problems examined. In particular, GLS

was compared with:

• Simulated Annealing on the TSP, RLFAP, and Workforce Scheduling,

• Tabu Search on the TSP, QAP, and RLFAP,

• Genetic Algorithms on the TSP, QAP, Workforce Scheduling, and RLFAP,

• Iterated Local Search on the TSP,

• Repeated Local Search on the TSP and QAP,

• Neural Networks on the RLFAP.

We believe that this is one of the most extensive studies for a newly presented

combinatorial optimisation method.

8.2 Concluding Remarks on GLS and FLS

For many years, general heuristics for combinatorial optimisation problems with most

prominent examples the methods of Simulated Annealing and Genetic Algorithms
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heavily relied on randomness to generate good approximate solutions to diff icult

NP-Hard problems. The introduction and acceptance of Tabu Search by the

Operations Research community mainly due to the efforts of Glover, Laguna, Taill ard,

de Werra, Hertz, Battiti , Tecchioli and others initiated an important new era for

heuristic methods where deterministic algorithms exploiting history information

started appearing and being used in real world applications.

8.2.1 Guided Local Search

Guided local search proposed in this thesis follows this trend. GLS heavily exploits

information (not only the search history) to distribute the search effort in the various

regions of the search space. Important structural properties of solutions are captured

by solution features. Solutions features are assigned costs and local search is biased to

spend its efforts according to these costs. Penalties on features are utili sed for that

purpose.

When local search settles in a local minimum, the penalties are increased for selected

features of the local minimum. By penalising features appearing in local minima, GLS

avoids the local minima visited (exploiting historical information) but also diversifies

choices for the various structural properties of solutions captured by the solution

features. Features of high cost are penalised more times than features of low cost: the

diversification process is directed and deterministic rather than undirected and

random.

Feature costs contain uncertain information making sometimes speculative

assumptions about the desirabilit y of particular structural properties of solutions.

Some of these properties could be essential parts of good solutions despite the high

cost they may incur on the solution cost. GLS is flexible in such cases by combining
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search intensification with the continuous diversification process caused by the

penalties on feature costs.

8.2.2 The Role of Parameter λλ

The task of combining diversification with intensification is accomplished by the

regularisation parameter λ which controls the influence of the information on the

search process. The local gradients are directing the search process to good solutions

undertaking the task of intensification. The parameter λ linearly combines the local

gradients with the penalties of GLS blending the two functions of intensification and

diversification. If λ is low then GLS is intensifying search slowing down the

diversification process. Conversely, if λ is high then the feature costs fully determine

the course of local search. For values of λ in the middle of these two extreme cases, an

optimal blending of intensification and diversification is achieved. Intensification of

search can also be achieved by using penalties of limited duration (see section 4.4.3)

or incentives implemented as negative penalties that encourage the use of specific

features rather than discourage them as with the penalties in the basic GLS. This last

case of incentives has not been explored in our work and it may lead to more

advanced schemes for guiding local search.

8.2.3 Fast Local Search

The selective diversification scheme of GLS where particular features are penalised

and alternative solutions structures are sought that avoid these features is ideally

combined with FLS which limits neighbourhood search to particular parts of the

overall solution.
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To allow the blending of local gradients with penalties, GLS increases the penalties

for features and subsequently invokes local search to remove the penalised features

from the solution. Because of λ, local gradients can affect this decision by allowing or

not allowing a move to be executed which removes the penalised features. This is an

essential part of the operation of GLS and enables the blending of intensification

(expressed by the local gradients) and diversification (expressed by the penalties).

FLS speeds up this blending allowing a quick test of the local gradients after a penalty

increase. The moves which remove the penalised features are checked and if no

improving move is found, control immediately returns to GLS which penalises

alternative features or the same features depending on the effort already invested in

these features as given by the penalties already applied to them.

In general, many penalty cycles may be required before a move is executed out of the

local minimum. This should not be viewed as an undesirable situation. It is caused by

the uncertainty in the information as captured by the feature costs which makes

necessary the testing of the GLS decisions against the local gradients. FLS

significantly reduces the computation times required to measure the local gradients in

a local minimum allowing far more many penalty modification cycles to be performed

by GLS for the same amount of running time.

