times over a number of iterations then the term ﬁ in EqQ. 2.5 deaeases for the

feaure, diversifying choices and giving the diance for other feaures to aso be
penalised. The pdicy implemented is that fedures are penalised with a frequency
propational to their cost. Due to Eq. 2.5, feaures of high cost are penalised more
frequently than those of low cost. The search eff ort is distributed acoording to promise
asit is expresed by the feaure asts and the drealy visited locd minima, since only
the feaures of locad minima ae penalised. Incremental distribution d the search eff ort
acording to prior information, though in a probabili stic framework, can be foundin a
class of methods based on the optimal search theory of Koopman [Koo57, Sto83.
Also, counter based schemes for seach dversificaion analogous to that of GLS are
used under the name courter-based exploration in reinforcement leaning [Thr92].

The basic GLS algorithm as described so far is depictEdyure2.1

procedure GuidedLocalSeach(S, 8, [l1, ---,lm]: [C1s---,Gul, M)
begin
k - 0;
S < random or heuristically generated solution in S;
for i 1 until M do /* set all penalties to 0 */

P < 0;
while StoppingCriteriordo
begin
h— g+A*3p*l;
Sw+1 « LocalSearch(s h);
for i 1 until Mdo
utili « li(Se0) * ¢/ (1+p);
for each i such that utjlis maximumdo
P~ P+ 1
k « k+1;
end
s* « best solution found with respect to cost function g;
return s*;

end

where S: search space, g: cost function, h: augmented cost fukctiegularisation parameter; |
indicator function for feature i,:ccost for feature i, M: number of features,genalty for feature i.

Figure 2.1 Guided Local Search in pseudocode
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As we will seein the following chapters, this smple dgorithm can be gplied with
simple modifications to a variety of optimisation problems. Applying the dgorithm to
a problem usualy involves defining the feaures to be used, asggning costs to the
them and finally substituting the procedure Local Search in the GLS loop with a locd

search algorithm for the problem in hand.

2.7 Regularisation Parameter

Something that has been left out from the anadlysis © far is the regularisation
parameter A in the augmented cost function Eq. 2.2 This parameter determines the
degree up to which constraints on fedures are going to affed locd seach. Let us
examine how the regularisation parameter is going to affed the moves performed by a
locd seach method. A move dters the solution, adding new feaures and removing
existing fedures, whilst leaving other feaures unchanged. In the genera case, the
difference Ah in the value of the augmented cost function due to a move is given by

the following difference equation:
M
Eq.2.6 Ah=Ag+A pAl, .
2

Aswe can seein Eq. 2.6, if A is large then the seleded moves will solely remove the
penalised feaures from the solution and the information will fully determine the
course of locd seach. This introduces risks because information may be wrong.
Conversaly, if A is 0 then locd search will nat be &le to escgoe from locd minima
However, if A is small and comparable to Ag then the moves ®leded will aim at the
combined oljedive of improving the solution (taking into acourt the st

differences) and also removing the penalised fedures (taking into acourt the
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information). Since the difference Ag is problem dependent, the regularisation
parameter is also problem dependent. GLS can be quite tolerant to the dhoiceof the A,
operating well for a wide range of vaues. In the gplicaions, we ae going to
elaborate further on the role of this parameter and on hav it affeds GLS in spedfic

problems.

2.8 Fast Local Search and Other Improvements

There ae both minor and maor optimisations that significantly improve the basic
GLS method. For example, instead of cdculating the utiliti es for al the fegures, we
can restrict ourselves to the locd minimum feaures snce for nonlocd minimum
feaures the utility as given by Eq. 2.5 takes the value 0. Also, the evaluation
medchanism for moves needs to be changed to work efficiently on the aigmented cost
function. Usudly, this medhanism is not diredly evaluating the @st of the new
solution generated by the move but it cdculates the difference Ag caused to the cost
function. This differencein cost shoud be cmbined with the differencein penalty as
is siown in EQ. 2.6. This can be eaily dore and has no significant impad on the time
needed to evaluate amove. In particular, we have to take into acourt only feaures
that change state (being deleted or added). The penaty parameters of the feaures
deleted are summed together. The same is dore for the penalty parameters of feaures

added. The change in penalty due to the move is then simply given by the difference:

- Sp o+ 3p
over all featuresj added  over all featuresk deleted

Leaving behind the minor improvements, we turn ou attention to the major
improvements. In fad, these improvements do nd diredly refer to GLS but to locd

seach. Grealy locd seach seleds the best solutionin the whole neighbouhood. This
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can be very time-consuming, espedaly if we ae deding with large instances of
problems. Next, we ae going to present Fast Local Search (FLS), which drasticdly
speads up the neighbouhood seach process by redefining it. The method is a
generdlisation o the approximate 2-opt method poposed in [Ben9Z for the
Travelling Salesman Problem. The method also relates to Canddate List Strategies
used in tabu search (see sectidh ).

FLS works as follows. The aurrent neighbouhoodis broken dovn into a number of
small sub-neighbouwhoods and an activation ht is attadhed to ead ore of them. The
ideais to scan continuowsly the sub-neighbouhoods in a given order, searching only
those with the adivation ht set to 1. These sub-neighbouhoods are cdled active
sub-neighbouhoods. Sub-neighbouhoods with the bit set to 0 are cdled inactive
sub-neighbouhoods and they are not being seached. The neighbouhood seach
process does nat restart whenever we find a better solution bu it continues with the
next sub-neighbouhoodin the given order. This order may be static or dynamic (i.e.
change as a result of the moves performed).

Initially, al sub-neighbouhoods are adive. If a sub-neighbouhoodis examined and
does nat contain any improving moves then it becomes inadive. Otherwise, it remains
adive and the improving move found is performed. Depending on the move
performed, a number of other sub-neighbouhoods are dso adivated. In particular, we
adivate dl the sub-neighbouhoods where we exped other improving moves to occur
as aresult of the move just performed. As the solution improves the processdies out
with fewer and fewer sub-neighbouhoods being adive until al the
sub-neighbouhood hts turn to 0. The solution formed upto that point is returned as

an approximate local minimum.



The overal procedure @muld be many times faster than conventional locd seach. The
bit setting scheme encourages chains of moves that improve spedfic parts of the
overal solution. As the solution kkecomes localy better the processis ttling down,
examining fewer moves and saving enormous amourts of time which would ctherwise
be spent on examining predominantly bad moves.

Although fast loca seach procedures do nd generally find very good solutions, when
they are combined with GLS they bewome very powerful optimisation toadls.
Combining GLS with FLS is draightforward. The key ideais to asociate solution
fedures to sub-neighbouhoods. The asciations to be made ae such that for eah
feaure we know which sub-neighbouhoods contain moves that have an immediate
effed upon the state of the feaure (i.e. moves that remove the feaure from the
solution). The combination d the GLS agorithm with a generic FLS algorithm is
depicted inFigure2.2

The procedure GuidedFastLocal Search in Figure 2.2 works as follows. Initially, all
the adivation btsare set to 1and FLS is allowed to read the first locd minimum (i.e.
all bits 0). Theredter, and whenever a fedure is penalised, the bits of the asciated
sub-neighbouhoods and ony those ae set to 1. In this way, after the first locd
minimum, fast locd seach cdls examine only a number of sub-neighbouhoods and
in particular those which associate to the feaures just penalised. This dramaticdly
speeds up GLS. Moreover, locd seach is focusing on removing the penali sed feaures

from the solution instead of considering all possible modifications.
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procedure GuidedFastLocalSearch(S,)g,[l4, ...,m], [C1,-.-,Gu], M, L)

begin

end

k - 0; 9 « random or heuristically generated solution in S;

fori <1 untiiMdop, — O;/*set all penalties to 0 */

for i <1 until Ldobit; — 1; /* set all sub-neighbourhoods to the active state */
while StoppingCriteriordo

begin

end

h e« g+A*3p*l;

