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Abstract

Genetic algorithms (GAs) are generally considered to be unsuitable for constraint based problems,

particularly those with tight constraints. Some researchers have developed specialised techniques

for solving specific groups of problems. In this research we contribute to this work by developing

a flexible generic GA which can exploit problem constraints. The GA has been designed to

tackle and exploit an important class of optimisable constraint based problems, namely partial

constraint satisfaction problems (PCSPs). This new GA is a strategy which incorporates an

adaptive template type crossover and hill-climbing component (HC). This GA strategy which we

call GAcSP, combines the robust global power of the GA with the specialist power of the

HC to form a powerful combination - the GA finds the hills and the HC climbs them. A

crossover operator has been developed which has a learning capacity which can exploit problem

constraints. The ability of GAcSP is demonstrated by tackling two distinct problems, namely the

processors configuration problem and the car sequencing problem. Both problems are NP-hard,

and represent a serious challenge to GAcSP. Results from these experiments show that GAcSP

can out-perform specialised approaches, is not deterred by problem size, and not limited to

tackling solvable problems only. The GAcSP strategy provides an effective tool for tackling a

class of PCSPs. The power of GAcSP is due to the optimal balance of work between GA

and HC by exploiting the abilities of both components. This synergistic combination between

GA and HC gives the GAcSP flexible powers in tackling larger problems. 
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Chapter 1  Introduction 

1.1  Project Motivation And Objective

Constraint satisfaction problems (CSPs) can be found in many application areas of AI - instances

include boolean satifiability, scene labeling, graph isomorphism, scheduling to name a few. Research

into CSPs is motivated by the need to provide efficient methods to tackle them. In CSPs the

requirement is to find a single solution, a number of solutions or all solutions which satisfy

the constraints. In many applications the requirement is not just to find solutions but to find

an optimal solution, where optimality is measured by some application specific cost function.

Resource allocation in scheduling is an optimisable constraint satisfaction problem (CSOP) which

requires the allocation of resources to jobs or machines to jobs in the most cost effective way.

However, in general, CSOPs are NP-hard and techniques used to tackle them suffer from

combinatorial explosion (i.e. search space grows exponentially). The size of the search space in

combinatorial problems can prevent conventional general search methods (which lack focus) from

being useful, due to the time taken to find solutions. CSOPs can be considered to belong to

a category of CSPs where all solutions are required, because in principle cost function values

of all solution tuples must be compared. With tightly constrained CSOPs problem reduction can

be used to prune off parts of the search space. Loosely constrained CSOPs are likely to be

more difficult because less of the search space can be pruned, therefore the number of possible

solutions could be larger.

A Branch and Bound (B&B) algorithm with a good heuristic which can give an accurate

estimation of the cost function could be used, but would be unlikely to be able to solve very

large problems [Tsang, 1993]. Also heuristics are domain specific, and good heuristics are

sometimes difficult or expensive to find. We believe stochastic search can provide a useful

alternative to methods such as B&B in tackling combinatorial CSOPs, where optimality can be

sacrificed for speed. Stochastic search is a class of search methods which have an element of

randomness and use heuristics to guide the search from one point in the search space to

another. The Genetic Algorithm (GA) is a robust stochastic algorithm, which has been found

to be successful in combinatorial search [Mühlenbein, 1989; Cleveland and Smith, 1989]. Earlier
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work has also found that GA is a promising approach to tackling loosely constrained CSOPs

[Tsang and Warwick, 1989]. 

Furthermore, in "real-world" problems, complex constraints cannot always be completely satisfied.

These unsolvable optimisation problems form a class of problems which we refer to as partial

constraint satisfaction problems (PCSPs), where the objective is to violate as few constraints as

possible. We are primarily motivated by the need for an efficient flexible search strategy for

tackling scheduling problems. Our objective in this research is to design and empirically test a

generic search strategy based on stochastic search which can tackle a class of PCSPs, which

includes solvable and unsolvable CSOPs. We believe a successful approach can be achieved by

the combination of a robust GA with local improvement which will provide a strategy with the

ability to efficiently exploit PCSPs. 

1.2  Introduction 

Genetic algorithms are generally considered to be unsuitable for constraint based problems,

particularly those with tight constraints [Goldberg, 1989]. Some researchers have developed

techniques for solving specific groups of problems with numerical constraints [Michalewicz et al.,

1989; Richardson et al., 1989; Siedlecki and Sklansky, 1989]. Our goal in this research is to

design a flexible GA, to tackle an important class of constraint based problems, namely PCSPs.

Research has already indicated that GAs could provide a useful approach for tackling CSOPs

[Tsang and Warwick, 1989]. In order to exploit the features of PCSPs, a new GA strategy has

been designed which incorporates a template type crossover and hill-climbing component (HC).

This GA strategy which we call GAcSP, combines the robust global power of the GA with

the specialist power of the HC to form a powerful combination - the GA provides HC with

promising search space points. The HC component can exploit domain specific knowledge without

compromising its generic ability. A crossover operator has been developed which has a learning

capacity which can exploit problem constraints. The ability of GAcSP is demonstrated by tackling

two distinct problems, namely the processors configuration problem and the car sequencing

problem. Both problems are NP-hard, and represent a serious challenge to GAcSP. Results

from experiments show that GAcSP can out-perform specialised approaches, is not deterred by
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problem size, and not limited to tackling solvable problems only. The GAcSP strategy provides

an effective tool for tackling a class of PCSPs. The power of GAcSP is due to the optimal

balance of work between GA and HC which exploits the abilities of each component. This

synergistic combination between GA and HC gives the GAcSP flexible powers in tackling larger

problems. 

1.3  What Is PCSP ?

1.3.1  Partial Constraint Satisfaction Problems (PCSPs)

1.3.1.1  PCSP Introduction

Many artificial intelligence and computer science problems are instances of CSPs [Tsang, 1993].

These include scene labeling, graph isomorphism, boolean satifiability, graph colouring and

scheduling (especially resource allocation). The CSP is known to be NP-complete and requires

heuristic techniques to solve it. The efficiency of CSP solving techniques can be improved by

using heuristics to guide the process [Meseguer, 1989]. In this research we use a heuristic

approach assisted by local improvement techniques. 

The CSP has a finite set of variables, each variable has a finite domain of values and there

is a finite set of constraints. A solution tuple is an assignment of a value to each variable

(from their respective domains) satisfying the constraints. The PCSP is an optimisation problem,

where a solution tuple is an assignment of any value from each variable domain and an

objective function g can be defined which maps every solution tuple to a numeric value. The

PCSP with a solution tuple satisfying the constraints is equivalent to CSP. Otherwise, the

requirement for PCSPs where the constraints cannot be satisfied is to find the best solution

tuple which minimises or maximises the objective function. If there is a solution tuple for a

PCSP which satisfies the constraints then it is equivalent to a CSP. 

˚ Definition 1.1 (CSP)  A constraint satisfaction problem (CSP) is a triple: 

(Z, D, C),

where Z = set of variables {x1, x2, ..., xN} 
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D = set of discrete domains for each variable in Z {v1, v2, ..., vN} 

and C = set of constraints on arbitrary subsets of variables in Z, restricting the values that

they can take together. 

Each discrete variable xi has a domain vi = {vi1, vi2, ..., vik} where the cardinality k =

 vi . 

If in addition to the CSP, we include the requirement that g is a function which maps every

solution tuple to a numeric value we have a PCSP, formally defined as: 

˚ Definition 1.2 (PCSP) A partial constraint satisfaction problem (PCSP) is a quadruple: 

(Z, D, C, g).

1.3.1.2  PCSP Features

We can identify important features for problems formalised as PCSPs. These features can be

exploited by specialised algorithms which include the GAcSP. These main features are: 

˚ Definition 1.3 (Search Space) The GA search space is a network, where nodes are solution

states and arcs the means to move between solutions. 

(1) The PCSP search space is finite. 

(2) If the variables are ordered then the search space is a tree with a depth equal to the

number of variables and the width at a level, is equal to the domain size of the corresponding

variable. 

(3) Sub-trees may have similar depth and width.

(4) Because constraints represent relationships between variables, the effect of assigning a value

to one variable can be propagated to others. 

(5) Constraint relationships can lead to feasible and infeasible regions in a search space. 

These features are used to motivate the design of the GAcSP strategy as a specialised algorithm
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for PCSPs. We shall be exploring the GAcSP design issue in Section 2.1. 

1.4  What Is A GA

1.4.1  GA Background

1.4.1.1  Introduction

GAs may out-perform both specialised and random search methods on complex search spaces

[De Jong, 1975]. They efficiently exploit representation information to speculate on new search

points with expected improved performance, and differ from other optimisation methods by

working on parameter coding not parameters themselves, searching from a population of search

points, using objective function information not domain specific knowledge, and using probabalistic

rules for moving from one state to another state rather than deterministic. 

1.4.1.2  Origin Of The GA

John Holland established the field of GAs with the publication in 1975 of Adaptation in Natural

and Artificial Systems. The fundamental contribution was the use of binary strings to represent

complex structures and the application of transformations to improve them. The GA could evolve

a population of binary strings by simple, yet powerful, syntactic actions upon them. With certain

search space conditions the GA would tend to converge on solutions which were at or close

to the global optimum. Holland recognised however that non-linearity or false peak (i.e. epistasis)

represented an obstacle to adaptation. 

Holland’s goals were to abstract and explain the adaptive processes of natural systems and

design artificial systems software that used these mechanisms. One important theme of subsequent

research has been robustness, where GAs was to provide effective, efficient search across a

broad range of problems, and not be limited by restrictive assumptions about the search space

(assumptions concerning continuity, derivatives, unimodality etc.). In order to provide effective

and efficient search, the balance between discovering new knowledge and exploiting what is

known must be controlled. 
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1.4.1.3  Exploitation Versus Exploration

There is a conflict between exploiting what is known and obtaining new information, where

both activities cannot be undertaken simultaneously (e.g. q-armed bandit problem). That is, trials

which only exploit the observed best, can result in perpetuating an error. Or trials which are

only allocated to reducing error, can result in a loss of performance. GAs must balance the

need to exploit the observed best and the need to explore which maintains an optimal

performance. Holland has shown [Holland, 1973; 1975] that a GA can maintain a near optimal

balance between robustly searching the space to discover better solutions (exploration) (e.g. a

pure robust method is random search), and using current but localised knowledge as in hill

climbing (exploitation). A GA is based on the simple heuristic that the best solutions are found

in regions of the search space containing good solutions and that these regions can be identified

and sampled. We consider the basis for this important assumption in analysing how a canonical

or simple GA works. 

1.4.1.4  Canonical GA

The canonical [Schaffer, 1987] or simple GA [Goldberg, 1989] (SGA) developed from Holland’s

work, has three main operators reproduction, crossover and mutation. This simple model of GA

has the following assumptions: 

˚ Definition 1.4 (Binary string Sbin) Binary strings may be represented symbolically as a string

Sbin, composed of l binary integers, Sbin = b1,b2,...,bl, where bi ∈  {0, 1} for i = 1, 2,

..., l. 

• (a) Binary strings are fixed length. 

˚ Definition 1.5 (String population P(t) At time (or generation) t there is a population P(t)

of n individual strings Sp
bin, where p = 1, 2, ..., n.

• (b) A finite dynamic population of strings as a database of points representing what is

known about the search space.
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˚ Definition 1.6 (String fitness) The fitness of a string is the optimisation function value

referred to in GAs as the evaluation function or fitness function. 

• (c) Each string has a relative ability (fitness) to survive and produce offspring. 

The fact that GAs make few assumptions about their problem domain (weak) make them useful

to a broad range of problems. GAs can be a powerful, broad based method using local

information. However, they may not provide a superior performance to specialised techniques

which exploit available domain knowledge. Opportunities do exist to use problem specific knowledge

in the GA operators but at the cost of becoming domain specific. 

˚ Definition 1.7 (Non-overlapping) A non-overlapping population is where the number of

offspring generated each GA cycle is equal to the population size. 

Figure 1.1 outlines the control flow of the SGA and is described in the following details.

During initialisation, a random population of binary strings is generated. The three operators

reproduction, crossover and mutation act upon this population of strings for each cycle (or

generation) of the GA. Reproduction generates a mating pool matepool  of potential parents by

selecting strings from the population with a bias towards fitter strings (low fitness for minimisation

problems). The first stage of the one-point crossover operator randomly selects two parent strings

from the matepool. For the second stage the parent strings are cut at a randomly selected

point and corresponding sections from each parent are exchanged, generating two offspring. A

mutation operator is used with a low probability to change an offspring string element. The

process of selecting parents and creating offspring continues until a new population is generated

and is described as non-overlapping or generational. The Schemata Theorem of GAs allows us

to quantify and predict the behaviour of the SGA. 

1.4.2  The Schemata Theorem Of GAs

Holland [1975] recognised an important feature from biology - that, an individual can influence

the future development of a population by surviving to reproduce. In our artificial setting we

can quantify this notion of survival using the Schemata Theorem (or Fundamental Theorem)

presented formally below: 
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˚ Definition 1.8 (Schema) A schema H describes a subset of strings with similarities at certain

string positions. 

The power of the GA comes from the processing of string similarities (templates), called

schemata (singular schema). We can define a schema H over the alphabet {0, 1, #}, where

the metasymbol "#" is a pattern matching device which can match 0 or 1. For example, the

length l = 4 schema H = #1#0, describes a subset of strings {0100, 0110, 1100, 1110}.

Where the subset of strings have similarities at positions 2 (b2 = 1) and 4 (b4 = 0).

Furthermore, the fitness f(H) for schema H is the average fitness of the subset of strings it

describes. 

For binary strings of length l there are (k+1) l schemata, where alphabet valency k = |{0,

1}|. The number of unique schemata in a binary string is 2l and depending upon diversity

the number in a n string population will be between 2l and n . 2l. 

Two properties of schema are schema order and defining length. 

˚ Definition 1.9 (Schema Order) The order o(H) of a schema H, is the number of fixed

positions (i.e. 0’s or 1’s) in H. For example, o(#1#0#) = 2. 

˚ Definition 1.10 (Schema Defining Length) The defining length δ(H) of a schema H is the

distance between the first and last fixed positions. For example, δ(#1#0#) = 2. 

At time t there are m examples of schema H contained in population P(t). During reproduction

a string Spbin is copied according to its fitness fp with probability ρp = fp / favg, where 

                                                                                           n
                                                                            favg =  ( ∑      fp  ) / n.                                                                   (1.1)
                                                                                           p =  1

After picking a non-overlapping population of size n with replacement from the population P(t),

we expect to have m(H, t+1) representatives of the schema H in the population at time t+1

according to the reproductive schema growth equation: 

                                                                                                              f( H )
                                                              m( H, t+ 1 ) ³   m( H, t  ) .               .                                                         (1.2)
                                                                                                               favg

Chapter 1  Introduction 9



Schemata growth depends upon the ratio of schema fitness to the population average fitness.

Above average schemata will generate an exponentially increasing number of copies with those

below average decreasing. The survival of schemata also depend upon the disruptive effects of

crossover and mutation. 

Consider the second stage of the one-point crossover operator which randomly selects a point

at which to cut the parent strings. There are l - 1 possible crossover sites for selection. The

probability that a schema H is disrupted will depend upon the order o(H) and the defining

length δ(H). The more fixed positions and the further apart they are, the more likely a schema

will be disrupted. An estimate of schema H survival is where it is destroyed with probability

ρd = (δ(H) / (l - 1)) and survives with probability ρs = (1 - ρd). Generally, a lower bound

for schema H surviving crossover, where ρc is the probability of crossover being performed, is

                                                                                                 δ( H )
                                                                       ρs  ³     1 - ρc .             .                                                                        (1.3)
                                                                                                    l - 1

More accurate estimates depend upon whether crossover is carried out between identical or

complementary strings. Also, string gains [Bridges and Goldberg, 1987] can result from crossover,

where new schemata can be created. 

With mutation, each string value survives with probability (1 - ρm), where ρm is the mutation

probability. Each string value is independent for each of the o(H) fixed positions the schema

survives with probability (1 - ρm)o(H) . For small values of ρm < 1 the schema survival probability

can be approximated by  1 - o(H) . ρm. [Goldberg, 1989] 

The crossover survival rate and the disruptive effect of mutation can be combined to give an

estimate for the survival of schema H due to these operators as 

                                                                                                δ( H )
                                                                          ρs  ³   1 - ρc.                - o( H )ρm.                                                    (1.4)
                                                                                                   l - 1

To obtain a more accurate estimate for the growth of schema H, taking into account the

disruptive effect of crossover and mutation, we have the Schemata Theorem or Fundamental
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Theorem of GAs: 

Theorem 1.1 (Schemata Theorem)

                                                                           f ( H )          δ( H )
                            m( H, t+ 1 ) ³  m( H, t ) .                .  (                  -   ( 1 - o( H ) . ρm ) ) .                                (1.5)
                                                                             favg           1 - ρc . l 

˚ Definition 1.11 (Building Blocks) Building blocks are high fitness schemata with short defining

length. [Goldberg, 1989] 

We can use the Schemata Theorem to predict that short high fitness schemata will increase

exponentially, from one generation to the next. These schemata are important building blocks

in the search for optimal solutions. 

˚ Definition 1.12 (Implicit Parallelism) Implicit parallelism is the parallel processing of schemata,

estimated by Holland as O(n3) for a population of n strings. [Goldberg, 1989] 

This exponential increase of building blocks is termed implicit parallelism and the GA effectively

samples from the set of hyperplanes in proportion to its observed fitness in relation to the

population average. Holland’s [1975] O(n3) schemata processing estimate, means that through the

processing of only n string structures each generation, a GA processes something like n3

schemata. 

Pioneering work by Bagley [1967] and Rosenburg [1967] support the claim of building block

hypothesis by empirical work. The development of Walsh functions by Bethke [1981] has given

an efficient analytical method for determining average schemata fitness values. 

The notion of the hypercube and hyperplanes is a useful aid to visualise the mathematical

principles behind implicit parallelism. Consider the hypercube in Figure 1.2, which is a

three-dimensional vector space for l = 3 length binary strings and schemata. The corners of

the hypercube represent search space points or order 3 schemata. Hypercube planes represent

order 1 schemata and lines order 2 schemata. According to the Schemata Theorem, given an

GA processing a population of binary strings, the GA is processing hyperplane schemata

information. This result can be generalised to an l-dimensioned hyperplane binary search space.
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Although, the Schemata Theorem supports the idea of the growth of above average, short

defining length schemata, it does not provide details on how this assists the GA in finding

optimal solutions. The Schemata Theorem would suggest that long, highly fit schemata are on

a decline in a population due to the crossover and selection mechanism. It is conjectured

[Whitley and Kauth, 1989], that a threshold phenomena occurs, when the number of similar

short schemata reach a critical mass in the population, at this point the probability of creating

long schema of interest will become dominant. Moreover, if the short schemata accurately reflect

the optimisation of the search space, optimal long schemata will emerge, otherwise peak to a

sub-optimal optimum. 

             Figure 1.2: Hypercube for length l =  3 binary string 
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1.4.3  Representations

1.4.3.1  Why Binary Representations ?

˚ Definition 1.13 (Binary-coded) Binary-coded representations are where the fundamental elements

which comprise the representation are selected from the alphabet {0, 1}. 

As we have already seen, the use of binary representations is supported by the Schemata

Theorem and the simple GA. The binary string was accepted early on as the best way to

maximise the implicit parallelism inherent in the GA. Goldberg’s principle of minimal alphabets

(given below) encouraged this view. There are a number of reasons why binary representations

have dominated GA research including the simple analysis of binary vectors, the elegance of

GA operators, and the requirements of computational speed. 

Holland contends that a representation should have the following characteristics: 

(1) Representation elements are not position dependent.

(2) There is a small number of values at each position.

(3) The representation can define sufficient schemata.

Characteristics (1) and (2) have been demonstrated analytically and empirically for binary strings

[Holland, 1975; Bethke, 1980; Goldberg, 1989]. Characteristic (3) ensures the representation does

not restrict the search, by making sure it is not prevented from accessing any part of the

search space (i.e. complete search). 

Goldberg’s [1989] principles of minimal alphabets for representation designers follow on from,

and support, Holland’s. The first principal of meaningful building blocks suggests that a coding

should be selected, so that short, low-order schemata are relevant to the underlying problem

and relatively unrelated to schemata over other fixed positions. When using binary strings this

principal can be checked using Walsh transforms, which map the binary string to a real

parameter space. However it may not be practical to do so, depending on the size of the

problem, where there will be 2l coefficients to calculate. The second principal of minimal

alphabets suggest that the smallest alphabet should be selected that permits a natural expression

of the problem. 
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The Schemata Theorem suggests that small alphabets maximise the number of schemata available

for GA processing. The maximum number of schemata MaxSc per bit of information in a string

coded over an alphabet of cardinality k may be calculated [Goldberg, 1989] as: 

                                                              MaxSc =  log2k √ k +  1.                                                                                (1.6)

Maximising this expression with respect to k and holding the constraint that alphabets must be

cardinality 2 or greater, the optimal cardinality is k = 2. [Goldberg, 1989]

We can understand the difference between binary and real-coded (i.e. non-binary) alphabets in

an intuitive way by recognising there are more possible hypotheses in a string using binary

alphabets. For example, 101 in binary rather than a real-coded value 5, because the fitness

could be due to the middle 0 or the first 1 in the binary. 

1.4.3.2  Why Large Alphabets ?

˚ Definition 1.14 (Real-coded) Real -coded representations are constructed from fundamental

elements other than the binary alphabet {0, 1}. 

The recent impetus for the use of real-coded representations arose from Weinburg’s 1970 thesis.

(Earlier research carried out by Selfridge [1959], and Friedman [1959] used real-coded genes

in an adaptive context.) Research that followed, by Bosworth, Foo, and Zeigler [1972], and

Bethke [1981] did not attempt to incorporate Holland’s Schemata Theory. Empirical evidence to

support the use of real-coded representations may have attracted the interest of other researchers

to use GAs. The reluctance by the AI community to embrace this may be partly due to the

fact that much of GA research has considered only simple binary representations, whereas most

AI research uses more complex representations. There is a trade-off between the speed of

binary string GA applications and slower GAs based on more complex representations. 

˚ Definition 1.15 (Traveling Salesman Problem (TSP)) An NP-complete problem with the task

of finding the shortest distance between N cities, visiting each once and ending at the

starting point. 

There are many problems which cannot be expressed in terms of a simple binary alphabet,

and still be amenable to the standard genetic operators. There are two main reasons. Since
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the number of possible actual interpretations is unlikely to be a power of two, some interpretations

will be redundant, weighting the possible choices unevenly. Also, some mutations are extremely

unlikely (e.g. hamming cliffs, see (b) below). Many problems therefore require more sophisticated

data structures and GA operator modifications. The data structure is intimately involved in

controlling the behaviour of the task. The difficulty with simple linearising data structures,

mapping them (encode) into the GA string representation, then reverse the process (decode)

to produce new structures can be seen with representation issues in the Travelling Salesman

Problem (TSP) [Goldberg and Lingle, 1985; Grefenstette et al., 1985; Oliver et al., 1987; Whitley

et al., 1989]. 

˚ Definition 1.16 (Hamming Cliffs) Hamming cliffs are where the binary representations for

adjacent integers differ in every fixed position. For example, integers 31 and 32, and their

corresponding binary representations 01111 and 10000. 

Possible reasons for using real-coding are: (1) "Comfort" with one gene to one variable

correspondence - This is more psychological than technical [Goldberg, 1990]. (2) Avoidance of

hamming cliffs and other artifacts of mutation - Binary coded GAs can be stopped from

reaching a points in the search space by hamming cliffs. Consider the problem where the

optima is 100, and schema fitness f(0##) > f(1##), then the part of the search space for

binary strings with 0 in the first position will be above average causing the GA to converge

to say 011. Although 011 is close to the optima 100 it needs three bit mutations to reach it,

and this is unlikely (i.e. O(ρm
3)). Real-coded GAs using special operators such as the adjacency

mutation operator of Davies and Coombs [1987], can creep around the search space by successive

mutations. For example using a real-coded schema, after convergence to a value, successive

mutation could correct the solutions until the optimum is reached. 

˚ Definition 1.17 (Gray Codes) Gray codes are binary strings where the representations of

adjacent integers differ by only a single bit. 

The use of gray codes has been suggested to overcome the problem of hamming cliffs [Bethke,

1981] but introduces high order non-linearities with respect to recombination. Goldberg [1990]

suggests a solution to overcome the high order non-linearities, using both a simple bit change
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and decision-dependent -change mutation operators. (3) Real-coded alphabets converge more quickly

than small coded ones, but the quality of the solution can degrade with increasing alphabet

cardinality k [Goldberg, 1990]. (4) Real-coded alphabets reduce the combinatorial dimension of

the problem, which in turn reduces the opportunity for above average fitness schemata to exist

which leads the GA away from optimal solutions (deception) [Goldberg, 1990]. Although there

is empirical work to support the use of real-coded GAs for tackling problems, theoretical work

is important in analysing this success. 

1.4.3.3  Real-Coded Theory

There are problems in extending the Schemata Theorem to real- coded and position dependent

representations. (We consider some of these problems in the next section.) The most important

aspect of the search space to the Schemata Theorem is the "type" of building block available.

The analysis of representation space can be developed by investigating building blocks that

compose a schema and the presence of hyperplanes. It is the relationships between the problem

parameters defines the hyperspace. The GA success in finding optimal solutions will depend

upon these schema correlating with performance. Analysis of schemata is important because the

GA sees the problem through the representation. The Walsh function analysis devised by Bethke

[1981]; ([Holland, 1987], extended by Holland to include non-uniform populations [Goldberg,

1989]) can be used to measure this correlation for binary representations. Mason [1991] has

extended the Walsh function analysis for real-coded alphabets, including the analysis and

construction of deceptive problems where the schemata lead the GA away from the optimum.

Goldberg [1990] has presented the notion of virtual alphabets to support a theory of operators

for real-coded GAs, where virtual alphabets are constructed from virtual characters which are

composed of problem variables. So, if the GA is tackling a problem using a high cardinality

alphabet problem variables will compete in the form of schemata. 

Also, in support of real-coded representations, Antonisse [1989] has questioned the analytic

framework used to justify minimal alphabets (see Section 1.4.2). The two critical issues are

concerned with how the symbolic encoding of the search space effects the representational power

of the search, and what legal structures can be encoded. Earlier, in Section 1.4.2 we used the

"#" symbol in order to demonstrate the power of GA processing in terms of pattern matching.

