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Abstract—An evolutionary algorithm (EA) can be used to tune
the control parameters of a construction heuristic to an opti-
mization problem and generate a nearly optimal solution. This
approach is in the spirit of indirect encoding EAs. Its performance
relies on both the heuristic and the EA. This paper proposes a
three-phase parameterized construction heuristic for the shared-
path protection problem in wavelength division multiplexing net-
works with shared-risk link group constraints and applies an EA
for optimizing the control parameters of the proposed heuristics.
The experimental results show that the proposed approach is
effective on all the tested network instances. It was also demon-
strated that an EA with guided mutation performs better than a
conventional genetic algorithm for tuning the control parameters,
which indicates that a combination of global statistical information
extracted from the previous search and location information of the
best solutions found so far could improve the performance of an
algorithm.

Index Terms—Estimation of distribution algorithms (EDAs),
evolutionary algorithm (EA), guided mutation, hyperheuristics,
memetic algorithm (MA), network protection, shared-risk link
group (SRLG).

I. INTRODUCTION

THE COMBINATION of evolutionary algorithms (EAs)
and problem-specific heuristics has been proven very suc-

cessful in dealing with hard search and optimization problems.
The majority of current combination schemes adopt one or
more of the following three related approaches.

1) Memetic algorithm (MA) [1]–[8]: MAs are inspired by
cultural evolution. They employ one or several problem-
specific heuristics to improve and/or repair some or all
of the solutions generated by EA offspring generators
(such as crossover and mutation). In a canonical MA,
a single heuristic local search procedure is applied to
every newly generated solution, while adaptive MAs use a
number of heuristics, and the decision on which heuristic
to improve a new solution is made dynamically. There-
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fore, adaptive MAs allow both cooperation and compe-
tition among different heuristics. A very recent classifi-
cation of adaptive MAs based on adaptation level can be
found in [9].

2) Hyperheuristic [10]–[12]: This is a general methodology
in search and optimization. Typically, a hyperheuristic
does not directly work on the solution space of the
optimization problem. Instead, it manages a set of
knowledge-poor and low-level heuristics that can modify
or repair an existing solution to the problem. At any given
decision point, high-level heuristics choose a low-level
heuristic and then apply it to the solutions obtained from
the previous stage of search. A hyperheuristic can use
an EA as its high-level heuristic for searching good low-
level heuristics. Portfolio algorithms, based on ideas from
economics, also aim at combining different heuristics for
solving hard optimization problems [13].

3) Indirect encoding EAs using construction heuristics [5],
[14]–[17]: Suppose that we have a problem-specific
construction heuristic for an optimization problem. The
heuristic has a set of control parameters with relatively
simple data structures. For any given parameter setting,
the heuristic can construct a solution to the problem,
the quality of which entirely depends on the parameter
setting. An EA can be used to tune these control pa-
rameters to find a nearly optimal parameter setting and
thus generate a good solution to the original problem.
This approach can be regarded as an instance of indirect
encoding EAs since the actual search space of the EA is
the parameter space of the heuristic and each parameter
setting can be decoded (i.e., transformed) to a solution
to the original problem via the heuristic. If solutions
to the problem have a complex data structure, and a
parameterized construction heuristic is relatively easy to
design, this approach could be a reasonable choice.

Conventional EAs [18]–[20] mainly employ crossover and
mutation for generating new solutions. Generally, only a few
(often two in crossover and one in mutation) parent solutions
are directly involved in these operators. There is no mechanism
in conventional EAs for extracting global statistical information
from the previous search and using it for guiding the further
search. Estimation of distribution algorithms (EDAs) [21]–[24]
work in a quite different way: they maintain a probability model
for characterizing the distribution of promising solutions at
each generation. The model is updated based on the global
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statistical information extracted from the current population.
New solutions are generated by sampling from this model.
However, information about the location of the best solutions
found so far has not been directly utilized. Recently, we have
proposed a new operator called guided mutation [25], [26] for
generating new solutions in EAs. Guided mutation combines
the global statistical information and location information of
the solutions found so far so that the shortcomings of EAs and
EDAs are efficiently overcome.

In this paper, an indirect encoding EA using a construc-
tion heuristic is proposed for the shared-path protection (SPP)
problem in wavelength division multiplexing (WDM) optical
networks under shared-risk link group (SRLG) constraints [27].
This problem requires finding a working lightpath and a backup
lightpath for each of the set of connection requests with the
objective of minimizing the wavelength capacities consumed
in these lightpaths. Each feasible solution to this problem,
therefore, consists of a set of working lightpaths and a set of
backup lightpaths subject to a large number of constraints. If
we encode a solution as a binary string, the resultant problem
size, for a practical-sized network, would become prohibitively
large to deal with [27]. It is also not an easy task to design
EA operators such as crossover and mutation for operating
directly on these solutions. Therefore, the commonly used
framework of MAs is not very suitable for this problem. In our
proposed method for this problem, a three-phase parameterized
construction heuristic is used to construct a solution. The first
and second phases are for constructing working lightpaths
and backup lightpaths, respectively. The third phase assigns
a wavelength to each lightpath. The quality of the solution
generated in the construction heuristic is determined by its
control parameters: two permutation vectors π and σ, and a real
parameter c. An EA with guided mutation (EA/G) and a genetic
algorithm (GA) are employed for optimizing π and σ, while c is
tuned by testing its several representative values. The experi-
mental results show that EA/G outperforms the conventional
GA in tuning these control parameters, which indicates that
the combination of location information and global statistical
information can improve the performance of an EA. The results
also show that our proposed approach performs significantly
better than the heuristic of Zang–Ou–Mukherjee [27].

This paper is organized as follows. Section II describes in
detail the SPP problem in WDM optical networks under SRLG
constraints. Section III presents the construction heuristic for
the SPP problem. Sections IV and V introduce GA and EA/G,
which are used for tuning the control parameters. The frame-
work of the proposed approach for the SPP problem is given
in Section VI. Section VII presents the experimental results.
Finally, Section VIII concludes this paper.

II. PROBLEM DEFINITION

In this paper, we consider the network protection problem
in WDM networks. Due to their capability of efficiently uti-
lizing the huge bandwidth of optical fibers, WDM networks
are now the mainstream solution for supporting high-speed
long-distance communications. In such high-speed networks,
however, a single link failure can lead to serious service in-

terruptions. Therefore, network protection is of critical impor-
tance. Among the most popular protection methods is the so-
called path protection [28], where we set up two link-disjoint
lightpaths (named as the working lightpath and the backup
lightpath, respectively) between each source–destination pair.
Here, a lightpath is a directed path from source to destination
along which all the links use the same wavelength. To save
on network capacity, different backup lightpaths can share the
same wavelength channel as long as their respective working
lightpaths are not going through any common link. Extensive
researches have been carried out on investigating this problem
(e.g., [29]–[31]).

One of the most important recent developments in WDM
network protection is the introduction of the SRLG concept
[32], [33]. SRLG is defined as a set of network components
with a significant probability of failing simultaneously, e.g.,
fibers going through the same duct. Although considering
SRLGs help to strengthen the network survivability, it makes
the network protection problem much more difficult mainly
because of the two sets of additional constraints it imposes,
namely 1) a working lightpath and its backup lightpath cannot
go through any common SRLG (whereas in the classic network
protection problem, we only have to ensure that they do not go
through any common link); and 2) if two working lightpaths go
through a common SRLG, their backup lightpaths cannot share
any network resource (while in the classic protection problem,
similar constraints only apply to working paths going through
the same link).

The SPP problem can be modeled as an optimization prob-
lem in a simple directed graph given the following.

• V : The set of nodes in the graph under consideration.
• E: The set of directed links (edges) in the graph.
• W : The number of wavelengths available on each link.

The wavelengths are numbered from 1 toW .
• R: The set of connection requests.M = |R|. The requests

are numbered from 1 toM . Each connection request has a
source node and a destination node.1 It requires a working
lightpath and a backup lightpath from the stated source to
the stated destination.

• G: The set of SRLGs. Each SRLG contains a set of links
in E. Links in the same SRLG share the same risk, i.e.,
these links may break at the same time due to a destructive
event. If two paths in the network have links in the same
SRLG, we say that they are SRLG-joint. Otherwise, we
call them SRLG-disjoint.

The goal is to determine a working lightpath and a backup
lightpath for each connection request in R. The constraints are
enumerated as follows.

C1: The number of wavelengths used on each link cannot
not exceedW .

C2: The working lightpath and the backup lightpath, for
each connection request, must be SRLG-disjoint.

C3: Two working lightpaths cannot use the same wavelength
on the same link.

1Two different requests in C may have the same source and destination.
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C4: A backup lightpath cannot share the same wavelength
on the same link with any working lightpath.

C5: If two working lightpaths are SRLG-joint, their backup
lightpaths cannot use the same wavelength on the
same link.

The objective is to minimize the cost

∑
e∈E

(Fe + Se) (1)

where Fe is the number of wavelengths on link e used in
working lightpaths, and Se the number of wavelengths on link e
used in backup lightpaths.

This problem has been studied and modeled as an integer
linear programming (ILP) problem in [27]. It is an NP-complete
problem [34]. An ILP approach involves too many constraints
and variables, even for a small-sized network [35]. Therefore,
dealing with any practical-sized network needs to resort to
heuristics. Since the objective in this problem is to minimize
the total number of wavelengths used in a routing scheme, a
heuristic for it should have the following properties.