S«1 < FastLocalSearch(sh,[bity, ...,bit ], L);
for i <1 until Mdo util; « li(Sw1) * ¢i/ (1+p);
for each i such that utjlis maximumdo

begin
P p+1
SetBits — SubNeighbourhoodsForFeature(i);
[* activate sub-neighbourhoods relating to feature i penalised */
for each bit b in SetBitsdo b  1;
end
k « k+1;

s* — best solution found with respect to cost function g;
return s*;

procedure FastLocalSeach(s, h, [hit..,bit ], L)

begin

while [hit, bit = do

fori <1 until Ldo

begin
if bit; = 1 then /* search sub-neighbourhood for improving moves */
begin
Moves — set of moves in sub-neighbourhapd
for each movem in Movesdo
begin
S « m(s);
/* ' is the solution generated by move m when applied to s */
if h(s') < h(s) then /* for minimisation */
begin
biti < 1
SetBits « SubNeighbourhoodsForMove(m);
/* spread activation to other sub-neighbourhoods */
for each bit b in SetBitsdob ~ 1;
S« S;
goto ImprovingMoveFound
end
end
bit; — 0; /* no improving move found */
end
ImprovingMoveFound: continue;
end;
returns;
end
where S. seach space g: cost function, h: augmented cost function, A: regularisation parameter, I;: indicator

function for feaurei, ¢;: cost for feaurei, M: number of feaures, L: number of sub-neighbourhoods, p;: penalty for
feaure i, bit;: adivation bit for sub-neighbourhood i, SubNeighbourhoodsForFeaure(i): procedure which returns
the hits of the sub-neighbourhoods corresponding to feaure i, and SubNeighbourhoodsForMove(m): procedure

which returns the bits of the sub-neighbourhoods to spread activation to when move m is performed.

Figure 2.2 Guided Local Search combined with Fast Local Search in pseudocode
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Apart from the combination d GLS with fast locd seach, aher variations of GLS to

be presented in the applications include:

» feaures with variable asts where the st of afedure is cdculated duing seach
and in the context of a particular local minimum (see cha@pter

» penalties with limited duration (see chapter

* multiple feaure sets where eab fedure set is processed in parallel by a different
penalty modification procedure (see chagler

» feaure set hierarchies where more important feaures overshadow lessimportant
feature sets in the penalty modification procedure (see ctgpter

Before presenting the goplicaions of GLS, we examine some of the links between

GLS and other general optimisation methods also based on local search.

2.9 Connectionswith Other General Optimisation Techniques

2.9.1 Simulated Annealing

Non-monaonic temperature reduction schemes used in SA (see sedion 1.4) also
referred to as re-anrealing or re-heating schemes are of particular interest in relation
to the work presented in this thesis. In these schemes, the temperature is deaeased as
well as increased in a dtempt to remedy the problem that the aneding process
eventually settles down failing to continuowsly explore good solutions. In a typicd
SA, good solutions are mainly visited duing the mid and low parts of the aadling
schedule. For resolving this problem, it has been even suggested anneding a a
constant temperature high enough to escgpe locd minima but also low enough to visit

them [Con9(. It is ssams extremely difficult to find such atemperature because it has
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to be landscgpe dependent (i.e. instance dependent) if not dependent of the aeaof the
search space currently searched.

Guided Locd Seach presented in thisthesis can be seen as addressng this problem of
visiting locd minima but also being able to escgoe from them. Instead of randam
up-hill moves, penalties are utilised to force locd seach ou of locd minima. The
amourt of penalty applied is progressvely increased in unts of appropriate magnitude
(i.e. parameter A) until the method escgpes from the locd minimum. GLS can be seen
adapting to the different parts of the landscape. The dgorithm is continuowsly visiting
new solutions rather than converging to any particular solution as SA does.
Anather important diff erence between this work and SA isthat GLS is a deterministic
algorithm. Thisis aso the cae for a wide number of algorithms developed under the

tabu search framework.

2.9.2 Tabu Search

GLS has close links with tabu seach. Both techniques can be seen as using
information (historicd in the cae of tabu search, prior and historicd information in
the cae of GLS) to impose @nstraints on locd seach either by modifying the
neighbouhood (tabu seach) or by modifying the @st function to be minimised
(GLS). Let us consider the neighbouhoodgraph where eab nock is a solution to the
problem and the acs are the moves which transform one solution to ancther. GLS
adopts a “solution a node”-centred approach to constrain locd seach by elevating the
cost of speafic nodes (i.e. solutions), rather than the “move or arc”-centred approach
adopted by many tabu seach variants which prevents locd seach from traversing

spedfic acs (i.e. exeauting moves which are tabu). The two approadhes can be seen to
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be seeking the same goal (i.e. guide locd seach by using constraints) though they use
different means to achieve that.

Solution attributes used in tabu seach can been seen as correspondng to the solution
feaures used in GLS. However, constraints on solution attributes by tabu seach may
take many forms (i.e. tabu lists, frequency-based penalties) while in GLS a single
medhanism is used which uilises indicaor functions to introduce @nstraints on
solution features.

Rather than elevate seleded pendties to drive the seach ou of alocd minimum, as
GLS does, the typicd tabu seach approach seeks a best move to escape from a locd
minimum based onthe aurrent evaluation function, influenced by prior memory and
by cendidate li st strategies. Penalties in tabu search are austomarily applied to seleded
attributes only after the move is made, as a way of preventing a return. Tabu seach
also typicdly maintains a recency-based memory to provide amedanism to avoid
reinstating seleded attribute combinations found in recently generated solutions.
Diversificaion strategies that make use of frequency-based memory are generaly
activated periodically, rather than continuously as in GLS.

A more detail ed list of the various ach elements that are present in bah techniques
along with the ways they are redised in ead individual technique is given in Table
2.1 Aswe ca seein thistable, despite the diff erences between tabu and guided locd
seach, there is common ground in many areas. This common ground may well be
utilised in the future to define amore éstrad class of methods which ore may cdl

Intelligent Searcimethods
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Tabu Search

Guided L ocal Search

Local search guidance
mechanism

modified neighbourhood, intelligent
restarts

modified cost function

Information used

mainly the moves executed but also
transition & residence frequencies an
elite solution sets

feature costs, local minima visited
o

Constraints

hard constraints on moves or
solution attributes based on move
recently executed, aspiration crite
override the hard constraints

soft constraints on moves or
solution attributes based on
transition or residence frequencies

soft constraints on solution feature
5 based on search plan for
igistributing search effort taking int
account the local gradients

n

1=

Memory Utilised

tabu lists recording attributes of
moves recently executed
frequency based memory recordin
the frequency of moves or solutior
attributes during search

memory of penalty modification
actions taken by GLS also used fd
grecording penalties on features

Intervention Period

every iteration (recency-based
memory, some types of
diversification strategies)

every N iterations or when local
search fails to discover new better
solutions (intensification strategieq
diversification strategies)

at a local minimum of the
augmented cost function

Search Objectives

avoid getting trapped in local
minima and reversing changes
created by the moves (proactive
approach).

Intensification: restart when slow
progress (reactive approach)
Diversification: examine history
and penalise moves frequently
executed or solution attributes
frequently appearing in solutions
(reactive approach)

¢ escape from local minima
(reactive approach)

in the short or long term
according to feature costs takir
into account the local gradients
(proactive approach).