1.4  What Is A GA 16



Antonisse reinterprets the use of the "#" symbol in analysing schemata where the class of

strings is a single subset extending it into the case where every possible subset of individuals

is counted as a schema. Using the example string of length 4 with alphabet {0, 1, 2} Holland’s

interpretation of the schema "000#" refers to the set of schemata {0000, 0001, 0002}, whilst

Antonisse’s leads to {0000, 0001}, {0000, 0002}, {0001, 0002}, and {0000, 0001, 0002}. In Section

1.4.2 the analysis suggested that the individual binary string schemata processing is maximised

when k = 2 (Equation 1.6). However if we consider Antonisse’s interpretation, the counting

argument to express all schemata is not k + 1 but 2(k-1) [Antonisse, 1989]. Therefore, the

more expressive real-coded alphabet is seen to carry much more power, providing finer-grained

tools for the construction of adaptive plans. 

The importance such work presents to the GA community is not so much in the ’overthrow’

of established GA theory but to deepen and widen the issue of GA analysis. Just how valid

schema counting comparisons are, for different coding schemes, has been questioned. Antonisse

[1989] admits that some experiments in practice do not support this idea. This occurs when

all the binary encodings are valid but not all higher cardinality alphabets can be decoded by

the objective function. This suggests that the encoding should contain no redundant or un-decodable

information. Grefenstette [GA-Digest vol 5, issue 19, 1/8/1991] has argued that a mis-interpretation

of the Schemata Theorem leads to a strong building block hypothesis which highlights a limitation

when applying the q-armed bandits analogy to schema processing. Aware of this difficulty, Vose

and Liepins [1991] developed an alternative Schemata Theorem framework for measuring the

effectiveness of crossover operators and disruption rates of generalised schemata, which they call

predicates. 

1.4.3.4  Alternative Schemata Theorem

The Schemata Theorem provides an explanation for the success of an SGA using a binary

representation but does not explain the success for GAs using different operators and non-binary

representations. Conversely, there are a range of problems which are not well optimised by

GAs. Such problems are considered GA difficult [Vose and Liepins, 1991] for a number of

reasons, among which are deceptiveness, sampling error, and schema disruption. Deceptiveness

occurs when above average schemata do not lead the GA towards the optimum. Sampling error
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occurs when schema with above average utility but below average fitness, with respect to the

current population are forced to die out due to reproductive pressure. Schema disruption occurs

when the crossover operator prevents the progression from low order to high order schemata.

To explain the success and failure of GAs requires an alternative schema analysis. 

An alternative interpretation of the Schemata Theorem has been outlined by Vose [1991]. This

re-interpretation emphasises the importance of schemata disruption on what building blocks can

be formed from the crossover schemata interaction. Vose [1991] regards schemata as predicates

which map binary strings into the set {true, false}. Using predicates instead of schemata allows

a more generalised view of schemata interaction. New concepts of locality, globality, monotonicity,

and stability are defined. Local predicate building blocks important to the formation of the

optimum can have a fitness less than a population average. Global predicate building blocks

always have, a fitness greater or equal to any given population average. A predicate is only

global if it is monotone, either increasing or decreasing. The result of interaction of predicates

with crossover, defines their stability. Stable predicates are unchanged by crossover, semi-stable

predicates are unlikely to be disrupted by crossover (degrade gracefully), while unstable predicates

are disrupted by crossover. These concepts enable a more generalised explanation for schemata

interaction. Global predicates are only influenced by the action of crossover, whilst local predicates

are influenced by reproduction and crossover. Vose proposed the following conjecture regarding

the classification of monotone predicates: 

"The genetic paradigm will succeed when monotone increasing predicates are stable or semi-stable."

[Vose, 1991 p. 390] 

1.4.4  GA And Constraints

1.4.4.1  Introduction

˚ Definition 1.18 (Epistasis) Epistasis is the differential in string fitness due to one string

value being dependent on the presence or absence of other string values. 

The work of John Holland can be applied successfully to low degree epistatic problems [Davis,

1985]. (We mentioned earlier how Holland recognised that non-linearity or false peak was an
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obstacle to adaptation.) However, epistatic problems which involve constraints require modifying

the simple GA approach. The basic architecture of GAs does not include their applicability to

constrained search, i.e. it is not well matched to it [Goldberg, 1987] because there is no provision

for satisfying constraints. Attempts to apply GAs to constrained optimisation problems use two

main concepts: 

• (1) Penalising strings which violate constraints. 

• (2) Modifying GA operators to ensure constraints are satisfied.

The first concept combines the original objective function and a penalty function which assigns

a constraint violation  cost. The second concept includes using modified GA operators to ensure

only feasible solutions are produced by repairing strings and hiding constraints in special

representations which use specialised operators. 

Other techniques involve using the cost objective and penalty objective as vector elements (e.g.

Vector Evaluated Genetic Algorithm or VEGA [Schaffer, 1984]) or direct Pareto techniques

[Goldberg, 1989] for allocating copies to individuals during reproduction. Both techniques eliminate

the need to combine the cost and penalty objective, as in paradigm (1). VEGA uses multi-criteria

functions where each criteria in the evaluation function are represented by equal sized

sub-populations. Reproductive selection is carried out separately on each population, whilst

crossover was performed across sub-population boundaries. One drawback with this approach

however, was that selecting from the best in each sub-population created the potential for bias

against individuals which were better across several criteria. The performance of VEGA was

poor on multi-objective parameter tuning problems, where several criteria need to be optimised

but cannot be reduced to a single objective. The Pareto optimality approach to multi-objective

or vector valued optimisation attempts to produce a single P-set of points, where each point

is a group of parameter settings. Each point in the P-set has a better objective function value

for each parameter (non-dominated) than other points for the same parameters (dominated).

The Pareto formulation of Goldberg [1989] obtains very good results on large feasible set

covering problems but further work found difficulties.
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1.4.4.2  Penalty Function

The penalty function method adjusts the fitness of a string in relation to any violated constraints.

A constrained optimisation problem is transformed into an unconstrained one by associating a

cost or penalty with constraint violations. In a constrained optimisation problem the goal is to

minimise an evaluation e(p) at a point p such that p is in the set F of acceptable points,

(F is defined in terms of the constraints to be satisfied) [Richardson et al., 1989]. 

We can demonstrate the penalty function method using a set covering problem (SCP). In an

SCP, there is an v x l matrix where aji ∈  {0, 1}, and each column has a cost variable c1,

c2, ..., cl. The objective of SCP is to find the lowest total cost for a set S of columns, in

which every row has at least one binary digit equal to 1, given as 

                                      minimise  ∑  ci                                       subject to ∃ j  aji =  1 for j =  1, 2, ..., v.            (1.7)
                                                        i ∈  S

The following example SCP can be represented as an l length binary string Sbin in which if

Sbini = 1 then column i ∈  S, or i ∉  S. 

l 1 2 3

cl 5 2 7

1 1 1

0 1 0

1 0 0

A GA evaluation function e(Sbin) calculates the total cost for columns in S and adds a penalty

function Φ cost associated with the number of constraint violations (uncovered rows), as follows

                                                    l
               minimise  e(Sbin) =  ∑       Sbini . ci +  Φ(Sbin)          subject to ∃ j aji =  1 for j =  1, 2, ..., v             (1.8)
                                                    i =  1

For example, Richardson et al. [1989] used a penalty function in evaluating a binary string

representation for the SCP as Φ = l*(number of uncovered rows)2. So for our example SCP

an l = 3 length binary string {1,0,1} has a fitness e(1,0,1) = 12 + 3 = 15. The GA

searches the binary space for optimal solutions which satisfy the constraints (no uncovered rows
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e.g. Φ = 0) but at the same time process binary strings which do not satisfy the constraints

(e.g. Φ > 0). 

Some researchers believe that penalty functions should be harsh, but all the population could

contribute to the success of the GA. For example, if the optimal solution is 110, changing the

1’s to 0’s give infeasible solutions 010 and 100 which are only separated from the optimal by

a hamming distance of one. If these near neighbours are heavily penalised the optimal solution

may be missed. Therefore an evaluation function must preserve information which balances with

the pressure for feasibility. One approach taken to construct a penalty function involves calculating

the increase in fitness function cost in turning an infeasible solution into a feasible one, (basis

of heuristic best first strategy). In the SCP this penalty function calculates the increased cost

in adding columns to the set S of columns represented by the string Sbin until the constraints

are satisfied. Research results from Richardson et al. [1989] using harsh, soft and softer penalty

functions suggest more accurate estimates of the penalty function costs involved in making

constraint violated solutions satisfy the constraints, make for better penalties. They found the

softer penalty function made no distinction between feasible and infeasible solutions, where the

search wandered aimlessly or suffered premature convergence. There is a limit to the effective

softness used in the penalty functions, when the penalty for each constraint frequently falls

below the expected cost of completion. From their work they concluded that penalties which

are functions of the distance from feasibility perform better than those which are functions of

the number of violated constraints, and that penalties should be as accurate as possible. These

results highlight the difficulty in deciding how to quantify constraint violations which will allow

the GA sufficient pressure to maintain feasible strings yet prevent premature convergence. 

The approach taken by Siedlecki and Sklansky [1989] is to analyse the position of the population

before reproduction, and balance a penalty function with the value of the objective function to

achieve a specific distribution of the new population in the search space. The GA is encouraged

to search for isolated parts of the feasible region but not end up wandering in the infeasible

parts. Control of the GA is managed by changing the value of a positive constant penalty

coefficient α, shown in the following evaluation function 

 

Chapter 1  Introduction 21



                                                     l
                minimise  e(Sbin) =  ∑       Sbini . ci +  αΦ(Sbin)       subject to ∃ j aji  =  1 for j =  1, 2, ..., v            (1.9)
                                                    i =  1

This control of the new population distribution can take place in the reproduction stage without

compromising the principles of the GA. The population distribution depends upon the value of

the penalty coefficient and consequently on the balance between an original optimisation criterion

and the penalty function. Therefore, by changing the value of the penalty coefficient the shape

of the distribution of parents to be selected for crossover can be adjusted. Using a penalty

coefficient allows the penalty function information to be used to guide the GA through the

infeasible parts of the search space. However, the approach may only be useful when optimal

solutions occur inside the feasible region and not on the boundary. 

1.4.4.3  Specialist Crossover Operators

The location of crossover events may be sensitive to the contents of the chromosome [Alberts

et al., 1983]. The representation and the incorporation of heuristics into the crossover operator

are highly correlated. Grefenstette et al. [1985] showed that merely preserving the order of

string values results in poorly performing GAs. It may be necessary to incorporate heuristics

(problem specific knowledge) into the GA in order to make it competitive. We need to be

aware of the established precepts in the design of representations which support the use of

binary alphabets. 

˚ Definition 1.19 (GA -Hard) A GA -hard problem is both epistatic and misleading. [Bethke,

1981] 

˚ Definition 1.20 (o-schema) The o-schema defines a subset of schemata which have the same

string values at the same string positions, where the values of unspecified positions are

ignored (i.e. "#"). 

A number of different crossover operators have been developed to work with real-coded

representations. These crossover operators are faced with the problem of constructing feasible

offspring and yet enable good building blocks to be inherited from the parents. Grefenstette et

al. [1985] suggest that the TSP is GA-Hard and may not be suitable for the GA. Attempts

to design crossover operators for real-coded representations to solve the TSP have demonstrated

1.4  What Is A GA 22



the coding difficulties faced by GA designers. The alternating edges crossover operator [Grefenstette

et al., 1985] developed for an adjacency representation to tackle the TSP, has poor results

because good sub-tours are disrupted. The adjacency representation describes a tour by a list

of cities, where there is an edge in the tour from city i to city j only if the allele in position

i is j. An example five city TSP can be represented as 

            Path Tour        Adjacency Tour

           (1 3 5 4 2)       (3 1 5 2 4) city j
                              1 2 3 4 5  position i

               position i              3 city j

                        1                    3
                        3                    5
                        5                    4
                        4                    2
                        2                    1

Any tour has exactly one adjacency list representation but does not allow the classical crossover

operation. The alternating edges crossover operator developed for the adjacency representation

starts by choosing a random edge from one parent, then extends the partial tour by choosing

the appropriate edge from the other parent, and continue alternating parents. If selecting an

edge would introduce a cycle (repeated city) then select a random edge. 

            sequence   1   5   3                  2   6x  4
            parent 1  (2 3 4 5 6 1)   parent 2 (2 5 1 6 4 3) city j
                       1 2 3 4 5 6              1 2 3 4 5 6  position i

            offspring (2 5 4 1 6 3) city j
                       1 2 3 4 5 6  position i

The crossover operator starts with parent 1 edge (1 2). When the sequence reaches 6 the

selection is invalid, so a new edge is created (4 1). The results for this operator are poor

because good sub-tours are disrupted. 

The cycle crossover operator (CX) suggested by Oliver et al. [1987] uses common subsets of

cities between parents and exchanges them. This operator performs poorly which suggests that

retaining relative city positions is not as important as the links between cities. Whitley [1989]

supports this view and states that the power of recombination for the TSP, is to focus on

the exchange of edges (city to city links). The edge recombination operator [Whitley et al.,
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1989] retains up to 95% - 99% of parent information and can be shown to be supported by

the Schemata Theorem, (i.e. the edge recombination operator is manipulating schemata). The

edge recombination operator is useful in scheduling problems because it does not use edge

cost information, only string performance. Results for the MPX crossover which uses the idea

of a donating and receiving parent where the relative order of the receiving parent remains

[Goldberg and Lingle, 1985], shows that with a high probability, low order o-schemata survive

to lead to optimal or near optimal results because it searches among both orderings and string

value combinations that lead to good fitness. The advantages of the MPX operator is that the

relative city positions are retained and implicit mutations are introduced. 

Heuristic GAs incorporate problem specific knowledge in the crossover operator. The combination

of hill climbing with GA depends upon the availability of good starting points. The Grefenstette

heuristic crossover "glues" good edges together but cannot fine tune solutions. City to city links

are selected from the parents by choosing the shortest edge, or randomly if a cycle is introduced.

The technique used to help towards fine- tuning solutions is the Lin and Kernighan [1965]

2-opt operator. The Grefenstette et al. [1985] subtour-chunking crossover performance was better

than the alternating edges operator but still not very good. In the subtour-chunking crossover

operator a random length subtour is selected, extended by random length subtours from alternating

parents. If an edge creates cycling choose a random edge. The analogous crossover operator

[Davidor, 1991] matches parameters for crossover based upon the string value characteristics

rather than the string values. For example, crossing parent strings which represent driving routes

will use shared stretches of road (e.g. edges (8 4) and (10 3)) to align them for crossover.

parent 1 tour - 1 2 8 4 6 9 10 3 5 7

parent 2 tour - 5 1 8 4 7 2 10 3 6 9

offspring tour - 1 2 8 4 7 2 10 3 5 7

Disruption in the offspring caused by analogous crossover operator can be corrected by random

selection of repeated (e.g. 2 and 7) and unrepresented cities (e.g. 6 and 9). The analogous

cross site preserves the "orderliness" of strings, and has an intuitive justification and biological

motivation. Where multi-bit parameters are used, segregation crossing between features becomes
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an issue. This may have a disruptive effect on the string values and consequently the string

characteristics. [Smith, 1980; Greene and Smith, 1987; Shaefer, 1987] 

A number of crossover operators have been developed which use a template/mask to control

offspring generation. The punctuated crossover operator [Schaffer and Morishima, 1987] uses a

representation where crossover points are recorded by the punctuation symbol. The corresponding

crossover will swap allele transfers from one parent to the other depending upon occurrence

of the symbol. The string representation is in two sections (double the normal length). The

first records the corresponding crossover points, 1 = yes, 0 = no. The loci in the second

section are the objective function values. The mutation operator is allowed access to both

sections of the string. For example 

before crossover

parent 1 -   a  a  a  a  a  a  a! b  b  b  b  b  b  b

parent 2 -   c  c  c  c! d  d  d  d  d  d! e  e  e  e

during crossover

offspring 1 - a  a  a  a
                        a  a  a  a  d  d  d
                        a  a  a  a  d  d  d  b  b  b
                        a  a  a  a  d  d  d  b  b  b  e  e  e  e

after crossover

offspring 1 - a  a  a  a  d  d  d  b  b  b  e  e  e  e

offspring 2 - c  c  c  c! a  a  a! d  d  d! b  b  b  b

Syswerda’s [1989] uniform crossover used a template to decide which child receives the parent

bits. Davis’ [1991] uniform order-based template crossover is used to decide which child receives

the parent bits. The Davis uniform crossover operator is a masking string which determines the

action of the crossover mechanism. Using the mask from left to right, bit 0 tells the crossover

operator to select the bit value from parent 1, bit 1 tells the crossover operator to select

from parent 2. The second child is created by switching the meaning of the binary mask values.

This action of the crossover operator is to allow the parents to exchange values with a uniform

distribution. These masks can allow the action of the traditional one or two-point crossover
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and can link together string values which are separated along the string [Syswerda, 1989].

Syswerda suggests his results show that uniform crossover combines schemata more effectively

than one or two-point crossover. 

1.4.4.4  Specialist Mutation Operators

Different mutation operators had to be devised to cope with real-coded alphabets. Davies’

adjacency mutation operator used in the study using real-coded feature values can creep around

the search space. The scramble-sublist mutation operator takes a sublist of the chromosome,

changes the order and places them back into the parent. A variation on this operator is used

where there is a parameter of the sublist length. It is suggested [Grefenstette, 1987] that local

search may be useful as a mutation operator, (prevented from being trapped in local minima

by the GA operators). 

1.4.4.5  Inversion Operators

The inversion operator has been studied [Frantz, 1972] as a method for linking together separated

string values, by randomly selecting a point to cut a string and then inverting one of the

string sections as in, 

before inversion - 5 1 8 4 7 | 10 3 6 9

after inversion - 5 1 8 4 7 | 9 6 3 10

Although inversion attempts to reduce the error rate for schemata disruption and increase the

combination rate of the crossover operator, masking allows the bits to remain separated and

therefore there is no need to use inversion [Syswerda, 1989]. If a population contains building

blocks where the string values are not tightly linked together, the inversion operator will increase

the probability of reconstructing good building blocks. Inversion may be useful in limited cases

but in general GAs need the power of recombination. Rosenburg [1967] used linkage factors

associated with each string value to help provide tight linkage by selecting a crossover site

according to a probability distribution over the linkage factors (i.e. selecting a cross site where

the values are different). Frantz [1972] used a simple genetic algorithm to test the linkage

effects on several functions where the linkage was disrupted (chromosome ordering), finding that

there is a correlation between tight linkage and rate of improvement. The theory was not fully
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confirmed, due to the insufficiently difficult functions used in the tests (e.g. weak non-linearities,

and short strings). Bethke [1981] in his thesis characterised the set of functions which are

genetically optimisable in terms of the Walsh transforms of the function, and showed that the

coefficients involved can be estimated during the search to determine whether the function can

be optimised genetically. 

1.5  Summary

Constraint satisfaction problems (CSPs) can be found in many application areas of artificial

intelligence (AI) and research is motivated by the need to provide efficient methods to tackle

them. In general, CSPs are NP-hard and techniques used to tackle them suffer from combinatorial

explosion preventing traditional search methods from being useful, due to the time taken to

find solutions. For CSPs with optimisation functions (CSOPs) heuristics giving an accurate

estimation of the cost function could be used to help find solutions, but would be unlikely to

be able to solve very large problems. Also heuristics are domain specific, and good heuristics

are sometimes difficult or expensive to find. Partial constraint satisfaction problems (PCSP) have

constraints that cannot always be completely satisfied. Our objective in this research is to design

and empirically test a generic search strategy based on stochastic search which can tackle a

class of PCSPs, which includes solvable and unsolvable CSOPs. We believe a successful approach

can be achieved by the combination of a robust genetic algorithm (GA) with local improvement

which will provide a strategy with the ability to efficiently exploit PCSPs. In order to exploit

the features of PCSPs, this new GA strategy called GAcSP has been designed which incorporates

a template type crossover and hill-climbing component (HC). GAcSP combines the robust global

power of the GA with the specialist power of the HC. We hope to show that the HC

component can exploit domain specific knowledge without compromising the GA generic search

performance. The performance of GAcSP is demonstrated by tackling two NP-hard problems,

namely the processors configuration problem and the car sequencing problem. 

GAs were originally developed by John Holland [1975] as artificial systems based on the adaptive

processes of natural systems. With certain search space conditions and the GA evolving a

population of binary strings by simple syntactic actions upon them, it could converge on solutions
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which were at or close to the global optimum. The canonical or simple GA has three main

operators reproduction, crossover and mutation. This simple model of GA assumes that binary

strings are fixed length, a finite dynamic population of strings represents what is known about

the search space and each string has a relative ability (fitness) to survive and produce offspring.

The GA starts by generating a random population of binary strings, then for each cycle

reproduction, crossover and mutation act upon this population of strings. Reproduction generates

a matepool of potential parents by selecting strings from the population with a bias towards

fitter strings (low fitness for minimisation problems). The one-point crossover operator randomly

selects two parent strings from the matepool, cutting and exchanging the parent strings to create

two offspring. Mutation is used with a low probability to change an offspring string element.

The process of selecting parents and creating offspring continues until a new population is

generated. 

The Schemata Theorem of GAs allows us to quantify the survival probability of strings and

predict the behaviour of the SGA. The Schemata Theorem is based on the idea that the GA

processes string similarities (templates), called schemata (singular schema H) defined over the

alphabet {0, 1, #}, where the metasymbol "#" can match 0 or 1. According to the Schemata

Theorem the power of the GA can be demonstrated by counting the number of schemata in

processing a population of strings. Holland’s O(n3) schemata processing estimate, means that

through the processing of only n string structures each generation, a GA processes something

like n3 schemata. The growth of schemata depends upon the ratio of schema fitness, calculated

as the average fitness of the set of strings it describes, to the population average fitness. Above

average schemata will generate an exponentially increasing number of copies with those below

average decreasing. The survival of schemata also depend upon the disruptive effects of crossover

and mutation. The probability that crossover will disrupt schemata depends upon how far apart

string values are located and with mutation the number of values. We can use the Schemata

Theorem to predict that short high fitness schemata called building blocks will increase

exponentially, from one generation to the next. If the short schemata accurately reflect the

optimisation of the search space, the GA should converge to an optimal or near-optimal solution.
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The Schemata Theorem and the canonical GA supports the use of binary string representations

and was accepted early on as the best way to maximise the processing power of the GA.

There are a number of reasons why binary representations have dominated GA research including

the simple analysis of binary vectors, the elegance of GA operators, and the requirements of

computational speed. Furthermore, the Schemata Theorem suggests that small alphabets maximise

the number of schemata available for GA processing. However, empirical evidence supports the

use of real-coded representations but does not attempt to incorporate Holland’s Schemata Theory.

Many problems cannot be expressed in terms of a binary alphabet and requires more sophisticated

data structures and GA operator modifications. Another reason for using real-coded alphabets

is the avoidance of hamming cliffs and other artifacts of mutation where binary coded GAs

can be stopped from reaching points in the search space. Although real-coded alphabets can

converge more quickly than small coded ones, the quality of the solution can degrade with

increasing alphabet cardinality. Real-coded alphabets can also reduce the combinatorial dimension

of the problem reducing the opportunity for GA deception. One important problem in extending

the Schemata Theorem to real-coded and position dependent representations is the "type" of

building block available. The analysis of representation space can be developed by investigating

building blocks that compose a schema by looking at the relationships between the problem

parameters. GA success in finding optimal solutions depends upon these schemata correlating

with performance. The Walsh function analysis devised by Bethke [1981] and extended by Holland

[Goldberg, 1989] to include non-uniform populations can be used to measure this correlation

for binary representations. Mason [1991] has extended the Walsh function analysis for real-coded

alphabets and Goldberg has presented the notion of virtual alphabets to support a theory of

operators for real-coded GAs. 

Supporting real-coded representations, Antonisse [1989] questioned the analytic framework used

to justify minimal alphabets. In particular critical issues concerned with how the symbolic encoding

of the search space effects the representational power of the search, and what legal structures

can be encoded. Antonisse reinterprets the use of the "#" symbol in analysing schemata where

the class of strings is a single subset extending it into the case where every possible subset

of individuals is counted as a schema. In Antonisse’s interpretation, the counting argument to
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express all schemata is not k + 1 but 2(k-1) and therefore, the more expressive real-coded

alphabet is seen to carry much more power, providing finer-grained tools for the construction

of adaptive plans. However, there are limitations with schemata counting arguments and Schemata

Theorem analysis. Vose [1991] developed an alternative Schemata Theorem framework for measuring

the effectiveness of crossover operators and disruption rates of generalised schemata, which they

call predicates. This alternative interpretation of the Schemata Theorem emphasises the importance

of schemata disruption on what building blocks can be formed from the crossover schemata

interaction. Schemata can be regarded as predicates which map binary strings into the set {true,

false} and allows a more generalised view of schemata interaction. 

Although the GA can be applied successfully to low degree epistatic problems, problems which

involve constraints require modifying the simple GA approach. The basic GA architecture has

no provision for satisfying constraints. Attempts to apply GAs to constrained optimisation problems

use two main concepts penalising strings which violate constraints and modifying GA operators

to ensure constraints are satisfied. The penalty function method adjusts the fitness of a string

in relation to any violated constraints, thereby a constrained optimisation problem is transformed

into an unconstrained one by associating a cost or penalty with constraint violations. An evaluation

function must preserve information which balances with the pressure for feasibility to avoid

penalising strings close to to the optimal solution. One approach taken to construct a penalty

function involves calculating the increase in fitness function cost in turning an infeasible solution

into a feasible one. Research results using harsh, soft and softer penalty functions suggest more

accurate estimates of the penalty function costs involved in making constraint violated solutions

satisfy the constraints, make for better penalties. 

The representation and the incorporation of heuristics into the crossover operator are highly

correlated and show that merely preserving the order of string values results in poorly performing

GAs. It may be necessary to incorporate heuristics (problem specific knowledge) into the GA

in order to make it competitive. Different crossover operators have been developed to work

with real-coded representations and are faced with the problem of constructing feasible offspring

and yet enable parental building blocks to be inherited. A number of crossover operators have

been developed which use a template/mask to control offspring generation. For example, Syswerda’s
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uniform crossover and Davis’ order-based crossover uses a template to decide which child

receives the parent bits. The action of the crossover operator allows the parents to exchange

values with a uniform distribution. They can also replicate the action of the traditional one or

two-point crossover and link together separated string values. 