• The wavelength sharing among the backup lightpaths
should be maximized.

• SRLG-disjointness among the working lightpaths should
be encouraged so that backup lightpaths have a good
chance of sharing wavelengths.

• The lightpaths should be as short as possible since a
wavelength needs to be assigned to each link traversed by
these lightpaths.

Compared to the extensive researches on dynamic protection
where connection requests arrive one by one and future arrivals
are not known (e.g., [36] and [37]), existing results on highly
difficult offline SPPs, which handle all the connection requests
to achieve global optimization objectives, are very limited.
Specifically, [29] and [38] proposed to restrict the searching
space of the ILP problem to a set of predefined alternative
routes between each pair of nodes. The study in [39] applied the
Lagrangean relaxation method to tackle the ILP formulations.
Several network flow-based heuristics have also been proposed
(e.g., [40]), where a good summary can be found in [41]. Other
related yet different problems include the virtual topology
design, where the wavelength of a connection can be changed
on a limited set of intermediate nodes [42], [43], the length-
limited hybrid protection problem [41], etc.

A heuristic for the SPP problem defined in this section has
been proposed recently in [27]. To the best of our knowledge, it
is the only practical heuristic for the problem in the literature.
It first computes a working path and a backup path for each
connection request. Then, it assigns a wavelength to each
path. Finally, it rearranges the lightpaths to minimize the total
number of the wavelengths used. It is easy to implement and
have very low computational overheads. Its solution quality,
although claimed to be suboptimal, can still be significantly
improved as we will see later. Moreover, the heuristic of
Zang–Ou–Mukherjee has no control parameters; therefore, it
cannot be used in an indirect encoding EA.

One purpose of our study is to develop an indirect encoding
EA using construction heuristics for producing solutions of

high quality for complex optimization problems such as the SPP
problem at modest computational costs.

III. BASIC HEURISTIC (BH)

The proposed heuristic consists of three phases. In the first
phase, a heuristic called the “working path router” (“Wrouter”)
routes a working path wr for each connection request r inR. In
the second phase, a heuristic called the “protection path router”
(“Prouter”) computes backup paths for all the working light-
paths established in the first stage. In the third phase, a heuristic
called the “wavelength assigner” (“Wassigner”) assigns a wave-
length to each lightpath generated in the first two phases.

A. Wrouter

Let P = {p1, p2, . . . , pk} be a set of paths in the graph.
The SRLG-disjoint degree of path pi in P , i.e., degree (pi, P ),
is defined as the number of paths in P that are SRLG-
disjoint from pi. The SRLG-disjoint degree of P is defined
as maxpi∈P degree (pi,P ). Wrouter aims at establishing a set
of working lightpaths of as large SRLG-disjoint degree as
possible.

For each link e in the graph, its SRLG factor is defined as the
number of SRLGs containing e. To increase the SRLG-disjoint
degree of the set of working lightpaths, Wrouter discourages
its working lightpaths from using links of high SRLG factors.
The reason is that a path with links of high SRLG factor is very
likely to be SRLG-joint with other paths.

Since working lightpaths cannot share the same wavelength
on the same link and the number of wavelengths used on each
link cannot exceed W , a single link, if possible, is prevented
from being used by more thanW lightpaths in Wrouter.

Wrouter routes working paths one by one in order of the con-
nection requests π = (π1, π2, . . . , πM ). Suppose that for con-
nection requests π1, . . . , πk−1(1 ≤ k < M), a set of working
lightpaths WPk−1 = {wpπ1

, . . . ,wpπk−1
} has been established

(in the case k = 0, no working lightpath has been established).
If Wrouter failed in routing a working lightpath for request
r < k, wpr is set to be the empty path ∅. Wrouter routes the
working lightpath wpπk

for the connection request πk in the
following way.

Step 1) For each link in E, count the number of working
lightpaths ∈ WPk−1 using it. Let E1 ⊂ E contain
all the links that have been used by W lightpaths
in WPk−1.

Step 2) Compute the SRLG-disjoint degree of each non-
empty working lightpath in WPk−1. Let E2 contain
the links in E \ E1 that are
a) in the nonempty working lightpaths in WPk−1

with the smallest SRLG-disjoint degree;
b) SRLG-joint with links specified in a).

Step 3) For each link e ∈ E \ (E1 ∪ E2), set its length to be

L(e) = (1 + c)βe (2)

where βe is its SRLG factor, and c > 0 is a control
parameter.
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For any link f in E2, set its length to be

L(f) =
∑

e∈E\(E1∪E2)

L(e). (3)

Step 4) Applying the Dijkstra algorithm [44] to the graph
(V,E \ E1) with the link lengths defined in (2) and
(3), compute the shortest path from the source to
the destination of the connection request πk as the
working lightpath wpπk

. If the Dijkstra algorithm
fails in finding a path, set wpπk

= ∅.
The control parameters π = (π1, π2, . . . , πM ) and c can be

regarded as the input to Wrouter, and the working lightpaths
WP = {wp1,wp2, . . . ,wpM} are its output; therefore, Wrouter
can be denoted by

WP = Wrouter(π, c). (4)

Remark 1: If the lightpath wpπk
uses any link in E1, it

will lead to an infeasible routing. This is why it is forbidden
to use such links in wpπk

. If the lightpath wpπk
uses any

link in E2, the SRLG-disjoint degree of the resultant set of
working lightpaths may be decreased. For this reason, Wrouter
discourages wpπk

from using any link in E2. In fact, due to the
link length settings in (2) and (3), wpπk

will not use any link
in E2 if there is a path from the source node to the destination
node of the request πk in graph (V,E \ (E1 ∪ E2)).

Remark 2: In (2), the higher the SRLG factor of a link is, the
longer it is. In this way, Wrouter encourages wpπk

to use links
with low SRLG factors. Therefore, the SRLG-disjoint degree
of the resultant set of working paths can be lowered.

Remark 3: For some control parameter settings, if there is
no path from the source node to the destination node of the
request πk in the graph (V,E \ E1), then wpπk

will be set to ∅

in Wrouter.

B. Prouter

Given a set of working lightpaths WP = {wp1,wp2,
. . . ,wpM} for all the connection requests in R (where wpr is
for request r, and some wpi in WP may be empty), the goal of
Prouter is to route the backup lightpath bpr for each connection
request r.

In a similar way to Wrouter, Prouter establishes backup
lightpaths one by one in order of the connection requests
σ = (σ1, σ2, . . . , σM ). Suppose that for connection requests
σ1, . . . , σk−1(1 ≤ k < M), a set of backup lightpaths BPk−1 =
{bpσ1

, . . . , bpσk−1
} has been established (in the case k = 0,

no backup lightpath has been established). Then Prouter routes
the backup lightpath bpσk

for the connection request σk in the
following way.

Step 1) If wpσk
=∅, set bpσk

=∅. Otherwise, go to Step 2).
Step 2) LetQ be the set containing all the backup lightpaths

in BPk−1 whose corresponding working lightpaths
are SRLG-joint with the working lightpath wpσk

.
Let H contain links that
a) have been used byW lightpaths in Q ∪ WP;
b) have been used by the working lightpath wpσk

;
c) are SRLG-joint with links in the working

path wpσk
.

For any link e ∈ E \H , set its length to be

L(e) = 1. (5)

Applying the Dijkstra algorithm to the graph (V,E \
H) with the link lengths defined in (5), compute the
shortest path from the source to the destination of the
connection request σk as the backup lightpath bpσk

.
If the Dijkstra algorithm fails in finding a path, set
bpσk

= ∅.
The control parameters σ = (σ1, σ2, . . . , σM ) and the set of

working lightpaths WP can be regarded as the input to Prouter,
and the backup lightpaths BP = {bp1, bp2, . . . , bpM} are its
output. Therefore, Prouter can be denoted by

BP = Prouter(σ,WP). (6)

Remark 1: If the lightpath bpσk
uses any links in H defined

in Step 3), it will lead to an infeasible routing. For this reason,
Prouter prevents bpπk

from using such links.
Remark 2: If there is no path from the source node to the

destination node of the request σk in the graph (V,E \H) or
wpσk

, Prouter will set bpσk
= ∅.

C. Wassigner

Given the set of working lightpaths WP and the set of backup
lightpaths BP for all the connection requests in R, the task of
Wassigner is to assign wavelengths to every working lightpath
and backup lightpath such that the total number of wavelengths
used is minimized under the constraints listed as follows.

CW1: Two working lightpaths must be assigned different
wavelengths if they traverse the same link.

CW2: A working path and a backup lightpath must be
assigned different wavelengths if they traverse the
same link.

CW3: Two backup lightpaths have to be assigned different
wavelengths if they traverse the same link and their
corresponding working lightpaths are SRLG-joint.

Viewing each lightpath as a node in a graph and each
wavelength as a color, two nodes (lightpaths) are defined to
be adjacent if they must be assigned different wavelengths.
Then, the above problem becomes the well-known NP-hard
graph coloring problem [45]. We use a first-fit heuristic for this
problem. We assume that the number of wavelengths available
are infinite and that the wavelengths are indexed by 1, 2, . . ..
The heuristic, Wassigner, works as follows.

Step 1) Set P = BP ∪ WP. Remove all the empty paths
from P .