8.3 Future Research

This thesis offers a first study of GLS and FLS. The method is still i n its infancy and

future research is required to further develop the method and adapt it to other

problems. The use of incentives implemented as negative penalties which encourage

the use of specific solution features is one promising direction to be explored. Other

potentially interesting research directions include automated tuning of the
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regularisation parameter, definition of effective termination criteria, and different

utility functions for selecting the features penalised.

GLS could also be used to distribute the search effort in other techniques such as

Genetic Algorithms. In particular, GLS could be invoked at specific intervals to detect

the presence of particular features in a GA population and subsequently diversify or

intensify genetic search by applying penalties or incentives on particular features

which are considered “bad” or “good” respectively. The GA could be guided to avoid

or favour specific features spending its search efforts according to the information

which again can be captured in the form of feature costs. The same utilit y function

(Eq. 2.5) could be used by simply replacing the indicator function in Eq. 2.5 with a

measure taking values in the interval [0,1] that will reflect how frequently a feature is

appearing in the solutions of the population.

Finally, we found it very easy to adapt GLS and FLS to the different problems

examined in this thesis something which suggests that it may be possible to built a

generic software platform for combinatorial optimisation based on GLS. Although

local search is problem dependent, most of the other structures of GLS and also FLS

are problem independent. Furthermore, a step by step procedure is usually followed

when GLS is applied to a new problem (i.e. identify features, assign costs, etc.)

something which makes easier the use of the technique by non-specialists (e.g.

software engineers).
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10. Appendix A

Appendix A

Results on the Travelling Salesman Problem

The set of problems used in the evaluation of the Repeated Local Search, Guided

Local Search and Iterated Local Search (using the Double Bridge move) variants on

the TSP included 20 problems from 48 to 1002 cities all from TSPLIB (see Chapter 3

for details on these techniques). For each variant tested, 10 runs were performed from

random solutions and 5 minutes of CPU time were allocated to each algorithm in each

run on a DEC Alpha 3000/600 (175MHz) machine. To measure the success of the

variants, we considered the percentage excess above the optimal solution as in Eq.

3.5. For GLS variants, the normalised lambda parameter a was provided as input and

λ was determined after the first local minimum using Eq. 3.6. For GLS variants using

2-Opt, a was set to a = 1/6 while the GLS variants based on 3-Opt used the slightly

lower value a = 1/8 and the LK variants the even lower value a = 1/10. Results for

GLS are shown in Table A.1.

Iterated Local Search was using the Double Bridge move. No simulated annealing was

used which is roughly equivalent to the Large-Markov Chains Methods with

temperature T set to 0. Results for Iterated Local Search are shown in Table A.2.

Finally, Repeated Local Search was restarting from a random solution whenever local

search was reaching a local minimum. Results for Repeated Local Search are shown

in Table A.3. The names of the variants were formed according to the following

convention:

<meta-heuristic>-<local search type>-<neighbourhood type>.
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Problem No.Cities Mean Excess (%) over 10 runs

DB-FI-LK DB-FI-3Opt DB-FI-2Opt DB-FLS-LK DB-FLS-3Opt DB-FLS-2Opt

att48 48 0 0 0 0 0 0

eil76 76 0 0 0 0 0 0

kroA100 100 0 0 0 0 0 0

bier127 127 0 0 0 0 0 0

kroA150 150 0 0.001508 0.003393 0 0 0

u159 159 0 0 0 0 0 0

kroA200 200 0 0.077295 0.10113 0 0.004767 0.075252

gr202 202 0.009213 0.088396 0.457171 0 0.155129 0.257719

gr229 229 0.014116 0.157576 0.382387 0.004755 0.064115 0.124515

gil262 262 0.016821 0.20185 0.626577 0 0.075694 0.475189

lin318 318 0.255776 0.719027 1.14588 0.240786 0.279093 0.3519

gr431 431 0.332703 0.94403 2.13495 0.222386 0.394192 0.615294

pcb442 442 0.066367 0.368861 1.8961 0.081728 0.309977 0.684745

att532 532 0.225023 1.03554 2.64971 0.08163 0.270534 0.422957

u574 574 0.114348 1.20038 2.94269 0.092399 0.404823 0.553042

rat575 575 0.13731 1.15016 3.75904 0.097446 0.445888 0.649638

gr666 666 0.418878 1.25178 3.27054 0.175874 0.359528 0.816489

u724 724 0.356955 1.43617 3.94106 0.166547 0.367693 0.627535

rat783 783 0.240745 1.79764 5.00454 0.153305 0.516693 0.744947

pr1002 1002 1.04742 2.05625 5.19902 0.446332 0.872049 1.05727

Average Excess 0.161784 0.624323 1.675709 0.088159 0.226009 0.372825

Table A.2 Results for Iterated Local Search on the TSP.