Different operators had to be devised to cope with real-coded alphabets. The inversion operator

is a method for linking together separated string values, by randomly selecting a point to cut

a string and then inverting one of the string sections. Inversion attempts to reduce the error

rate for schemata disruption and increase the combination rate of the crossover operator by

increasing the probability of reconstructing good building blocks. However, results in using

inversion suggests that GAs need the power of recombination 
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Chapter 2  Design Of A New GA For Solving PCSPs

2.1  Analysis Of Applying GA To PCSP

2.1.1  Control Strategy

We have developed a control strategy for tackling PCSPs, based upon a standard GA [Grefenstette,

1984] and local improvement techniques. In order to analyse the task of applying GAs to

PCSPs we need to look at the essential GA components and PCSP features in detail. If we

can identify and understand these PCSP features it may be possible to exploit them in developing

the GA strategy. We have already outlined important PCSP features in Section 1.3.1.2. In this

section we shall try to understand how they have influenced the design of the GAcSP. The

following issues refer to GA design and PCSP features: 

(1) Elements of the PCSP (i.e. variables and values) lend themselves to a natural GA string

representation. 

(2) Constraints can be used to prune the search space by making parts of the search space

infeasible. 

(3) Constraints in one part of the solution are propagated to other parts by the repair and

hill-climbing technique. 

(4) Using a GA to tackle a class of problems which has a well understood set of assumptions,

enables certain predictions about the behaviour of the algorithm to be made. 

(5) Ordering of PCSP variables and values can enhance or hinder PCSP search techniques, but

the GA need not rely upon any assumptions regarding ordering. 

(6) The PCSP constraint relationships can assist GA search, providing a guide through the

search space towards optimal solutions. 

(7) GAs tackling PCSPs have the opportunity to adapt to a structured search space characterised

by the relationship between variables and values.
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(8) GAs have the ability to record constraint interactions in the finite string population. 

Constraint interactions can have a significant impact on the design of GA components. Although

we will examine GA components, it must be emphasised that GAs are a heuristic system. By

system, we mean that the interacting components forming the GA and the search space

characteristics are inter-dependent. The search space characteristics are defined by the

representation and objective function, and will determine the design of GA operators. PCSP

constraints will influence the dynamics of the population and GA operators. Because GAs

manipulate a population of representation structures, it is important to understand the dynamics

of this population. GA operators need to be designed which can improve the population string

structures towards optimality and not severely restrict the global ability of the search. An

additional GA component in our strategy is the use of an optional hill-climber. 

In Sections 2.1.2 and 2.1.3 we look at the impact on the search space of representation design

and constraints, GA crossover operator design (Section 2.1.4), mutation design analysis (Section

2.1.5), and  population dynamics (Section 2.1.6). 

2.1.2  Representation

The representation and the GA operators need to work together in a synergistic way. The GA

crossover operator manipulates chromosome-like structures in a way its natural counterpart does.

String representations are suitable because of their structural similarity to chromosomes. 

The "art" of successfully applying GAs to a particular problem involves deciding the most

suitable way of representing the problem. What help is available within the field of GAs in

making this decision ? Help can come from a number of different sources. Techniques which

may help, include the following quantitative and qualitative methods. 

• Quantitative methods for analysing binary-coded representations. These include Walsh function

analysis, and dynamic epistatic analysis. 

• Research using real-coded representations.

• Goldberg’s principles which should be adopted by GA developers - the principle of meaningful
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building blocks and the principle of minimal alphabets (See Section 1.4.3.1). 

• Qualitative analysis using Davidor’s base and parasitic epistasis, [Davidor, 1991]. 

• Techniques currently employed in tackling the problem. 

The first and perhaps most critical decision facing representation designers is whether to use

a binary or real-coded representation. Surprisingly, this choice may depend more on familiarity

or preference, than suitability. Which techniques can assist in the development of a suitable

representation will depend upon this initial choice. Binary-coded representations are supported

by established GA theory and operators; real-coded representations can be more appealing but

require more careful analysis. We first look at an example binary representation and then

consider a real-coded case where we find it is possible to combine the two. This is justified

by an analysis of the crossover operator in Section 2.1.4.1. 

We need to consider the essential features of the PCSP in designing an appropriate representation.

The formal definition presented in Section 1.3.1.1 gives us the framework upon which to design

the binary representation. Section 2.1.2.1 outlines an example binary representation. 

2.1.2.1  Binary Representation

Based upon the formal PCSP Definition 1.2 we can design a simple binary representation as

follows: 

In general, a string Sbin is composed of N binary integers, Sbin = (b1, b2, ..., bN). 

Without loss of generality, each binary integer bi is mapped from the value vij  taken from the

PCSP variable domain vi. Formally the mapping ƒ is from the integer into the binary, 

                                                                             ƒ:int → binary string.

An example binary string is shown with the corresponding PCSP values: 
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string position - PCSP variable    1   2   3   4   5   6   7   8   9  10

solution tuple -  binary coded 001 010 011 100 010 101 100 001 011 101

equivalent    - PCSP value   1  2  3   4   2   5   4   1   3   5

The length l of Sbin will depend upon the number of variables N  in the PCSP, and the

greatest domain values for each maxv. To calculate the length l of the binary string, we need

to first find the greatest value in each variable domain.

Note: If all the domains of a PCSP are equal (i.e. have the same elements), 

maxv1 = maxv2 ... = maxvN.

Then map the integer maxvi into the binary l = (log2(maxvi) . N) binary digits. For our

example string above, l = (3 . 10) = 30 binary digits. 

The main perceived advantages of using a binary-coded representation are the opportunity to

use traditional GA operators and support from the Schemata Theorem. Issues of using a

traditional crossover concern whether the point of crossover should occur only between the

binary integers (inter-chromosomal) or between binary digits (intra-chromosomal). This issue is

related to the one discussed below regarding the decoding of the binary string by the objective

function. Drawbacks to using binary-coded representations include string length, (i.e. decoding

and encoding problems), problems such as hamming cliffs and slower convergence rates [Goldberg,

1989]. The decoding and encoding by the objective function with a binary string will increase

the computational work load of the GA, especially with large populations. Another encoding

and decoding problem depends upon the precision of the inverse mapping of the binary integers

into the real values (i.e. PCSP values). This mapping can gives rise to imprecision and can

cause redundant real values. For example, if maxv1 = 6 ≡  110 then the binary integer 111

≡  7 which could be formed would be a redundant value. Redundancy also occurs because

binary mapping assumes an arithmetic progression (common difference of 1) of the values in

vi. As we shall soon see, we do not have to completely abandon the binary string representation

and some of its advantages when we consider a real-coded representation presented in the next

section. 
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2.1.2.2  Real-Coded Representation

Instead of using a binary-coded representation we can use a non-binary or real-coded

representation. This seems more of a "natural" representation as suggested by Goldberg’s second

principle and the framework of the PCSP model. It results in a more compact string, and we

can work directly with the PCSP domain values. So, instead of mapping the PCSP value to a

binary integer we use the PCSP value directly, as in: 

string position - PCSP variable  1 2 3 4 5 6 7 8 9 10

solution tuple - real coded 1 2 3 4 2 5 4 1 3 5

In general, a string S is composed of l = N PCSP variable domain values, S = (v1, v2, ...,

vl). 

We can consider the differences in approach between the GA and established PCSP solution

techniques. The first important point is that the PCSP representation search space is a network

of solution tuples (see Definition 1.3). Many PCSP solving techniques use a hierarchical search

space or search tree. These PCSP techniques construct solution tuples by searching through the

search space or search tree. More recent approaches attempt to find PCSP solutions by repairing

solution tuples. Heuristic repair is one such method which has shown some success using a

repair technique [Minton et al., 1991]. This distinction between constructing solution tuples or

working directly with solution tuples is an important part of the GA approach. This gives the

GA more freedom to move around the search space by providing immediate complete information

from any solution tuple changes, so long as the tuple can be meaningfully interpreted. Furthermore,

changing a single string value or values can be done with little computational effort, yet the

effect of even such a simple change to the string can be significant for two reasons because:

(1) The string fitness may depend upon the interaction between the changed value and other

values in the string. 

(2) Constraints may become violated by the new value. 

We can extend this idea by changing several values simultaneously or a group of contiguous
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values. Improving the fitness of a group of string values can increase the string fitness. The

level of increase in string fitness can depend upon the degree of interaction between string

values. Also, changing a group of values could increase the possibility of violating constraints

and making the string infeasible. The basis of the GA approach is to combine fitter groups

of values from different solutions (parents) to create fitter strings (offspring). The GA reproduction,

crossover and mutation operators are designed to explore and exploit these groups of values.

String elements which depend upon other string elements due to constraints between them, can

create dependency groups within the string. It is important to understand the effect of constraints

on the GA search (i.e. points (1) and (2) above) in order to control the search process. 

2.1.3  Exploiting Constraints

Constraints are an essential feature of the PCSP and play an important role in the development

of the GA strategy. They influence the design of the GA operators by their impact upon the

representation search space. Constraints handled by the objective function determine the shape

of the search space. We have already discussed the building block approach of GAs and

mentioned the interaction between individual string elements which leads to the building block

hypothesis (see Section 1.4.2). This phenomena of interaction is termed epistasis and is an

important concept in GAs. Epistasis is clearly visible in natural systems where certain physical

characteristics result, and in artificial systems through the fitness function. 

Constraints represent interacting relationships between PCSP variables and this can give rise to

the phenomena of epistasis in two separate ways: 

(1) The effect of epistasis in the GA is seen through the fitness function. However, not all

strings generated by the GA are solution tuples to the problems tackled. For example, the

valency of processors in the PCP and the production requirement in the CarSP are constraints

that must be satisfied. These hard constraints have a direct effect on the structural search

space. 

(2) Soft  constraints are the user requirements or the constraints of the problem which can be

optimised. For example, minimising the mean internode distance in the PCP and ensuring
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workstation capacity are satisfied in the CarSP. Soft constraints can be incorporated into the

objective function which influence the search through the fitness function. 

In order to analyse the effect of constraints upon the GA strategy we need to distinguish

between these hard and soft constraints. 

2.1.3.1  Hard Constraints

Hard constraints, are those that must be satisfied for the solution to be acceptable. These hard

constraints can occur as fixed requirements (e.g. production requirements) and can be problem

dependent. Hard constraints can be handled by a GA in a number of ways. Constraints can

be hidden by a specially designed representation and set of operators, but this may restrict

which type of constraints can be handled by our GA strategy. Hard constraints incorporated

into the objective function using a penalty function approach require specific theoretical and

empirical procedures for the combination. With penalty functions the search space becomes the

space of all possible solution states, rather than solution states where the hard constraints are

satisfied. Although research carried out by Richardson et al. [1989] has suggested useful principles

in combining penalty functions with objective functions there are still no general reliable techniques

available. An important drawback with using penalty functions is due to disadvantages in allowing

the GA into infeasible parts of the search space, where solution states do not satisfy the hard

constraints. In these cases, the measure of penalty cost which should be associated with constraint

violation is difficult to accurately estimate. With high cost penalties the GA may find it is

evaluating more infeasible strings than feasible, and could converge on the first feasible string

found. Low cost penalties will not put sufficient pressure on the GA to generate and keep,

feasible strings. 

We need to consider the merits of these alternative techniques to hard-constraint handling in

the light of our research objective which is to design a robust generic GA strategy for tackling

PCSPs. The approach taken by the GAcSP is that any strings created by GAcSP in the

initialisation or crossover operators are repaired, ensuring that the hard constraints are satisfied.

This approach has the advantage that it can prune some of the search space by preventing

the GA from entering infeasible areas of the search space and eliminating the difficulties
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associated with estimating violation costs. If we use a GA strategy to tackle PCSPs which are

tightly constrained the majority of the search space could consist of infeasible solutions. We

can make the GA strategy more robust by allowing for the possibility of incorporating different

hard constraints without needing to change the general strategy. We therefore adopt the approach

of repairing each string created by the GA. 

2.1.3.2  Soft Constraints

The objective function is designed to try and capture the soft constraints of the problem. These

constraints are therefore directly optimised by the GA. Soft constraints can include resources,

customer requirements, economic objectives or a combination of these and other costs. Combining

different costs into a single objective function does not necessarily create the difficulties of

combining an objective function with a hard constraint violation cost, as with the penalty function

approach. This is because the penalty function approach involves combining two different objective

measures into a single value. Also, unlike hard constraints, soft constraints need not necessarily

be completely satisfied for a solution to be acceptable. The GA approach is to find optimal

or near optimal solutions to PCSPs which maximise or minimise the soft-constraint violation

measured through the fitness function. 

One difficulty which these constraint interactions pose for the GA is in the design of appropriate

operators - most notably the crossover operator, which is the engine of the GAcSP strategy. 

2.1.4  Crossover Design Analysis

2.1.4.1  Crossover Operator

Whether binary or real-coded representations are used, the crossover operator must have the

ability to propagate building blocks throughout the population and to create new ones. How

can we ensure that the action of a crossover operator on a real-coded representation will

behave as predicted by the Schemata Theorem ? Goldberg’s principle of meaningful building

blocks suggests that it is essential for building blocks to be a tightly linked group of string

elements when a one-point crossover is used. The issue of constraints however provides a

potential difficulty, in that string elements which interact could do so over any distance along
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the string. Thus the building blocks will not necessarily be short but may extend to some

distance along the string. This is a serious issue which must be addressed because the power

of the search (i.e. O(n3) [Holland, 1975]) depends upon the survival and propagation of building

blocks. 

The Schemata Theorem predicts that with one-point crossover these groups of tightly linked

string elements will have a chance of survival depending upon their distance from each other

and the string length. Alternative crossover operators and the inversion operator do not offer

adequate answers to these difficulties. Clearly, what is needed is a crossover operator which

will allow the formation of building blocks which are not short but have elements distributed

along the string. One-point and two-point crossover preserve good schemata only if they are

tightly packed. If we extend this idea and consider a multi-point crossover we can be certain

that the outcome will be schema disruption to the point of becoming a pure random search

[De Jong, 1975]. The uniform crossover developed by Syswerda [1991] is a multi-point crossover

operator with the ability to identify building blocks by remembering crossover points. Although

it has been shown that the uniform crossover may devastate tightly packed schemata it can

perform better on schemata which are not [Davis, 1991]. With this distributed ability of the

uniform crossover, we adapted it to our requirements, and called it the uniform adaptive crossover

(UAX). 

˚ Definition 2.1 (On-line) On-line performance is the mean of all trials. Formally where fe(i)

is the average ith function value and T the total number of evaluations

                                                                                                              T
                                              On-line performance xe(T)  =   1/T . ∑         fe(i).
                                                                                                               i =  1 

˚ Definition 2.2 (Off-line) Off-line performance is the mean of the best previous trials f*e(i)

at each time (or trial) T. 

                                                                                                              T
                                              Off-line performance xe(T)  =   1/T . ∑        f*e(i).
                                                                                                               i =  1

The UAX operator will allow us to cut the string into sections along the string length. Research

carried out into increasing the number of cut-points used in the crossover operator has shown
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that the performance of the GA can be degraded until the resulting search is nothing more

than a random walk. (The on-line and off-line performance measures are degraded [De Jong,

1975].) The reason for this loss in performance is due to schema survival. As the number of

crossover points is increased the possibility of disrupting (i.e. cutting into) valuable schema will

also increase. In addition, if we interpret David Goldberg’s first principle where the epistatic

interaction between building blocks is limited in the GA process, then our crossover needs to

be designed such that this is not a problem. Therefore, at the same time as being able to

capture sections of the string, we need a way to retain and propagate these new building

blocks, preventing them from being destroyed. 

The points at which UAX cuts the parent strings during recombination are determined by the

parent binary templates. A binary template for each string consists of a set of binary values,

where each binary value is associated with a particular string value. Each binary template is

stored on the string along with the associated string values, as shown in the following example,

string position - PCSP variable 1 2 3 4 5 6 7 8 9 10

solution tuple  - real coded 1 2 3 4 2 5 4 1 3 5

binary template 0 1 0 0 1 1 0 0 1 0

Every string in the population has a binary template; the initial population of strings have

randomly generated binary templates and the UAX mechanism ensures that offspring will inherit

the parent binary template values. The binary templates record successful cut-points and effectively

creates an underlying binary space. Using the new UAX operator upon this underlying binary

search space will allow the offspring the opportunity to inherit these building blocks. Through

the manipulation of this underlying binary space, important real-coded building blocks will be

inherited, which will lead the GA towards "optimal" solutions. An analysis of the population

dynamics in respect of these building blocks will enable us to be more confident in this

approach. 
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2.1.5  Mutation Design Analysis

The following two functions, repairer and hill-climber have the same search enhancement ability

as the mutation operator, with additional advantages. 

2.1.5.1  Repairer

The Repairer ensures the hard PCSP constraints are satisfied by changing individual string

values. We have seen from Section 1.4.3.2 that making small changes can allow the GA to

creep around the search space. The repair function can focus on making changes at the level

of a single string element. This is an important ability for the GA to possess because the

crossover operator can encourage building blocks but needs a finer tuned operator to increase

diversity and aid improvement. The string repair function and hill-climber help accomplish this

task. 

2.1.5.2  Hill-Climber

Alphabets larger than binary can avoid binary coding problems such as hamming cliffs [Goldberg,

1990]. Although GAs tackling problems with large alphabet codings can converge more quickly

in finding near optimal solutions the quality of solutions can degrade as the alphabet size

increases [Goldberg, 1990]. The convergence rate of GAs is important factor in determining

solution quality. One way to control the convergence rate of real-coded GAs is by population

size - larger populations can sustain search through increased diversity. Another, is to increase

the diversity of the population by introducing changes to offspring strings. This supports the

need for a localised hill-climber in order to increase the potential quality of solutions and

compensate for the possible loss of performance through the use of large alphabets. 

The hill-climber also makes element improvements, but changes two elements instead of one as

in the repair function. Diversity is maintained because PCSP values can be made to appear at

any string position through the action of the hill-climber. The aim of both functions is to

increase the string fitness by making small changes over the length of the string. Building blocks

can be improved and these improvements will be propagated throughout the population. The

action of the HC will put pressure on the GA to seek further improvements because the

Chapter 2  Design Of A New GA For Solving PCSPs 42



population average fitness will increase as each string improves in fitness. Because the action

of the repair and hill-climb functions is to directly alter the real-coded representation, binary

problems such as hamming-cliffs normally associated with binary strings can be avoided. 

2.1.6  Population Dynamics Analysis

We can describe the dynamics of the population in two ways - external and internal. The

external dynamics of the population describes how the population of strings is manipulated by

the GA and this will be covered by Section 2.2.8.1. The internal dynamics describes how the

elements which make up the strings change the sampling nature of the population. The following

analysis describes these internal dynamics. The internal properties of the population depend upon

how an initial population of strings is manipulated by the GA. 

Through the action of the reproduction and UAX operators the population of strings will

develop binary patterns which will explore and exploit the real-coded search space. We use the

principles of schemata processing to describe the action of the reproduction and UAX operators

on the population of strings. For the purpose of this analysis a string can be regarded as

having two parts - the first part consists of the real-coded values, and the second is the binary

template. In following example string we define the binary template in terms of a schema (e.g.

schema fitness f00 = 5) and show the corresponding real-coded values at the schema fixed

positions. 

string position - 1 2 3 4 5 6 7 8 9 10

string 1

real-coded values 3 4

schema   - f00 =  5 # # 0 # # # # # 0 #

Consider the following four strings,

string position - 1 2 3 4 5 6 7 8 9 10

string 1

real-coded values 3 4

schema 1 - f00 = 5 # # 0 # # # # # 0 #
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string 2

real-coded values 2 3

schema 2 - f01 = 4 # # 0 # # # # # 1 #

string 3

real-coded values 5 4

schema 3 - f10 = 7 # # 1 # # # # # 0 #

string 4

real-coded values 4 2

schema 4 - f11 = 3 # # 1 # # # # # 1 #

The example string schemata will compete for survival through the action of reproduction. We

have already seen in Section 1.4.2 how the average of these schemata f## /favg controls the

number of mating possibilities allowed for each string. This results in the expected number of

above average schema in the population increasing with the below average decreasing. Schema

analysis (i.e. Walsh function analysis) quantifies and describes this as a competition between a

set of schemata. In our example, schemata f00, f01, f10 and f11 will compete, with the successful

above average schema taking up more population positions. Therefore, the proportion of each

of the schemata will reflect their possibility of disruption and their fitness. This schemata

competition is taking place across the population and is the O(n3) power predicted by the

Schemata Theorem. 

The binary template schemata f00, f01, f10 and f11 are an underlying representation for real-coded

values. As the GA progresses, strings with new combinations of real-coded values can be created

by the UAX or mutation operators which may provide a better fitness for the schemata. If

string 5 is created as

string 5

real-coded values 4 3

schema 4 - f00 = 9 # # 0 # # # # # 0 #

then schemata will compete with the new fitness values. These schemata competitions will

continue until the schema associated with real-coded values of above average fitness, dominate

the population. Furthermore, an increase in real-coded fitness will result in the population
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average fitness being increased, causing the competing below average fitness schemata to have

decreased opportunity to mate. The important implicit parallelism which gives the GA its power

is effectively increased and there is an empowered implicit parallelism in the GA process. It

is also conjectured that this increased competition can prolong the useful life of the GA,

retarding convergence. 

The limitation with most approaches to tackling PCSPs is in making changes to a single solution

(e.g hill-climbing) or by following a single path through the search space. The limitation with

both these approaches, is that they are serial and very localised. However, GAs manipulate a

population of solutions and this enables them to simultaneously test different parts of the search

space. This simultaneous testing gives the GA a parallel search ability. By exploiting search

space information the GA can effectively explore different parts of the search space.

2.1.7  A GA System

We have looked at GA components in detail in the previous Sections (2.1.1 - 2.1.6) and

analysed the impact of PCSP features on their design. This has been undertaken with our

research goal clearly in mind - to develop a robust generic GA strategy to tackle PCSPs. The

analysis of each GA component in detail has been considered in terms of its inter- dependence

within the GA system. The components should work together in a synergistic way, allowing

necessary flexibility where possible. The components outlined in this section form a GA system

which we call GAcSP. 

2.2  What Is GAcSP ? 

2.2.1  Outline Of GAcSP

The heuristic strategy which we call GAcSP is distinguished from the standard or simple GA

by the integration of hill-climbing, string repair, best fitness string selection and an adaptive

template type crossover operator. As we have seen from the previous analysis, this combination

is specialised for solving PCSPs and exploits the characteristics of PCSPs. 

We hope to show that the combination of a GA and HC is synergistic, exploiting the abilities
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of each method. Although the GA is a robust technique for finding near optimal solutions in

combinatorial search spaces, it generally lacks a local improvement ability. This local ability is

provided by combining the GA with a simple HC. The GAcSP uses a new uniform adaptive

crossover (UAX) which generates offspring strings from parents strings to explore and test new

areas of the search space. After crossover, the offspring string is repaired and hill-climbed.

These repair and hill-climb functions act as a mutation operator altering individual string elements.

The HC increases the fitness for every offspring after crossover generation, before the string

is expected to compete with its peers. 

There are five components of the GAcSP strategy, namely: 

• PCSP representation

• Objective function

• GAcSP operators (initialisation, reproduction, and crossover)

• GAcSP parameters

• Population dynamics

The following Sections 2.2.2 - 2.2.8 will describe and discuss each of these components in

detail. 

2.2.2  PCSP Representation Framework

From the PCSP definition given in Section 1.3.1.1 and its solution tuples, we can define a

standard string representation which is natural to the problem. Here each PCSP variable xi in

Z relates to a string position i in an l length string, and at that string position has an

assigned PCSP value vij  taken from its domain vi in D. 

Z = {1, 2, ..., l},

D = {v1, v2, ..., vl}

Each domain vi = {vi1, vi2, ..., vik} where k = |vi| 
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C = set of hard-constraints on subsets of variables in Z, restricting the values that they can

take together. 

We can demonstrate these ideas with a simple example. 

Z = {1, 2, ..., 10}

D = {v1, v2, ..., v10} where v1 = v2 ... = v10 = {1, 2, 3, 4, 5} 

C = (∀  i, j, h)(vi = vj ≠  vh) 

g = See Section 2.2.3.

Constraint C requires that there are only two of each value represented in the string. 

An example string which represents the PCSP: 

string position - PCSP variable 1 2 3 4 5 6 7 8 9 10

solution tuple  - real coded 1 2 3 4 2 5 4 1 3 5

This is a general representation, suitable for any problem which is an instance of a PCSP.

Each string thus formed represents a solution tuple to a PCSP when the hard-constraints are

satisfied and is a single point in the search space. How we interpret the representation depends

upon the form of the objective function. 

2.2.3  Objective Function 

The GAcSP objective function maps each PCSP solution tuple to a numeric value. The goal

of the GAcSP is to find optimal or near optimal solutions to the PCSP. The GAcSP seeks

to find a minimum or maximum value as defined by the objective function which satisfies the

soft constraints. 

For the GAcSP to be successful it is important that the optimal solution can be located in

a part of the search space which is approached through sub-optimal groups of string elements

(building blocks). Otherwise, the GAcSP could find the problem misleading and GA -hard. 

GAcSP implements specialist operators of initialisation, reproduction, and crossover which are
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described in detail in the following sections. 

2.2.4  GAcSP Initialisation Operator

2.2.4.1  Initialisation Function

At the start of the GAcSP run, a population of strings is created by the initialisation operator.

Each string is constructed by randomly selecting a value from each PCSP variable domain, and

appended to generate a finite linear sequence of values. If the standard PCSP representation

defined earlier is used, the order of the variables is fixed during the GA run and is denoted

by string position. 

Starting the search with a randomly generated population of strings provides an important test

of the GAcSP ability to improve the fitness of strings over successive generations. The random

population of strings ensures that the GAcSP has an opportunity to reach (i.e. explore) as

much of the search space as possible. This is more important when real-coded alphabets are

used to represent problems because there are more element values to express at each string

position. Techniques can be employed which use heuristics to seed the initial population but

this can be dangerous, causing early convergence. The initial population diversity is necessary

to maintain grist for the genetic mill [Grefenstette, 1987]. 