Step 2)
Step 2.1) Remove a lightpath p from P .
Step 2.2) Assign the allowable wavelength with the small-

est index to p. A wavelength is allowable if
assigning it to p does not violate CW1–CW3.

Step 3) If P = ∅, stop. Otherwise, go to Step 2).
There are several ways in Step 2.1) to select from P a light-
path to remove. In our implementation, we randomly pick a
lightpath from P and remove it in Step 2.1). WP and BP
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are inputs to Wassigner. While the output is a wavelength
assignment to each lightpath in P = BP ∪ WP, A : P →
{1, 2, . . .}. Wassigner can be denoted by

A = Wassigner(WP,BP). (7)

Remark 1: The wavelength assignment A generated in
Wassigner will satisfy the constraints CW1–CW3. However, if
the number of wavelengths used in A exceeds W , it may vio-
late the constraint C1 (i.e., the number of wavelengths used on
some paths may exceedW ).

D. Structure of Heuristic Algorithm

For the SPP problem, the proposed BH has the control
parameters π = (π1, π2, . . . , πM ), σ = (σ1, σ2, . . . , σM ), and
c. The output is a working lightpath set WP, a backup lightpath
set BP, and a wavelength assignment A : P → {1, 2, . . .}. It
works as

(BP,WP, A) = BH(π, σ, c)

where WP = Wrouter(π, c), BP = Prouter(σ,WP), and A =
Wassigner(WP,BP).

Any solution generated by BH will satisfy constraints
C2–C5. An inappropriate setting of π, σ, and c may generate
a solution that is incomplete (there are no working lightpaths or
backup lightpaths for some requests) and/or violate constraint
C1. It is not easy to develop a simple mathematical model for
the relationship between a setting of algorithm parameters π,
σ, and c and the quality of the solution constructed. Finding
an optimal parameter setting turns out to be a black box
optimization problem. An EA/G and a GA are used as tools
for tuning the control parameters π and σ in our study.

IV. EA/G

Offspring generators play a crucial role in any EA. The
proximate optimality principle [46], an underlying assumption
in most (if not all) heuristics, assumes that good solutions have
similar structure. This assumption is reasonable for most real-
world problems. Based on this assumption, an ideal offspring
assumption should be able to produce a solution that is close
to the best solutions found so far. Only a few parent solu-
tions are involved in crossover and mutation. A new solution
generated by these two operators may be far from other best
solutions found so far in the search. However, in EDAs [21],
new solutions are sampled from a model that characterizes a
promising area in the search space, but there is no mechanism
in EDAs for directly controlling the similarity (often measured
by distance) between new solutions and the best solutions found
so far. Guided mutation combines global statistical informa-
tion and location information of the best solutions found so
far to overcome the shortcomings of GAs and EDAs. In the
following, we present EA/G, which is used in our study for
tuning the control parameters in the BH defined in the pre-
vious section.

A. Search Space and Objective Function

The search space in EA/G is Π, the set of all possible
permutations of I = {1, 2, . . . ,M}. Each permutation has a
cost. The task of EA/G is to find a permutation solution in Π
with the (nearly) lowest cost.

B. Population and Probability Matrix

At each generation t, EA/G maintains a population of
N solutions (i.e., permutations of I)

Pop(t) = {ξ1, ξ2, . . . , ξN}

and a probability matrix

X(t) =



x11(t) · · · x1M (t)

...
. . .

...

xM1(t) · · · xMM (t)




where X(t) is the distribution of promising solutions in the
search space. More precisely, xij(t) is the probability that ξi =j
in a promising permutation solution ξ = (ξ1, ξ2, . . . , ξM ).

C. Initialization

EA/G randomly choosesN permutations from Π as its initial
population P (0). The initial probability matrixX(0) ∈ RM×M

is set as

X(0) =




1
M · · · 1

M

...
. . .

...
1
M · · · 1

M


 . (8)

D. Update of Probability Matrix

Assume that the population at generation t is Pop(t) =
{ξ1, ξ2, . . . , ξN}, and the probability matrix at generation t− 1
isX(t− 1). Then, the probability matrixX(t) = (xij(t))M×M

can be computed as

xij(t)=(1−β) 1
N

N∑
k=1

Iij(ξk)+βxij(t−1), (1≤ i, j≤M)

(9)

where

Iij(ξ) =
{

1, if ξ(i) = j
0, otherwise.

0 ≤ β ≤ 1 is the learning rate. The bigger β is, the greater is
the contribution of the solutions in Pop(t) to the probability
matrix X(t).

E. Generation of New Solutions: Guided Mutation

Guided by the probability matrix X = (xij)M×M , the
guided mutation [25], [26] mutates an existing solution ξ to
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generate a new solution ζ. This operator also needs a control
parameter 0 < α < 1. It works as follows:

ζ = Guided Mutation (ξ,X, α).

Input: A permutation ξ = (ξ1, . . . , ξM ), a probability matrix
X = (xij)M×M , and a positive parameter α < 1.

Output: ζ = (ζ1, . . . , ζM ), a permutation.
Step 1) Randomly pick [αM ] integers from I = {1,

2, . . . ,M}, and let these integers constitute a set
K ⊂ I . Set V = I \K and U = I \ {ξl|l ∈ K}.

Step 2) For each i ∈ K, set ζi = ξi.
Step 3) While (U �=∅), uniformly randomly select i from

V, and then randomly draw k from U with
probability

xik∑
j∈U xij

.

Set ζi = k, U = U \ {k} and V = V \ {i}.
Step 4) Return ζ.

In the above guided mutation operator, ζi is directly copied
from the parent ξ if i ∈ K. Otherwise, under the constraint
that ζ is a permutation, it is randomly generated based on the
probability matrix X . The larger α is, the more elements of ζ
are directly copied from its parent ξ. In other words, α controls
the similarity between the offspring and the parent.

In the conventional mutation for permutation vectors, several
(often two) elements are randomly selected and then swapped.
The probability that a permutation ζ being generated from
parent ξ is entirely determined by the number of the positions
where ζ and ξ are different. In contrast, the guided mutation
mutates ξ based on the probability matrix X , which is learned
and updated at each generation for modeling the distribution of
promising solutions. It can be expected that offspring ζ fall in
or close to a promising area in the search space. Meanwhile,
randomness in Step 3) also provides diversity for the search.

F. Structure of EA/G

EA/G works as follows.
Step 0) Parameter Setting: Set the following control

parameters:
• PopSize: population size;
• NoNew: number of new solutions generated

at each generation;
• α: control parameter in Guided Mutation;
• β: learning rate used in the update of the prob-

ability matrix;
• MaxGen: maximum number of generations

EA/G runs for.
Step 1) Initialization: Set t := 0. Initialize the probability

matrix X(t) by (8). Randomly generate Popsize
distinct permutations to form the initial population
Pop(0). Let the best solution in Pop(0) be ξ∗.

Step 2) Guided Mutation: Independently apply the guided
mutation operator to ξ∗ (i.e., ξ∗,X(t), and α are
inputs to the guided mutation) NoNew times to
generate NoNew solutions.

Step 3) Selection: Select the PopSize distinct best solu-
tions from the solutions generated in Step 2) and
Pop(t). Let these selected solutions form Pop(t+
1). Let the best solution in Pop(t+ 1) be ξ∗.

Step 4) Stopping Condition: If t =MaxGen, stop and
output the best solution ξ∗; otherwise, set t = t+ 1.

Step 5) Update of Probability Matrix: ComputeX(t) by (9)
and then go to Step 2).

In this algorithm, the members of the population Pop(t) are
always distinct. This prevents X(t) from becoming degenerate
(i.e., all the elements in it are very close to 0 or 1) and thus
provides diversity for the search. In Step 2), the guided mutation
operator is always applied to the best solution ζ∗. Therefore,
the new solutions generated are, to some extent, similar to the
best solution found so far, which is desirable for a successful
heuristic according to the proximate optimality principle [46].
In Step 3), the quality of a solution is measured by its cost. The
smaller its cost is, the better it is.

V. GA

This section describes the GA used in our study for tuning the
control parameters in BH. The search space is the permutation
vector space.

Step 0) Parameter Setting: Set the following control
parameters:

• PopSize: population size;
• NoNew: number of new solutions generated at

each generation;
• µ and γ: control parameters in mutation

operator;
• MaxGen: maximum number of generations

the algorithm runs for.
Step 1) Initialization: Set t := 0. Randomly generate

Popsize distinct permutations to form the initial
population Pop(0). Let the best solution in Pop(0)
be ξ∗.

Step 2) Crossover and Mutation: Randomly select NoNew
pairs of permutations from Pop(t) and perform the
cycle crossover (CX) operator [8] on each pair to
generate NoNew new permutations. For each solu-
tion generated in Step 2), generate a uniform random
number rand in (0, 1). If rand < µ, mutate it by
performing [γM ] random swaps on it.

Step 3) Selection: Select the PopSize distinct best solutions
(i.e., with the smallest costs) from the solutions
generated in Step 2) and Pop(t). Let these selected
solutions form Pop(t+ 1).

Step 4) Stopping Condition: If t =MaxGen, stop and out-
put the best solution ξ∗ in Pop(t+ 1). Otherwise, set
t = t+ 1, and go to Step 2).

Except for the mechanisms for generating new solutions
and initialization, all the other components in the above GA
are the same as in EA/G. The reason that we chose the CX
operator is that this operator works well for other combination
optimization problems [8].