» plan and distribute search effoift

—~

Intensification -
Diversification balance

The lambda parameter of GLS

controls that.

e Low lambda leads to
intensification (due to cost
function term in the augmented
cost function).

¢ High lambda leads to
diversification (due to penalty
function term in the augmented
COSt).

Neighbourhood
Reduction Mechanism

Candidate Lists Strategies

Fast Local Search fully integrated
with the diversification -

intensification mechanisms of GLS

Table2.1 Links between Guided Local Search and Tabu Search methods.
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2.10 GLSApplications

GLSisagenerdisation d GENET and as such it can be gplied with the same success
as GENET in any of the gplicaions of the latter (i.e. CSPproblems). Apart from that,
GLS has been successully applied to a set of seven problems in combinatorial
optimisation. This st includes the famous Travelling Salesman and Quadratic
Asggnment problems, the red-world problems of Radio Link Frequency Assgnment,
Workforce Scheduling, Bandwidth Packing and Maximum Channel Assgnment, and
finaly a cmntinuows Nonconvex Optimisation poblem. FLS has a'so been applied to
all these problems except for the Quadratic Assgnment Problem and the NonConwvex
Optimisation poblem. All these gplicaions of GLS and FLS are examined in this
thesis except for the Bandwidth Padking and Maximum Channel Assgnment
problems for which GLS and FLS have been applied in a way similar to that for the
Workforce Scheduling problem examined in chapter 6. However, demonstration
programs have been developed for both the Bandwidth Padking and Maximum
Channel  Assgnment problems which can be obtaned via WWW at

http://cswww.essex.ac.uk/CSP/demos.

51



Chapter 3

Travelling Salesman Problem

The Travelling Salesman Problem (TSP is one of the most famous problems in
combinatoria optimisation. In this chapter, we ae going to examine how guided locd
seach and fast locd search can be gplied to the problem. The combination d GLS
and FLS with TSPlocd seach heuristics of different efficiency and effedivenesswill
be studied in an effort to determine the dependence of GLS on locd seach.
Comparisons will be made with some of the best TSPheuristic dgorithms and general
optimisation techniques which will demonstrate the alvantages of GLS over

alternative heuristic approaches suggested so far for this problem.

3.1 TheProblem

There ae many variations of the Travelling Salesman Problem (TSP). In this work,
we eamine the dassc symmetric TSP. The problem is defined by N cities and a

symmetric distance matrix D=[d;] which gives the distance between any two cities i
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andj. Thegoal in TSPisto findatour (i.e. closed path) which visits ead city exadly
once and is of minimum length. A tour can be represented as a oyclic permutation 77
onthe N citiesif we interpret 71i) to be the aty visited after city i, i =1,... N. The cost
of a permutation is defined as:

N
Eq.3.1 9(m) = > dy

1=1

and gives the cost function of the TSP [PS82].

Recent and comprehensive surveys of TSP methods are thase by Laporte [Lap97,
Reingt [Rei94] and Johrmson & McGeoch [IM95]. The reader may also refer to
[LLKS85] for a dasscd text onthe TSP. The state of the at is that problems up to
1,000,00Cciti es are within the reat of speaalised approximation algorithms [Ben92,.
Moreover, the optimal solutions have been foundand proven for nonttrivial problems
of size up to 7397cities [IM95]. Nowadays, TSP plays a very important role in the
development and testing of new optimisation techniques. In this context, we examine

how guided local search and fast local search can be applied to this problem.

3.2 Local Search Heuristicsfor the TSP

Locd seach for the TSP is sgnonymous with k-Opt moves. Using k-Opt moves,
neighbouing solutions can be obtained by deleting k edges from the arrent tour and
reconreding the resulting paths using k new edges. The k-Opt moves are the basis of
the three most famous locd seach heuristics for the TSP, namely 2-Opt [Cro59,
3-Opt [Lin65 and Lin-Kernighan (LK) [LK73]. These heuristics define
neighbouhood structures which can be seached by the different neighbouhood

search schemes described in sedions 1.3 and 2.8, leading to many loca optimisation
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algorithms for the TSP. The neighbouhood structures defined by 2-Opt, 3-Opt and
LK are as follows [Joh90]:

2-Opt. A neighbouing solution is obtained from the aurrent solution by deleting two

edges, reversing one of the resulting paths and reconneding the tour (seeFigure 3.1).

The worst case complexity for searching the neighbourhood defined by 2@pf)is
3-Opt. In this case, three @lges are deleted. The threeresulting paths are put together

in anew way, posshly reversing one or more of them (seeFigure 3.1). 3-Opt is much

more dfedive than 2-Opt, thowgh the size of the neighbouhood (possble 3-Opt

moves) is larger and hence more time-consuming to seach. The worst case

complexity for searching the neighbourhood defined by 3-Op(ii).

aih
NI

a) 2-Opt move b) 3-Opt move c) Non-sequential 4-Opt moy

Figure 3.1 k-Opt moves for the TSP

Lin-Kernighan (LK). One would exped “4-Opt” to be the next step after 3-Opt but
adually that is not the cae. The reasonis that 4-Opt neighbous can be remotely apart
becaise “nonsequential” exchanges sich as that shown in Figure 3.1 are possble for
k = 4. To improve 3-Opt further, Lin and Kernighan developed a sophisticated edge
exchange procedure where the number k of edgesto be exchanged is variable [LK73].
The dgorithm is mentioned in the literature a the Lin-Kernighan (LK) algorithm and

it was considered for many yeas to be the “uncontested champion” of locd seach
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heuristics for the TSP. Lin-Kernighan uses a very complex neighbouhood structure
which we will briefly describe here.

LK, instead of examining a particular 2-Opt or 3-Opt exchange, is building an
exchange of variable size k by sequentially deleting and adding edges to the aurrent
tour while maintaining tour feasibility. Given noce t; in tour T as a starting point: In
step m of this squential building of the exchange: edge (t1, tom) is deleted, edge (tom,
tome1) 1S @dded, and then edge (tom«1, tame2) 1S picked so that deleting edge (tome1, tome2)
and joining edge (tzm+2, t1) will close up the tour giving tour Tr,. The edge (tome2, t1) IS
deleted if and when step n+1 is exeauted. The first three steps of this medhanism are

illustrated inFigure3.2

| R

Figure 3.2 The first three steps of the Lin-Kernighan edge exchange mechanism

As we can seein this figure, the method is esentially exeauting a sequence of 2-Opt
moves. The length of these sequences (i.e. depth of seach) is controlled by the LK’s
gain criterion which limits the number of the sequences examined. In addition to that,
limited badktradking is used to examine the sequences that can be generated if a
number of different edges are selected for addition at steps 1 and 2 of the process.
The neighbouhood structure described so far, although it provides the depth needed,

is laking breadth, pdentialy missng improving 3-Opt moves. To gain breadth, LK
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temporarily alows tour infeasibility, examining the so-cdled “infeasibility” moves
which consider various chaoices for nodes t4 to tg in the sequence generation rocess
examining al possble 3-Opt moves and more. Figure 3.3 illustrates the
infeasi bilit y-move medhanism. The interested reader may refer to the origina paper by
Lin and Kernighan for a more elaborate description of this mechanism.

ta

ts ta ts ta ts
ts tz [ \ “te
ts tg ts
to t t t1

t2 t

Figure 3.3 Lin-Kerhighan's infeasibility moves

LK is the standard benchmark against which all heuristic methods are tested. The
worst case complexity for searching the LK neighbourho@{iig).