Diversity is an important dynamic property of the population, and is a measure of the differences

between strings in the population. Subsequent action by the reproduction and crossover operators

will change the initial population diversity. As GAcSP progresses specific patterns will emerge

from the random initial population of strings due to the creation of building blocks. These

patterns will be dependent upon the selective pressure of reproduction and the action of the

crossover operator. If the GAcSP is successful in the search, the dominant string patterns which

emerge should ensure convergence to optimal or near optimal solutions. 

2.2.5  GAcSP Reproduction Operator

The reproduction operator guides GAcSP through the search space by selective control using

a sampling bias based upon the string fitness. The reproduction operator consists of two

functions: Elitism and Reproduction. 
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2.2.5.1  Elitism Function

The first stage of the reproduction operator implements a technique called "elitism" [De Jong,

1975]. Elitism copies a number of the greatest fitness strings for a maximising objective function

or lowest for minimising objective function, into a mating-pool population (matepool ). Parents

are randomly selected from the matepool by the crossover operator. Matepool has the same

number of string positions available as the population. Elitism guarantees that the "elite" members

of the population will survive into the next generation. (So long as the number of offspring

required each generation is less than the (population - elite copies).) These elite strings are

considered important because they will have promising string values or groups of string values

(building blocks) to pass onto their offspring. 

2.2.5.2  Reproduction Function

The second stage of reproduction fills the remaining matepool positions after the elitism function,

using a biased fitness selection from the population. The biased fitness technique is roulette

wheel selection [Goldberg, 1989], where offspring are created in proportion to their parental

fitness, relative to the population average fitness. 

Although the roulette wheel selection method is a high variance process [Goldberg, 1989], it is

simple to implement, efficient, and can help speed convergence. Any sampling method based

upon a finite population of finite length strings will suffer from variance, because the schema

theory is based upon schema fitness averages in the limit which are impractical for the GA

to calculate.

2.2.6  GAcSP Crossover Operator

The GA crossover operator explores the structural search space by creating offspring strings

from selected parent strings. A crossover operator needs to encourage exploration, yet not

destroy the information already contained in the population. The crossover operator should allow

the offspring to inherit building blocks from its parents. The crossover operator consists of

three functions: UAX, Repairer and Hill-Climber. 
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2.2.6.1  UAX Function

The GAcSP uses a new crossover mechanism - the uniform adaptive crossover (UAX), which

uses an extended string representation. The UAX mechanism allows the selection of multiple

crossover points along the parent strings with those points which improve the fitness determined

adaptively as the search progresses. An example of the extended string representation is shown

in the following string: 

extended string - 1 2 3 4 2 5 4 1 3 5

binary template 0 1 0 0 1 1 0 0 1 0

Each member of the population will have this extra binary string, so the length of each string

member will be doubled to account for this extra information. This extra binary string acts as

a template to control the creation of the offspring string during the crossover process. The

first stage of the crossover operator is to randomly select two strings to be used as parents

from the matepool. The UAX operator implemented in the GAcSP constructs a single offspring

using the following steps: 

Step.1 - Randomly select one of the two parent strings, call them parent 1 and parent 2.

parent 1 is selected to be the starting parent to copy from in Step.2. 

string position - 1 2 3 4 5 6 7 8 9 10

parent 1 string - 1 2 3 4 2 5 4 1 3 5

binary template 0 1 0 0 1 1 0 0 1 0

parent 2 string - 2 1 3 2 4 1 5 3 4 5

binary template 1 0 1 0 0 1 1 0 0 1

Step.2 - The following operations are carried out sequentially, from left to right at each binary

position in turn: 

Examine both parent binary values at string position 1. If both parents have the same binary

values at position 1, either 0 or 1, change to copy from the other parent, (e.g. parent 1 to

parent 2). 
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If both parent binary values at string position 1 are different then leave the copying parent

unchanged. 

Example:

string position - 1

parent 1 string 1

0

parent 2 string 2

1.

In the example above, the parent binary values are different (’0’ and ’1’ respectively) and

therefore the parent used to copy from remains unchanged. Copy the first string element ’1’

from parent 1 and copy the first binary element from parent 1 ’0’. 

Step.3 - Repeat Step.2 for all binary positions in the offspring construction sequence. For

example, for string position 2 the binary bits of parent 1 and 2 are ’1’ and ’0’ respectively,

so the offspring continues to copy from parent 1. The complete offspring is shown below: 

from parent - 1 1 1 2 2 1 1 2 2 2

offspring 1 string - 1 2 3 2 4 5 4 3 4 5

0 1 0 0 0 1 0 0 0 1

Step.4 - Offspring replaces the greatest fitness member of the population for a minimising

fitness function (least fitness for a maximising fitness function). 

Step.5 - Repair offspring to ensure it is feasible, using the greedy repair function explained

below. 

Step.6 - Evaluate offspring.

Step.7 - Apply optional Hill-Climber.

The technique of using the extended representation is to allow the adaptation of crossover

points. The binary crossover template provides a way of recording crossover points which

correspond to above average string values and allows the offspring to inherit them. One effect

2.2  What Is GAcSP ? 51



of the crossover operator upon the representation, is that offspring created will not always

satisfy the hard constraints. Therefore, each offspring will need to be repaired using a repairer

(greedy in this case). 

2.2.6.2  Greedy Repair Function

A Repairer ensures the hard-constraints are satisfied by changing individual string values. The

hard -constraints used in this implementation is to satisfy the number of each PCSP value

expressed in the string. The repair mechanism is to first randomly locate a string value which

has more than the required constant number of representations. Next locate all PCSP values

which have less than the required constant number of representations in the string. Change the

over-represented PCSP value to the under-represented PCSP value which increases the string

fitness. From this random starting position a sequential search is made for all over-represented

values, until the representation constraints are satisfied. 

One flexibility offered by GAcSP is the use of domain specific repair functions, which can be

written to capture different hard-constraint relationships. For example, binary constraints can be

used but may have to be restricted to those which are independent of each other (i.e. stable

sets). A number of important caveats need to be considered when designing alternative repair

functions. The time taken to repair a string may make the GAcSP intractable. This can happen

in the case of binary constraints, when they interact and a large search space is created. Also,

altering the offspring string too much may disrupt any building blocks which have been inherited

from the parents. 

For example, the greedy repair function can repair the offspring string to satisfy the hard

constraints. The hard constraints in this implementation restrict the number of each PCSP value

expressed in a string. However, this is only one possible relationship which may be used to

restrict the search space. The following steps are carried out by the repair function, 

Step.1 Randomly locate a string value which is over represented. 

Step.2.1 Starting from the Step.1 selected string value, search sequentially (left to right) and

locate a PCSP value which is under represented. 
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Step.2.2 Swap the value from Step.2.1 with that from Step.1 and calculate the string fitness. 

Step.2.3 Return to Step.2.1 unless all under represented PCSP string values have been found

or the end of the string is reached. 

Step.3 Continue with Step.1 until all PCSP values are correctly represented. 

For example, consider the offspring string created by the crossover operator: 

string position - 1 2 3 4 5 6 7 8 9 10

offspring 1 string - 1 2 3 2 4 5 4 3 4 5

binary template 0 1 0 0 0 1 0 0 0 1

In offspring 1, the string values at positions 5, 7 and 9 are the same (e.g. S5 = S7 = S9

= 4) yet constraint C requires that there are only two string values equal to 4. So one of

these string values will need to be changed. The Repairer will randomly select one of the

string positions i = 5, 7, or 9. Next, find any PCSP values which are under represented. For

example, because in the offspring there is only one S1 = 1 instead of two, it is under

represented. Then the string value at position 7 S7 = 4 is changed to S7 = 1 giving the

following repaired string: 

offspring 1 string - 1 2 3 2 4 5 1 3 4 5

0 1 0 0 0 1 0 0 0 1

2.2.6.3  Optional Hill-Climber Function

The GAcSP strategy incorporates an optional HC in order to improve on the quality of

solutions. The HC is optional because it may be used to improve on solution quality if run-time

is available. It also allows some control over speed of convergence by either increasing or

reducing diversity. Although the GA is a powerful heuristic technique for finding near optimal

solutions to problems, it lacks a local improvement ability. By combining the GA with a HC

we hope to provide this local improvement ability. We have already mentioned the advantage

of using the HC with the GAcSP in terms of increasing the optimality of strings when using
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real -coded alphabets (Section 1.4.3.2). The HC can also be regarded as a super mutation

operator, in that it can increase the string fitness and put pressure on the GAcSP by increasing

the average population fitness to seek improvements. Another aspect of the HC as a super

mutation function is to encourage diversity which will begin to decline as the search progresses.

Standard mutation operators can also increase the diversity of populations as the GA search

progresses, but at the cost of destroying important building blocks. The HC should maintain

and even improve upon the building blocks in a population. 

The HC is a simple string element exchange function, for swapping high cost PCSP values

with any other PCSP values which will reduce the string fitness. The high cost PCSP values

are those which can be identified as contributing to the string fitness. A starting point is

randomly selected, from which high cost PCSP values are located and swapped for any other

PCSP values which minimise the string fitness. This process is repeated until no more improvement

is possible, or a pre-set time limit is reached. The HC undertakes the following steps: 

Step.1 Randomly locate a PCSP value in the string which has a low fitness. 

Step.2.1 Starting from the value following the Step.1 selected string value, swap the value with

that from Step.1. 

Step.2.2 Calculate the new string fitness. Save fitness and value if greater than best fitness

string recorded so-far. 

Step.2.3 Continue with Step.2.1 until all string values are tested. 

Step.3 Swap the best fitness value from Step.2.2.

Step.4 Continue with Step.1 until no more improvement in fitness can be achieved or until a

pre -set time limit is reached. 

The HC, by swapping a string value in one string position with string values in other positions,

effectively tests all PCSP values at that position. This HC action will work in a similar way

to the adjacency mutation or "creep" operator of Davies [Davis, 1991]. This very localised

operator could assist GAcSP in overcoming a search space coding which prevents it from
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reaching the global optimum. 

2.2.7  GAcSP Parameters

There are a number of parameters which are set prior to the GAcSP run. GAcSP parameters

include population size, number of parents, number of offspring generated, number of GAcSP

cycles, GAcSP time limit, HC time limit, and number of elite string members copied. Research

has established optimum parameter settings for the canonical or standard GA using a binary

representation tackling specific function optimisation problems. When using a non-canonical GA

with a real-coded representation there are no a priori reliable settings established by research.

There is also a paucity of theory into the interaction between the real-coded representation

and GA operators. In this situation the practical approach is to consider the following issues

in deciding on preliminary initial parameter settings. 

What computing resources are available in terms of processing power and memory ? 

What computing resources are required by the GAcSP ? 

What size and complexity of problems are to be tackled ?

What time is available to achieve satisfactory solutions ? 

What quality of solutions are required ?

These questions impose limitations upon the possible parameter settings. With limited computer

resources available, a balance has to be achieved whereby the parameter settings are appropriate

to the problem to be tackled and ensure the results obtained are satisfactory. 

Population size is a constant, pre-set before the start of the GAcSP run. The population size

will depend upon the actions of the operators and problem size. A larger population will be

diverse and contain many search space points for GA processing, but require more computing

memory and evaluation time to process. Although smaller populations require less memory and

processing, they require special operators for the search to be adequate. A population size

should be large enough to represent the PCSP values in all string positions in the initial
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population. Population size also has an important impact on the control of premature convergence

[Booker, 1987] but must be balanced by the computational work required. We considered the

results of previous GA work involving population sizing on CSOPs [Tsang and Warwick, 1989].

The number of offspring created in each complete GAcSP cycle is pre-set before the run. The

number of offspring generated each cycle controls the rate of exploration carried out by the

crossover operator. 

A constant number (i.e. a percentage of the total population) of the best members of the

population are copied directly into the matepool. This technique improves the off-line performance

of the GAcSP, increasing the chance of more optimal solutions. 

Parameter settings are important, but if the GA implemented is robust the impact of changes

may not be considerable [Davidor, 1991]. Parameters can usually be tuned empirically and tested

to improve the performance of the GAcSP. 

2.2.8  Population Dynamics

The external dynamics of the population describe how the population of strings is manipulated

by the GAcSP. We have already seen in Section 2.2.4.1 that the initialisation operator randomly

creates a population of strings, before the main GAcSP operators are put into action. We can

describe the action of the main GAcSP operators upon this initial population of strings. 

2.2.8.1  External Dynamics

The main cycle of GAcSP operators add strings, delete strings (by replacement and non-selection)

and changes individual string elements in the population. The elitism function in the reproduction

operator copies the highest fitness members of the population into the matepool with the

remaining positions taken by biased fitness selection from the population. The crossover function

in the crossover operator creates an offspring by exchanging string elements between two parents

and the offspring replaces the lowest fitness member of the population. This continues until

the pre-set number of offspring is reached. This constant number of offspring controls the

number of population members replaced by offspring in each generation. If this constant was
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set equal to the population size, a new population would be created each generation (termed

non-overlapping or generational). However, when the setting is less than the population size,

some of the current matepool members will survive into the next generation. The Repairer and

HC in the crossover operator alter individual string elements in much the same way as a

mutation operator. 

2.3  Summary

The heuristic strategy which we call GAcSP is distinguished from the standard or simple GA

by the integration of reproductive best fitness string selection, an adaptive template type crossover,

hill-climbing, and string repair. The design of GA operators are influenced by representation

and PCSP constraints. 

The reproduction operator guides GAcSP through the search space by selective control using

a sampling bias based upon the string fitness. The reproduction operator first copies a number

of the greatest fitness strings (i.e. elite) for a maximising objective function into a mating-pool

population (matepool ). Next, it fills the remaining matepool positions using a biased fitness

selection from the population. Elite strings are considered important because they will have

promising string values or groups of string values (building blocks) to pass onto their offspring.

Binary-coded representations are supported by established GA theory and operators with their

perceived advantages being the opportunity to use traditional GA operators and support from

the Schemata Theorem. However, drawbacks to using binary-coded representations include string

length, problems such as hamming cliffs and slower convergence rates. Also, the need to decode

and encode could increase the computational work load of the GA and the inverse mapping

precision of the binary integers into the real values (i.e. PCSP values). A real-coded or "natural"

representation results in a more compact string, does not suffer from hamming cliffs and allows

us to work directly with the PCSP domain values. 

Constraints are an essential feature of the PCSP and their interactions influence the design of

the GA crossover and mutation operators. Constraints represent interacting relationships between
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PCSP variables and can give rise to the phenomena of epistasis in two separate ways: Hard

constraints must be satisfied and have a direct effect on the structural search space. Soft

constraints are the user requirements or the constraints of the problem which can be optimised

and can be incorporated into the objective function which influence the search through the

fitness function. 

GAs can handle hard constraints in a number of ways, by hiding them using a specially

designed representation and set of operators, incorporating into the objective function using a

penalty function or repair strings violating hard constraints. With the penalty function approach

the search space becomes the space of all possible solution states, rather than solution states

where the hard constraints are satisfied. Its disadvantage is in allowing the GA into infeasible

parts of the search space, where solution states do not satisfy the hard constraints, and the

difficulty of estimating the measure of penalty cost which should be associated with constraint

violation. Strings created by GAcSP are repaired, ensuring that the hard constraints are satisfied.

This approach has the advantage that it can prune some of the search space by preventing

the GA from entering infeasible areas and eliminates difficulties associated with estimating

violation costs. Also, we can make the GA strategy more robust by allowing for the possibility

of incorporating different hard constraints without needing to change the general strategy. The

soft constrains of the problem can be directly optimised through the objective function. Soft

constraints can include resources, customer requirements, economic objectives or a combination

of these and other costs. Unlike hard constraints, soft constraints need not necessarily be

completely satisfied for a solution to be acceptable. The GA approach is to find optimal or

near optimal solutions to PCSPs which maximise or minimise the soft-constraint violation measured

through the fitness function. 

Constraint interactions determine the effectiveness of the crossover operator which must have

the ability to propagate building blocks throughout the population and to create new ones.

Constraints create a potential difficulty where string elements which interact could do so over

any distance along the string, preventing the building blocks (short defining length schemata)

from developing. The uniform crossover developed by Syswerda [1991] is a multi-point crossover

operator which may devastate tightly packed schemata but can perform better on schemata
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which are not. We have adapted the uniform crossover and called it the uniform adaptive

crossover (UAX). The UAX operator allows us to cut the string into sections along the string

length as a way to retain and propagate longer schemata, preventing them from being destroyed.

The points at which UAX cuts the parent strings during recombination are determined by the

parent binary templates. A binary template for each string consists of a set of binary values,

where each binary value is associated with a particular string value. The binary templates record

successful cut-points and effectively creates an underlying binary space which gives an offspring

the opportunity to inherit these building blocks utilised through the UAX crossover operator.

By manipulating binary template space values, important real-coded building blocks will be

inherited, which will lead the GA towards "optimal" solutions. 

Although the GA is a robust technique for finding near optimal solutions in combinatorial

search spaces, it generally lacks a local improvement ability. This local ability is provided by

combining the GA with a simple hill-climber (HC). HC is a simple string element exchange

function, for swapping high cost PCSP values with any other PCSP values which will reduce

(for minimisation problems) the string fitness. After UAX, strings are repaired and hill-climbed.

These repair and hill-climb functions act as a mutation operator altering individual string elements.

A localised HC can increase population diversity and compensate for the possible loss of

performance through the use of large alphabets. Also, the action of the HC will put pressure

on the GA to seek further improvements because the population average fitness will increase

as each string fitness improves. GAcSP can use domain specific repair functions, which can be

written to capture different hard-constraint relationships. 
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Chapter 3  Tested Domains

We have tested GAcSP on the following problems which are covered in the relevant sections:

• 3.1  Processors Configuration Problem (PCP)

• 3.2  Car Sequencing Problem (CarSP)

3.1  The Processors Configuration Problem (PCP)

3.1.1  Definition

˚ Definition 3.1 (Processors Configuration Problem (PCP)) The PCP is the linking together

of a finite set of k independent processors, each with a fixed number of links into a

multiprocessor network. The objective of the PCP is to minimise the processor paths between

source and target processors, where for each k source processor there are k - 1 target

processors. 

Note: in the above definition k is equivalent to the number of PCSP domain values. 

˚ Definition 3.2 (Processor valency ∆) The processor valency ∆  is the fixed number of links

available on each processor for connection to other processors. 

Motivated by the desire to exploit transputer technology, all PCPs tackled in this thesis have

processors with valency ∆ = 4. 

A restriction on the configuration of the network is that two processor links are assumed to

be used by the system controller, which acts as input/output to the network. Figure 3.1 (a)

shows a five processor network without input/output. In this research we only consider networks

with input/output, such as the network in Figure 3.1 (b). 

˚ Definition 3.3 (Regular Network) A regular network is a configuration of fixed valency

processors which is symmetrical about at least one axis (e.g. tori and hypercubes). 
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˚ Definition 3.4 (Irregular Network) An irregular network is a configuration of fixed valency

processors which has no guarantee of symmetry about any axis. 

The irregular networks that are formed provide useful maps for connecting processors together

in distributed memory MIMD machines, and for many applications where performance can exceed

that of regular networks [Prior et al., 1989]. 

3.1.2  Graph Theory

A multiprocessor network can be described in terms of graph theory [Chalmers and Gregory,

1992] where the processors are the nodes and its links bidirectional arcs. Graph theoretic

distances can provide useful measures for the irregular graphs which are formed. These measures

include the diameter, and mean internode distance which can represent limiting factors on

communication speed. 

˚ Definition 3.5 (Diameter dmax) The diameter dmax of a graph [Chalmers and Gregory, 1992]

is an invariant, and is the maximum of the direct distances between any two nodes in the

graph - where the direct distance is taken to be the minimum number of links which have

to be traversed in communication between a source and target node. 

1

2

3

4 5

Figure 3.1: (a) Network without input/output    (b) Network with input/output
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˚ Definition 3.6 (Mean internode distance davg) The mean internode distance davg of a graph

[Chalmers and Gregory, 1992] is the average of the direct distance between any two nodes

in a graph. 

The mean internode distance for a graph can be calculated as follows: 

                                                                          k              dmax
                                                                         ∑             ∑       ( d   .  kpd  )
                                                                          p =  1     d =  1
                                                         davg =                                                     .                                                          (3.1)

                                                                                         k2

where k is the number of nodes used and kpd [Chalmers and Gregory, 1992] is the number

of nodes distance d away from node p. 

A theoretical upper bound nmax on the maximum number of nodes in a graph for a fixed

diameter can be calculated. 

˚ Definition 3.7 (Upper Bound nmax) The upper bound nmax for a graph is the maximum

number of nodes for a fixed diameter dmax (assuming two arcs are used as input/output),

is calculated as follows: 

                                       nmax    =      1 +  (∆  - 1) +  (∆  - 1)2 +  ... +  (∆  - 1)dmax.                                                  (3.2)

The theoretical upper bound is based on the assumption that each node in an k node graph

has the minimum distance possible to every other node. This set of routes for a node is called

its spanning tree [Chalmers and Gregory, 1992]. We can demonstrate this assumption and spanning

tree by considering a single controller connected node configuration at each diameter distance

up to dmax as follows: 

  1     distance 0                       Node

(∆  -1)    distance 1       Node            Node           Node

(∆  -1)2   distance 2  Node  Node  Node  Node  Node  Node  Node Node  Node

(∆  -1)dmax distance dmax . . .

Chapter 3  Tested Domains 62



However, Equation 3.2 represents the set of minimum distance routes for a node which is

connected to a system controller (i.e. (∆  - 1)). In a graph where two arcs are used by the

system controller only two nodes in such a graph will have this spanning tree. The other k

- 2 nodes will have spanning trees with nodes at distances up to dmax shown by equation,

                 nMoore  =      1 +  ∆  +  ∆(∆  - 1) +  ∆(∆  - 1)2 +  ... +  ∆(∆  - 1)dmax-1.                                              (3.3)

Graphs which have k nodes with spanning trees represented by Equation 3.3 (i.e. no controller)

are called Moore graphs. Since Moore graphs consist of nodes which have no system controller

connections (i.e. Equation 3.3) they will therefore have a greater upper bound than for optimum

graphs for a given diameter dmax. 

nMoore  > nmax.

Since only two nodes in a graph will be connected to the system controller the nmax upper

bound must be regarded as not being an accurate estimate for the maximum number of nodes

for a graph with a diameter. Instead, the upper bound nMoore  is a better approximation to

the maximum number of nodes for a given diameter than nmax. Furthermore, Chalmers and

Gregory [1992] state it has been shown [Biggs, 1974] that except for when dmax = 1 or ∆

= 2, Moore graphs can only exist for the cases: dmax = 2 and ∆  = 3, 7, or 57. The

upper bound nMoore  with ∆  = 4 is therefore unobtainable. Any graphs which are formed can

only approach the upper bound nMoore . 

The diameter dmax and mean internode distance davg are measures of the compactness of a

network. Three benefits of compact networks are: 

(a) The more compact the network the shorter the distances for communication, and the less

consumption of network links. Compact networks with distributed loading can sustain higher

levels of communication. 

(b) Compact networks involve shorter internode distances so fewer processors are interrupted

from performing useful computations.

(c) Communication between two processors involves intermediate processors propogating messages.
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Compact networks can reduce the latency of communication due to propogation delays. 

˚ Definition 3.8 (Optimum Graph) An optimum graph is where each node has the minimum

possible direct distance to every other node and two nodes are connected to the system

controller. 

We can derive a theoretical lower bound Davg for the mean internode distance of optimum

graphs, providing an important measure for comparison with the mean internode distance davg

of graphs. In order to calculate the theoretical lower bound of an optimum graph, we need

to consider spanning trees of nodes with ∆  = 3 and ∆ = 4. Source nodes which are

connected to the system controller will have 3 arcs for connection to other nodes, each of

these 3 nodes at distance d = 1 will in turn will have 3 arcs. Similarly nodes which are not

connected to the system controller have 4 arcs for connection to other nodes, at distance d

= 1 these each 3 nodes will in turn have 3 arcs. Therefore, the number of arcs of the

source node available for connection to other nodes will determine the maximum number of

nodes for a graph. 

For a node p with narc arcs (where narc could be 3 or 4), the maximum number of nodes

Mpd that it can reach in distance d is: 

                                                                        Mpd  =   narc  .  3
d - 1   .                                                                     (3.4)

We can calculate the number of nodes Mpdmax distance dmax away from p as 

                                                                                                              dmax - 1
                                                                    Mpdmax  =   ( k - 1 ) - narc ∑            3d - 1.                                              (3.5)
                                                                                                              d =  1

We can use Equation 3.4 to calculate the maximum number of nodes at distances d = 1, 2,

..., dmax for source nodes, where narc = 3 and 4. However, we need to consider the fact

that k nodes of an optimum graph may be less than the total number of nodes calculated

using Equation 3.4 when d = 1, 2, ..., dmax. In which case, we use Equation 3.4 to calculate

the maximum number of nodes at d = 1, 2, ..., dmax-1 and Equation 3.5 for the additional

nodes at distance dmax. We obtain the total distance for all paths from a single source node

by multiplying the maximum number of nodes Mpd at each distance by the distance value and
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finally adding the Mpdmax nodes. This calculation is carried out for each of the k nodes of

an optimum graph. The lower mean internode distance bound (defined below) for an optimum

graph is the total of the distance of the paths from each source node, divided by the total

number of node paths k2. The following definition concludes these results. 

˚ Definition 3.9 (Lower mean internode distance bound Davg) The lower mean internode

distance bound Davg for an optimum graph with k nodes can be calculated as 

                                                                          k            dmax -1
                                                                         ∑       (   ∑         ( d   .  Mpd )  +  Mpdmax )
                                                                         p =  1    d =  1
                                                      Davg =                                                                             .                                    (3.6)
                                                                                                      k2

Chalmers and Gregory [1992] provide mean internode distance davg results from their PCP

program (AMP), for PCPs of 32 processors and 40 processors. The maximum number of

processors they have configured for a processor valency ∆  = 4 and diameter dmax = 3

network is 32, whilst the theoretical upper bound nmax = 40. The GAcSP approach is to

directly optimise the diameter as a constraint and measure the mean internode distance achieved.

Although Prior et al. [1989] use a GA to tackle the PCP their results are not directly

comparable, because we have assumed that two processor links are used by the system controller.

3.1.3  Representation

From the CSP definition given in Section 1.3 and its solution tuples we can define a string

representation where, each PCSP variable relates to a string position and at that string position,

has an assigned value taken from the variable domain. This representation is limited to even

valency (∆) processors. 