ZHANG et al.: EVOLUTIONARY ALGORITHMS REFINING A HEURISTIC 7

TABLE I
PARAMETERS OF THE TEST NETWORKS

VI. TUNING THE PARAMETER SETTING OF

HEURISTIC: BH/EA/G AND BH/GA

The proposed heuristic BH may generate an incomplete so-
lution or a solution violating constraint C1. We need to measure
its performance in tuning the control parameters in BH. For a
solution (BP,WP, A) generated by BH, we use the following
function as its cost function:

2M |E|(N1 +N2) +
∑
e∈E

(Fe + Se) (10)

where Fe is the number of wavelengths on link e used in
working lightpaths, and Se the number of wavelengths on
link e used in backup lightpaths. M is the number of the
connection requests, |E| is the number of all the links in E,
N1 is the number of empty lightpaths in BP ∪ WP, and

N2 =
{

0, ifW ≥ K
K −W, otherwise

whereK is the number of wavelengths used in A.
Obviously, due to the penalty term in (10), the cost of an

infeasible or incomplete solution is always higher than that of a
feasible solution.

For each parameter setting of (π, σ, c) in BH, we define its
cost cost(π, σ, c) to be the cost of the solution generated by
BH with such a parameter setting. The proposed procedure for
tuning these parameters works as follows.

BH/EA/G (BH/GA)

Step 1) Tuning c.
Step 1.1) Randomly generate ten pairs of permuta-

tions (π1, σ1), (π2, σ2), . . . , (π10, σ10). Let ci =
(i/10)(i = 1, 2, . . . , 10).

Step 1.2) Compute

c� = arg min
c∈{c1,c2,...,c10}

1
10

10∑
j=1

cost(πj , σj , c).

Step 2) Tuning π.
Step 2.1) Randomly generate a permutation σ̃.

Step 2.2) Use EA/G (GA) to tune π, where the cost of π is
set as cost(π, σ̃, c�). Set π� to be the best setting
of π found in EA/G (GA).

Step 3) Tuning σ.
Use EA/G (GA) to tune σ, where the cost of σ is set
as cost(π�, σ, c�). Set σ� to be the best setting of σ
found in EA/G (GA).

Then, the best solution found is the one generated by BH with
parameter setting (π�, σ�, c�).

We can iterate the above procedure many times in order to
lower the cost of the solution obtained as in the alternating
variable optimization method [47]. Taking the computational
overhead into consideration, we chose not to perform the itera-
tion in our experimental study.

VII. EXPERIMENTAL RESULTS

A. Test Networks

The basic characteristics of the test network instances are
listed in Table I.

For each network parameter setting, we test two network
examples. In the first one, the links in the same SRLG are
adjacent. In the second one, the links in each SRLG are ran-
domly selected from E. The first test example with parameter
setting a is denoted by T1 − a, and the second test example is
denoted by T2 − a.

A test network example is generated as follows.
1) Let G = (V,E). E has NL distinct links that are ran-

domly selected.
2) Randomly divide all the links in E into |G| groups. Each

group is an SRLG. In the case of test example T1 − a,
the links in the same SRLG should be adjacent. In other
words, let H be the subgraph induced by SRLG, then H
should be connected if the directions of the links are not
considered.

3) Randomly selectM connection requests. Let the number
of wavelengths available on each link beW .

4) Apply the heuristic of Zang–Ou–Mukherjee [27] to the
generated problem. If a feasible solution can be found,
then stop. This problem will be taken as a test network
instance. Otherwise, go to Step 1).

The above procedure can produce an instance of the SPP
problem that is guaranteed to have at least one feasible
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solution. As pointed out in [27], linear programming methods
are not suitable for dealing with networks as large as the above
networks.

B. Parameter Setting in EA/G and GA in Comparison

In our experimental study, we set NoNew = 100 and
MaxGen = 100 in both EA/G and GA. Therefore, both
BH/EA/G and BH/GA need to call BH 20 000 times [10 000
times for tuning π in Step 2) of BH/EA/G (BH/GA) and 10 000
times for tuning σ].

We set Popsize = 50 in EA/G.
In EA/G, there are another two parameters, i.e., α (in

the guided mutation operator) and β (used in updating the
probability matrix), while GA has three more parameters to
set, i.e., µ, γ used in the mutation operator, and PopSize
used for controlling the selection pressure. To determine an
appropriate setting for these parameters, we have run BH/EA/G
and BH/GA on T1 − 1 for α, β = 0.0, 0.1, . . . , 0.9, and µ, γ =
0.0, 0.1, . . . , 0.9, Popsize = 20, 30, 40, 50, 60, 70, 80, respec-
tively. We have found that α = 0.1 and β = 0.2 is the best
setting for EA/G and µ = 0.1, γ = 0.3, and Popsize = 40 is
the best for GA for T1 − 1. In the following comparison study,
we always use these settings for EA/G and GA, although it does
not mean that these settings are the best for all the test problems.

C. Comparison Results

We have compared the following four algorithms in our
experimental study:

1) BH/EA/G;
2) BH/GA;
3) BH/R, which has the same structure as BH/EA/G and

BH/GA, except that it tests 10 000 random permutations
for π in Step 2) and 10 000 random permutations for σ in
Step 3), respectively;

4) ZOM-H, heuristic of Zang–Ou–Mukherjee.
The first three algorithms need to call BH the same number
of times in each run. Due to the computational cost, each
BH/EA/G, BH/GA, and BH/R has been run independently for
ten times on each test network instance.

Tables II and III shows the experimental results including the
following:

• time: The average run time (in seconds) of each algorithm
for each test instance.

• cost: The lowest cost found in the heuristic of
Zang–Ou–Mukherjee. Since there is no randomness in this
heuristic, we only run it once for obtaining its cost.

• best: The lowest cost found in ten independent runs
for each test instance by BH/EA/G, BH/GA, and BH/R,
respectively.

• avg: The average of the solution costs in ten independent
runs for BH/EA/G, BH/GA, and BH/R, respectively.

• std: The standard derivation of the lowest costs found in
ten independent runs for BH/EA/G, BH/GA, and BH/R,
respectively.

All the experiments were performed on a cluster of Athlon
MP 1900s (1.6 GHz). It is from Table II that the running time

TABLE II
AVERAGE RUN TIME (IN SECONDS) OF HA, BH/R, BH/GA,

AND BH/EA/G ON TEST NETWORK INSTANCES

for the heuristic of Zang–Ou–Mukherjee is from a few seconds
to about 4 min for the test network instances, while the other
three algorithms need from 2 min to 4 h for each run. For offline
applications that typically plan the allocations of connection
requests for a long period of time (days or even months), a 4-h
computation time is totally acceptable.

Table III clearly shows that BH/EA/G, BH/GA, and BH/R
are much better than the heuristic of Zang–Ou–Mukherjee in
terms of solution quality.

Table III also shows that std are the about the same for
BH/EA/G, BH/GA, and BH/R for the test instances, and
BH/EA/G and BH/GA perform significantly better than BH/R
for all the test problems with the same number of BH calls in
terms of best and avg. These results imply that EA’s search
mechanism is very effective in tuning the control parameters in
BH. Perhaps this is because the proximate optimality principle
also holds for the BH control parameters as in many other real-
world problems.

It is evident from Table III that BH/EA/G performs better
than BH/GA in all the test instances but T1 − 7. These results
suggest that the combination of global statistical information
and location information in the guided mutation operator does
improve the performance of the search.

Figs. 1 and 2 give the evolution of the average cost of the
best solutions found in ten runs with the number of BH calls in
tuning π and σ on two test instances. The first 10 000 BH calls
are for tuning π, while the last 10 000 calls are for tuning σ. It
is very clear from these four figures that there are significant
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TABLE III
SOLUTION QUALITY OF HA, BH/R, BH/GA, AND BH/EA/G ON TEST NETWORK INSTANCES

Fig. 1. Evolution of the average of the lowest solution costs with the number
of BH calls in tuning π and σ in BH/R, BH/GA, and BH/EA/G for T1 − 2.

decreases in the solution costs in both phases of tuning π and σ
in BH/EA/G and BH/GA.

The test problems and the C++ code of all the algorithms in
this paper can be found in cswww.essex.ac.uk/staff/zhang/.

VIII. CONCLUSION

Some real-world optimization problems may have com-
plex data structures. Indirect encoding EAs using construction

Fig. 2. Evolution of the average of the lowest solution costs with the number
of BH calls in tuning π and σ in BH/R, BH/GA, and BH/EA/G for T2 − 2.

heuristics represent a feasible approach of dealing with such
problems. In this paper, such an approach has been applied
for solving the SPP problem in WDM networks with SRLGs.
The proposed method optimizes the control parameters of a
basic construction heuristic for the problem by using EA/G. The
construction heuristic BH has three phases with three different
parameters, which largely determine the performance of BH.
Two parameters are permutations, and the third one is real
valued. These three parameters are tuned separately to search
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for a nearly optimal solution to the problem. Our experimental
study shows that the approach performs much better than
the heuristic of Zang–Ou–Mukherjee. More significantly, by
comparing the performances of EA/G, GA, and a pure random
method for tuning the control parameters, we have shown that
EAs are suitable for such a task, and the guided mutation
operator does improve the performance of EAs.