Problem No.Cities Mean Excess (%) over 10 runs

GLS-FI-LK GLS-FI-3Opt GLS-FI-2Opt GLS-FLS-LK GLS-FLS-3Opt GLS-FLS-2Opt

att48 48 0 0 0 0 0 0

eil76 76 0 0 0 0 0 0

kroA100 100 0 0 0 0 0 0

bier127 127 0.218207 0.116586 0.019699 0.206625 0.002198 0

kroA150 150 0.029784 0.084075 0.000754 0.001508 0.001131 0

u159 159 0 0.460551 0.225285 0 0 0

kroA200 200 0.436189 0.526083 0.257083 0.088872 0.00681 0

gr202 202 0.732321 0.406375 0.309512 0.252988 0.011703 0

gr229 229 0.392788 0.468195 0.381644 0.152969 0.015007 0.004309

gil262 262 0.328007 0.723297 0.428932 0.084104 0.046257 0.004205

lin318 318 1.00264 1.74284 1.33884 0.583407 0.129197 0.02641

gr431 431 1.69438 2.71862 2.34071 0.563665 0.134003 0.023919

pcb442 442 0.966363 0.80783 1.36634 0.38816 0.038403 0.044311

att532 532 1.04746 2.28599 2.52871 0.386116 0.224662 0.089937

u574 574 1.36892 2.81263 3.66807 0.580951 0.278824 0.141444

rat575 575 0.806142 1.77174 2.25011 0.287908 0.171268 0.098922

gr666 666 1.66056 4.38707 6.00476 0.855251 0.497863 0.206279

u724 724 1.02505 2.25101 3.03054 0.61298 0.336674 0.168218

rat783 783 0.897116 2.24052 3.36929 0.511015 0.285033 0.161254

pr1002 1002 1.97877 3.31969 5.54336 1.04229 0.945357 0.620626

Average Excess 0.729235 1.356155 1.653182 0.32994 0.15622 0.079492

Table A.1 Results for GLS on the TSP.
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Problem No.Cities Mean Excess (%) over 10 runs

REP-FI-LK REP-FI-3Opt REP-FI-2Opt REP-FLS-LK REP-FLS-3Opt REP-FLS-2Opt

att48 48 0 0 0 0 0 0

eil76 76 0 0 1.35688 0 0 1.48699

kroA100 100 0 0.39564 0.222254 0 0.225543 0.215205

bier127 127 0.030098 0.403696 1.19629 0.027899 0.370386 1.29513

kroA150 150 0.002262 0.8317 2.00912 0.002262 0.8038 2.01553

u159 159 0 0.30038 1.62619 0 0.265447 2.05894

kroA200 200 0.024517 1.00688 3.30768 0.004767 0.922092 3.23583

gr202 202 0.141434 1.22958 3.58591 0.129731 1.19995 3.68352

gr229 229 0.097695 1.36774 3.40129 0.094427 1.27301 3.56443

gil262 262 0.054668 1.3709 5.12195 0.054668 1.2868 5.77796

lin318 318 0.629565 2.17992 4.37936 0.636703 2.022676 4.9128

gr431 431 0.679641 2.07801 5.33877 0.665232 2.20915 5.97495

pcb442 442 0.48525 1.77636 6.65012 0.516956 1.72417 7.19544

att532 532 0.530232 2.29033 6.28368 0.579354 2.29141 7.13899

u574 574 0.738382 2.91397 7.46674 0.703157 2.6934 8.4788

rat575 575 0.807618 2.69895 7.69231 0.887347 2.70781 8.61066

gr666 666 0.837619 3.18259 8.14712 0.847811 2.97203 9.94096

u724 724 0.933667 2.90551 7.76903 1.0241 2.87473 8.83202

rat783 783 1.00045 3.2864 8.46468 1.06518 3.39882 9.38792

pr1002 1002 1.5046 3.50511 8.62028 1.39138 3.59138 10.5847

Average Excess 0.424885 1.686183 4.631983 0.431549 1.64163 5.219539

Table A.3 Results for Repeated Local Search on the TSP.