˚ Definition 3.10 (PCSP(PCP)) We formally define the PCSP(PCP) as: 

Z = {1, 2, ..., N} where N = k . z and z = ∆/2 

D = {v1, v2, ..., vN} where v1 = v2 ... = vN = {1, 2, ..., k} 
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C = (∀  i, j, h)(vi = vj ... = vz ≠  vh) 

Constraint C requires that there are only two of each processors in the string. 

g = The objective function g is defined in Section 3.1.4. 

For example, a 5 processor PCP solution tuple could be represented as:

string position - PCSP variable  1 2 3 4 5 6 7 8 9 10

solution string - PCSP value 1 2 3 4 2 5 4 1 3 5 

In this example, each PCSP variable domain (i.e. {1, 2, 3, 4, 5}) represents the set of processors

to be configured by the GAcSP. We can see from the example string that there are two of

each processor, numbered 1 - 5 represented. Each string element represents 2 processor links

to element values either side. For example, processor 2 is linked to processors 1, 3, 4, and

5 taking up the four links available. For all strings, the first and last string element processors

have three links available for connection to other processors (except when the first and last

element represent the same processor), because each uses one link to connect to the system

controller. The first string element processor 1 and last string element processor 5 in the above

example, are linked to the system controller. Because representation elements depend upon their

neighbouring values, the objective function of the PCP representation does not depend on the

absolute position of values. This representation is compact and ensures that all processor links

will be used, because each string element will automatically have neighbours. From this description

we can see that the representation is limited to PCPs with even valencies. (If the string was

regarded as forming a ring where the string ends are joined together, then it could represent

PCPs without a system controller.) 

3.1.4  Objective Function

The GAcSP objective function maps each PCP solution tuple to a numeric value which we

call the fitness. The goal of the GAcSP is to find an optimal or near optimal solution tuples

to the PCP. The GAcSP seeks to find a minimum  fitness as defined by the objective function.

We set a value for a numerical integer constant c ≤  dmax as the maximum diameter constraint

for a graph. The following objective function measures the total distance for all nodes at greater
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distances than the diameter constraint c. 

                                                                   k            dmax
                             minimise     fitness =  ∑             ∑                     kpd . (d  -  c ) .                                                    (3.7)
                                                                  p  =  1    d  =  (c+ 1)

where k is the number of nodes used and kpd is the number of nodes distance d away from

node p. 

The objective function fitness is based on the processor to processor distances because the

difference in fitness values (i.e. standard deviation) between strings will be greater than for the

mean internode distance. GAcSP is given detailed knowledge of processor paths which require

local improvement and the GA component has more accurate fitness values for biased selection

for mating. Also to achieve optimum graph configurations each node must have minimum paths

to every other node, and therefore search pressure needs to be placed on improving node to

node paths. We can see from Equation 3.6 that the fitness is effectively a total measure of

all the processor to processor distances, greater than the diameter constraint c. The value of

c can provide GAcSP with useful knowledge in guiding GAcSP by acting as a filter to focus

the search towards areas of possible improvement. Many paths in a PCP configuration will be

equal to 1 - these are the nodes directly connected to other nodes. Obviously, nodes at distance

1 cannot be improved any further with nodes at distance 2 providing more room for improvement.

If we set c = 2 we filter out these direct connections and concentrate the search on improving

all other paths. When a processor in a network configuration has self links or is connected

more than once to the same processor, the effect is to increase the string fitness and penalise

these strings. Self connections, and double connections are links which could otherwise reduce

a number of the processor to processor paths. As well as the fitness, the mean internode

distance is calculated using Equation 3.1 and recorded on the string. 

3.2  The Car Sequencing Problem (CarSP)

3.2.1  Definition

˚ Definition 3.11 (Car Sequencing Problem CarSP) The CarSP has a set of predefined car

types, each requiring a different set of options (e.g. car radio, seat covers etc.) fitted by
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specialist workstation teams on an assembly line. The task is to sequence a specified number

of cars for each car type ensuring the workstation capacity is not exceeded or capacity

violations are minimised. 

˚ Definition 3.12 (Schedule) The schedule is a linear sequence of cars moving at a constant

speed through the assembly line of workstations. 

In a car production unit, cars are required to pass through an assembly line of specialist

workstations in order to have options fitted on them, such options could include car radios,

sunroof and furry dice. Each workstation team is required to fit options to cars whilst the

cars travels through its workstation and finishing before each car leaves. Workstations have been

designed so that there is sufficient time for teams to fit a maximum number of options (capacity)

to consecutive cars requiring them. Groups of cars which share the same option requirements

are sequenced to produce a single schedule which does not exceed the option fitting capacity

of each workstation. We first formally define the car sequencing problem (CarSP) and provide

an example of a CarSP where a schedule can be generated which satisfies the workstation

capacities. In the next section we consider an approach to tackle a CarSP which cannot produce

a schedule satisfying workstation capacities. 

In a CarSP there are k car types (equivalent to the number of PCSP values) which share the

same option requirements. Each of the k car types has prj cars and these are the production

requirements of the CarSP. For an n option CarSP with k car types we define an n x k

option requirement matrix, where omj = 1 if option m is required by car type j, otherwise

omj = 0. 

Grouping the different option requirements into car types can reduce the size of the CarSP.

Given N cars to be scheduled, grouped into k car types, the complexity of the CarSP reduces

from NN to Nk, (k ≤  2n). 

The total number N of cars to be sequenced can be calculated using Equation 3.8: 

                                                                                          k
                                                                           N   =     ∑        prj.                                                                          (3.8)
                                                                                         j = 1
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For each option m there is a specialist workstation on the assembly line with a team of

workers which can fit pm options in the time it takes for qm cars to pass through its

workstation. The ratio pm/qm represents the workstation m capacity constraint. We can calculate

the total number Onumm of option m required in the schedule, using Equation 3.9: 

                                                                                      k
                                                               Onumm  =   ∑        prj   .  omj.                                                                    (3.9)
                                                                                     j = 1

Since the ratio pm/qm determines the maximum number of cars requiring the option in a

sequence of cars, then the total number in a schedule can be calculated as 

                                                                                      pm
                                                                  Omaxm =            . N .                                                                            (3.10)
                                                                                     qm 

Furthermore, using the results of Equations 3.9 and 3.10 we can calculate the utility ratio um

for option m, which is the degree of capacity constraint satisfaction 

                                                                                    Onumm
                                                                       um =                   .                                                                              (3.11)
                                                                                    Omaxm

An important conclusion from these results is that, a necessary but not a sufficient condition

for a CarSP to be solvable is that all capacity constraints pm/qm must be satisfiable, that is

(∀  m)(um ≤  1). Therefore, if we calculate the utility ratio for each option of a CarSP we

can at least determine a priori whether it is definitely unsolvable or possibly solvable. 

The average utility û for a CarSP can provide one useful measure to compare CarSPs which

have the same number of cars to sequence, the same options and capacity constraints. Also,

the average utility û is the CarSP average degree of capacity constraint satisfaction, and calculated

as 

                                                                                      n
                                                                                     ∑          um
                                                                                     m =  1
                                                                       û    =                        .                                                                         (3.12)
                                                                                         n
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3.2.2  Example Of A Solvable CarSP

We can demonstrate these ideas with a simple example CarSP with 12 cars to sequence, 3

options each with a typical capacity constraint. 

                        car type                                    capacity constraints

1 2 3 4 p/q p/q Omax Onum u

      car radio    1 1 0 0 1 1/2 .50    6     5 .83

 option furry dice    2 0 1 0 1 2/3 .66    8     6 .75

      sunroof      3 0 0 1 0 1/3 .33    4     4 1.00

        cars in type 2 3 4 3

                    Table 3.1: Solvable example CarSP

Table 3.1 shows the capacity constraint ratio pm/qm for each option, and the percentage capacity

constraint ratio. Using Equation 3.10 we can calculate the number of options allowed in the

schedule with no violation of the capacity constraints. These numbers are given in Table 3.1

under column ’Omax’. Equation 3.9 results under column ’Onum’, give the number of cars with

each option in the schedule to be sequenced. The utility ratio for each option are listed under

’u’. The average utility can be calculated for the example CarSP using Equation 3.12, giving û

= .86. 

The following example schedule satisfies the capacity constraints in Table 3.1: 

schedule position i = 12   11   10 9      8      7 6      5      4 3    2     1

schedule  4      3     4 2      1      3 2      1      3 2    4     3      → assembly line

where the position of cars in the schedule are numbered in sequence from right to left, with

car 1 as the first to enter the assembly line of workstations and car 12 the last. In general,

a car i when i = 1 is the first car in the schedule and represents the beginning and when

i = N the end. It is important to recognise that the direction the schedule passes through

the assembly line can make a difference to whether the capacity constraints are satisfied. As

a car requiring an option enters the workstation which fits that option, the number of cars

requiring m in the consecutive qm cars following will determine if the capacity is exceeded.

This is particularly relevant at the beginning and end of a schedule where a change of direction
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may provide a consecutive group of cars which exceeds a workstation capacity. In the next

section we shall consider in more detail, how the relative positioning of cars in a schedule

can assist the workstation teams.

3.2.3  The Penalty Function

3.2.3.1  Basic Method

There are CarSPs which are not solvable, where the capacity constraints cannot be satisfied

(i.e. Onumm > Omaxm). In these problems, penalty functions [Parrello et al., 1986] are used

to minimise the capacity constraint violation. The use of penalty functions can also improve the

car spacing arrangements in a schedule, and this can assist the assembly line workstation teams.

Penalties reflect the ability of workstation teams to cope with options exceeding the capacity

constraints. Some workstation teams may be able to cope with no more than an extra option

above their capacity, so extra options in the schedule are spaced apart by the use of high

penalties. If we add an extra option 3 to type 1 cars in the simple example used earlier, we

can make the previous example CarSP unsolvable. 

                        car typee                                 capacity constraints

1 2 3 4 p/q p/q Omax Onum u

      car radio    1 1 0 0 1 1/2 .50    6    5 .83

 option furry dice    2 0 1 0 1 2/3 .66    8    6 .75

      sunroof 3 1 0 1 0 1/3 .33    4    6 1.50

        cars in type 2 3 4 3

                  Table 3.2: Unsolvable example CarSP

In this second example Onum3 = 6 (Equation 3.9) > Omax3 = 4 (Equation 3.10). The

number of cars requiring option 3 is 6, yet the capacity constraint p3/q3 = 1/3 will only allow

a maximum 4 of the 12 cars to be scheduled to have this option. The utility ratio  u3 =

(6⁄4) > 1, and therefore the example CarSP is unsolvable. 

For example, if we were to position the type 3 cars requiring option 3, we would not be

able to position any type 1 cars requiring option 3 without violating the capacity constraint.

Therefore, we need to add the type 1 cars in such a way as to minimise the capacity constraint
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violation according to a penalty function. With the capacity constraint 1/3 for option 3, the

two cars which follow the first requiring the option is a sub-sequence of cars defined by

Parrello [Parrello et al., 1986] as the interval of relevance. In general, the interval of relevance

for option m  is equal to (qm-1). The penalty function assigns a penalty value depending upon

the number of cars requiring the option in the interval of relevance in excess of workstation

capacity qm. 

For example the following gives penalty values for extra cars requiring option 3 in the interval

of relevance: 

number of cars

1 2

           option 3 sunroof 2 5

There is no penalty if no cars in the interval of relevance require option 3, but when one

car in the interval of relevance requires option 3 the penalty value is 2. Each option will have

penalty values which reflect the capacity of the workstation teams to cope with work exceeding

the workstation capacity pm. In general, we can define an n x (qm-1) penalty value matrix,

where Pmr is a numeric integer penalty for each r cars requiring option m . If the number of

option m  required in a qm consecutive sequence of cars is less than the capacity pm, then

the penalties will be 0 (e.g. if r < pm then Pmr = 0). Each car i in a schedule S represents

the first of a qm sub-sequence for each of its options omSi = 1. We can calculate the penalty

cost of option m  for a car i in schedule Si by using the value from summing the number

of cars requiring option m  in qm cars following Si in the schedule, to index the penalty matrix

as follows,

                                                                                                 (i+ (qm - 1) ) ≤  N
                                                       costSim   =     Pm(omSi .  ∑                  omSl)                                                   (3.13)
                                                                                                  l =  (i + 1)

where omSi = 1, if car i requires option m . It follows, that if Pmi = 1 for m  = 1, 2, ...,

n and o = pm+1, ..., (qm-1), then Equation 3.13 calculates the total penalty cost for a single

car i. 
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For each option, it may be possible to improve the car spacing arrangement in a schedule,

to assist the workstation teams installing the options. Consider the current example: 

schedule position 4 3 2 1

car type ... 4 2 1 3   → assembly line

requires option 3 ? N N Y Y

with the capacity constraint of 1/3 for option 3, car 1 penalty cost for option 3 = 2. In

order to encourage improved spacing of cars requiring options in the schedule, a smaller

proximity interval Im is defined for CarSPs along with a proximity factor fm. When the capacity

constraints in a schedule cannot be satisfied the proximity interval and factor are used to

balance the extra work required. So improved spacing of cars requiring options can give

workstation teams more time to work on them. In the above example, if car type 1 in position

2 swaps places with car type 2 in position 3 then the space between option 3 cars gives the

workstation team more time to fit option 3 on the car in position 1. 

If a car i option m  penalty cost is greater than 0 (i.e. costSim  > 0) and a car in the

proximity interval Im requires option m  then a fixed proximity factor fm is incurred in addition

to the penalty cost as follows 

                                                                                                                      (i+ Im) ≤  N
TcostSim =  costSim +  fm,    if costSim >  0 a nd  (  ∑         omSl)   ³   1               (3.14)
                                                                                                                      l  = (i  + 1)
                         costSim ,                         otherwise.

In the following example option 3 proximity interval and factor, if a car within the proximity

interval of 1 car requires option 3 then the proximity factor 7 is added to the car penalty

cost. 

         proximity

interval factor

                   option 3      1     7

By adding the proximity factor to the current example we can see how pressure is placed on

cars requiring option 3 to have other non-option 3 cars to come between them. The following

example has a car at position 2 requiring option 3 within a proximity interval 1 from car 1,
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and has the proximity factor of 7 added to its cost. 

schedule position 4 3 2 1

car type ... 4 2 1 3 → assembly line

requires option 3 ? N N Y Y

Car 1 penalty cost + proximity factor for option 3 = (2 + 7). 

By spacing apart the cars requiring the same option, the additional proximity factor is not

active. With a proximity interval of 1, swap the car from position 2 (type 1) with car position

3 (type 2) to obtain 

schedule position 4 3 2 1

car type ... 4 2 1 3  → assembly line

requires option 3 ? N Y N Y

Car 1 penalty cost + no proximity factor for option 3 = 2. 

Adding all penalty and proximity costs for a single car i in schedule S, gives us the total

car penalty cost: 

                                                                                         n 
                                                                      costSi   =  ∑            TcostSim.                                                          (3.15)
                                                                                        m   =  1          
                                                                  

These total car costs for all cars i = 1 to N  in schedule S can be added together to give

the schedule cost: 

                                                                                       N   
                                                       schedule cost   =    ∑          costSi .                                                                  (3.16)
                                                                                        i  =  1          
                                                                      

The schedule cost represents the sum of penalties for all cars which violate the capacity

constraints and proximity intervals. A schedule can be derived from Table 3.1 where capacity

constraints can be satisfied, and the schedule cost = 0. 
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3.2.4  Theoretical Lower Bound For Unsolvable CarSPs

In order to test the quality of GAcSP results on unsolvable CarSPs, we have devised a method

to calculate a theoretical lower bound for certain unsolvable CarSPs. The conditions under which

this lower bound formula is limited are for solvable CarSPs (i.e. schedule cost = 0) made

unsolvable by a single option over-utilised, ∀ (Pmr) = 1 for r ³  pm and fm = 0. 

For option m  we can calculate the number of cars Oexem which exceed the maximum number

of options Omaxm allowed in a schedule as 

                                                              Oexem =  Onumm - Omaxm.                                                                     (3.17)

Consider the case where Omaxm options have been sequenced to satisfy the capacity constraint

pm/qm, the remaining Oexem options need to be placed in the spaces so as to minimise the

schedule cost. For example, if we add 2 extra options to an interval of relevance as in, 

S position i = 12   11   10 9      8      7 6      5      4 3    2     1

S option m  = 3                3                 3       3     3      3              3 → assembly line

violations Scost = 3              V   V      V

gives the minimum violation cost. This grouping of extra options in available spaces in each

interval of relevance, ensures the minimum number of options violated. If there are (qm-pm)

option m  in an interval of relevance, then the minimum number of violations for qm options

will be equal to qm. We can calculate the number of qm options by finding the number of

spaces available in S and multiplying by qm to give us the total minimal violation as, 

                                                                              ((Oexem/(qm-pm)).qm).                                                           (3.18)

In addition, an extra option m  placed in a space at the end of S presents a special case

where only pm options are violated, for example: 

S position i = 12   11   10 9      8      7 6      5      4 3    2     1

S option m  = 3   3            3                 3      3              3 → assembly line

violations Scost = 1                 V

Allowing for this special case, the lower bound formula becomes

                                                 lower bound     =   ( ( Oexem / ( qm - pm ) ) . qm) - pm.                                           (3.19)
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3.2.5  Representation

GA operators manipulate artificial chromosomes in the form of string-like data structures. These

data structures are constructed from elements of the CarSP. We have already seen an example

data structure as a complete schedule in Section 3.2.2 We can construct a GA string composed

of a linear sequence of all the cars to be scheduled. More formally we can define the schedule

S position Si, as a domain variable from the set of cars {1, 2, ..., N} and the domain of

each variable as the set of car types {1, 2, ..., k}. 

˚ Definition 3.13 (PCSP(CarSP)) We formally define the PCSP(CarSP) as: 

Z = {1, 2, ..., N}

D = {v1, v2, ..., vN} where v1 = v2 ... = vN = {1, 2, ..., k} 

C = (∀  i, j)( prj = |{v1, v2, ..., vN = j}| ) 

Constraint C requires that CarSP production requirements prj are represented in the string. 

g = The objective function g is defined in Section 3.2.6. 

An example string representation:

string position - PCSP variable  1 2 3 4 5 6 7 8 9 10

solution tuple - PCSP value 1 2 3 4 2 5 4 1 3 5 

3.2.6  Objective Function

The GAcSP objective function maps each CarSP solution tuple to an numeric value. The goal

of the GacSP is to find tuples to the CarSP which minimise the capacity constraint violation.

The CarSP solution tuple numeric value is usually called the fitness, which is calculated by

adding the penalty costs for each car i in the schedule S. The following equation calculates

the schedule fitness as

                                                                                                 N  
                                                                             fitness     =  ∑          costSi .                                                        (3.20)
                                                                                                  i  =  1          
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3.3  Summary

We have tested GAcSP on the processors configuration problem (PCP) and car sequencing

problem (CarSP). 

The PCP is the linking together of a finite set of independent processors, each with a fixed

number of links into a multiprocessor network, with the objective of minimising the processor

paths between source and target processors. Although all PCPs tackled in this thesis have

processors with four links we can generalise our approach to processors with an even number

of links. Furthermore, we assume that two processor links are to be used by the system

controller, which acts as input/output to the network and that irregular graphs will be formed.

Graph theoretic distances can provide useful measures for these irregular graphs, which include

the diameter and mean internode distance. The diameter is the maximum direct distance in

terms of links to be traversed between any two nodes in the graph and the mean internode

distance of a graph is the average of the direct distance between any two nodes in a graph.

Both of which can represent limiting factors on communication speed. The diameter and mean

internode distance are measures of the compactness of a network. Three benefits of compact

networks are the less consumption of network links; fewer processors interrupted; and reduction

of propogation delay. 

We also derived a theoretical lower bound for the mean internode distance of optimum graphs,

providing an important measure for comparison with irregular graphs. In order to calculate the

theoretical lower bound of an optimum graph, we considered ideal node configurations (spanning

trees) for nodes connected to the system controller and those are not connected. The GAcSP

approach is to directly optimise the diameter as a constraint and measure the mean internode

distance achieved. The objective function fitness for test PCPs is based on the processor to

processor distances because the difference in fitness values between strings will be greater than

for the mean internode distance. Also, to achieve optimum graph configurations each node must

have minimum paths to every other node, and therefore search pressure needs to be placed

on improving node to node paths. 

The task of CarSP is to sequence a specified number of cars, each requiring a different set
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of options (e.g. car radio, seat covers etc.) fitted by specialist workstation teams on an assembly

line, so that specialist workstation capacity is not exceeded or capacity violations are minimised.

Cars are required to pass through an assembly line of specialist workstations where each

workstation team is required to fit options to cars, finishing before each car leaves. Workstations

have been designed so that there is sufficient capacity for teams to fit a maximum number of

options to consecutive cars requiring them. For each option workstation we defined a ratio

representing the workstation capacity constraint. Furthermore, we can calculate the utility ratio

(degree of capacity constraint satisfaction) using the option ratio and the number of cars in

the CarSP requiring that option. The utility ratio provides a sufficient condition to prove that

a CarSP is unsolvable when it is greater than 1. By calculating an average utility for a CarSP

we can compare CarSPs which have the same number of cars to sequence, the same options

and capacity constraints. 

In unsolvable CarSPs penalty functions are used to minimise the capacity constraint violations

and improve the car spacing arrangements in a schedule. Penalties are used which reflect the

ability of workstation teams to cope with options exceeding the capacity constraints. For example,

some workstation teams may be able to cope with no more than an extra option above their

capacity, so extra options in the schedule are spaced apart by the use of high penalties. The

penalty function assigns a penalty value depending upon the number of cars requiring the option

in a specified consecutive number of cars (interval of relevance) in excess of workstation capacity.

In addition, for each option, it may be possible to improve the car spacing arrangement in a

schedule. To further encourage improved spacing of cars requiring options in the schedule, a

smaller proximity interval is defined for CarSPs along with a proximity factor. When the capacity

constraints in a schedule cannot be satisfied the proximity interval and factor are used to

balance the extra work required. So improved spacing of cars requiring options can give

workstation teams more time to work on them. By spacing apart the cars requiring the same

option, the additional proximity factor does not increase the car penalty cost. The schedule

cost is therefore the total car costs for all cars in schedule. 
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For certain unsolvable CarSPs we derived an theoretical lower bound to test the quality of

GAcSP results. The conditions under which this lower bound formula is limited are for solvable

CarSPs (i.e. schedule cost = 0) made unsolvable by a single option over-utilised, and proximity

factors are equal to 0 and all violations are equal to 1. The theoretical lower bound calculation

is based on the assumption that the maximum number of options defined by the ratio can be

scheduled and that cars exceeding this number have a sequence pattern which minimises the

penalty costs. 
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Chapter 4  Implementation And Testing Methodology

4.1  Implementation Details 

4.1.1  Design Decisions

We implemented the GAcSP program GA1 in the C programming language because it provides

the following qualities: 

(a) C programs can out-perform interpreted languages such as Prolog. 

(b) Performance and memory handling can be improved by the use of address pointers. 

(c) The structural quality of C facilitates modularity of code and data. 

(d) A large number of library routines are available. 

(e) It is portable to different systems. 

Program performance was regarded as important because the evaluation function used by the

GA and HC component of GAcSP are compute intensive procedures. The structured facility of

C allows the compartmentalisation of code and data, and gives the programmer the capability

to create separate independent subroutines (functions). The GA by its nature is modular, in

that several, separate operators comprise its working cycle. For example in the simple GA there

are operators for reproduction, crossover, and mutation. In GAcSP the repair and HC function

acts as a mutation operator. The ability C has for modularity is important, particularly with

regard to facilitating the development and subsequent testing of GA1. 

4.1.2  Compiling And Running Programs 

All programs were compiled and tested on a SUN 4/110 under UNIX 4.0 operating system. 
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4.2  Program GA1

4.2.1  Description 

Program GA1 based upon our GAcSP model presented in Section 2.2, implemented three basic

GA operators, namely initialisation, reproduction, and crossover. The relationship between these

operators is outlined in Figure 4.1, and are briefly explained in the following: 

(a) The initialisation operator creates a population of strings by randomly selecting a value for

each PCSP variable in sequence and appending it until every variable has a value. A fixed

length string is formed, with the length of the string dependent upon the number of variables

in the PCSP. The completed string is repaired using a repair function. 

(b) The reproduction operator first copies a pre-set number of the minimal fitness strings into

the matepool. Then it fills the remaining matepool positions by implementing a roulette wheel

selection process [Goldberg, 1989]. The roulette wheel selection process is a biased selection of

minimal fitness members of the population. A selected population member is the term at which

the result of subtraction between a fitness series and the population fitness is less than a

product of the population fitness and random number variable.  

(c) The crossover operator randomly selects two parents from the matepool and exchanges the

parents genetic material to create a single offspring. This offspring replaces the worst fitness

string in the population and is then repaired and evaluated. If the HC is switched on the

offspring is hill-climbed until there is no further improvement, or a pre-set time limit is reached.

4.2.2  Domain Specific Functions

For each problem tackled by GAcSP there are domain specific evaluation functions required.

These functions include a function for calculating the cost or fitness of a problem solution and

a function for identifying high cost string elements. (A single evaluation function can be used

in some cases.) Information regarding the high cost string elements is used by the HC and

repair function. 
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4.2.2.1  PCP Evaluation Functions

The PCP evaluation function generates a minimum node-node distance matrix by counting the

number of links traversed in direct communication between each node and all other nodes.

From this table of node-node distances, a mean internode distance is calculated. A separate

evaluation function identifies nodes which have distances to other nodes greater than a given

constant c. 

4.2.2.2  CarSP Evaluation Functions

The CarSP evaluation function uses a penalty function to calculate the cost or fitness of a

complete schedule. A separate evaluation function was used to identify individual cars in a

schedule with capacity constraint violations. 

4.2.3  Program Parameters

Population size is a pre-set constant, (see n in Figure 4.1). 

The number of offspring generated each GA cycle is a pre-set constant, (see ospring in Figure

4.1). 

A maximum number of GA cycles for each run is a pre-set constant. 

A maximum run-time in CPU seconds is a pre-set constant. 

4.2.4  Population Dynamic

The initial population is randomly generated by the initialisation operator. The reproduction and

crossover operators change this population during each cycle by a process of selection and

replacement. Reproduction first copies minimum fitness population members into a matepool and

then fills up the remaining matepool positions by a fitness biased selection. Crossover creates

offspring which replace the worst fitness members of the matepool. After crossover matepool

becomes the population  for the next GA cycle. 
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4.3  Experimental Methodology

Much of the dissertation work was empirical - formulating and testing hypotheses. The testing

strategy was to write separate operator functions and test them to measure their effectiveness.