In the future, we intend to apply this approach to solve other
hard search and optimization problems.
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Evolutionary Algorithms Refining a Heuristic: A
Hybrid Method for Shared-Path Protections in

WDM Networks Under SRLG Constraints
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Abstract—An evolutionary algorithm (EA) can be used to tune
the control parameters of a construction heuristic to an opti-
mization problem and generate a nearly optimal solution. This
approach is in the spirit of indirect encoding EAs. Its performance
relies on both the heuristic and the EA. This paper proposes a
three-phase parameterized construction heuristic for the shared-
path protection problem in wavelength division multiplexing net-
works with shared-risk link group constraints and applies an EA
for optimizing the control parameters of the proposed heuristics.
The experimental results show that the proposed approach is
effective on all the tested network instances. It was also demon-
strated that an EA with guided mutation performs better than a
conventional genetic algorithm for tuning the control parameters,
which indicates that a combination of global statistical information
extracted from the previous search and location information of the
best solutions found so far could improve the performance of an
algorithm.

Index Terms—Estimation of distribution algorithms (EDAs),
evolutionary algorithm (EA), guided mutation, hyperheuristics,
memetic algorithm (MA), network protection, shared-risk link
group (SRLG).

I. INTRODUCTION

THE COMBINATION of evolutionary algorithms (EAs)
and problem-specific heuristics has been proven very suc-

cessful in dealing with hard search and optimization problems.
The majority of current combination schemes adopt one or
more of the following three related approaches.

1) Memetic algorithm (MA) [1]–[8]: MAs are inspired by
cultural evolution. They employ one or several problem-
specific heuristics to improve and/or repair some or all
of the solutions generated by EA offspring generators
(such as crossover and mutation). In a canonical MA,
a single heuristic local search procedure is applied to
every newly generated solution, while adaptive MAs use a
number of heuristics, and the decision on which heuristic
to improve a new solution is made dynamically. There-
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fore, adaptive MAs allow both cooperation and compe-
tition among different heuristics. A very recent classifi-
cation of adaptive MAs based on adaptation level can be
found in [9].

2) Hyperheuristic [10]–[12]: This is a general methodology
in search and optimization. Typically, a hyperheuristic
does not directly work on the solution space of the
optimization problem. Instead, it manages a set of
knowledge-poor and low-level heuristics that can modify
or repair an existing solution to the problem. At any given
decision point, high-level heuristics choose a low-level
heuristic and then apply it to the solutions obtained from
the previous stage of search. A hyperheuristic can use
an EA as its high-level heuristic for searching good low-
level heuristics. Portfolio algorithms, based on ideas from
economics, also aim at combining different heuristics for
solving hard optimization problems [13].

3) Indirect encoding EAs using construction heuristics [5],
[14]–[17]: Suppose that we have a problem-specific
construction heuristic for an optimization problem. The
heuristic has a set of control parameters with relatively
simple data structures. For any given parameter setting,
the heuristic can construct a solution to the problem,
the quality of which entirely depends on the parameter
setting. An EA can be used to tune these control pa-
rameters to find a nearly optimal parameter setting and
thus generate a good solution to the original problem.
This approach can be regarded as an instance of indirect
encoding EAs since the actual search space of the EA is
the parameter space of the heuristic and each parameter
setting can be decoded (i.e., transformed) to a solution
to the original problem via the heuristic. If solutions
to the problem have a complex data structure, and a
parameterized construction heuristic is relatively easy to
design, this approach could be a reasonable choice.

Conventional EAs [18]–[20] mainly employ crossover and
mutation for generating new solutions. Generally, only a few
(often two in crossover and one in mutation) parent solutions
are directly involved in these operators. There is no mechanism
in conventional EAs for extracting global statistical information
from the previous search and using it for guiding the further
search. Estimation of distribution algorithms (EDAs) [21]–[24]
work in a quite different way: they maintain a probability model
for characterizing the distribution of promising solutions at
each generation. The model is updated based on the global

1083-4419/$25.00 © 2007 IEEE
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statistical information extracted from the current population.
New solutions are generated by sampling from this model.
However, information about the location of the best solutions
found so far has not been directly utilized. Recently, we have
proposed a new operator called guided mutation [25], [26] for
generating new solutions in EAs. Guided mutation combines
the global statistical information and location information of
the solutions found so far so that the shortcomings of EAs and
EDAs are efficiently overcome.

In this paper, an indirect encoding EA using a construc-
tion heuristic is proposed for the shared-path protection (SPP)
problem in wavelength division multiplexing (WDM) optical
networks under shared-risk link group (SRLG) constraints [27].
This problem requires finding a working lightpath and a backup
lightpath for each of the set of connection requests with the
objective of minimizing the wavelength capacities consumed
in these lightpaths. Each feasible solution to this problem,
therefore, consists of a set of working lightpaths and a set of
backup lightpaths subject to a large number of constraints. If
we encode a solution as a binary string, the resultant problem
size, for a practical-sized network, would become prohibitively
large to deal with [27]. It is also not an easy task to design
EA operators such as crossover and mutation for operating
directly on these solutions. Therefore, the commonly used
framework of MAs is not very suitable for this problem. In our
proposed method for this problem, a three-phase parameterized
construction heuristic is used to construct a solution. The first
and second phases are for constructing working lightpaths
and backup lightpaths, respectively. The third phase assigns
a wavelength to each lightpath. The quality of the solution
generated in the construction heuristic is determined by its
control parameters: two permutation vectors π and σ, and a real
parameter c. An EA with guided mutation (EA/G) and a genetic
algorithm (GA) are employed for optimizing π and σ, while c is
tuned by testing its several representative values. The experi-
mental results show that EA/G outperforms the conventional
GA in tuning these control parameters, which indicates that
the combination of location information and global statistical
information can improve the performance of an EA. The results
also show that our proposed approach performs significantly
better than the heuristic of Zang–Ou–Mukherjee [27].

This paper is organized as follows. Section II describes in
detail the SPP problem in WDM optical networks under SRLG
constraints. Section III presents the construction heuristic for
the SPP problem. Sections IV and V introduce GA and EA/G,
which are used for tuning the control parameters. The frame-
work of the proposed approach for the SPP problem is given
in Section VI. Section VII presents the experimental results.
Finally, Section VIII concludes this paper.

II. PROBLEM DEFINITION

In this paper, we consider the network protection problem
in WDM networks. Due to their capability of efficiently uti-
lizing the huge bandwidth of optical fibers, WDM networks
are now the mainstream solution for supporting high-speed
long-distance communications. In such high-speed networks,
however, a single link failure can lead to serious service in-

terruptions. Therefore, network protection is of critical impor-
tance. Among the most popular protection methods is the so-
called path protection [28], where we set up two link-disjoint
lightpaths (named as the working lightpath and the backup
lightpath, respectively) between each source–destination pair.
Here, a lightpath is a directed path from source to destination
along which all the links use the same wavelength. To save
on network capacity, different backup lightpaths can share the
same wavelength channel as long as their respective working
lightpaths are not going through any common link. Extensive
researches have been carried out on investigating this problem
(e.g., [29]–[31]).

One of the most important recent developments in WDM
network protection is the introduction of the SRLG concept
[32], [33]. SRLG is defined as a set of network components
with a significant probability of failing simultaneously, e.g.,
fibers going through the same duct. Although considering
SRLGs help to strengthen the network survivability, it makes
the network protection problem much more difficult mainly
because of the two sets of additional constraints it imposes,
namely 1) a working lightpath and its backup lightpath cannot
go through any common SRLG (whereas in the classic network
protection problem, we only have to ensure that they do not go
through any common link); and 2) if two working lightpaths go
through a common SRLG, their backup lightpaths cannot share
any network resource (while in the classic protection problem,
similar constraints only apply to working paths going through
the same link).

The SPP problem can be modeled as an optimization prob-
lem in a simple directed graph given the following.

• V : The set of nodes in the graph under consideration.
• E: The set of directed links (edges) in the graph.
• W : The number of wavelengths available on each link.

The wavelengths are numbered from 1 toW .
• R: The set of connection requests.M = |R|. The requests

are numbered from 1 toM . Each connection request has a
source node and a destination node.1 It requires a working
lightpath and a backup lightpath from the stated source to
the stated destination.

• G: The set of SRLGs. Each SRLG contains a set of links
in E. Links in the same SRLG share the same risk, i.e.,
these links may break at the same time due to a destructive
event. If two paths in the network have links in the same
SRLG, we say that they are SRLG-joint. Otherwise, we
call them SRLG-disjoint.

The goal is to determine a working lightpath and a backup
lightpath for each connection request in R. The constraints are
enumerated as follows.

C1: The number of wavelengths used on each link cannot
not exceedW .

C2: The working lightpath and the backup lightpath, for
each connection request, must be SRLG-disjoint.

C3: Two working lightpaths cannot use the same wavelength
on the same link.

1Two different requests in C may have the same source and destination.
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C4: A backup lightpath cannot share the same wavelength
on the same link with any working lightpath.

C5: If two working lightpaths are SRLG-joint, their backup
lightpaths cannot use the same wavelength on the
same link.

The objective is to minimize the cost

∑
e∈E

(Fe + Se) (1)

where Fe is the number of wavelengths on link e used in
working lightpaths, and Se the number of wavelengths on link e
used in backup lightpaths.