Implementations of 2-Opt, 3-Opt and LK-based locd seach methods may vary in
performance A very good reference for efficiently implementing locd seach
procedures based on 20pt and 3Opt is that by Bentley [Ben92]. In addition to that,
Reingt [Rei94] and also Johnson and McGeoch [JM95] describe some improvements
that are commonly incorporated in locd seach agorithms for the TSP. We will refer
to some of them later in this chapter. The best reference for the LK algorithm is the
original paper by Lin and Kernighan [LK73]. In addition to that, Johrson and
McGeoch [IM95] provide agood insight into the dgorithm and its operations along
with information onthe many variants of the method. A modified LK version which
avoids the mmplex infeasibility moves withou significant impad on performanceis

described in [MM93].
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Fast locd seach and guided locd seach can be combined with the neighbouhood
structures of 2-Opt, 3-Opt and LK with minimal effort. This will become evident in
the next sedions where fast locd seach and guided locd seach for the TSP are

presented and discussed.

3.3 Fast Local Search Applied tothe TSP

A fast locd seach procedure for the TSP using 2-Opt has aready been suggested by
Bentley [Ben97. Under the name Don't Look Bits, the same gproach has been used
in the cntext of 2-Opt, 3-Opt and LK by Codenctti et al. [CMMR96] to reduce the
running times of these heuristics in very large TSPinstances. More recently, Johnson
et a. [JBMR96] also use the technique to speal upther LK variant (see[JM95)]). In
the following, we ae going to describe how fast locd seach variants of 2-Opt, 3-Opt
and LK can be developed onthe guidelines for fast locd seach presented in sedion
2.8

2-Opt, 3-Opt and LK-based locd seach procedures are seeking tour improvements by
considering for exchange eab individual edge in the aurrent tour and trying to extend
this exchange to include one (2-Opt), two (3-Opt) or more (LK) other edges from the
tour. Usually, ead city is visited in tour order and one or both® the elges adjacent to
the city are checked if they can lead to an edge exchange which improves the solution.
We can exploit the way loca seach works onthe TSPto partition the neighbouhood
in sub-neighbouhoods as required by fast locd seach. Each city in the problem may

be seen as defining a sub-neighbouhood which contains al edge exchanges

% In our work, if approximations are used such as nearest neighbour lists or fast local search then both edges
adjacent to a city are examined, otherwise only one of the edges adjacent to the city is examined.
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originating from either one of the elges adjacent to the dty. For a problem with N
cities, the neighbouhoodis partitioned into N sub-neighbouhoods, ore for ead city
in the instance Given the sub-neighbouhoods, fast locd seach for the TSPworks in
the following way (see aldéigure2.2).

Initially all sub-neighbouhoods are adive. The scanning of the sub-neighbouhoods,
defined by the dties, is dore in an arbitrary static order (e.g. from 1st to Nth city).
Eadh time an adive sub-neighbouhoodis found,it is sached for improving moves.
This invalves trying either edge aljacent to the aty as bases for 2-Opt, 3-Opt or LK
edge exchanges, depending on the heuristic used. If a sub-neighbouhood das not
contain any improving moves then it becomes inadive (i.e. bit is st to 0). Otherwise,
the first improving move found is performed and the dties (correspondng
sub-neighbouhoodk) at the ends of the edgesinvolved (deleted or added by the move)
are adivated (i.e. bits are set to 1). This causes the sub-neighbouhood where the
move was foundto remain adive and aso a number of other sub-neighbouhoods to
be adivated. The process always continues with the next sub-neighbouhoodin the
static order. If ever afull rotation aroundthe static order is completed withou making
a move, the process terminates and returns the tour found. The tour is dedared

2-Optimal, 3-Optimal or LK-Optimal, depending on the type ofié@pt moves used.

3.3.1 Local Search Proceduresfor the TSP

Apart from fast locd seach, first improvement and kest improvement loca seach
(see sedion 1.3) can also be gplied to the TSP. First improvement locd seach
immediately performs improving moves whil e best improvement (greedy) locd seach

performs the best move found after searching the complete neighbourhood.
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Fast locd seach for the TSP described above can be eaily converted to first
improvement locd seach by seaching al sub-neighbouhoods irrespedive of their
state (adive or inadive). The termination criterion remains the same with fast locd
seach: that is, to stop the seach when afull rotation d the static order is completed
withou making a move. The LK agorithm as originaly propcsed by Lin and
Kernighan [LK73] performs first improvement local search.

Fast locd seach can aso be modified to perform best improvement locd seach. In
this case, the best move is sleded and performed after al the sub-neighbouhoods
have been exhaustively seached. The dgorithm stops when a solution is readed
where no improving move can be found. The scheme is very time @nsuming to be
combined with the 3-Opt and LK neighbowhood structures and it is mainly intended
for use with 2-Opt. Considering the @owve options, we implemented seven locd
seach variants for the TSP (implementation cetail swill be given later in this chapter).
These variants were derived by combining the different seach schemes at the
neighbouhoodleve (i.e. fast, first improvement, and kest improvement locd seach)
with any of the 2-Opt, 3-Opt, or LK neighbouhoodstructures. Table 3.1ill ustrates the

variants and also the names we will use to distinguish them in the rest of the chapter.

Name L ocal Search Type Neighbourhood Type
BI-20pt Best Improvement 2-Opt

FI-20pt First Improvement 2-Opt

FLS-20pt Fast Local Search 2-Opt

FI-30pt First Improvement 3-Opt

FLS-30pt Fast Local Search 3-Opt

FI-LK First Improvement LK

FLS-LK Fast Local Search LK

Table3.1 Local search procedures implemented for the study of GLS on the TSP.
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3.4 Guided Local Search Applied tothe TSP

3.4.1 Solution Features and Augmented Cost Function

The first step in the processof applying GLS to a problem is to find a set of solution
fedures that are acourtable for part of the overall solution cost. For the TSP, a tour
includes a number of edges and the solution cost (tour length) is given by the sum of
the lengths of the algesin the tour (seeEq. 3.1). Edges are ided feaures for the TSP,
First, they can be used to define solution properties (a tour either includes an edge or
not) and seoond, they cary a st equa to the edge length, as this is given by the
distance matrix D=[d;] of the problem. A set of feaures cen be defined by
considering al possble undreded edges ; (1 = 1.N, j = i+1.N, i # ] ) that may
appea in a tour with feaure asts given by the elge lengths dj. Each edge g;
conreding cities i and city j is attached a penalty p; initially set to O which is
increased by GLS during seach. These edge penalties can be aranged in a symmetric
penalty matrix P=[p;]. As mentioned in sedion 2.5, penalties have to be cmbined
with the problem’s cost function to form the augmented cost function which is
minimised by locd seach. This can be dore by considering the auxiliary distance

matrix:

Eq.3.2 D'=D+ AP =[d;j + Alp] .

Locd seach must use D’ instead of D in move evaluations. GLS modifies P and
(through that) D’ whenever locd seach reades a locd minimum. The edges

penalised in alocd minimum are seleded acwrding to the utility function (Eg. 2.5),

which for the TSP takes the form:
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. d,
Eq.3.3 Utll(tour,eu. ) =1, (tour) G1+—

Py
where

1, € (tour
Eq.3.4 Iy (tour) = %) e Otour
! )

3.4.2 Combining GLSwith TSP Local Search Procedures

GLS as depicted in Figure 2.1 makes no assumptions abou the internal mecdhanisms
of locd seach and therefore can be combined with any locd seach algorithm for the
problem, no matter how complex this algorithm is.

The TSP locd seaches of sedion 3.3.1to be integrated with GLS need orly to be
implemented as procedures which, provided with a starting tour, return a locdly
optimal tour with resped to the neighbouhood considered. The distance matrix used
by locd seach is the auxiliary matrix D’ described in the last sedion. A reference to
the matrix D is gill needed to enable the detedion d better solutions whenever moves
are exeauted and rew solutions are visited. Thereis no real to keep tradk of the value
of the augmented cost function since locd search heuristics make move evaluations
using cost differences rather than re-computing the cost function from scratch.