This allows the development of the GA to progress, and be directed by the quality of the

test results. This approach is important because tackling the PCSP using a GA is new, making

comparisons with other PCSP methods difficult. As each new operator is written and tested,

each new idea or hypothesis can be systematically tested against the results of other operators.

4.3.1  Recording Results

The results obtained for each test are the total number of iterations for a run, the run-time

in CPU seconds, solution or minimised solution tuple obtained (i.e. best string) and time taken

to achieve the best string. Other information may be recorded on the string and returned with

the best fitness string. Due to the stochastic nature of the GA, results for each experiment

are recorded for a series of runs; the number of which is decided by problem complexity. 

4.3.2  Terminating Conditions 

4.3.2.1  GA Conditions

Conditions can be pre-set which allow the controlled termination of GA1. The following briefly

describes terminating conditions: 

(a) The maximum CPU second run-time can be set, to test the GA for a fixed period of

time. This terminating condition is only tested when set greater than zero. 

(b) A maximum number of GAcSP cycles may be used. 

(c) A best value solution tuple within a required percentage of a pre-set optimal (if known,

approximated, or guessed) can be set. This will determine if the best minimised solution after

each GA cycle is within a required percentage of the optimal value. 
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If none of the pre-set terminating conditions listed above have been reached, the default

terminating condition of program GA1 is the test for full convergence of the population. Full

convergence is when the fitness of all strings in the population is the same. 

4.3.2.2  HC Conditions

The HC algorithm within GAcSP can have a maximum CPU second time limit specified. The

time limit does not apply when no further improvement is achieved within the time limit. 

4.3.3  Methods Of Analysis 

Results obtained from experimental tests are recorded and tabulated into summary tables and

graphs, presented with discussions in Chapter 5 for the processors configuration problem, and

Chapter 6 for the car sequencing problem. Graphs, tables of data and statistical analysis

techniques (two way analysis of variance) are used to explain the mechanisms underlying the

process of GAcSP. 

4.4  Summary

GAcSP program GA1 was implemented in the C programming language to due to advantages

in program performance and structured facility. The performance of GA1 depends upon the

compute intensive evaluation function. The structured facility of C allows the compartmentalisation

of code and data, and gives the programmer the capability to create separate independent

subroutines (functions). The genetic algorithm (GA) by its nature is modular, for example in

the simple GA there are operators for reproduction, crossover, and mutation. All programs

were compiled and tested on a SUN 4/110 under UNIX 4.0 operating system. 

Program GA1 implemented GA initialisation, reproduction, and crossover operators. The

initialisation operator creates a population of strings by randomly selecting a value for each

partial constraint satisfaction problem (PCSP) variable in sequence and the completed string is

repaired using a repair function. The reproduction operator copies a pre-set number of the

lowest fitness strings (for a minimising objective function) into the matepool and then it fills

the remaining matepool positions by using a roulette wheel selection process. The crossover
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operator randomly selects two parents from the matepool and exchanges the parents genetic

material to create a single offspring which replaces the greatest fitness (for a minimising objective

function) string in the population, which is then repaired and evaluated. If the hill-climber (HC)

is switched on the offspring is hill-climbed until there is no further improvement, or a pre-set

time limit is reached. 

For each problem tackled by GAcSP there are domain specific evaluation functions required.

These functions include a function for calculating the cost or fitness of a problem solution and

a function for identifying high cost string elements. Information regarding the high cost string

elements is used by the HC and repair function. The processors configuration problem (PCP)

evaluation function generates a minimum node-node distance matrix by counting the number of

links traversed in direct communication between each node and all other nodes. From this table

of node-node distances, a mean internode distance is calculated. A separate evaluation function

identifies nodes which have distances to other nodes greater than a given constraint constant.

The car sequencing problem (CarSP) evaluation function uses a penalty function to calculate

the cost or fitness of a complete schedule. A separate evaluation function was used to identify

individual cars in a schedule with capacity constraint violations. 

For each set of test results we record the total number of iterations for a run, the run-time

in CPU seconds, solution or minimised solution tuple obtained (for minimising objective function)

and time taken to achieve these solutions. Also, program parameters can be pre-set to allow

the controlled termination of GA1 these include the maximum CPU run-time, and maximum

number of GA1 cycles. The default terminating condition of program GA1 is the test for full

convergence of the population when the fitness of all strings in the population is the same.

The HC algorithm within GAcSP can have a maximum CPU second time limit specified but

does not apply when no further improvement is achieved within the time limit. 
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Chapter 5  PCP Results

5.1  Plan

The purpose of this chapter is to report on GAcSP tackling the processors configuration problem

(PCP) as our first example PCSP. We compare the performance of GAcSP (without the

hill-climbing (HC) component) with a specially written program for PCP and then we add the

HC component to the GAcSP. PCPs with the following characteristics are considered under

sections: 

• 5.2 GAcSP Tackling Different Sized PCPs Without HC

• 5.3 GAcSP Tackling Different Sized PCPs With HC

In each section we describe the different characteristic PCPs tested. The PCPs provide a

measure of GAcSP performance, and allow a comparison with available published research results.

For all tests undertaken, GAcSP constants are described with their values. These include

population size, number of lowest fitness members copied directly into the mating pool each

cycle, number of offspring created each cycle, maximum number of cycles and run-time. In

addition, the maximum improvement time allowed for each offspring for the HC components

set. We summarise and present the results from the tests in table form with explanations for

the terms used. Claims are made and followed by supporting analysis of the results, assisted

by graphs where appropriate. 

5.2 GAcSP Tackling Different Sized PCPs Without HC

In order to compare our results with other researchers, Experiment 5.2 consisted of nine separate

tests which were undertaken on PCPs with 32 - 40 processors. For each test the diameter

constraint was set at c = 2. PCPs with 32 - 40 processors have a maximum diameter constraint

of dmax = 3 [Chalmers and Gregory, 1992]. Setting c < dmax ensures that string fitness is

always positive, and makes HC work harder to improve the fitness (when switched on). Due

to the stochastic nature of the GAcSP there were five runs for each test. All tests were run

on a SUN 4/110 under UNIX 4.0 operating system. The GAcSP constant values of all the
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tests were: 

(a) For each PCP test, the same randomly pre-generated population of 80 strings were used

on all 5 runs. (Population sizes of 80 and 100 were found to provide good results in earlier

research on CSOPs [Tsang and Warwick, 1989].) 

(b) 10% of the minimal fitness (elite) population strings were copied directly into the mating

pool at the reproduction phase of GAcSP. 

(c) The number of offspring created each GAcSP cycle was arbitrarily set at four. 

(d) GAcSP termination conditions for each test run were set at maximum number of generations

= 300, maximum run-time = 10 CPU hours. 

5.2.1  Results Of Experiment 5.2

All GAcSP Experiment 5.2 results have been summarised in Table 5.1. 

 number processors k = 32 33 34 35 36 37 38 39 40

 theoretical LB Davg 2.29 2.31 2.33 2.35 2.37 2.39 2.40 2.42 2.43

 AMP davg                 2.31 2.53

         Table 5.1: Summary GAcSP without HC Experiment 5.2 results

 GAcSP Results

 best davg 2.33 2.37 2.40 2.42 2.42 2.45 2.47 2.51 2.51

 max deval 4 4 4 4 4 4 4 4 4

 paths 12 15 24 33 31 47 49 65 62

 avg davg 2.344 2.38 2.40 2.422 2.446 2.47 2.488 2.516 2.524

 avg time best sec 797 1101 1018 1557 1579 1552 2620 2964 4549

 avg run-time sec 1290 1450 1701 2401 2328 2967 3810 4408 5143
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Table 5.1 explanation.

number processors k = - k processor PCP.

theoretical LB Davg - The theoretical lower mean internode distance bound for optimum

graphs (see Equation 3.6). 

AMP davg - The best mean internode distances for the AMP program [Chalmers

and Gregory, 1992]. 

best davg - The best mean internode distance (see Equation 3.1) of the 5 runs.

max deval - The maximum direct processor to processor distance achieved. 

paths - The total number of processor paths greater than maximum diameter

constraint dmax = 3 for 32 - 40 processor PCPs. 

avg davg - The average mean internode distance of the 5 runs. 

avg time best sec - The average time in CPU seconds taken by the GAcSP to achieve

the best mean internode distance. 

avg run-time sec - The average of all run-times (GAcSP termination) in CPU seconds

taken for each processor test. 

5.2.2  Experiment 5.2 Discussion

˚ Claim 5.1 The GA component of GAcSP can provide consistent near optimal diameter

constraint satisfaction results to 32 - 40 processor PCPs. 

Support 5.1 None of Experiment 5.2 GAcSP configurations could satisfy the diameter constraint

c = 2 or the maximum diameter constraint for 32 - 40 processor PCPs dmax = 3. The upper

bound on the maximum number of processors for a configuration with diameter dmax = 3 is

nmax = 40, with the Chalmers and Gregory [1992] AMP program achieving a maximum

configuration of 32 processors for dmax = 3. We can see from Table 5.1 that the GA

Chapter 5  PCP Results 89



component of GAcSP has failed to satisfy the diameter constraint of the 32 processor PCP by

12 paths, each with distance deval = 4. 

We support Claim 5.1 in two ways:

(1) By suggesting that there are no reasonable grounds for believing, that apart from the 32

PCP, the 33 - 40 node optimum graphs are achievable with dmax = 3. 

(2) There is not a significant increase in the mean internode distance due to paths with

distance deval = 4 in increasing processor PCPs. 

Optimum graphs are based on the assumption that each node in a graph has the shortest

distance possible to all other nodes. That is, every node has a spanning tree configuration in

a graph of nodes. This includes the two nodes connected to the system controller (see Section

3.1.2). Increasing PCPs by a factor of one processor substantially increases the work load by

adding an extra spanning tree requirement and increasing the spanning tree requirement for all

other processors. We stated in Section 3.1.2 that Moore graphs were unattainable for PCPs

with ∆ = 4. Since our configurations have two processor links used by the system controller,

providing less links for connections to reduce the distances, it would seem that obtaining

optimum graph configurations is more unlikely than for Moore graphs. 

˚ Conjecture 5.1 The possibility of achieving theoretical optimum graph configurations with ∆

= 4 and 33 - 40 processor PCPs which satisfy dmax = 3 decreases with increasing number

of processors. 

Consider (Figure 5.1) the number of paths which do not satisfy dmax = 3 for each of the

32 - 40 processor PCPs. We see a monotonic rate of increase (except for the 40 processor

PCP). Table 5.2 summarises the results of Equation 3.1 calculations for the percentage reduction

 number processors k = 32 33 34 35 36 37 38 39 40

 total number paths (k2) 1024 1089 1156 1225 1296 1369 1444 1521 1600

 paths 12 15 24 33 31 47 49 65 62

 100% - % davg decrease 98.83 98.62 97.92 97.31 97.61 96.57 96.61 95.73 96.13

              Table 5.2: Summary Experiment 5.2 path calculations
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in mean internode distance, due to these extra paths. 

total number paths (k2) - The total number of processor to processor paths for a k processor

PCP (i.e. k2). 

100% - % davg decrease - The decrease in mean internode distance due to the paths which

violate dmax = 3, calculated as a reduction from 100% diameter

constraint satisfaction (i.e. paths/k2 see Equation 3.1). 

Figure 5.2 shows that the percentage increase in mean internode distance due to the paths at

deval = 4 is not significant for the 32 - 40 processor PCPs. Certainly with increasing size of

PCPs the worst distance deval achieved by GAcSP does not exceed dmax = 3 by more than

a factor of 1. We provide further support to Claim 5.1 in Claim 5.2.  

˚ Claim 5.2 The GA component of GAcSP can provide near optimal mean internode distance

results for 32 - 40 processor PCPs in a "reasonable" time period. 
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Support 5.2 Figure 5.3 illustrates how close to the lower bound Davg solution can be achieved

for the 32 - 40 processor PCPs. The graph in Figure 5.3 highlights a comparison on two

points (i.e. 32 and 40 processors) between Chalmers and Gregory [1992] PCP program AMP

(mean internode distance results) and that of the GAcSP. Although on the 32 processor PCP

the AMP is 99.1% of the lower bound whilst that of the GAcSP is 98.3%, on the 40 PCP

the GAcSP best of 96.8% is a slight improvement over the 96% for the AMP. It should be

noted that the AMP configuration generator is a specially written optimisation program for the

PCP [Chalmers and Gregory, 1992], whilst the GAcSP is a generic PCSP solver. There is no

evidence to support the idea that the lower bound for the mean internode distance for 32 -

40 processor PCPs is achievable. By setting the diameter constraint c = 2 we are effectively

making the test PCPs unsolvable. When tackling unsolvable PCSPs GAcSP will always run to

convergence unless stopped by a terminating condition (see Section 4.3.2).  

˚ Claim 5.3 The time taken to achieve near optimal results for 32 - 40 processor PCPs

shows that GAcSP has more potential for solving larger problems than AMP. 
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Support 5.3 The total run-times and the average run-times in CPU seconds (shown in Figure

5.4) taken to obtain the best configurations show that near optimal results for 32 - 40 processor

PCPs can be obtained in a acceptable period of time. Furthermore, an exponential amount of

time is likely to be required by searching in AMP. On the other hand, GAcSP is not

significantly affected by the scaling problem. Therefore, GAcSP has more potential for solving

larger problems.  

5.3  GAcSP Tackling Different Sized PCPs With HC

For Experiment 5.3 we switched on the GAcSP optional HC (see Figure 4.1) which improves

the quality of each offspring after being repaired in the crossover operator. The same nine

tests from Experiment 5.2 were carried out for 5 runs each. The GAcSP constant values of

all the tests were as Experiment 5.2, including the following: 

(e) The maximum time limit for the HC on each offspring generated was 60 CPU seconds. 

5.3.1  Results Of Experiment 5.3

All Experiment 5.3 results have been summarised in Table 5.3. 

 number processors k = 32 33 34 35 36 37 38 39 40

 theoretical LB Davg 2.29 2.31 2.33 2.35 2.37 2.39 2.40 2.42 2.43

 AMP davg 2.31 2.53

           Table 5.3: Summary GAcSP and HC Experiment 5.2 results

 GAcSP+HC Results

 best davg 2.29 2.32 2.34 2.37 2.38 2.41 2.43 2.45 2.47

 max deval 4 4 4 4 4 4 4 4 4

 paths 1 4 3 11 8 18 19 25 34

 avg davg 2.298 2.324 2.344 2.372 2.388 2.412 2.430 2.464 2.474

 avg time best sec 9103 4784 5979 6046 10135 7682 10304 11925 14908

 avg run-time sec 8098 8784 8724 10528 12050 11463 17141 13314 18542
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5.3.2  Experiment 5.3 Discussion

˚ Claim 5.4 GAcSP can provide near optimal results to 32 - 40 processor PCPs using the

HC component for local improvement, which can outperform the specially written program

AMP. 

Support 5.4 We can see from the results of Table 5.3 and supported by Claims 5.1 and 5.2

that GAcSP can find near optimal solutions but there is room for improvement. In Experiment

5.3 we have switched on HC which gives GAcSP a local improvement ability. In Table 5.3

GAcSP mean internode distance results are much improved and the number of paths not

satisfying dmax are also reduced compared with Table 5.1 (see Figures 5.5 and 5.6). The cost

of these improvements has been the increased run-times required. These results also show an

improvement over the Chalmers and Gregory AMP results, and are close to the lower bound

for the mean internode distance.  
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5.4  Summary

We have tested GAcSP on the processors configuration problem (PCP), for a group of PCPs

with 32 to 40 processors. The task of PCP is to configure the processors with the objective

of minimising the mean internode distance. The first tests were carried out on the group of

PCPs using GAcSP without the hill-climbing (HC) component. The second tests on the group

of PCPs using GAcSP with the HC component switched on. The test conditions were a GAcSP

population size of 80 strings, diameter constraint c = 2, 5 runs for each test, and the HC

component had a 60 CPU second maximum time limit. The "best" and average (minimum)

mean internode distance results along with the time taken to terminate for these tests were

summarised and presented in table form. These results were analysed and used, along with

graphs and statistical analysis to support the following claims: 

• The GA component of GAcSP can provide consistent near optimal diameter constraint

satisfaction results to 32 - 40 processor PCPs. Which we support by suggesting that there

are no reasonable grounds for believing, that apart from the 32 PCP, the 33 - 40 node

optimum graphs are achievable with dmax = 3. There is not a significant increase in the

mean internode distance due to paths with distance deval = 4 in increasing processor PCPs.

• The GA component of GAcSP can provide near optimal mean internode distance results

for 32 - 40 processor PCPs in a "reasonable" time period. Supported by considering that

the diameter constraint as c = 2 setting effectively makes the test PCPs unsolvable. When

tackling unsolvable PCSPs GAcSP will always run to convergence unless stopped by a

terminating condition. 

• The time taken to achieve near optimal results for 32 - 40 processor PCPs shows that

GAcSP has more potential for solving larger problems than AMP. Supported by the average

CPU second run-times and the consistent near optimal results achieved on increasing sized

PCPs. 
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• GAcSP can provide near optimal results to 32 - 40 processor PCPs using the HC component

for local improvement, which can outperform the specially written program AMP. Switching

on HC improves mean internode distance results and show an improvement over the Chalmers

and Gregory [1992] AMP results, and are close to the lower bound for the mean internode

distance. 

5.4  Summary 98



Chapter 6  CarSP Results

6.1  Plan

The purpose of this chapter is to report on the results for GAcSP in tackling the CarSP as

our second example PCSP. The main issues we wish to test in this chapter concerns GAcSP’s

ability to cope with loose and tight constraints, problems of increasing size, and the performance

of GAcSP on unsolvable problems. CarSPs with different characteristics are considered in the

following sections: 

• 6.2  GAcSP Tackling CarSPs Of Different Tightness

• 6.3  GAcSP Tackling CarSPs Of Different Size

• 6.4  GAcSP Tackling Unsolvable CarSPs

In each section we describe the different characteristic CarSPs tested. These CarSPs provide a

measure of GAcSP performance and allow a comparison with available published research results.

We can also compare our results with those from fellow researchers working on CarSPs in

the GENET project at Essex University. GENET is a connectionist model for CSP solving

[Wang and Tsang, 1991]. CarSPs were generated by a program (supplied by Kangmin Zhu)

which provided a solution to each problem. Kangmin Zhu is a researcher working on the

GENET project at Essex University. 

All CarSPs tested have 5 options with capacity constraints 1/2, 2/3, 1/3, 2/5 and 1/5. This range

of capacity constraints allows us to directly compare our results with those of other researchers

([Dincbas et al., 1986; Parrello, 1988; Parrello et al., 1986]). CarSPs with these capacity constraints

represent two important aspects of CarSPs in general. Firstly they reflect the characteristics of

real-world CarSPs. Secondly they give rise to a range of "difficulty" in utility ratios (defined

and analysed in a later section). In real-world CarSPs there are practical constraints of time,

assembly line space, workstation space, and the constant speed of the assembly line. The need

to efficiently manage these practical constraints may limit the workstation team size. The utility

ratios need to be considered as part of a larger system, which could include separating jobs
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into smaller units and work undertaken off the assembly line. For example, the number of cars

which pass through a workstation representing the time it takes a team to fit an option, and

the speed of the assembly line will dictate the workstation space required. The 1/2, 2/3, 1/3,

and 1/5 capacity constraints used in the test CarSPs reflect the objective of minimising production

costs by utilising workstation space and teams. The utility ratios represent a range of capacity

constraints from, one in five cars (1/5) to two cars in three (2/3) requiring options. In our

experiments we define a measure of CarSP difficulty and evaluate the algorithms performance

in tackling them. By considering both the range of utility ratios and the interaction between

the capacity constraints we hope to make limited generalisations about CarSPs in general.

For all tests undertaken, GAcSP constants are described with their values, these include population

size, number of lowest fitness members copied directly into the mating pool each cycle, number

of offspring created each cycle, maximum number of cycles and run-time. The HC is switched

on for all tests undertaken and the maximum time limit for improvement of each offspring is

given. We summarise and present the results from the tests in tabular form with explanations

for the terms used. Claims are made and followed by supporting analysis of the results, assisted

by graphs and analysis of variance F-test statistics. 

6.2  GAcSP Tackling CarSPs Of Different Tightness

In Experiment 6.2, tests were undertaken on solvable CarSPs with average utility û from .45 to

.90 in intervals of .05. All CarSPs were generated by a program (supplied by Kangmin Zhu)

which provided a solution to each problem, where all capacity constraints were satisfied. The

number of car types k in all CarSPs generated, is variable between 1 ≤  k ≤  2n. For each

of the 10 average utilities we randomly generated 10 solvable CarSPs, and 10 runs were carried

out on each problem. Therefore, there were a total of 100 runs for each average utility test.

As well as GAcSP with the optional HC switched on, a heuristic repair algorithm (HR) and

a heuristic repair combined with a single state TABU (TABU) search algorithm were tested

on these problems. The heuristic repair method uses repair choices with minimum constraint

conflicts [Minton et al., 1990] to reduce the violated constraints. TABU search is a generic
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search strategy for optimisation problems [Glover, 1989; 1990]. The HR and TABU results were

supplied by Kangmin Zhu along with the pseudo code listed in Appendix A, for these programs.

In order to compare results between the HR and TABU algorithms the CarSP option weighted

penalty values used in GAcSP tests were all equal to 1, i.e. ∀ (pmr) = 1 for r ³  pm = 0.

The objective function for the algorithms calculated the number of options violated in a schedule.

All the algorithm tests were run on a SUN 4/110 under UNIX 4.0 operating system. The

GAcSP constant values of all the tests were: 

(a) A population of 80 strings were randomly generated each test run [Tsang and Warwick,

1989]. 

(b) 10% of the minimal fitness (elite) population strings were copied directly into the mating

pool at reproduction phase of GAcSP. 

(c) The number of offspring created each GAcSP cycle was arbitrarily set at four. 

(d) GAcSP termination conditions for each test run were set at maximum generations = 400,

maximum run-time = 10 CPU hours. 

(e) The maximum time limit for HC was 30 CPU seconds for each offspring. 

6.2.1  Results Of Experiment 6.2

GAcSP, HR and TABU results from Experiment 6.2 have been summarised in Table 6.1. 

Table 6.1 explanation.

avg utility û - Average utilities from .45 - .90 (see Equation 3.12) in steps of .05.

avg car types k - The mean of the 10 car types for each CarSP average utility. 

number solns - The number of runs returning solutions for each average utility.

min violation - The best (minimum) solution for each average utility. (Only given

for TABU; see below for explanation.) 
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avg violation - The mean of all test run minimum violations (including solutions)

for each average utility. 

avg run-time sec - The mean of all the run-times (GAcSP termination) in CPU seconds

taken for each average utility. 

6.2.2  Experiment 6.2 Discussion

Table 6.1 summarises the results from testing GAcSP, HR and TABU on solvable CarSPs. The

number of solutions indicates how many of the individual (average utility) test runs returned a

solution satisfying the capacity constraints. Because algorithm TABU failed to find any solutions

in the .85 and .90 average utility tests, minimum violation results are presented. When no

solutions are found, the minimum violation is the string with the least number of options

violated. The mean of all minimum violations is given, and mean run times for each test. 

 avg utility û .45 .50 .55 .60 .65 .70 .75 .80 .85 .90

 avg car types k 8.7 12.3 12.9 16 18.2 20 21.2 22 23.4 23.3

        Table 6.1: Summary GAcSP, HR and TABU Experiment 6.2 results

 GAcSP Results

 number solns 100 100 99 100 99 99 92 61 21 1

 avg violation 0.00 0.00 0.01 0.00 0.01 0.01 0.09 0.50 1.40 3.90

 avg run-time sec 29 49 69 43 60 212 457 1122 2104 4421

 HR Results

 number solns 98 97 94 96 94 97 88 58 15 1

 avg violation 0.02 0.04 0.07 0.08 0.07 0.04 0.19 1.04 2.42 7.00

 avg run-time sec 19 26 46 40 57 44 144 451 856 975

 TABU Results

 number solns 100 100 100 100 100 100 97 21 0 0

 min violation 0 0 0 0 0 0 0 0 2 6

 avg violation 0.00 0.00 0.00 0.00 0.00 0.00 0.05 1.62 5.74 11.85

 avg run-time sec 4 6 11 4 8 10 111 818 956 960
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˚ Claim 6.1 GAcSP can find more solutions to increasing .45 to .90 average utility CarSPs

than the HR algorithm. 

Support 6.1 There is a statistically significant difference between the number of solutions found

by GAcSP and HR (see Table 6.2). Figure 6.1 demonstrates that GAcSP finds more solutions

than HR for all average utility tightness Experiment 6.2 CarSPs.  

˚ Claim 6.2 The GAcSP strategy has achieved better average performance in finding solutions

to average utility .45 - .90 tests than HR and TABU.  

Support 6.2 GAcSP has found solutions for all runs in the .45, .50, and .60 average utility

tests and found 99 solutions in runs for .55, .65 and .70 average utility tests. GAcSP average

performance for finding solutions in .45 - .70 tests is 99.5 runs. TABU has found solutions

    Observed F value     Criterion F value

 hypothesis number solns  avg violation  avg run-time α = 0.01 α = 0.05

 compare algorithms

 GAcSP with HR      (36.63)        2.73        2.99     10.6      5.12

Table 6.2: Summary Experiment 6.2 result F-test statistics - significance in parenthesis

Observed F values are calculated from the sum of squares of the standard deviations. The

criterion F value at levels α = 0.01 and α = 0.05 are recorded from a statistical table

of the F distribution, indexed by the degrees of freedom. Where the observed F value for

a particular performance measure comparison is greater than the criterion F value, there is

a statistically significant difference between the data groups with a stronger degree of

confidence at the α = 0.01 level than α = 0.05.

The analysis of variance F-test statistics are summarised in Table 6.2. In Table 6.2 we have

statistically compared the performance results from Table 6.1, between the algorithms tested.

Our significant statistical conclusion from Table 6.2 is: (a) There is a 99% level of confidence

to reject the hypothesis that there is no correlation between the performance of GAcSP

and HR in finding solutions to Experiment 6.2 CarSPs. 
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for all runs in the .45 - .70 utility tests. If we calculate the average number of runs finding

solutions by each algorithm for all Experiment 6.2 tests, presented in Table 6.1 GAcSP has an

average 77.2, HR 73.8 and TABU 71.8.  