This problem has been studied and modeled as an integer
linear programming (ILP) problem in [27]. It is an NP-complete
problem [34]. An ILP approach involves too many constraints
and variables, even for a small-sized network [35]. Therefore,
dealing with any practical-sized network needs to resort to
heuristics. Since the objective in this problem is to minimize
the total number of wavelengths used in a routing scheme, a
heuristic for it should have the following properties.

• The wavelength sharing among the backup lightpaths
should be maximized.

• SRLG-disjointness among the working lightpaths should
be encouraged so that backup lightpaths have a good
chance of sharing wavelengths.

• The lightpaths should be as short as possible since a
wavelength needs to be assigned to each link traversed by
these lightpaths.

Compared to the extensive researches on dynamic protection
where connection requests arrive one by one and future arrivals
are not known (e.g., [36] and [37]), existing results on highly
difficult offline SPPs, which handle all the connection requests
to achieve global optimization objectives, are very limited.
Specifically, [29] and [38] proposed to restrict the searching
space of the ILP problem to a set of predefined alternative
routes between each pair of nodes. The study in [39] applied the
Lagrangean relaxation method to tackle the ILP formulations.
Several network flow-based heuristics have also been proposed
(e.g., [40]), where a good summary can be found in [41]. Other
related yet different problems include the virtual topology
design, where the wavelength of a connection can be changed
on a limited set of intermediate nodes [42], [43], the length-
limited hybrid protection problem [41], etc.

A heuristic for the SPP problem defined in this section has
been proposed recently in [27]. To the best of our knowledge, it
is the only practical heuristic for the problem in the literature.
It first computes a working path and a backup path for each
connection request. Then, it assigns a wavelength to each
path. Finally, it rearranges the lightpaths to minimize the total
number of the wavelengths used. It is easy to implement and
have very low computational overheads. Its solution quality,
although claimed to be suboptimal, can still be significantly
improved as we will see later. Moreover, the heuristic of
Zang–Ou–Mukherjee has no control parameters; therefore, it
cannot be used in an indirect encoding EA.

One purpose of our study is to develop an indirect encoding
EA using construction heuristics for producing solutions of

high quality for complex optimization problems such as the SPP
problem at modest computational costs.

III. BASIC HEURISTIC (BH)

The proposed heuristic consists of three phases. In the first
phase, a heuristic called the “working path router” (“Wrouter”)
routes a working path wr for each connection request r inR. In
the second phase, a heuristic called the “protection path router”
(“Prouter”) computes backup paths for all the working light-
paths established in the first stage. In the third phase, a heuristic
called the “wavelength assigner” (“Wassigner”) assigns a wave-
length to each lightpath generated in the first two phases.

A. Wrouter

Let P = {p1, p2, . . . , pk} be a set of paths in the graph.
The SRLG-disjoint degree of path pi in P , i.e., degree (pi, P ),
is defined as the number of paths in P that are SRLG-
disjoint from pi. The SRLG-disjoint degree of P is defined
as maxpi∈P degree (pi,P ). Wrouter aims at establishing a set
of working lightpaths of as large SRLG-disjoint degree as
possible.

For each link e in the graph, its SRLG factor is defined as the
number of SRLGs containing e. To increase the SRLG-disjoint
degree of the set of working lightpaths, Wrouter discourages
its working lightpaths from using links of high SRLG factors.
The reason is that a path with links of high SRLG factor is very
likely to be SRLG-joint with other paths.

Since working lightpaths cannot share the same wavelength
on the same link and the number of wavelengths used on each
link cannot exceed W , a single link, if possible, is prevented
from being used by more thanW lightpaths in Wrouter.

Wrouter routes working paths one by one in order of the con-
nection requests π = (π1, π2, . . . , πM ). Suppose that for con-
nection requests π1, . . . , πk−1(1 ≤ k < M), a set of working
lightpaths WPk−1 = {wpπ1

, . . . ,wpπk−1
} has been established

(in the case k = 0, no working lightpath has been established).
If Wrouter failed in routing a working lightpath for request
r < k, wpr is set to be the empty path ∅. Wrouter routes the
working lightpath wpπk

for the connection request πk in the
following way.

Step 1) For each link in E, count the number of working
lightpaths ∈ WPk−1 using it. Let E1 ⊂ E contain
all the links that have been used by W lightpaths
in WPk−1.

Step 2) Compute the SRLG-disjoint degree of each non-
empty working lightpath in WPk−1. Let E2 contain
the links in E \ E1 that are
a) in the nonempty working lightpaths in WPk−1

with the smallest SRLG-disjoint degree;
b) SRLG-joint with links specified in a).

Step 3) For each link e ∈ E \ (E1 ∪ E2), set its length to be

L(e) = (1 + c)βe (2)

where βe is its SRLG factor, and c > 0 is a control
parameter.
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For any link f in E2, set its length to be

L(f) =
∑

e∈E\(E1∪E2)

L(e). (3)

Step 4) Applying the Dijkstra algorithm [44] to the graph
(V,E \ E1) with the link lengths defined in (2) and
(3), compute the shortest path from the source to
the destination of the connection request πk as the
working lightpath wpπk

. If the Dijkstra algorithm
fails in finding a path, set wpπk

= ∅.
The control parameters π = (π1, π2, . . . , πM ) and c can be

regarded as the input to Wrouter, and the working lightpaths
WP = {wp1,wp2, . . . ,wpM} are its output; therefore, Wrouter
can be denoted by

WP = Wrouter(π, c). (4)

Remark 1: If the lightpath wpπk
uses any link in E1, it

will lead to an infeasible routing. This is why it is forbidden
to use such links in wpπk

. If the lightpath wpπk
uses any

link in E2, the SRLG-disjoint degree of the resultant set of
working lightpaths may be decreased. For this reason, Wrouter
discourages wpπk

from using any link in E2. In fact, due to the
link length settings in (2) and (3), wpπk

will not use any link
in E2 if there is a path from the source node to the destination
node of the request πk in graph (V,E \ (E1 ∪ E2)).

Remark 2: In (2), the higher the SRLG factor of a link is, the
longer it is. In this way, Wrouter encourages wpπk

to use links
with low SRLG factors. Therefore, the SRLG-disjoint degree
of the resultant set of working paths can be lowered.

Remark 3: For some control parameter settings, if there is
no path from the source node to the destination node of the
request πk in the graph (V,E \ E1), then wpπk

will be set to ∅

in Wrouter.

B. Prouter

Given a set of working lightpaths WP = {wp1,wp2,
. . . ,wpM} for all the connection requests in R (where wpr is
for request r, and some wpi in WP may be empty), the goal of
Prouter is to route the backup lightpath bpr for each connection
request r.

In a similar way to Wrouter, Prouter establishes backup
lightpaths one by one in order of the connection requests
σ = (σ1, σ2, . . . , σM ). Suppose that for connection requests
σ1, . . . , σk−1(1 ≤ k < M), a set of backup lightpaths BPk−1 =
{bpσ1

, . . . , bpσk−1
} has been established (in the case k = 0,

no backup lightpath has been established). Then Prouter routes
the backup lightpath bpσk

for the connection request σk in the
following way.

Step 1) If wpσk
=∅, set bpσk

=∅. Otherwise, go to Step 2).
Step 2) LetQ be the set containing all the backup lightpaths

in BPk−1 whose corresponding working lightpaths
are SRLG-joint with the working lightpath wpσk

.
Let H contain links that
a) have been used byW lightpaths in Q ∪ WP;
b) have been used by the working lightpath wpσk

;
c) are SRLG-joint with links in the working

path wpσk
.

For any link e ∈ E \H , set its length to be

L(e) = 1. (5)

Applying the Dijkstra algorithm to the graph (V,E \
H) with the link lengths defined in (5), compute the
shortest path from the source to the destination of the
connection request σk as the backup lightpath bpσk

.
If the Dijkstra algorithm fails in finding a path, set
bpσk

= ∅.
The control parameters σ = (σ1, σ2, . . . , σM ) and the set of

working lightpaths WP can be regarded as the input to Prouter,
and the backup lightpaths BP = {bp1, bp2, . . . , bpM} are its
output. Therefore, Prouter can be denoted by

BP = Prouter(σ,WP). (6)

Remark 1: If the lightpath bpσk
uses any links in H defined

in Step 3), it will lead to an infeasible routing. For this reason,
Prouter prevents bpπk

from using such links.
Remark 2: If there is no path from the source node to the

destination node of the request σk in the graph (V,E \H) or
wpσk

, Prouter will set bpσk
= ∅.

C. Wassigner

Given the set of working lightpaths WP and the set of backup
lightpaths BP for all the connection requests in R, the task of
Wassigner is to assign wavelengths to every working lightpath
and backup lightpath such that the total number of wavelengths
used is minimized under the constraints listed as follows.

CW1: Two working lightpaths must be assigned different
wavelengths if they traverse the same link.

CW2: A working path and a backup lightpath must be
assigned different wavelengths if they traverse the
same link.

CW3: Two backup lightpaths have to be assigned different
wavelengths if they traverse the same link and their
corresponding working lightpaths are SRLG-joint.

Viewing each lightpath as a node in a graph and each
wavelength as a color, two nodes (lightpaths) are defined to
be adjacent if they must be assigned different wavelengths.
Then, the above problem becomes the well-known NP-hard
graph coloring problem [45]. We use a first-fit heuristic for this
problem. We assume that the number of wavelengths available
are infinite and that the wavelengths are indexed by 1, 2, . . ..
The heuristic, Wassigner, works as follows.