Interfadng GLS with fast locd seaches for the TSP requires a little more dfort (see
also Figure 2.2). In particular, ead time we pendise an edge in GLS, the
sub-neighbourhoods correspondng to the dties at the ends of this edge ae adivated
(i.e. bits =t to 1). After the first locd minimum, cdls to fast locd seach start by
examining only a number of sub-neighbouhoods and in particular those which
asciate to the alges just penalised. Activation may spreal to a limited number of

other sub-neighbouhoods becaise of the moves performed though, in general, locd
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seach quckly settles in a new locd minimum. This dramaticdly speals up GLS,
forcing locd seach to focus on edge exchanges that remove penalised edges instead

of evaluating all possible moves.

3.4.3 How GLSWorkson the TSP

Let us now give an owerview of the way GLS works on the TSP. Starting from an
arbitrary solution, loca search isinvoked to find aloca minimum. GLS penalises one
or more of the edges appeaing in the locd minimum, using the utility function Eq. 3.3
to seled them. After the penalties have been increased, locd seach is restarted from
the last locd minimum to search for a new locd minimum. If we ae using fast locd
seach then the sub-neighbouhoodk (i.e. cities) at the ends of the elges penali sed need
also to be adivated. When a new locd minimum is found @ locd seach canna
escape from the current local minimum, penalties are increased again and so forth.
The GLS agorithm constantly attempts to remove elges appeaing in loca minima by
penalising them. The dfort invested by GLS to remove an edge depends on the elge
length. The longer the alge, the greaer the dfort put in by GLS. The dfed of this
effort depends on the regularisation parameter A of GLS. A high A causes GLS
dedsions to be in full control of locd seach, owrriding any locad gradient
information while alow A causes GLS to escgpe from locd minima with grea
difficulty, requiring many penalty cycles before amove is exeauted. However, there is
always a range of values for A for which the moves sleded am at the cwmbined
objedive to improve the solution (taking into acourt the gradient) and also remove
the penali sed edges (taking into acourt the GLS dedsions). If longer edges persist in
appeaing in solutions despite the penalties, the dgorithm will diversify its chaices,

trying to remove shorter edges too.
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As the pendlties build upfor both bad and good edges frequently appeaing in locd
minima, the dgorithm starts exploring new regions in the seach space incorporating
edges naot previously seen and therefore not penalised. The speed o this “continuots”
diversificaion d seach is controlled by the parameter A. A low A slows down the
diversificaion process alowing the dgorithm to spend more time in the aurrent area
before it isforced by the penalties to explore other areas. Conversely, a high A speals
up diversification, at the expense of intensification.

From another viewpoint, GLS redises a “seledive” diversificaion which pusues
many more doices for long edges than short edges by penalising the former many
more times than the later. This sledive diversificaion adieves the goa of
distributing the seach effort acwrding to prior information as expressed by the elge
lengths. Seledive diversificaion is snoathly combined with the goal of intensifying
seach by setting A to a vaue low enowgh to allow the locd seach gradients to
influencethe @murse of locd seach. Escgoing from locd minima cmes at no expense
because of the penalties but alone withou the goal of distributing the search effort, as
implemented by the seledive penaty modficaion mecanism, is nat enouwgh to

produce high quality solutions.

3.5 Evaluation of GLSin the TSP

To investigate the behaviour of GLS on the TSP, we mndwted a series of
experiments. The results presented in subsequent sedions attempt to provide a
comprehensive picture of the performance of GLS on the TSP. First, we examine the
combination d GLS with 2-Opt, the simplest of the TSP heuristics. The benefits from
using fast locd seach instead of best improvement locd seach are dealy
demonstrated, along with the adility of GLS to find high quality solutions in small to
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medium size problems. These results for GLS are coompared with results for Smulated
Annealing and Tabu Search when these techniques use the 2-Opt heuristic.

From there on, we focus on efficient techniques for the TSP based on GLS. The
different combinations of GLS with the locd seach procedures of Table 3.1 are
examined and conclusions are drawn onthe relation between GLS and locd seach.
Efficient GLS variants are compared with methods based on the Lin-Kernighan

algorithm (known to be the best heuristic techniques for the TSP).

3.5.1 Experimental Setting

In the experiments conducted, we used problems from the pulicly avail able library of
TSP problems, TSALIB [Rei91]. Most of the instances included in TSALIB have
arealy been solved to optimality and they have been used in many papersin the TSP
literature.

For eat algorithm evaluated, ten runs from different random initial solutions were
performed and the various performance measures (solution quality, running time €c.)
were averaged. The solution quality was measured by the percentage excessabowve the

best known solution (or optimal solution if known), as given by the formula:

solution cost - best known solution cost y
best known solution cost

EqQ.3.5 excess= 100.

Unless otherwise stated, all experiments were cmndwcted on DEC Alpha 3000600

machines (175 MHz) with algorithms implemented in GNU C++.

3.5.2 Regularisation Parameter A
The only parameter of GLS which requires tuning is the regularisation parameter A.

The GLS agorithm performed well for a relatively wide range of values when we
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tested it on poblems from TSHALIB with either one of the 2-Opt, 3-Opt or LK
heuristics. Experiments showed that GLS is quite tolerant to the dhoiceof A aslong as
A is equd to a fradion d the average elge length in good solutions (e.g. locd

minima). These findings were expressed by the following equation for calcwating

A = aEg(local nl::nlmum)
where g(local minimum) is the st of alocd minimum tour produced by locd seach

Eq.3.6

(e.g. first locd minimum before penalties are gplied) and N the number of cities in
the instance Eq. 3.6 introduces a parameter a which, although instance-dependent,
results in good GLS performance for values in the more manageéble range (0,1].
Experimenting with a, we foundthat it depends nat only on the instance but also on
the locd seach heuristic used. In general, there is an inverse relation between a and
locd seach effediveness Not-so-effedive locd seach heuristics such as 2-Opt
require higher a values than more dfedive heuristics such as 3-Opt and LK. Thisis
because the anount of penalty needed to escape from locd minima deaeases as the
effediveness of the heuristic increases and therefore lower values for a have to be
used to alow the locd gradients to affed the GLS dedsions. For 2-Opt, 3-Opt and

LK, the following ranges for a generated high quaelity solutions in the TSHLIB

problems.

Heuristic Suggested rangefor a
2-Opt 1/8<a<%
3-Opt 1/10<a<¥

LK 1/12<a<1/6

Table3.2 Suggested ranges for parameter a when GLS is combined with different TSP heuristics.

The lower bounds of these intervals represent typicd values for a that enable GLS to
escgpe from locd minima & atolerable rate. If values lessthan the lower bound are

used, then GLS requires too many penalty cycles to escgpe from locd minima. In
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general, the lower bound depend onthe locd seach heuristic used and also the
structure of the landscape (i.e. depth of locd minima). On the other hand, the upper
bound give agood indicaion d the maximum values for a that can still produce
good solutions. If values greder than the upper bounds are used then the dgorithm is
exhibiting excessve bias towards removing long edges and failing to read high
quality locd minima In general, the upper bound also depend onthe locd seach
heuristic used bu they are mainly affeaed by the quality of the information contained
in the feaure wsts (i.e. how acarate is the assumption that long edges are preferable

over short edges in the particular instance).

