
192 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 2, APRIL 2005

An Evolutionary Algorithm With Guided Mutation
for the Maximum Clique Problem

Qingfu Zhang, Member, IEEE, Jianyong Sun, and Edward Tsang, Member, IEEE

Abstract—Estimation of distribution algorithms sample new
solutions (offspring) from a probability model which characterizes
the distribution of promising solutions in the search space at each
generation. The location information of solutions found so far (i.e.,
the actual positions of these solutions in the search space) is not
directly used for generating offspring in most existing estimation
of distribution algorithms. This paper introduces a new operator,
called guided mutation. Guided mutation generates offspring
through combination of global statistical information and the
location information of solutions found so far. An evolutionary
algorithm with guided mutation (EA/G) for the maximum clique
problem is proposed in this paper. Besides guided mutation, EA/G
adopts a strategy for searching different search areas in different
search phases. Marchiori’s heuristic is applied to each new solu-
tion to produce a maximal clique in EA/G. Experimental results
show that EA/G outperforms the heuristic genetic algorithm of
Marchiori (the best evolutionary algorithm reported so far) and a
MIMIC algorithm on DIMACS benchmark graphs.

Index Terms—Estimation of distribution algorithms, evolu-
tionary algorithm, guided mutation, heuristics, hybrid genetic
algorithm, maximum clique problem (MCP).

I. INTRODUCTION

EVOLUTIONARY algorithms such as genetic algorithms
(GAs), scatter search [1], and estimation of distribution

algorithms (EDAs) [2]–[9] work with a population of solutions
and combine them to generate new solutions (offspring), which
may be further repaired or improved by other heuristic opera-
tors such as local search. Crossover and mutation are the main
operators for generating offspring in conventional GAs. These
two operators directly act on selected solutions (parents). The
crossover operator often applies to a pair of parents and swaps
parts of these two parents to produce offspring. The mutation
operator randomly alters part of a parent solution to produce an
offspring. Scatter search uses linear combinations of selected
solutions with heuristic improvement and a rounding process
for generating new solutions. The information about the loca-
tions of the solutions found so far (i.e., the actual positions of
these solutions in the search space) are directly used in both
GAs and scatter search. EDAs generate offspring in a quite dif-
ferent way. They maintain a probability model which charac-
terizes the distribution of promising solutions at each iteration
(i.e., generation). The probability model is updated, based on

Manuscript received January 27, 2004; revised October 20, 2004. This work
was supported in part by the Engineering and Physical Sciences Research
Council (EPSRC) under Grant GR/R64742/01.

The authors are with the Department of Computer Science, University of
Essex, Wivenhood Park, Colchester CO4 3SQ, U.K. (e-mail: qzhang@essex.
ac.uk; jysun@essex.ac.uk; edward@essex.ac.uk).

Digital Object Identifier 10.1109/TEVC.2004.840835

the global statistical information extracted from the current pop-
ulation. Offspring are generated by sampling from this model.
The global information about the search space collected from
the search so far is used to produce offspring in EDAs. How-
ever, the information about the locations of the solutions found
so far is not directly used to guide the search. Very recently,
Peña et al. [33] proposed a hybrid algorithm in which some off-
spring are generated by crossover and mutation while the others
by EDA operators. Their preliminary experimental results were
very promising.

In this paper, we propose a new offspring generating operator,
called guided mutation, for evolutionary algorithms. Guided
mutation can be regarded as a combination of the conventional
mutation operator and the EDA offspring generating scheme.
Guided by a probability model, guided mutation alters a parent
solution to produce a new solution. The resultant solution
can (hopefully) fall in or close to a promising area which is
characterized by the probability model. Meanwhile, it directly
takes a user-specified percentage of elements from its parent,
which is often a better solution found so far. In such a way, the
similarity between an offspring and its parent can be controlled
to some extent.

A clique of a graph is a set of pairwise adjacent nodes. A
maximal clique is a clique which is not a proper subset of any
other clique. A maximum clique is a clique with the maximum
cardinality (which is called the maximum clique number). A
maximum clique is maximal but not vice versa. Given a graph,
the maximum clique problem (MCP) is to find a maximum
clique. The MCP is one of the best known problems of com-
binatorial optimization. In many applications such as coding
theory, fault diagnosis in multiprocessor systems, constraint sat-
isfaction, computer vision, and mobile networks, the underlying
problem can be formulated as an instance of the MCP. The MCP
is NP-complete. Moreover, there is no polynomial-time algo-
rithm for approximating the maximum clique within a factor of

unless [10], where is the number of the nodes
of the graph. These facts indicate that the MCP is very difficult
to solve. An excellent overview of the algorithms, complexity
and applications of the MCP can be found in [11].