Step 1) Set P = BP ∪ WP. Remove all the empty paths
from P .

Step 2)
Step 2.1) Remove a lightpath p from P .
Step 2.2) Assign the allowable wavelength with the small-

est index to p. A wavelength is allowable if
assigning it to p does not violate CW1–CW3.

Step 3) If P = ∅, stop. Otherwise, go to Step 2).
There are several ways in Step 2.1) to select from P a light-
path to remove. In our implementation, we randomly pick a
lightpath from P and remove it in Step 2.1). WP and BP
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are inputs to Wassigner. While the output is a wavelength
assignment to each lightpath in P = BP ∪ WP, A : P →
{1, 2, . . .}. Wassigner can be denoted by

A = Wassigner(WP,BP). (7)

Remark 1: The wavelength assignment A generated in
Wassigner will satisfy the constraints CW1–CW3. However, if
the number of wavelengths used in A exceeds W , it may vio-
late the constraint C1 (i.e., the number of wavelengths used on
some paths may exceedW ).

D. Structure of Heuristic Algorithm

For the SPP problem, the proposed BH has the control
parameters π = (π1, π2, . . . , πM ), σ = (σ1, σ2, . . . , σM ), and
c. The output is a working lightpath set WP, a backup lightpath
set BP, and a wavelength assignment A : P → {1, 2, . . .}. It
works as

(BP,WP, A) = BH(π, σ, c)

where WP = Wrouter(π, c), BP = Prouter(σ,WP), and A =
Wassigner(WP,BP).

Any solution generated by BH will satisfy constraints
C2–C5. An inappropriate setting of π, σ, and c may generate
a solution that is incomplete (there are no working lightpaths or
backup lightpaths for some requests) and/or violate constraint
C1. It is not easy to develop a simple mathematical model for
the relationship between a setting of algorithm parameters π,
σ, and c and the quality of the solution constructed. Finding
an optimal parameter setting turns out to be a black box
optimization problem. An EA/G and a GA are used as tools
for tuning the control parameters π and σ in our study.

IV. EA/G

Offspring generators play a crucial role in any EA. The
proximate optimality principle [46], an underlying assumption
in most (if not all) heuristics, assumes that good solutions have
similar structure. This assumption is reasonable for most real-
world problems. Based on this assumption, an ideal offspring
assumption should be able to produce a solution that is close
to the best solutions found so far. Only a few parent solu-
tions are involved in crossover and mutation. A new solution
generated by these two operators may be far from other best
solutions found so far in the search. However, in EDAs [21],
new solutions are sampled from a model that characterizes a
promising area in the search space, but there is no mechanism
in EDAs for directly controlling the similarity (often measured
by distance) between new solutions and the best solutions found
so far. Guided mutation combines global statistical informa-
tion and location information of the best solutions found so
far to overcome the shortcomings of GAs and EDAs. In the
following, we present EA/G, which is used in our study for
tuning the control parameters in the BH defined in the pre-
vious section.

A. Search Space and Objective Function

The search space in EA/G is Π, the set of all possible
permutations of I = {1, 2, . . . ,M}. Each permutation has a
cost. The task of EA/G is to find a permutation solution in Π
with the (nearly) lowest cost.

B. Population and Probability Matrix

At each generation t, EA/G maintains a population of
N solutions (i.e., permutations of I)

Pop(t) = {ξ1, ξ2, . . . , ξN}

and a probability matrix

X(t) =



x11(t) · · · x1M (t)

...
. . .

...

xM1(t) · · · xMM (t)




where X(t) is the distribution of promising solutions in the
search space. More precisely, xij(t) is the probability that ξi =j
in a promising permutation solution ξ = (ξ1, ξ2, . . . , ξM ).

C. Initialization

EA/G randomly choosesN permutations from Π as its initial
population P (0). The initial probability matrixX(0) ∈ RM×M

is set as

X(0) =




1
M · · · 1

M

...
. . .

...
1
M · · · 1

M


 . (8)

D. Update of Probability Matrix

Assume that the population at generation t is Pop(t) =
{ξ1, ξ2, . . . , ξN}, and the probability matrix at generation t− 1
isX(t− 1). Then, the probability matrixX(t) = (xij(t))M×M

can be computed as

xij(t)=(1−β) 1
N

N∑
k=1

Iij(ξk)+βxij(t−1), (1≤ i, j≤M)

(9)

where

Iij(ξ) =
{

1, if ξ(i) = j
0, otherwise.

0 ≤ β ≤ 1 is the learning rate. The bigger β is, the greater is
the contribution of the solutions in Pop(t) to the probability
matrix X(t).

E. Generation of New Solutions: Guided Mutation

Guided by the probability matrix X = (xij)M×M , the
guided mutation [25], [26] mutates an existing solution ξ to
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generate a new solution ζ. This operator also needs a control
parameter 0 < α < 1. It works as follows:

ζ = Guided Mutation (ξ,X, α).

Input: A permutation ξ = (ξ1, . . . , ξM ), a probability matrix
X = (xij)M×M , and a positive parameter α < 1.

Output: ζ = (ζ1, . . . , ζM ), a permutation.
Step 1) Randomly pick [αM ] integers from I = {1,

2, . . . ,M}, and let these integers constitute a set
K ⊂ I . Set V = I \K and U = I \ {ξl|l ∈ K}.

Step 2) For each i ∈ K, set ζi = ξi.
Step 3) While (U �=∅), uniformly randomly select i from

V, and then randomly draw k from U with
probability

xik∑
j∈U xij

.

Set ζi = k, U = U \ {k} and V = V \ {i}.
Step 4) Return ζ.

In the above guided mutation operator, ζi is directly copied
from the parent ξ if i ∈ K. Otherwise, under the constraint
that ζ is a permutation, it is randomly generated based on the
probability matrix X . The larger α is, the more elements of ζ
are directly copied from its parent ξ. In other words, α controls
the similarity between the offspring and the parent.

In the conventional mutation for permutation vectors, several
(often two) elements are randomly selected and then swapped.
The probability that a permutation ζ being generated from
parent ξ is entirely determined by the number of the positions
where ζ and ξ are different. In contrast, the guided mutation
mutates ξ based on the probability matrix X , which is learned
and updated at each generation for modeling the distribution of
promising solutions. It can be expected that offspring ζ fall in
or close to a promising area in the search space. Meanwhile,
randomness in Step 3) also provides diversity for the search.

F. Structure of EA/G

EA/G works as follows.
Step 0) Parameter Setting: Set the following control

parameters:
• PopSize: population size;
• NoNew: number of new solutions generated

at each generation;
• α: control parameter in Guided Mutation;
• β: learning rate used in the update of the prob-

ability matrix;
• MaxGen: maximum number of generations

EA/G runs for.
Step 1) Initialization: Set t := 0. Initialize the probability

matrix X(t) by (8). Randomly generate Popsize
distinct permutations to form the initial population
Pop(0). Let the best solution in Pop(0) be ξ∗.

Step 2) Guided Mutation: Independently apply the guided
mutation operator to ξ∗ (i.e., ξ∗,X(t), and α are
inputs to the guided mutation) NoNew times to
generate NoNew solutions.

Step 3) Selection: Select the PopSize distinct best solu-
tions from the solutions generated in Step 2) and
Pop(t). Let these selected solutions form Pop(t+
1). Let the best solution in Pop(t+ 1) be ξ∗.

Step 4) Stopping Condition: If t =MaxGen, stop and
output the best solution ξ∗; otherwise, set t = t+ 1.

Step 5) Update of Probability Matrix: ComputeX(t) by (9)
and then go to Step 2).

In this algorithm, the members of the population Pop(t) are
always distinct. This prevents X(t) from becoming degenerate
(i.e., all the elements in it are very close to 0 or 1) and thus
provides diversity for the search. In Step 2), the guided mutation
operator is always applied to the best solution ζ∗. Therefore,
the new solutions generated are, to some extent, similar to the
best solution found so far, which is desirable for a successful
heuristic according to the proximate optimality principle [46].
In Step 3), the quality of a solution is measured by its cost. The
smaller its cost is, the better it is.

V. GA

This section describes the GA used in our study for tuning the
control parameters in BH. The search space is the permutation
vector space.

Step 0) Parameter Setting: Set the following control
parameters:

• PopSize: population size;
• NoNew: number of new solutions generated at

each generation;
• µ and γ: control parameters in mutation

operator;
• MaxGen: maximum number of generations

the algorithm runs for.
Step 1) Initialization: Set t := 0. Randomly generate

Popsize distinct permutations to form the initial
population Pop(0). Let the best solution in Pop(0)
be ξ∗.

Step 2) Crossover and Mutation: Randomly select NoNew
pairs of permutations from Pop(t) and perform the
cycle crossover (CX) operator [8] on each pair to
generate NoNew new permutations. For each solu-
tion generated in Step 2), generate a uniform random
number rand in (0, 1). If rand < µ, mutate it by
performing [γM ] random swaps on it.

Step 3) Selection: Select the PopSize distinct best solutions
(i.e., with the smallest costs) from the solutions
generated in Step 2) and Pop(t). Let these selected
solutions form Pop(t+ 1).

Step 4) Stopping Condition: If t =MaxGen, stop and out-
put the best solution ξ∗ in Pop(t+ 1). Otherwise, set
t = t+ 1, and go to Step 2).