˚ Claim 6.3 The GAcSP performance (robust) in finding solutions to complex tightly constrained

average utility CarSPs is better than HR and TABU because GAcSP does not depend

entirely upon local search information. 

Support 6.3 As the average utility is increased the complexity of CarSPs is increased. Below

we explain the source of this complexity and suggest how it effects the performance of each

algorithm. Also, why the performance of GAcSP in finding solutions and minimising violations

is not as reduced as HR and TABU when put under the pressure of increasingly complex

CarSPs. 
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Both GAcSP and TABU are able to find solutions in nearly all .45 - .75 average utility runs

within reasonably quick run-times (see Figure 6.2). However, it is only at the .80 - .90 average

utility results that we can clearly distinguish between the behaviours of the algorithms tested.

At .80 all algorithms suffer a severe reduction in solution finding ability with TABU failing to

find any solutions at .85 and .90. Both HR and GAcSP find more solutions than TABU from

.80 - .90, with GAcSP finding more solutions than HR. This dramatic reduction in performance

of the algorithms on the .80 average utility test is probably due to differences in CarSP

characteristics leading to increased tightness. A number of problem characteristics are held

constant for all test CarSPs. These include number of cars (100), number of options (5), and

capacity constraints (1/2, 2/3, 1/3, 2/5 and 1/5). In our test CarSPs the difference between

average utilities is due to a combination of the number of car types, car types used and the

production requirements. 
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We can note from Table 6.1 that there is only a difference of .8 in the average number of

car types between the average utility of .75 and .80. Table 6.3 shows the search space sizes

for Experiment 6.2 CarSPs and provides information for analysing the difference in solution

finding results for the algorithms. The number of car types in a CarSP makes a significant

difference in the search space size but does not necessarily reflect the difficulty faced by the

algorithms in finding solutions. In fact, the greatest difference of 3.6 between .45 and .50 makes

no difference to the number of solutions found. Although the ratio of solutions to search space

size decreases for .45 - .70 tests, the results in Table 6.1 show that this factor alone does

not deter any of the algorithms from finding solutions. If we look more closely at the ten

individual test CarSPs results in the .75 and .80 average utility in Table 6.4, we find that the

number of solutions found by GAcSP does not correlate with the number of car types. For

example, GAcSP has found solutions in all runs (i.e. 10) for the .75 average utility test 6 with

k = 23 car types, whilst only one run returned a solution in the .80 average utility test 6

CarSP with the same number of car types. The number of car types in a CarSP will depend

upon the utility ratio for each option. The number of average car types in Table 6.1 increases

 avg utility û .45 .50 .55 .60 .65

 avg car types k 8.7 12.3 12.9 16 18.2

 search space size Nk 2.5E+17 4.0E+24 6.3E+25 1.0E+32 2.5E+36

       Table 6.3: Search space sizes for N= 100 car Experiment 6.2 CarSPs

 avg utility û .70 .75 .80 .85 .90

 avg car types k 20 21.2 22 23.4 23.3

 search space size Nk 1.0E+40 2.5E+42 1.0E+44 6.3E+46 4.0E+46

 test number 1 2 3 4 5 6 7 8 9 10 avg/tot

 .75 car types k= 20 23 19 23 21 23 20 21 23 19 21.2

 .75 number solns 8 10 10 10 10 10 10 8 6 10 92

 .80 car types k= 21 24 22 22 21 23 23 22 20 22 22

 .80 number solns 3 9 10 3 8 1 5 6 10 6 61

                 Table 6.4: .75 and .80 CarSPs test run results
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in order to generate tighter CarSPs. Figure 6.3 shows the standard deviation for the spread

of utility ratios for Experiment 6.2 CarSPs which reduces as the average utility increases. Given

these standard deviations it would be unlikely that the loss of performance at .80 is due to

a substantial imbalance in utility ratios. The car types which require less options make the task

of generating a solvable CarSP easier. As increased average utilities are required, car types

which are more difficult to place, need to be used. These more difficult car types are those

which require the most options. It is the interactions between the options that make CarSPs

difficult to solve for the algorithms tested. This option interaction is due to a combination of

the number of options in the car types and the capacity constraints. Parrello [1988] recognised

and used this car type difficulty as a way to discriminate and sequence such car types before

others.  

average utility tightness

st
an

da
rd

 d
ev

ia
tio

n

Experiment 6.2 100 car CarSPs�

45 50 55 60 65 70 75 80 85 90

0.15

0.14

0.13

0.12

0.11

0.1

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

CarSPs�

      Figure 6.3: Standard deviations for Experiment 6.2 CarSPs utility ratios

u t i l i t y
r a t i o
s t a n d a r d
deviation

Chapter 6  CarSP Results 107



HR and TABU are more dependent for exploration upon local search space information at a

single point than GAcSP which uses a population of points. With increasing option interactions

local information is less complete in guiding the search towards solutions and the starting points

used are more important. One cause of reduced local information occurs when a car in a

schedule can violate more than one option. This can create two difficulties for local search

techniques including fewer alternative positions to move cars and reduce their option violations,

and more cars with option violations. Both HR and TABU will suffer from their dependence

on the quality of good starting points, with TABU expected to perform better than HR. TABU

search performs better because it has the ability to escape from local minima, by using a form

of short term memory for previous choices. By increasing the tightness of CarSPs the fitness

space may provide reduced feedback to guide both the GA and HC components of GAcSP

search. Although both GAcSP components suffer from a lack of complete information, GA uses

a population of points which prevents it from becoming easily trapped in local minima. With

increasing tightness of CarSPs the HC will contribute less directly to the search process but

will still assist in the development of good building blocks. In this case the work of the GA

component is increased. This balance of work between the GA and HC components is an

important feature of GAcSP and ensures a robust approach. Changing the maximum time allowed

for HC will alter the balance between exploitation and exploration. This will depend upon the

requirements of the GAcSP user who accepts that time saved in exploration will result in less

rigorous search. Furthermore, GAcSP allows the opportunity to fine tune parameters which could

improve performance. But because HR and TABU are more dependent upon local information

it may not be possible to improve their performance beyond the results already reported.  

˚ Claim 6.4 GAcSP can provide more consistent near optimal performance on average minimal

violation results for increasing average utility tightness in Experiment 6.2 CarSPs than HR

and TABU. 

Support 6.4 In the .45 - .75 tightness tests the average minimum violation results are dominated

by the number of solutions found by the algorithms. But as GAcSP, HR and TABU find less

solutions in the .80 - .90 tightness tests, the significance of average minimal violation as a

measure of performance is increased. Although the number of solutions returned by GAcSP,
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HR and TABU for increasing tightness tests above .75 significantly decline, the reductions in

the quality of average minimum violation results are not as severe. Figure 6.4 shows that the

rate of increase in GAcSP average violation results for tightness .80 - .90 is not as great as

for HR and TABU. GAcSP can retain a near optimal performance even at .90 tightness. (In

Experiment 6.4 we demonstrate that GAcSP can retain this near optimal performance on tightness

greater than .90.) The mean of average minimal violation results of GAcSP, HR and TABU

on Experiment 6.2 CarSPs are GAcSP 0.592, HR 1.097 and TABU 1.926. Claim 6.5 further

supports Claim 6.4, demonstrating the robustness of GAcSP.  

˚ Claim 6.5 GAcSP has the opportunity to improve the quality of its performance on increasing

average utility CarSPs which is not reduced to the extent of that shown by HR and TABU.
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Support 6.5 As the average utility tightness is increased we would expect GAcSP or any

algorithm to work harder in finding solutions. This is evident, particularly at a critical .80 utility

tightness. Given Definition 6.1, as we increase the tightness of CarSPs the ratio of search space

solutions to the size of search space will decrease. GAcSP will need to work harder to find

solutions as CarSP utility tightness increases. The extra work undertaken by GAcSP can be

seen in increasing run-times in Figure 6.2. Since the only difference between Experiment 6.2

CarSPs is the increasing utility tightness, the extra CPU time required by GAcSP is due to

more intensive evaluations. More intensive evaluations are required because of increasing numbers

of car types and the number of options in each car type. These extra evaluations slow GAcSP

down but do not prevent it from maintaining consistent near optimal results. We have the

opportunity with GAcSP, by increasing the maximum improvement time for HC (e.g. from 30

CPU seconds to 40 CPU seconds), to improve the performance of GAcSP. However, if we

allow more time to HR and TABU the performance is unlikely to be improved. Because HR

and TABU work from a single search space point they are more likely to settle in local

minima. 

There is a correlation between the run-times shown in Figure 6.3 for average utilities .45 -

.75 and the number of solutions found. All algorithms terminate when finding a solution, and

therefore the run-times for .45 - .75 utility tightness represent the time taken to find solutions.

 

6.3  GAcSP Tackling CarSPs Of Different Size

Experiment 6.3 tests were undertaken on solvable CarSPs with 100, 120, 140, 160, 180 and 200

cars to sequence, and average utility ratios .50, .60, .70, and .80. There were 5 randomly

generated CarSPs for each average utility ratio and 5 runs carried out on each problem. All

CarSPs were generated by a program (supplied by Kangmin Zhu) which provided a solution

to each problem. The GAcSP constant values of all the tests were as in Experiment 6.2. 

6.3.1  Results Of Experiment 6.3

All results from the tests have been summarised in Tables 6.5 and 6.6. 
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6.3.2  Experiment 6.3 Discussion

Tables 6.5 and 6.6 summarise the results from testing GAcSP on solvable 100, 120, 140, 160,

180, and 200 CarSPs with average utility .50, .60, .70 and .80. The same GAcSP performance

statistics were summarised in Tables 6.5 and 6.6 as in Table 6.1. 

˚ Claim 6.6 The performance of GAcSP in finding solutions to CarSPs is not significantly

reduced by problem size. 

Support 6.6 The solution finding performance of GAcSP decreases as the problems become

tighter, supporting our observations from Experiment 6.2. This trend can be seen clearly in

Figure 6.5. Although we can see from Figure 6.5 that there is a slight reduction in the number

of solutions with the increase in the number of cars, generally the performance of GAcSP is

consistent. The loss in performance is not significant (see Table 6.7), yet the increase in search

space size for these CarSPs is significant (see Table 6.8). Since the HC time limit is held

constant for all CarSPs tested, the extra work undertaken by GAcSP must be due to the GA

component. This work sharing GAcSP behaviour is an important design feature and suggests

that the time allowed to HC depends more on problem characteristics of the number of car

 number cars N 100 120 140 160 180 200 100 120 140 160 180 200

 avg car types k 12.6 11.2 12.2 11.4 17.8 15.2 16.4 17.4 18.2 19.6 22.6 22.2

 number solns 25 25 25 23 25 24 25 25 25 25 25 19

 avg violation 0 0 0 .08 0 .04 0 0 0 0 0 0.4

 avg run-time sec 20 92 218 1228 96 421 117 214 331 916 159 3070

Table 6.5:        (a)  .50 average utility ratio    (b)   .60 average utility ratio

 number cars N 100 120 140 160 180 200 100 120 140 160 180 200

 avg car types k 20.6 21.4 22.8 21.6 25 25 22.6 22.4 24.2 24.2 25.8 26.2

 number solns 25 25 25 23 24 23 7 17 14 15 10 9

 avg violation 0 0 0 .08 .04 0.12 .92 .32 .92 1.36 .88 1.2

 avg run-time sec 339 369 699 1704 539 4177 2033 3422 5261 7079 5969 7289

Table 6.6:        (a)  .70 average utility ratio    (b)  .80 average utility ratio
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type options and production requirements, as we have seen with Experiment 6.2 tests than

problem size. This emphasises the fact that the GA component of GAcSP ensures robustness

(Claim 6.5) whilst the HC component adds a specialist ability. 

Observed F value Criterion F value

 hypothesis number solns avg violation avg schedule avg run-time α=0.01       α= 0.05 

 number cars k      1.87        (5.72)        2.21        2.79    4.56 2.90

Table 6.7: Summary Experiment 6.3 result F-test statistics - significance in parenthesis

The analysis of variance F-test statistics are summarised in Table 6.7. In Table 6.7 we have

statistically compared the performance results from Tables 6.5 and 6.6, between the number

of cars. Our significant statistical conclusions from Table 6.7 are: (a) There is a 99% level

of confidence to reject the hypothesis that there is no correlation between the number of

cars and the average violation achieved by GAcSP for Experiment 6.3 CarSPs. 
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In general the ability of GA to find solutions is not necessarily restricted by search space size.

One important effect of increasing the CarSP size is to increase the computational workload

of the GA which can slow the GA down. This increase in the case of the GAcSP is due

mainly to the CPU requirements of the evaluation function and crossover mechanism. The

average CPU second run-time in Figure 6.6 shows this increase for all run-time averages shown

in Tables 6.5 and 6.6 with the exception of the 180 CarSP, with .50 average utility. In this

case, all the test runs resulted in solutions enabling the GAcSP to terminate before complete

convergence. Figure 6.6 demonstrates this difference between the average utility tests where

GAcSP terminates on finding solutions and those which are run to convergence.  

We can make a limited comparison of the results from Experiments 6.2 and 6.3, with those

reported by Parrello in [1988] and Parrello et al. in [1986]. Parrello et al. used an Automated

Reasoning Program they called ITP to sequence 5 cars with 5 options. This took 35 minutes,

and 15 minutes with ITP written using OPS5. Dincbas et al. [1988] have developed a Constraint

Logic Programming Language (CHIP) which tackled solvable CarSPs. They reported that CHIP

could sequence 100 car schedules with an average utilisation of .80 in under 60 seconds and

200 cars between 336 and 345 seconds. Although their approach showed good results it was

restricted to solvable CarSPs only. 

types - size   k   k   k   k      Nk      Nk      Nk     Nk

avg utility û .50 .60 .70 .80    .50    .60     .70    .80

N = 100 12.6 16.4 20.6 22.6 1.6E+25 6.3E+32 1.6E+41 1.6E+45

N = 120 11.2 17.4 21.4 22.4 1.9E+23 1.5E+36 3.1E+44 3.7E+46

N = 140 12.2 18.2 22.8 24.2 1.5E+26 1.1E+39 8.5E+48 8.6E+51

N = 160 11.4 19.6 21.6 24.2 1.3E+25 1.6E+43 4.1E+47 2.2E+53

N = 180 17.8 22.6 25.0 25.8 1.4E+40 9.3E+50 2.4E+56 1.5E+58

N = 200 15.2 22.2 25.0 26.2 9.5E+34 1.2E+51 3.4E+57 1.9E+60

            Table 6.8: Search space sizes for Experiment 6.3 CarSPs
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6.4  GAcSP Tackling Unsolvable CarSPs

Experiment 6.4 tests were undertaken on unsolvable CarSPs, each with a single over-utilised

option. The goal of Experiment 6.4 is to test the effect on GAcSP of tackling CarSPs with

over-utilised utility ratios. We carried out tests on 4 groups of problems. The groups named

.50, .60, .70, and .80 are based on the average utility Experiment 6.2 CarSPs used to generate

the unsolvable CarSPs. Each group has 25 unsolvable CarSPs derived from Experiment 6.2

CarSPs. 

From each CarSP in Experiment 6.2, we produced 5 new unsolvable CarSPs by over-utilising

each of the 1 - 5 options. The group of 5 unsolvable CarSPs derived from each Experiment

6.2 CarSP are called problem 1 to problem 5. For each option m , where m  = 1, 2, ..., 5

the solvable CarSP has option m  added to randomly selected car types until um is over-utilised
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(i.e. um > 1). For example, to obtain the first Experiment 6.4 test .50 unsolvable CarSP we

take the Experiment 6.2 .50 solvable CarSP and add option 1 to randomly selected car types

which do not already have option 1, until option 1 is over- utilised. We do the same for

option 2 using the solvable .50 CarSP to get the second unsolvable CarSP, and so on for

each option resulting in 5 unsolvable CarSPs. There were 10 runs for each unsolvable CarSP

and therefore a total of 50 runs for each option and average utility. The GAcSP constant

values of all the tests were as Experiment 6.2. 

6.4.1  Results Of Experiment 6.4

GAcSP results from Experiment 6.4 have been summarised in Tables 6.9, 6.10 and Figure 6.7.

Table 6.9 explanation. 

violations from LB - The number of violations from the theoretical LB.

number violations - The number of GAcSP minimal violation tests from the theoretical

lower bound.

% violations - The number of GAcSP minimal violation tests from the theoretical

LB expressed as a percentage of the maximum possible. 

 violation from LB 0 1 2 3 5 6 7 8 13 15

 .50 number violations 6 8 1 3 4 1 1 1

 .50 % violations 24 32 4 12 16 4 4 4

 .60 number violations 8 10 5 1 1

 .60 % violations 32 40 20 4 4

 .70 number violations 7 9 5 4

 .70 % violations 28 36 20 16

 .80 number violations 4 7 5 7 1 1

 .80 % violations 16 28 20 28 4 4

       Table 6.9: Number of minimum violations above minimum lower bound
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Table 6.9 summarises the number of GAcSP violation results (rows) achieved at each violation

distance (columns) from the theoretical LB. Entries in the first column of Table 6.9 (e.g. 0

violation from LB) represents how many of each group tests have achieved the theoretical LB.

Since there are 25 unsolvable CarSP tests in each group, the maximum number which can

achieve the theoretical LB is 25. The percentage is calculated as the number achieved over

the maximum possible. The second column to the last in Table 6.9 represent increasing number

of violations from the theoretical LB. For example in group .50, one of the 25 tests at column

10 returned a minimal violation which was 15 violations from the theoretical LB. For violations

from LB not indicated in Table 6.9 (e.g. 4, 9) there were no tests for any group with these

violations from the theoretical LB. 

Table 6.10 explanation.

problem - The problem in each group of Experiment 6.4 tests

mean new avg utility - The mean of the 5 unsolvable CarSP average utilities generated from

column  problem. 

mean over-utilised utility - The mean of the 5 unsolvable CarSPs um (m  = 1, 2, .., 5)

over-utilised utilities for each column  problem. 

     problem

1 2 3 4 5

               Table 6.10: Summary Experiment 6.4 CarSPs

 .50 mean avg utility .71 .68 .71 .67 .76

 .50 mean utility 1.50 1.38 1.54 1.33 1.78

 .60 mean avg utility .76 .82 .77 .74 .72

 .60 mean utility 1.37 1.63 1.43 1.26 1.18

 .70 mean avg utility .81 .81 .80 .82 .82

 .70 mean utility 1.18 1.21 1.17 1.20 1.20

 .80 mean avg utility .88 .88 .88 .88 .88

 .80 mean utility 1.14 1.21 1.23 1.21 1.21
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Table 6.10 summarises the mean average utility for each group of generated CarSPs and mean

over-utilised utility after the CarSPs are made unsolvable. 

Figure 6.7 summarises the average minimal violations from the theoretical LB achieved for each

test in the .50, .60, .70 and .80 groups. It shows that GAcSP performance can achieve near

optimal results in terms of the theoretical LB. 

6.4.2  Experiment 6.4 Discussion

Tables 6.9 and 6.10 summarise the results from testing GAcSP on unsolvable CarSPs, each with

a single over-utilised option. The same GAcSP performance statistics were summarised from

Experiment 6.4 as for Experiment 6.3. The theoretical LB fitness values were calculated using

Equation 3.19 and the maximum lower bound by evaluating over-utilising Experiment 6.2 solution

strings. 

˚ Definition 6.1 (Utility Ratio Tightness) The utility ratio tightness of a CarSP can be measured

as the number of spaces allowed in a CarSP schedule by the utility ratio. The tightness

increases as the number of non-option spaces decreases, and is calculated as: 
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                                                                                                          pm
                                                      utility ratio tightness  =   N  -  (          .   N  ) .                                                      (6.1)
                                                                                                          qm

where there are N  cars and pm/qm is the utility ratio for option m.  

Claim 6.7 GAcSP can provide a near optimal performance in achieving the theoretical LB on

very tight utility ratio unsolvable CarSPs. 

Support 6.7 By over-utilising a single option in creating each unsolvable CarSP we have increased

the average utility significantly. For example, a number of the new average utilities are greater

than .90 and in one particular case 1.024. Yet in general, the minimum and average violation

solutions are close to the theoretical LB or within the theoretical and maximum lower bound

range. 

In Section 3.2.4 we developed a method for calculating a theoretical LB based upon an ideal

schedule for a single over-utilised option. In addition, we calculated a maximum lower bound

by using a solution found for each Experiment 6.2 CarSP, adding the extra options to the car

types as described above and re-evaluating to discover the violation cost. These two values are

represented in Figures 6.8, 6.9, 6.10, and 6.11 as the theoretical LB (min LB) and maximum

lower bound (max LB). We can assume that the optimal minimal violation solutions for each

group of tests must be within the range of these two values. Where the minimal solution

achieves the theoretical LB (as is the case for most 1/2 ratio problems), we can be sure with

some degree of confidence that the optimal minimal violation solution has been found. Equally,

where a minimal violation solution lies outside the range as in the result for group .50 problem

1 in Figure 6.7, we can be sure that at least the maximum lower bound is achievable. However,

even in this case the minimal violation solution could still be near optimal (i.e. so long as it

is near to the maximum lower bound). Further, we cannot be confident that minimal violation

solutions which are inside the range are optimal. 

We can see from Table 6.9 results that an average 25% of the theoretical LB solutions are

found with a further average of 64% within 3 violations. Several minimal violation results in

Figure 6.7 are greater than the theoretical LB and closer to the maximum lower bound. We

suggest that in these cases the theoretical LB is not achievable. It is therefore possible that
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         Figure 6.8: Summary average violations for group .50 CarSPs
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           Figure 6.10: Summary average violations for group .70 CarSPs

option over-utilised

nu
m

be
r 

vi
ol

at
io

ns

Experiment 6.4 100 car CarSPs

2:3 1:2 2:5 1:3 1:5

100

90

80

70

60

50

40

30

20

10

0

min LB min violation max LB

            Figure 6.11: Summary average violations for group .80 CarSPs

number
violations

number
violations

6.4  GAcSP Tackling Unsolvable CarSPs 120



the minimal violation solution found in these problems is the optimal or is a near optimal

solution.  

˚ Claim 6.8 GAcSP can sustain the search in tackling unsolvable CarSPs by the crossover

template mechanism exploiting fixed values at string positions due to tight utility ratio

constraints. 

Support 6.8 In Figure 6.12 we present the mean number of cycles to convergence for each

utility ratio run (except a few runs which were terminated at the maximum 400 cycles). The

x-axis in Figure 6.12 represents decreasing utility ratio tightness, measured according to Definition

6.1 and Equation 6.1. In general we can see from Figure 6.12, the number of cycles for each

test utility decrease as the utility ratio tightness decreases, demonstrating a positive correlation
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between utility ratio tightness and GAcSP cycles. The curves for average utility tests .50, .60,

and .70 demonstrate this correlation, but not so strongly with .80. Since we derived the .80

unsolvable CarSPs from Experiment 6.2 solvable .80 CarSPs and Experiment 6.2 results showed

GAcSP found these solvable problems difficult to solve. The cycles to convergence for .80

unsolvable CarSPs is determined more by the average utility than utility ratio tightness. The

average utility tightness reflects soft constraint interaction and influences GAcSP through the

objective function. In the less tight utility ratio tests GAcSP was unable to sustain the search

as long. GAcSP was able to exploit the hard position dependent constraints in sustaining the

search with increasing utility ratio tightness. 

In order to sustain the search, the crossover mechanism must use knowledge of constraints in

a purposeful way. First consider the most successful option 1 utility ratio 1/2 tests, in achieving

the theoretical LB (see Figures 6.8 to 6.11). Consider an example 100 CarSP where we have

over constrained option 1 in a CarSP by 16 options - instead of the 50 cars requiring option

1 permitted by the 1/2 utility ratio we are required to sequence 66. To place 50 cars requiring

option 1 in a schedule of 100 cars (ignoring other option capacity constraints) we need to

separate each option 1 car with a car not requiring option 1. In fact, when sequencing 50

option 1 cars to satisfy the 1/2 utility ratio the only sequencing decision to be taken is whether

to have the first car requiring option 1 in schedule position 100 or position 99 as in, 

    schedule position 100 99 98 97 ...

    requires option Y N Y N ...

or

    schedule position 100 99 98 97 ...

    requires option N Y N Y ...

where "Y" indicates a car type requiring option 1 and "N" a car not requiring option 1. All

cars which are sequenced following the placement of the first car at either position 100 or

99 must allow at least one non-option 1 car before placing the next option 1 car. In order

to sequence 50 option 1 cars and satisfy the capacity constraint we can only use a single

non-option 1 car to separate the option 1 cars. After these first 50 cars in the schedule
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requiring option 1 have been sequenced, the remaining 16 cars need to be placed in such a

way as to minimise the capacity violation for option 1. With the exception of placing an option

1 car at the end of the schedule (i.e. the special case mentioned in Section 3.2.4), there is

no decision on placing the 15 option 1 cars of the total 66 left which will effect the degree

of capacity violation. This principle applies also to Experiment 6.4 CarSPs ratio 1/3 where due

to tight capacity constraints there are few alternative ways to position the maximum number of

options allowed in a schedule. 

In tightly constrained option ratio 1/2 and 1/3 CarSPs, the positioning of cars exceeding the

maximum allowed by the option utility ratio has little effect on capacity violation. Yet, the

absolute position of the over-utilised options in a schedule in respect of other options are

important in achieving the theoretical LB. The crossover operator can use the position dependency

due to tight constraints to form good building blocks. The crossover operator can allow GAcSP

to creep towards the optimal  theoretical LB by ensuring tightly positioned options are recorded

on the binary templates. 

Our second example test CarSP with over-utilised option 4 (utility ratio 2/5) has 43 cars

requiring option 4 instead of 40 allowed by the ratio. The number of ways to position option

4 cars with utility ratio 2/5 is much greater. For example, 

schedule position 10 9 8 7 6 5 4 3 2 1

example 1: Y Y N N N Y Y N N N

example 2: Y N N N Y Y N N N Y

example 3: Y N Y N N Y N Y N N

example 4: Y N N Y N Y N N Y N

represent alternative schedules for option 4 car types which satisfy the capacity constraint.