3.6 Guided Local Search and 2-Opt

In this :dion, we look into the mmbination d GLS with the simple 2-Opt heuristic.
More spedficdly, we present results for GLS with best improvement 2-Opt locd
seach (BI-20pt) and fast 2-Opt locd seach (FLS-20pt). The set of problems used in
the experiments consisted of 28 small to medium size TSPs from 48 to 318cities all
from TSALIB. The stoppng criterion wsed was a limit on the number of iterations not
to be excealed. An iteration for GLS with BI-20pt was considered ore locd seach
iteration (i.e. complete seach o the neighbouhood and for GLS with FLS-20pt, a
cdl tofast locd seach asin Figure 2.2 Theiteration limit for both algorithms was st
to 200,000terations. In bah cases, we tried to provide the GLS variants with penty
of resources in order to reach the maximum of their performance.

The exad value of A used in the runs was manually determined by running a number
of test runs and olserving the sequence of solutions generated by the dgorithm. A
well-tuned agorithm generates a smoaoth sequence of gradually improving solutions.

A not so well tuned algorithm either progresses very slowly (A is lower than it shoud
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Problem

GLS with BI-20pt

GLS with FLS-20pt

optimal runs | Mean Mean CPU | optimal runs | Mean Mean CPU

out of 10 Excess (%) | Time (sec) | out of 10 Excess(%) | Time (sec)
att48 10 0.0 0.77 10 0.0 0.4
eil51 10 0.0 1.62 10 0.0 0.46
st70 10 0.0 7.68 10 0.0 1.2
eil76 10 0.0 3.83 10 0.0 0.97
pr76 10 0.0 15.1 10 0.0 3.01
gr96 10 0.0 16.48 10 0.0 2.26
kroA100 10 0.0 11.27 10 0.0 1.25
kroB100 10 0.0 16.36 10 0.0 2.46
kroC100 10 0.0 12.2 10 0.0 0.74
kroD100 10 0.0 12.94 10 0.0 1.78
kroE100 10 0.0 35.68 10 0.0 2.46
rd100 10 0.0 10.75 10 0.0 2.74
eil101 10 0.0 19.49 10 0.0 2.37
lin105 10 0.0 17.46 10 0.0 2.06
pri07 10 0.0 150.28 10 0.0 5.41
pri24 10 0.0 22.47 10 0.0 1.56
bier127 10 0.0 254.36 10 0.0 24.67
pri36 9 0.0009 416.78 10 0.0 32.16
grl37 10 0.0 66.54 10 0.0 7.82
pri44 10 0.0 52.84 10 0.0 6.95
kroA150 10 0.0 257.06 10 0.0 7.03
kroB150 10 0.0 289.02 10 0.0 44.85
ul59 10 0.0 74.35 10 0.0 6.9
rat195 8 0.01 525.48 10 0.0 55.15
d198 0 0.08 1998.37 0 0.05 353.97
kroA200 10 0.0 614.6 10 0.0 50.16
kroB200 10 0.0 665.3 10 0.0 61.79
lin318 8 0.01 4484.4 9 0.005 346.44

Table3.3 Performance of 2-Opt based variants of GLS on small to medium size TSP instances.

be) or very quickly finds no more than a handful of good locd minima (A is higher

than it shoud be). The values for A determined in this way were @rrespondng to

values for a around 0.3.Ten runs from different randam solutions were performed on

ead instance included in the set of problems and the various performance measures

(excess running time to read the best solution etc.) were averaged. The results

obtained are presentedTiable3.3.

Both GLS variants foundsolutions with cost equal to the optimal cost in the majority

of runs. GLS with BI-20pt fail ed to find the optimal solutions (as reported by Reinelt

in [Rei9]] and also [Rei94]) in oy 15 ou of the total 280 runs. From ancther
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viewpoint, the dgorithm was succesgul in finding the optimal solution in 94.6% of
the runs. Ten ou of the 14 failures referred to a single instance namely d198.
However, the solutions found for d198 were of high quelity and onaverage within
0.08% of optimality.

GLS with FLS-20pt found the optimal solutions in 3 more runs than GLS with
BI-20pt, missng the optimal solutionin only 11 ou of the 280runs (96.0®%6 success
rate). In particular, the dgorithm missed oy oncethe optimal solution for lin318but
gtill found no opma solution for d198 which proved to be a relatively ‘hard’
problem for both variants. GLS using fast locd search was on average ten times faster
than GLS using best improvement locd seach and that withou compromising on
solution quality. In the worst case (att48), it was two times faster while in the best
case (kroA150) it was thirty seven times faster. Remarkably, GLS with fast locd
seach was able in most problems to find a solution with cost equal to the optimum
(aready known) in lessthan 10 seconds of CPU time on the DEC Alpha 3000600
machines used.

The results presented in this sdion clealy demonstrate the aility of GLS even when
combined with 2-Opt the simplest of TSP heuristics to find consistently the optimal
solutions for small to medium size TSPs. The use of fast locd seach introduces

substantial savings in running times without compromising in solution quality.

3.6.1 Comparison with General Methodsfor the TSP

The a&owe performance of GLS is remarkable mnsidering that GLS is nat an exad
method and that in this case it only used the short-sighted 2-Opt heuristic. Seaching
the related TSPliterature, we could na find any other approximation methods that use

only the simple 2-Opt move and consistently find ogimal solutions for problems up to
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318cities. Only the Iterated Lin-Kernighan algorithm and its variants [Joh90,IJM95,
JBMR96] share the same wnsistency in reading the optimal solutions. These
algorithms will be considered later in this chapter.

A meaningful comparison that can be made is between GLS using 2-Opt and aher
general methods that aso use the same heuristic. For that purpose, we implemented
simulated anneding [KGV83] and a tabu seach variant for the TSP suggested by

Knox [Kno94].

3.6.2 Simulated Annealing

The Simulated Anneding (SA) algorithm implemented for the TSP was the one
described by Johrson in [Joh9(Q and wses geometric cooling schedules (see sedion
1.4.7). The dgorithm generates random 2-Opt moves. If a move improves the @st of
the aurrent solution then it is always acceted. Moves that do nd improve the st of

the current solution are accepted with probability:

-A
eT

where A is the differencein cost due to the move and T is the aurrent temperature. In
the final runs, we started the dgorithm from a relatively high temperature (around
50% of moves were acceted). At eat temperature level the dgorithm was all owed to
perform a @nstant number of trials to read equili brium. After reading equili brium,
the temperature was multiplied by the @wadling rate a which was st to a high value (a
= 0.9 . To stop the dgorithm, we used the scheme with the curter described in

[JAMS89].
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3.6.3 Tabu Search

The tabu seach variant implemented was the one propased by Knox [Kno94 using a
combination d tabu restrictions and aspiration levé criteria. The method is briefly
described in here.

Tabu seach performs best improvement locd seach seleding the best move in the
neighbouhood bu only amongst thase not charaderised as tabu Determining the
tabu status of a move is very important in tabu seach and hdds the key for the
development of efficient recency-based memory (see secthn

In this tabu search variant for the TSP, a 2-Opt move is clasdfied as tabu ony if both
added edges of the exchange ae onthe tabulist. If one or both of the added edges are
not on the tabu list, then the candidate move is not classfied as tabu. Updating the
tabu list involves plaang the deleted edges of the 2-Opt exchanges performed onthe
list. If the list is full, the oldest elements of the list are replaceal by the new deleted
edge information.

In order for a 2-Opt exchange to owerride tabu status, bah added edges of the
exchange must passthe aspiration test. An individual edge passs the aspiration test if
the new tour resulting from the candidate exchange is better than the aspiration values
asciated with the edge. The aspiration values of edges are the tour cost which exists
prior to making the candidate 2-Opt move. Only edges deleted by the exchanges
performed have their values updated.