Except for the mechanisms for generating new solutions
and initialization, all the other components in the above GA
are the same as in EA/G. The reason that we chose the CX
operator is that this operator works well for other combination
optimization problems [8].
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TABLE I
PARAMETERS OF THE TEST NETWORKS

VI. TUNING THE PARAMETER SETTING OF

HEURISTIC: BH/EA/G AND BH/GA

The proposed heuristic BH may generate an incomplete so-
lution or a solution violating constraint C1. We need to measure
its performance in tuning the control parameters in BH. For a
solution (BP,WP, A) generated by BH, we use the following
function as its cost function:

2M |E|(N1 +N2) +
∑
e∈E

(Fe + Se) (10)

where Fe is the number of wavelengths on link e used in
working lightpaths, and Se the number of wavelengths on
link e used in backup lightpaths. M is the number of the
connection requests, |E| is the number of all the links in E,
N1 is the number of empty lightpaths in BP ∪ WP, and

N2 =
{

0, ifW ≥ K
K −W, otherwise

whereK is the number of wavelengths used in A.
Obviously, due to the penalty term in (10), the cost of an

infeasible or incomplete solution is always higher than that of a
feasible solution.

For each parameter setting of (π, σ, c) in BH, we define its
cost cost(π, σ, c) to be the cost of the solution generated by
BH with such a parameter setting. The proposed procedure for
tuning these parameters works as follows.

BH/EA/G (BH/GA)

Step 1) Tuning c.
Step 1.1) Randomly generate ten pairs of permuta-

tions (π1, σ1), (π2, σ2), . . . , (π10, σ10). Let ci =
(i/10)(i = 1, 2, . . . , 10).

Step 1.2) Compute

c� = arg min
c∈{c1,c2,...,c10}

1
10

10∑
j=1

cost(πj , σj , c).

Step 2) Tuning π.
Step 2.1) Randomly generate a permutation σ̃.

Step 2.2) Use EA/G (GA) to tune π, where the cost of π is
set as cost(π, σ̃, c�). Set π� to be the best setting
of π found in EA/G (GA).

Step 3) Tuning σ.
Use EA/G (GA) to tune σ, where the cost of σ is set
as cost(π�, σ, c�). Set σ� to be the best setting of σ
found in EA/G (GA).

Then, the best solution found is the one generated by BH with
parameter setting (π�, σ�, c�).

We can iterate the above procedure many times in order to
lower the cost of the solution obtained as in the alternating
variable optimization method [47]. Taking the computational
overhead into consideration, we chose not to perform the itera-
tion in our experimental study.

VII. EXPERIMENTAL RESULTS

A. Test Networks

The basic characteristics of the test network instances are
listed in Table I.

For each network parameter setting, we test two network
examples. In the first one, the links in the same SRLG are
adjacent. In the second one, the links in each SRLG are ran-
domly selected from E. The first test example with parameter
setting a is denoted by T1 − a, and the second test example is
denoted by T2 − a.

A test network example is generated as follows.
1) Let G = (V,E). E has NL distinct links that are ran-

domly selected.
2) Randomly divide all the links in E into |G| groups. Each

group is an SRLG. In the case of test example T1 − a,
the links in the same SRLG should be adjacent. In other
words, let H be the subgraph induced by SRLG, then H
should be connected if the directions of the links are not
considered.

3) Randomly selectM connection requests. Let the number
of wavelengths available on each link beW .

4) Apply the heuristic of Zang–Ou–Mukherjee [27] to the
generated problem. If a feasible solution can be found,
then stop. This problem will be taken as a test network
instance. Otherwise, go to Step 1).

The above procedure can produce an instance of the SPP
problem that is guaranteed to have at least one feasible
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solution. As pointed out in [27], linear programming methods
are not suitable for dealing with networks as large as the above
networks.

B. Parameter Setting in EA/G and GA in Comparison

In our experimental study, we set NoNew = 100 and
MaxGen = 100 in both EA/G and GA. Therefore, both
BH/EA/G and BH/GA need to call BH 20 000 times [10 000
times for tuning π in Step 2) of BH/EA/G (BH/GA) and 10 000
times for tuning σ].

We set Popsize = 50 in EA/G.
In EA/G, there are another two parameters, i.e., α (in

the guided mutation operator) and β (used in updating the
probability matrix), while GA has three more parameters to
set, i.e., µ, γ used in the mutation operator, and PopSize
used for controlling the selection pressure. To determine an
appropriate setting for these parameters, we have run BH/EA/G
and BH/GA on T1 − 1 for α, β = 0.0, 0.1, . . . , 0.9, and µ, γ =
0.0, 0.1, . . . , 0.9, Popsize = 20, 30, 40, 50, 60, 70, 80, respec-
tively. We have found that α = 0.1 and β = 0.2 is the best
setting for EA/G and µ = 0.1, γ = 0.3, and Popsize = 40 is
the best for GA for T1 − 1. In the following comparison study,
we always use these settings for EA/G and GA, although it does
not mean that these settings are the best for all the test problems.

C. Comparison Results

We have compared the following four algorithms in our
experimental study:

1) BH/EA/G;
2) BH/GA;
3) BH/R, which has the same structure as BH/EA/G and

BH/GA, except that it tests 10 000 random permutations
for π in Step 2) and 10 000 random permutations for σ in
Step 3), respectively;

4) ZOM-H, heuristic of Zang–Ou–Mukherjee.
The first three algorithms need to call BH the same number
of times in each run. Due to the computational cost, each
BH/EA/G, BH/GA, and BH/R has been run independently for
ten times on each test network instance.

Tables II and III shows the experimental results including the
following:

• time: The average run time (in seconds) of each algorithm
for each test instance.

• cost: The lowest cost found in the heuristic of
Zang–Ou–Mukherjee. Since there is no randomness in this
heuristic, we only run it once for obtaining its cost.

• best: The lowest cost found in ten independent runs
for each test instance by BH/EA/G, BH/GA, and BH/R,
respectively.

• avg: The average of the solution costs in ten independent
runs for BH/EA/G, BH/GA, and BH/R, respectively.

• std: The standard derivation of the lowest costs found in
ten independent runs for BH/EA/G, BH/GA, and BH/R,
respectively.

All the experiments were performed on a cluster of Athlon
MP 1900s (1.6 GHz). It is from Table II that the running time

TABLE II
AVERAGE RUN TIME (IN SECONDS) OF HA, BH/R, BH/GA,

AND BH/EA/G ON TEST NETWORK INSTANCES

for the heuristic of Zang–Ou–Mukherjee is from a few seconds
to about 4 min for the test network instances, while the other
three algorithms need from 2 min to 4 h for each run. For offline
applications that typically plan the allocations of connection
requests for a long period of time (days or even months), a 4-h
computation time is totally acceptable.

Table III clearly shows that BH/EA/G, BH/GA, and BH/R
are much better than the heuristic of Zang–Ou–Mukherjee in
terms of solution quality.

Table III also shows that std are the about the same for
BH/EA/G, BH/GA, and BH/R for the test instances, and
BH/EA/G and BH/GA perform significantly better than BH/R
for all the test problems with the same number of BH calls in
terms of best and avg. These results imply that EA’s search
mechanism is very effective in tuning the control parameters in
BH. Perhaps this is because the proximate optimality principle
also holds for the BH control parameters as in many other real-
world problems.

It is evident from Table III that BH/EA/G performs better
than BH/GA in all the test instances but T1 − 7. These results
suggest that the combination of global statistical information
and location information in the guided mutation operator does
improve the performance of the search.

Figs. 1 and 2 give the evolution of the average cost of the
best solutions found in ten runs with the number of BH calls in
tuning π and σ on two test instances. The first 10 000 BH calls
are for tuning π, while the last 10 000 calls are for tuning σ. It
is very clear from these four figures that there are significant
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TABLE III
SOLUTION QUALITY OF HA, BH/R, BH/GA, AND BH/EA/G ON TEST NETWORK INSTANCES

Fig. 1. Evolution of the average of the lowest solution costs with the number
of BH calls in tuning π and σ in BH/R, BH/GA, and BH/EA/G for T1 − 2.

decreases in the solution costs in both phases of tuning π and σ
in BH/EA/G and BH/GA.

The test problems and the C++ code of all the algorithms in
this paper can be found in cswww.essex.ac.uk/staff/zhang/.

VIII. CONCLUSION

Some real-world optimization problems may have com-
plex data structures. Indirect encoding EAs using construction

Fig. 2. Evolution of the average of the lowest solution costs with the number
of BH calls in tuning π and σ in BH/R, BH/GA, and BH/EA/G for T2 − 2.

heuristics represent a feasible approach of dealing with such
problems. In this paper, such an approach has been applied
for solving the SPP problem in WDM networks with SRLGs.
The proposed method optimizes the control parameters of a
basic construction heuristic for the problem by using EA/G. The
construction heuristic BH has three phases with three different
parameters, which largely determine the performance of BH.
Two parameters are permutations, and the third one is real
valued. These three parameters are tuned separately to search
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for a nearly optimal solution to the problem. Our experimental
study shows that the approach performs much better than
the heuristic of Zang–Ou–Mukherjee. More significantly, by
comparing the performances of EA/G, GA, and a pure random
method for tuning the control parameters, we have shown that
EAs are suitable for such a task, and the guided mutation
operator does improve the performance of EAs.

In the future, we intend to apply this approach to solve other
hard search and optimization problems.
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