However, our over-utilised option 4 example CarSP requires 3 more options than the capacity

ratio allows, so in our example we add an extra 3 options as in
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schedule position 10 9 8 7 6 5 4 3 2 1

example 5: Y Y N N N Y Y Y Y Y

option 4 violation 3 V V V

example 6: Y N N Y N Y Y Y Y Y

option 4 violation 4 V V V V

example 7: N Y Y Y Y Y Y N N Y

option 4 violation 5 V V V V V

We can see that only example 5 gives the theoretical LB violation of 3. Example 5 is derived

from example 1 by adding an extra 3 options. Adding three extra options to examples 2 and

3 will not result in the theoretical LB being found. Therefore the difficulty faced by GAcSP

in achieving the theoretical LB in test 2/5 requires selecting a combination of patterns which,

when extra cars with options over the maximum are added, will result in a minimum violation.

When tackling CarSPs with option 4 over-utilised there may only be one pattern of option to

non-option cars which will produce a lower bound violation on the addition of extra options.

Therefore options which have decreased tightness may allow more alternative arrangements in

placing options in a schedule to satisfy the capacity constraint. The alternatives require more

work from GAcSP to achieve the theoretical LB, but near optimal results are possible.  

˚ Claim 6.9 The GA component of GAcSP ensures robustness whilst the HC component adds

a specialist ability. 

Support 6.9 We can use an example unsolvable CarSP, where option 5 is over-utilised by a

single extra option (20 options allowed according to ratio 1/5, yet 21 to sequence). In order

to achieve the theoretical LB of 1 in this test problem, GAcSP is required to place this extra

option at the end of the schedule where it will only violate one option. Also, the 20 option

5 allowed by the utility ratio must be correctly sequenced ensuring no capacity violation. The

HC component can fine tune near optimal solutions to minimise the capacity violation. However,

to sequence all option 5 in a schedule to satisfy the capacity constraint 1/5 is more difficult

and beyond the localised ability of the HC. Since re-positioning a single option 5 will cause

a violation, only re-positioning all option 5 can prevent a violation occurring. The following

example partial schedule illustrates this difficulty 
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schedule position         15 14      13    12     11      10      9 8       7       6      5          4    3 2    1

        Y N      N                 N      N       Y      N N     N      N     N         N    N Y    N

There is extra space between option 5 at position 2 and 10. Instead of 4 no-option 5 spaces

between position 2 and 10 there are 9. Moving a single option 5 into this space using HC

will only create a capacity violation either for the option placed or at position 2. This obstacle

can be overcome in two ways by re-sequencing all schedule options 5 from position 2

simultaneously or a planned sequence of individual changes. The UAX crossover in GAcSP can

simultaneously re-position several options through the recombination of parent strings, and this

can reduce the capacity violation but has no specific planning ability.  

˚ Conjecture 6.2 We would conjecture that in these unsolvable CarSPs with utility ratios 2/3,

1/5 and 2/5 over-utilised, search methods which rely principally upon local information will

easily get trapped in local minima. 

Run -times shown in Figure 6.12 are longer for Experiment 6.4 tests of the same size and

average utility as Experiment 6.2 from which they were derived, due to the runs terminating

only after complete convergence. The intention was to ensure that the theoretical LB could not

be improved upon, and to demonstrate typical run-times for example unsolvable problems. The

price to pay for tackling unsolvable CarSPs is increased computation, resulting in longer run

times in comparison with the run times for solvable problems and times achieved by Dincbas

et al. [1988]. In which case, a compromise can be reached where optimality can be sacrificed

for speed in unsolvable CarSPs.

6.5  Summary

We have tested GAcSP (using the hill-climber (HC)) on the car sequencing problem (CarSP).

The problem of CarSP is to sequence cars requiring options into a schedule so that an assembly

line of workstations teams can fit them. We test GAcSP’s ability to cope with loose and tight

constraints, problems of increasing size, and the performance of GAcSP on unsolvable problems.

Our results are compared with fellow researchers and published results. The objective function

for the algorithms calculated the number of options violated in a schedule. The GAcSP constant

values of all the tests were a population size of 80 strings, 10% elite members, 4 offspring,
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a maximum of 400 generations and a maximum of 30 CPU seconds for HC. For each test

the number of solutions found, or minimum violation solution, and the time in CPU seconds

to terminate were recorded and summarised. 

The first tests (Experiment 6.2) were undertaken on solvable 100 car CarSPs with average

utilities from .45 to .90. For each average utility, 10 solvable CarSPs were generated and 10

runs carried out on each problem. All CarSPs were generated by a program which provided

a solution to each problem, where all capacity constraints were satisfied and the number of

car types varied between 1 ≤  k ≤  2n. GAcSP results were compared with a heuristic repair

(HR) and HR combined with a single state TABU search (TABU). 

• GAcSP can find more solutions to increasing .45 to .90 average utility CarSPs than the

HR algorithm. Where we calculated a statistically significant difference between the number

of solutions found by GAcSP and HR, demonstrating that GAcSP finds more solutions than

HR for all average utility tightness CarSPs. 

• The GAcSP strategy has achieved better average performance in finding solutions to average

utility .45 to .90 tests than HR and TABU. If we calculate the average number of runs

finding solutions for each algorithm, we find GAcSP has an average 77.2, HR 73.8 and

TABU 71.8. 

• The GAcSP performance (robust) in finding solutions to complex tightly constrained average

utility CarSPs is better than HR and TABU because GAcSP does not depend entirely upon

local search information. We discuss the fact that HR and TABU are more dependent for

exploration upon local search space information at a single point than GAcSP, which uses

a population of points. With increasing option interactions local information is less complete

in guiding the search towards solutions and the starting points used are more important. 

• GAcSP can provide more consistent near optimal performance on average minimal violation

results for increasing average utility tightness in CarSPs than HR and TABU. The rate of

increase in GAcSP average violation results for CarSPs is not as great as for HR and

TABU. The mean of average minimal violation results of GAcSP, HR and TABU on
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CarSPs are GAcSP 0.592, HR 1.097 and TABU 1.926. 

• GAcSP has the opportunity to improve the quality of its performance on increasing average

utility CarSPs which is not reduced to the extent of that shown by HR and TABU. We

have the opportunity with GAcSP, by increasing the maximum improvement time for HC

to improve the performance of GAcSP. However, if we allow more time to HR and TABU

the performance is unlikely to be improved. Because HR and TABU work from a single

search space point they are more likely to settle in local minima. 

The second tests (Experiment 6.3) were undertaken on solvable CarSPs with 100, 120, 140, 160,

180 and 200 cars to sequence, and average utility ratios .50, .60, .70, and .80. There were 5

randomly generated CarSPs for each average utility ratio and 5 runs carried out on each

problem. 

• The performance of GAcSP in finding solutions to CarSPs is not significantly reduced by

problem size. Although there is a slight reduction in the number of solutions with the

increase in the number of cars, generally the performance of GAcSP is consistent. The loss

in performance is not significant yet the increase in search space size for these CarSPs is

significant. 

We can make a limited comparison of our results with those reported by Parrello et al. [1986]

who used an Automated Reasoning Program they called ITP to sequence 5 cars with 5 options.

This took 35 minutes, and 15 minutes with ITP written using OPS5. Dincbas et al. [1988] have

developed a Constraint Logic Programming Language (CHIP) which tackled solvable CarSPs.

They reported that CHIP could sequence 100 car schedules with an average utilisation of .80

in under 60 seconds and 200 cars between 336 and 345 seconds. Although their approach

showed good results it was restricted to solvable CarSPs only. 

Our third set (Experiment 6.4) of tests were undertaken on unsolvable CarSPs, each with a

single over-utilised option. We carried out tests on 4 groups of problems. Each group named

.50, .60, .70, and .80 has 25 unsolvable CarSPs derived from our second test CarSPs. There

were 10 runs for each unsolvable CarSP and therefore a total of 50 runs for each option and
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average utility. In addition to the same GAcSP performance statistics as tests one and two,

theoretical LB fitness values were calculated using Equation 3.19 and the maximum lower bound

by evaluating over-utilising test one solution strings. 

• GAcSP can provide a near optimal performance in achieving the theoretical LB on very

tight utility ratio unsolvable CarSPs. On average 25% of the theoretical LB solutions are

found, with a further average of 64% within 3 violations. Several minimal violation results

are greater than the theoretical LB and closer to the maximum lower bound. We suggest

that in these cases the theoretical LB is not achievable. 

• GAcSP can sustain the search in tackling unsolvable CarSPs by the crossover template

mechanism exploiting fixed values at string positions due to tight utility ratio constraints.

The average utility tightness reflects soft constraint interaction and influences GAcSP through

the objective function. In the less tight utility ratio tests, GAcSP was unable to sustain the

search as long. GAcSP was able to exploit the hard position dependent constraints in

sustaining the search with increasing utility ratio tightness. 

• The GA component of GAcSP ensures robustness whilst the HC component adds a specialist

ability. The UAX crossover in GAcSP can simultaneously re-position several options through

the recombination of parent strings, and this can reduce the capacity violation but relies

upon HC for local improvement. 
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Chapter 7  Conclusion And Future Development

7.1  Contribution Of This Research

We have developed through this research a flexible heuristic strategy, which we call GAcSP.

The GAcSP is a genetic algorithm and local improvement strategy which exploits PCSP features.

The "engine" of GAcSP is a crossover operator (UAX) which remembers valuable crossover

points and does not disrupt building blocks distributed over the parent strings. The crossover

operator can exploit PCSP constraints in an efficient way. The power of the search is improved

by the use of an underlying binary search space through an extended binary string representation.

GAcSP has been tested on two instances of PCSPs the processors configuration problem (PCP),

and the car sequencing problem (CarSP). These tests provide support to our claims that GAcSP

is a generic PCSP solver, which can achieve optimal or near optimal solutions to solvable and

unsolvable class of PCSPs. By tackling two problems, different to each other in their characteristics

and requirements we learned about different GAcSP aspects. We can summarise the following

discoveries from these tests: 

(1) The PCP results demonstrate that the GA component of GAcSP can provide near optimal

results to PCPs. When the GA component in GAcSP is combined with a hill-climber it can

out-perform a special written program (i.e. AMP [Chalmers and Gregory, 1992]) for PCPs. The

combination of GA with a hill-climber is a synergistic one which has improved the quality of

solutions but at an extra computational cost. We also show that GAcSP has the potential for

solving larger problems. 

(2) GAcSP out-performed both HR and TABU on average, in finding solutions and minimising

constraint violations to CarSPs and was not limited by being completely dependent upon local

search information. The CarSP results show that GAcSP is not restricted to tackling solvable

problems only, and that GAcSP can be effective in both loosely and tightly constrained problems.

It is a robust search technique and is not prevented by problem size (i.e. 100 to 200 car

CarSPs) from finding solutions in a reasonable time period. Through the action of the crossover

operator, GAcSP can exploit problem constraints to improve on solution quality. The GA
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component ensures robustness whilst the HC component adds a specialist ability. 

The balance of work between the GA and HC components can be controlled allowing scalability

of problems. As larger problems are tackled the GA component can undertake more responsibility

for the search. With larger search spaces the hill-climber depends more on the GA component

providing points located within areas containing solutions. Unlike other optimisation techniques

for PCSPs, GAcSP is a robust exploration strategy which does not easily get trapped in local

minima. Therefore, GAcSP could provide a useful practical tool for tackling a class of

combinatorial problems where current solution techniques are limited or infeasible. GAcSP is a

general strategy which has achieved good results on both representative PCSPs with only problem

specific data and domain specific evaluation functions. This research supports our research

objective of developing a generic GA PCSP solver. 

7.2  Further Developments 

7.2.1  Using Diversity Information

In this section we outline a method for analysing the diversity of string values in GA populations.

If we calculate the initial population diversity and progressive GAcSP populations we could use

this information to help guide the search in two possible ways. The first is in the automatic

control of GAcSP parameters. The main parameters for GAcSP are population size, number of

offspring generated, number of elite members copied into the matepool and the HC time limit

when switched on. These parameters control the rate of convergence for GAcSP and therefore

the quality of solutions and time taken to achieve them. (We standardised the parameter values

for experiments reported in this thesis based upon earlier work [Tsang and Warwick, 1989].)

Secondly, better informed GAcSP decisions could be made at a number of points in the GA

cycle. For example in the repair mechanism we could opt to repair the values shown to be

missing in the population, in order to restore them. Other decision points are in the crossover

mechanism, and HC. The use of population diversity to assist GA search has been used by

Fang et al. [1993] in tackling Job-shop and Open-shop scheduling problems. Where they

implemented a technique they called gene-variance based operator targetting which sampled statistical

variance after every ten generations, and used the variance to choose the point of crossover
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or mutation. 

The underlying effect of population size, number of offspring, elite copies and HC time limit

upon GAcSP is to change the diversity of the population. Both solution quality and the time

taken to converge depend upon the rate of population diversity loss. We can quantify this loss

by measuring the string values contained in the population at specific GAcSP intervals. We

may need to consider the rise and fall of population values over successive generations due

to the continuity of building blocks, when recording at specific time intervals. We referred

earlier in the thesis to the idea of real-coded alphabets providing finer grained tools. The

real-coded string representation used by GAcSP enables us to identify when string values at

specific string positions are decreasing or increasing at a point in GAcSP processing. 

The Walsh function analysis developed by Bethke [1972] and extended by Holland for measuring

epistasis is compute intensive to implement and limited to fixed length binary strings. Davidor’s

technique depends upon a linear assumption where any fitness function can be reduced to a

set of linearly independent partial fitness functions [Goldberg, 1988]. The method we use is to

record in an array the number of string values at each string position in the population at a

specific time. From this array we can calculate the population diversity using the standard

deviation for each value at each string position. To do this we first define an |vi| x N matrix

A  for i = 1, 2, ..., N. The value aji  represents the total number of PCSP value vij  from

the domain of PCSP variable i in population Pi i.e. aji  = |Pi|. 

We would expect a randomly generated initial population of a reasonable size (i.e. ≈ 50 to

100) to have at least one value in each column and row. That is, all variable values should

be expressed at least once in the population of strings. But as the search progresses some

values will be lost while others increase in number, until full convergence when only one row

in each column will have a value. If the search has been successful we would expect the

values in each column to represent a solution string or minimal violation string. We define a

column average cavg based upon the total number of values which can be expressed in a

column divided by the domain size of the column. Further, the total number of values which

can be expressed for any column i will be equal to the population size n. Thereby, we can
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calculate the column i average cavgi as, 

                                                                                                        n
                                                  column average  cavgi  =                  .                                                                      (7.1)
                                                                                                   vi 

For example, if we have a population of 30 strings where the domain size  v1  = 5 then

cavg1 = = 30⁄5 = 6. If all domains in a PCSP are of the same size, 

                   | v1|  =  | v2|  =  | vN|

                   then, 

                   {cavg1 =  cavg2, ... =  cavgN}.

We can summarise these ideas in Table 7.1 which represents column 1 of a1
t for a 30 string

population at 3 GAcSP time periods; t = 0 (initial); t = 10; and t = 30 (full convergence).

(We only consider a single string position to simplify the example): 

(PCSP variable x1)

x1 x1

v11 6 10

v12 6 3

(PCSP value) v13 6 4

v14 6 13

v15 6 0

time t  0 10

total values n 30 30

column average cavg1 6 6

           Table 7.1: Population diversity string values (position i =  1)

The column average cavg is based upon an ideal representation of values where all domain

values are equally represented in a population of strings. Using the standard deviation we can

quantify the deviation of values from this average. Summing the standard deviation for each
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column in at will give us a single measure of population diversity Pdt at specific time or cycle

t, which can be calculated as follows: 

                                                                                                  N          k
                                   population  diversity       Pdt      =      ∑         ∑        ( aij

t  -  cavgi )
2 .                                (7.2)

                                                                                                  i =  1   j =  1

Using Equation 7.2 we can calculate the population diversity for each a1
t in Table 7.1: Pd0

= 0; and Pd10 = 78. It should be possible to apply the calculation during a GAcSP run or

after termination with recorded populations, depending on the frequency required. Figures 7.1,

and 7.2 illustrates changing number of values at string positions for an initial 30 string population,

and after 10 cycles for GAcSP tackling a 10 variable PCSP with domain size 5. If we look

at Figure 7.1 we can see in the initial population that most values are equally represented,

with no single value dominating. After 10 cycles Figure 7.2 shows that some values are beginning

to dominate their string positions. 

Figure 7.1: Population values count
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The method outlined above for measuring population diversity is simple to implement and does

not require intensive computing resources. The diversity Pd will quantify the effect of parameter

changes as GAcSP progresses. For example, whether increasing the HC time limit will result

in less or more diversity and what changes occur over specific GAcSP time periods. 

7.2.2  Tackling Binary CSPs

The PCSPs tackled in this thesis, namely the PCP and CarSP are PCSPs which have constraints

represented in the cost function. Both these problems required offspring strings to be repaired

because of hard representation constraints. In the PCP representation these were dependent

upon the valency of the processors and in the CarSP dependent on the production requirements.

In earlier research [Tsang and Warwick, 1989] we were able to tackle binary CSPs which have

a cost function defined by the CSP values, using a GA. Binary CSPs are an important class

of problems not least because other n-ary constraint CSPs can be reduced to binary CSPs

[Rossi, Petrie and Dhar, 1989]. If instead of a cost function based upon each CSP value having

a cost, we define the GA fitness as a penalty function then GAcSP can tackle these also. A

simple penalty function could be used which assigns a penalty violation cost of one to every

binary constraint violated. This is the same technique of counting CarSP violation used in

Experiments 6.2 and 6.3 tests which demonstrated GAcSP’s success in finding solutions. With

this approach the repair function is not needed, unless we can distinguish between binary

constraints which must be satisfied (hard), while other constraints (soft) can be handled by the

penalty function. This further development work will greatly extend the range of problems which

can be tackled by GAcSP. 

7.3  Summary and Conclusion

In this thesis GAcSP has been developed as a flexible heuristic strategy to tackle NP-hard

partial constraint satisfaction problems (PCSPs). Domain knowledge can assist techniques used

to tackle NP-hard problems but usually at a cost of becoming problem specific. GAcSP has

been designed to exploit this knowledge for a class of problems (PCSPs) without losing a

general problem solving performance. GAcSP is a combination of a modified standard GA and

local improvement operator which has been designed to: 
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• Combine the advantages of a real-coded representation with those of a binary coded

representation by utilising a binary template in the UAX crossover operator. 

• Combine the GA with a local improvement technique (HC) which exploits features of PCSPs.

• Provide the advantages to tackling a class of problems without losing a general problem

solving performance. 

• Allow flexibility in approach to PCSPs with different hard and soft constraint requirements.

• Provide a reasonable compromise on the optimality of solutions and the time taken to find

them. 

Using GAcSP we demonstrated that GA can be adapted to become suitable for tackling

constraint based problems and is not necessarily restricted to problems with numerical constraints

or which only have a few constraints. Our analysis of constraint interaction or epistasis in

PCSPs has shown why standard GAs find such problems difficult and how GAcSP can exploit

tight constraints in finding solutions. 

Program GA1 has been tested against two difficult problems, the processors configuration problem

(PCP) and car sequencing problem (CarSP). Test problems can limit the scope of any claims

made from results. However, we have tried to test two important characteristics of partial

constraint satisfaction problems (PCSP), namely constraint interaction and the problem of

combinatorial explosion. We tested these by systematically increasing the number of constraints

and the number of variables in our example PCSPs. These empirical tests are needed to

understand program behaviour, particularly performance under certain conditions. The performance

of GA1 on both problems have been compared to alternative approaches to each problem. In

general, an algorithm might be useful in one aspect of solving problems but poor in performance

on others. In summarising the results for our tests we have focused on two main performance

measures, the "best" (in terms of minimising or maximising the objective function) and average

solution quality and the time taken to achieve it. Furthermore, because GAcSP makes no
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distinction between solvable and unsolvable problems this can prevent time being used trying to

find solutions to unsolvable problems which cannot be determined a priori. 

There are a number of important issues which have been raised in this research, one of which

is the paradox between the success of GAs using real-coded representations and Schemata

Theory or building block hypothesis. On the one hand, this research to some extent contributes

to this paradox by demonstrating successful search using a real-coded representation. On the

other, we have tried to show by analysis that this success is partly due to the use of a binary

template mechanism creating an underlying binary search space. We discussed the limitations

with the Schemata Theorem and binary representations and considered alternative theories.

Furthermore, it is important to consider the GA system, in particular the relationship between

crossover and representation and what influence this has on the schemata that are formed. It

is the correlation between schemata and string fitness which will determine the ultimate success

of a GA on a specific problem. 

Designing strategies for constraint satisfaction problems is an important step towards establishing

AI as a practical approach to tackling real problems. This is particularly important for the

many problems which fall in the domain of scheduling, where production cost reduction can

be significant and the quality of service improved. The size and complexity of scheduling

problems justifies combining different approaches in creating synergistic strategies. Finally, we

hope this research has provided some insight into using an adaptive approach to tackling CSPs,

and generated new ideas which can be exploited by further work. 
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Summary Of Important Symbols

(page numbers indicate first or defining occurrence of symbol)

# metasymbol which stands for 0 or 1  9

C set of constraints on an arbitrary subset of variables in Z, restricting the values that they can take
together 

 3

D set of discrete domains for each variable in Z {v1, v2, ..., vN}  3

g function mapping PCSP solution tuples into numeric integers  3

H schema  9

i index for string elements and PCSP variable domain value  4

j index for string elements 23 

k cardinality  4

l length of string S or Sbin  6

n number of strings in P  6

N number of PCSP variables  3

ρ probability  9

P population of n strings S  or Sbin  6

S string of l non-binary elements 36

Sbin string of l binary elements  6

t period or unit of time  6

v PCSP variable value indexed by i and j  4

Z set of variables {x1, x2, ..., xN}  3
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Appendix A  HR and TABU Pseudo Code

Pseudo code for the heuristic repair (HR) and Tabu search algorithm (TABU). (Supplied by

Kangmin Zhu.) 

PROCEDURE TABU_CSP_1(Z, D, C, IterationLimit, TabuLengthLimit)
BEGIN
        FOR each variable xi in Z in a random order DO
            BEGIN
                xi  the value which in Dx which involves in the least number
                of conflicts at the time, break ties randomly;
                Tabu[i]  empty list;
            END;
        k 1;
        REPEAT
            S  set of variables which label violates some constraints;
            pick a random variable y from S;
            v  value currently assigned to y;
            V  set of values in Dy which are not in Tabu[y];
            y  the value which in V which involves in the least number of
            conflicts, break ties randomly;
            Make v the last element of Tabu[y];
        IF (the number of elements in Tabu[y] ³  TabuLengthLimit)
                THEN Remove the first element from Tabu[y];
        UNTIL k ³  IterationLimit;
END     /* of TABU_CSP_1 */

    When TabuLengthLimit =  0, TABU_CSP_1 becomes a simple HR algorithm;

and when TabuLengthLimit = 1, TABU_CSP_1 is a one-state Tabu algorithm.
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binary string Sbin 6
building blocks 11

car sequencing problem CarSP 67
CSP 3

diameter dmax 61

epistasis 18

GA -hard 22
gray codes 15

hamming cliffs 15

implicit parallelism 11
lower mean internode distance 65
irregular network 61

mean internode distance davg 62

non-overlapping 7

off-line 40
on-line 40
optimum graph 64

PCSP 4
PCSP(PCP) 65
PCSP(CarSP) 76
processor valency ∆  60
processors configuration problem PCP 60

regular network 60
representation
 binary-coded 13
 real-coded 14

schedule 68
schema H 9
 defining length δ 9
 o-schema 22
 order 9
search space 4
string fitness 7
string population P(t) 6

tightness
 ratio 117
traveling salesman problem (TSP) 14

upper bound nmax 62
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Update Variables

population = matepool 

mp = 0

os  = 0

cycle = cycle + 1

Initialisation Operator

randomly select binary value
until string complete

string p:  0 1 1  0 0 0 0 1 1 1 

put string into population
(p =p + 1)                   

Evaluate string

Reproduction Operator

select an individual string
from the population with a
proportional bias based upon
its fitness and population
average.                   

put string into matepool. (mp
= mp + 1)

Crossover Operator

randomly select two parent
strings from the matepool 

cut parents at random point

parent 1: 0 1 1  0 0 0 0 1 1 1
parent 2:  1 0 0    1 1 1  1 0 0
0

Mutation Operator

offspring 1: 011 1111000
offspring 2: 100 0000111

change offspring bits

offspring 1’: 0110111000
offspring 2’: 1000000111

Evaluate offspring

No

No

No

Yes

Yes

Yes

Stop

Yes

No End Condition ?

p = n ?

mp = n ?

os = n ?

Explanation of  program variables and constants

cycle = counter for the number of GA iterations

mp  = counter for the number of strings added to matepool each cycle

n = GA parameter constant population size

os = counter for the number of offspring generated each cycle

p = counter for the number of  strings randomly generated during initialisation

Figure 1.1:    Flow  chart  - SGA  operator details

GA cycle



Update Variables

population = matepool. 

mp = 0

os  = 0

cycle = cycle + 1

Generate Function

Randomly select string value
from CSP variable domains,
append until string complete.

Put string into Population.
(p =p + 1)                   

Evaluate string.

Elitism Function

Select the e fittest individuals
(i.e. minimisation - lowest
fitness) from the Population.

Put strings into matepool. (mp
= mp + e)

Select Function

Select an individual string
from the Population with a
proportional bias based upon
its fitness and Population
average.                   

Put string into matepool. (mp
= mp + 1)

UAX Function

Randomly select two strings
from the matepool. Exchange
genetic material to create an
offspring.  

Replace the worst fitness
string in matepool (i.e.
minimisation - highest fit-
ness). (os = os + 1)

Greedy Repair Function

Repair the offspring by
making sure the correct
number of each of the CSP
values are present in the
string: repair choices minimis-
ing the string  fitness.

Evaluate offspring.

No

No

No

Yes

Yes

Yes

Stop

Yes

No End Condition ?

p = n ?

mp = n ?

os = ospring ?

Initialisation Operator

Crossover Operator

Reproduction Operator

Explanation of  program variables and constants

cycle = counter for the number of GA iterations

e = GA parameter constant number of fittest members selected each cycle

mp  = counter for the number of string added to matepool each cycle

n = GA parameter  constant population size

os = counter for the number of offspring generated each cycle

ospring = GA parameter constant for the total number of offspring to be generated each
cycle

p = Counter for the number of  strings randomly generated during initialisation

Figure 4.1:    Flow  chart  -  GAcSP  operator details

GA cycle

Optional Hill-ClimbFunction

Locate high cost string
elements, and swap positions
with string elements which
minimise the string fitness.
Continue until no further
improvement is possible or a
pre-set time limit is reached.
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