For the experiments reported here, the tabu list size was st to 3N (where N is the
number of cities in the problem) as suggested by Knox [Kno94. Tabu seach was
allowed to runfor 200,000iterations which is equivalent in terms of number of moves
evaluated to the number of iterations GLS with BI-20pt was given on the same
instances.
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Problem | GLS with FLS-20pt | Simulated Annealing Tabu Search Repeated BI-20pt
Name (200,000 iterations)
Mean Mean Mean Mean Mean Mean Mean Mean
Excess | CPU Excess | CPU Excess | CPU Excess | CPU
(%) Time (%) Time (%) Time (%) Time
(sec) (sec) (sec) (sec)
eil51 0.0 0.46 0.73 6.34 0.0 1.14 0.23 42.4
eil76 0.0 0.97 1.21 18.0 0.0 5.24 1.85 153.45
eil101 0.0 2.37 1.76 33.29 0.0 61.41 3.97 319.15
kroA100 0.0 1.25 0.42 37.36 0.0 21.34 0.34 706.35
kroC100 0.0 0.74 0.80 36.58 0.25 4.80 0.33| 1301.98
kroA150 0.0 7.03 1.86 103.32 0.03 413.06 1.41| 3290.95
kroA200 0.0 50.16 1.04 229.38 0.72 776.93 1.7 731.1
lin318 0.005 346.44 1.34 829.46 1.31| 2672.80 3.11| 9771.28

Table3.4 GLS, Simulated Annealing, and Tabu Search performance on TSPLIB instances.

3.6.4 Simulated Annealing and Tabu Search Compared with GL S

Simulated anneding and tabu seach were tested on 8instances from the greaer set of
28 instances mentioned above. The results were areraged as with GLS. Table 3.4
ill ustrates the results for simulated anneding and tabu search compared with those for
GLS with FLS-20pt on the same instances. Results are dso contrasted with the best
solution found ly repeding BI-20pt starting from random tours until a total of
200,000 local search iterations were completed.

As we can seein Table 3.4, the superiority of GLS over the tabu seach variant and
simulated anneding is evident. The tabu seach variant found easily the optimal
solutions for small problems and it scded well for larger problems. However, it was
many times dower than GLS and moreover fail ed to read the solution quality of GLS
in the larger problems. Simulated anneding had a @nsistent behaviour finding good
solutions for al problems but failed to read the optimal solutions in al but 3 runs.
All three meta-heuristics sgnificantly improved owver the performance of repeaed

2-Opt.
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3.7 Efficient GLS Variantsfor the TSP

In order to study the combinations of GLS with higher order heuristics such as 3-Opt
and LK, alibrary of TSPlocd seach procedures was developed in C++. The library
comprises all locd seach procedures of Table 3.1 and all ows combinations of GLS
with any one of these procedures. Furthermore, a number of approximations (not used
in the GLS of sedion 3.6) are adopted which further reduce the mmputation times of
locd seach and GLS as reported in sedion 3.6.In the rest of the dapter, we will
examine and report results for these efficient variants of GLS.

The most significant approximation introduced is the use of a pre-processng stage
which finds and sorts by distance the 20 reaest neighbous of ead city in the
instance 2-Opt, 3-Opt and LK were @nsidering in exchanges only edges to these 20
neaest neighbous (see &so [Rei94, IM95]). Each time the penalty was increased for
an edge, the neaest neighbou lists of the dties at the ends of the elge were reordered
though no new neighbours were introduced.

To reduce the cmputation times required by 3-Opt, 3-Opt was implemented as two
locdity seaches ead of which looks for a “short enowgh” edge to extend further the
exchange (see[Ben97 for details). The LK implementation was exadly as proposed
by Lin and Kernighan [LK73] incorporating their lookahead and badktrading
suggestions (i.e. badtradking at the first two levels of the sequence generation,
considering at ead step oy the five smallest and available candidate edges that can
be alded to the tour and taking into ac@urt in the seledion d the elges to be alded
the length of the edges to be deleted by these additions).

The library is portable to most UNIX madines though experiments reported in here
were solely performed on DEC Alpha workstations 3000600 (175 MHz) using a
library executable generated by the GNU C++ compiler.
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The set of problems used in the evaluation d the GLS variants included 20 problems
from 48 to 1002 cities al from TSALIB. For ead variant tested, 10 runs were
performed and 5minutes of CPU time were dlocaed to ead algorithm in ead run.
To measure the successof the variants, we mnsidered the percentage excessabowve the
optimal solution as in Eqg. 3.5 The normalised lambda parameter a was provided as
inpu to the program and A was determined after the first locd minimum using Eq.
3.6. For GLS variants using 2-Opt, a was st to a = 1/6 whil e the GLS variants based
on 3Opt used the dlightly lower value a = 1/8 and the LK variants the even lower
value a = 1/10. The full set of results for the various combinations of GLS with locd

search can be found in Appendix A. Next, we focus on selected results from this set.

3.7.1 Resultsfor GLSwith First Improvement Local Search
Figure 3.4 graphicdly ill ustrates the results for the first improvement versions of

2-Opt, 3-Opt and LK when combined with GLS. In this figure, we see that the
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Figure 3.4 Performance of GLS variants using first improvement local search procedures
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combination d GLS with FI-30pt and FI-LK significantly improves over the
performance of GLS with FI-20pt espedally when applied to large problems. FI-LK

combined with GLS achieved the best performance amongst the three methods tested.

3.7.2 Resultsfor GLSwith Fast L ocal Search

Figure 3.5graphicdly ill ustrates the results obtained for GLS when combined with the
fast locd seach variants of 2-Opt, 3-Opt and LK. GLS with FI-LK (foundto be best
amongst the first improvement versions of GLS) is also displayed in the figure & a
point of reference In this figure, we can seethat the fast locd seach variants of GLS
are much better than the best of the first improvement locd seach variants (i.e.
GLS-FI-LK). Ancther far more important observation is that for fast locd seach the
2-Opt variant is better than the 3-Opt variant which in turn is better than the LK
variant. Thisis exadly the oppasite order than ore would have expeded. One posshle
explanation can be derived by considering the strength of GLS. More spedficdly,

FLS-20pt alows GLS to perform many more penalty cycles in the time given than its
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FLS-30pt or FLS-LK counterparts. More GLS penalty cycles £an to increase
efficiency at a level which ouweighs the benefits from using a more sophisticaed
local search procedure such as 3-Opt or LK.

The remarkable dfeds of GLS onlocd seach are further demonstrated in Figure 3.6
where GLS with FLS-20pt is compared against Repeaed FLS-20pt and Repeaed
FI-LK. In Repeaed FLS-20pt and Repeded FI-LK, locd seach is smply restarted
from a randam solution after a loca minimum and the best solution found oer the
many runs is returned. These two algorithms along with ather versions of repeded
locd seach were tested under the same settings with the GLS variants. Appendix A
includes the full set of results for repeaed locd seach. In Figure 3.6, we can seethe
huge improvement in the basic 2-Opt heuristic when this is combined with GLS. GLS
is the only technique known to us which when applied to 2-Opt can ouperform the

Repeaed LK algorithm (and that withou requiring excessve anourts of CPU time)

as illustrated in the same figure.
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Figure 3.6 Improvements introduced by the application of GLS to the simple FLS-20pt
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3.8 Comparison with Specialised TSP algorithms

3.8.1 Iterated Lin-Kernighan

The Iterated Lin-Kernighan algorithm (not to be confused with Repeded LK) has
been proposed by Johnson [Joh9(Q and it is considered to be one of the best if not the
best heuristic dgorithm for the TSP[IM95]. Iterated LK uses LK to oltain afirst locd
minimum. To improve this locd minimum, the dgorithm examines other locd
minimum tours “nea” the aurrent loca minimum. To generate these tours, Iterated
LK first applies a randam and unbased nonsequential 4-Opt exchange (see Figure
3.1) to the aurrent locd minimum and then optimises this 4-Opt neighbou using the
LK algorithm. If the tour obtained by the process(i.e. randam 4-Opt followed by LK)
is better than the aurrent locd minimum then Iterated LK makes this tour the arrent
locd minimum and continues from there using the same neighbou generation
process Otherwise, the aurrent locd minimum remains as it is and further random
4-Opt moves are tried. The dgorithm stops when a stoppng criterion lbased either on
the number of iterations or computation time is stisfied. Figure 3.7 contains the

original description of the algorithm as given in [Joh90].

1. Generate a random tolir

2. Do the following for some prespecified numbkof iterations:
2.1. Perform an (unbiased) random 4-Opt mové&,aybtainingT' .
2.2. Run Lin-Kernighan of’, obtainingT".
2.3. If length{") < length "), setT =T".

3. ReturnT".

Figure 3.7 Iterated Lin-Kernighan as described by Johnson in [Joh90]
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The randam 4-Opt exchange performed by Iterated LK is mentioned in the literature
as the “doule-bridge” move and days a diversificdion role for the seach process
trying to propel the dgorithm to a different areaof the seach spacepreserving at the
same time large parts of the structure of the aurrent locd minimum. Martin et al.
[MOF92] describethisadionasa “kick” and show that can be dso used with 3-Opt in
the placeof LK. The same aithors aso suggest the combination d the method with
Simulated Anneding (Long Markov Chains method). Martin and Otto [MO96] further
demonstrate the dficiency of this last algorithm on the TSP and also the Graph
Partitioning problem though they admit that simulated anneding does not significantly
improve the method for TSP problems up to 783 cities. Finaly, Johnson and
McGeoch [IM95] review Iterated LK and its variants and provide results for both
structured and random TSP instances.

Iterated LK or Iterated 3-Opt share some of the principles of GLS in the sense that
they produce asequence of diversified locd minima though this is condwcted in a
randam rather than a systematic way. Furthermore, iterated locd seach accepts the
new solution, poduced by the 4-Opt exchange and the subsequent LK or 3-Opt
optimisation, orly if it improves over the aurrent locd minimum (or it is dightly
worse in the case of Large Markov Chains Method which uses simulated annealing) .
Iterated LK outperforms Repeded LK previously thought to be the “champion” of
TSP heuristics and also long smulated anneding runs [MO96]. More recent
experiments dow that even sophsticaed tabu seach variants of LK canna improve
over Iterated LK [ZD95] which rightly deserves the title of the “champion” of TSP
meta-heuristics.

To compare Iterated LK and its other variants such as Iterated 3-Opt with GLS, we
extended ou C++ library mentioned abowve to alow the iterated locd seach scheme
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to be cmbined with the locd seach procedures of Table 3.1 included in the library.
In perticular, a randam and unbased Doulle-Bridge (DB) move was performed in a
locd minimum. The solution oliained was optimised by either one of the procedures
of Table 3.1 before compared against the aurrent locad minimum. The new solution
was accepted orly if it improved owver the aurrent locd minimum. To combine iterated
locd seach with fast locd seach procedures, we adivated the sub-neighbouhoods
correspondng to the dties at the ends of the alges involved in the Doulde-Bridge
move (see &so [CMMR96]). The dowve etensions to the library made available a
general meta-heuristic method applicable to al the locd seach procedures of Table
3.1 We will refer to this method as the Double-Bridge (DB) meta-heuristic.

We tested al the possble combinations of the DB meta-heuristic with the locd
seaches of Table 3.1 (except for BI-20pt) on the set of 20 problems used to test the
GLS combinations. The same time limit (5 minutes of CPU time on DEC Alpha
3000600 madines) was used and ten runs were performed on ead instance in the
set. The percentage excesswas averaged in eat problem for eaty DB variant. The
best combination poved to be that of the DB heuristic with FLS-LK which
outperformed DB with FI-LK (this last algorithm is roughly the same with the original
method popaosed by Johnson [Joh9Q). The results for the various combinations of

DB with local search are included in Appendix A.
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Problem Mean Excess (%) over 10 runs
GLSwith FLS-20pt DB with FLSLK |DB with FI-LK |Repeated FI-LK

att48 0 0 0 0
eil76 0 0 0 0
kroA100 0 0 0 0
bier127 0 0 0 0.0301
kroA150 0 0 0 0.0022¢
uls9 0 0 0 0
kroA200 0 0 0 0.02452
gr202 0 0 0.00921 0.14143
gr229 0.00431 0.00475 0.014172 0.09771
il262 0.00421 0 0.01682 0.05467
lin318 0.02641 0.2407¢ 0.25578 0.62957
gr431 0.02392 0.2223¢ 0.3327 0.67964
pcb442 0.04431 0.08173 0.06637 0.48525
att532 0.08994 0.08163 0.22507 0.53023
us74 0.14144 0.0924 0.1143¢ 0.73838
rat575 0.09892 0.09745 0.1373]1 0.80762
gr666 0.20628 0.17587 0.4188¢ 0.83762
u724 0.16822 0.16655 0.35696 0.93367
rat783 0.16125 0.1533]1 0.24075 1.00045
pr1002 0.62063 0.44633 1.047472 1.5046
Average Excess 0.07949 0.08816 0.16178 0.42488

Table3.5 GLS with FLS-20pt compared with variants of Iterated Lin-Kernighan.

Table 3.5 presents the results obtained for DB with FLS-LK and DB with FI-LK
compared with those for GLS with FLS-20pt foundto be the best GLS variant. As a
point of reference we dso provide results for FI-LK when repeaed from randam
starting points and for the same amourt of time. Aswe can seein Table 3.5, GLS with
FLS-20pt is better on average than bah DB with FLS-LK and DB with FI-LK. The
solution quality improvement over these methods athouwgh small it i s very significant
given that these methods are anongst the best heuristic techniques for the TSP. Note
here that GLS with FLS-20pt is by far a smpler method requiring only a fradion d
the programming effort required to develop the DB variants based on LK.

To further test GLS against the DB variants of LK, we used a set of 66 TSALIB
problems from 48 to 2392cities but this time we performed longer runs lasting 30
minutes of CPU time eab. This amourt of time on the DEC Alpha madcines used
trandates to many hous of CPU time on an average PC where most of these
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algorithms are most likely to be utilised. Because of the large number of instances
used and the long time the dgorithms were dlowed to run, ore run was performed on
each instance. The results from the experiments are preseiioae3.6.

Even in these longer runs, GLS with FLS-20pt still finds better solutions than the DB
variants of LK. This result is of grea significance since it further suppats our claim
that the gplication d GLS on FLS-20pt succesdully converted the method to a
powerful algorithm. As we can seein Table 3.6, the method is able to compete and
even outperform highly specialised heuristic methods for the TSP.

The relative gains from the GLS and also DB meta-heuristic ae further ill ustrated in
Figure 3.8 In this figure, we give the ésolute improvement in average solution
quality (i.e. excessabowve the optimal solution) by the GLS and DB variants over the

corresponding repeated local search variants in the set of 20 problems from TSPLIB.

5.14

EDB Improvement
B GLS Improvement

2.962.98

Absolute |mprovement
M ean Excess of Repeated L ocal Search (%) -

Mean Excess of GLS or DB Variant (%)

H
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1dog-s14
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Figure 3.8 Improvements in solution quality by the GLS and DB meta-heuristics in a set of 20 TSPLIB
problems
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