Due to the inherent difficulty and importance of the MCP,
considerable efforts have been devoted to developing heuristics
for it. The aim of heuristics is to find a maximal clique which is
as large as possible. Since there is no sound theory about how
and why heuristics work, the comparison of the performances
of different heuristics is mainly based on extensive experimen-
tation. A set of benchmark graphs from different applications
have been collected for this purpose and these graphs are avail-
able at http://dimacs.rutgers.edu/Challenges/.

1089-778X/$20.00 © 2005 IEEE

ZHANG et al.: AN EVOLUTIONARY ALGORITHM WITH GUIDED MUTATION FOR THE MCP 193

Several attempts have been made to solve the MCP with evo-
lutionary algorithms. A scatter search algorithm for the MCP
has been proposed by Cavique et al. [12]. The work of Cater and
Park [13], [14] shows that a simple GA is not effective for the
MCP, which implies that GAs need to be customized or to incor-
porate other techniques in order to improve their performances
for this problem. In fact, the strengths and weaknesses of the
simple GA have been studied theoretically (e.g., [3], [15]–[18],
[34]). A fitness function with a graded penalty term for penal-
izing infeasible solutions [19], a modified genetic operator [20],
[21], local search operator [22], [23] and problem-specific rep-
resentation [24] have been used in GAs for the MCP. In the
heuristic based genetic algorithm (HGA) proposed by Marchiori
[25], [26], a naive greedy heuristic procedure is applied to every
new solution (a subset of the nodes in the graph) generated by
uniform crossover or mutation. This greedy heuristic first en-
larges the subset of nodes by adding some nodes randomly se-
lected, then reduces it to a clique and finally enlarges it to a
maximal clique. The HGA algorithm of Marchiori outperforms
other existing GAs and the scatter search of Cavique et al. [12]
on the DIMACS benchmark graphs in terms of quality of solu-
tions and speed [26].

This paper proposes an evolutionary algorithm with guided
mutation (EA/G) for the MCP. The main features of EA/G are
as follows.

• Guided mutation: New solutions are generated by ap-
plying the guided mutation operator to the best solution
in the current population, the resultant solutions will be
not far from the best solution found so far and fall into a
promising area.

• Heuristic repair: Since a new solution generated by the
guided mutation operator may not be a clique, the heuristic
repair operator of Marchiori is applied to every new solu-
tion to generate a clique.

• Partitioning of the search space: The whole search space
is divided into several search areas, the algorithm focuses
on different search areas in different phases.

The rest of this paper is organized as follows. Section II in-
troduces guided mutation. EA/G for the MCP is presented in
Section III. Experimental study and comparisons are given in
Section IV. We conclude the paper in Section V.

II. GUIDED MUTATION OPERATOR

One of the key issues in the design of evolutionary algorithms
is how to generate offspring. The proximate optimality principle
[27], an underlying assumption in most (if not all) heuristics, as-
sumes that good solutions have similar structure. This assump-
tion is reasonable for most real-world problems, e.g., the per-
centage of common edges in any two locally optimal solutions
of a traveling salesman problem obtained by the Lin–Kernighan
method is about 85% on average [28]. Based on this assump-
tion, an ideal offspring generator should be able to produce a
solution which is close to the best solutions found so far. Sup-
pose the current population in an evolutionary algorithm with
local search consists of the best locally optimal solutions found
so far, a new solution generated by the conventional mutation
is close (similar) to its parent, but may be far away from other

better solutions since the mutation does not utilize any global in-
formation extracted from the current population. EDAs extract
global statistical information from the previous search and then
represent it as a probability model, which characterizes the dis-
tribution of promising solutions in the search space. New solu-
tions are generated by sampling from this model. However, the
location information of the locally optimal solutions found so
far has not been directly used in EDAs, there is no mechanism
to directly control the similarity between new solutions and a
given solution. The idea behind the proposed operator which
we call guided mutation is to combine the global statistical in-
formation and location information of the solutions found so far
to overcome the shortcoming of GAs and EDAs.

Several different probability models have been introduced in
EDAs for modeling the distribution of promising solutions. The
univariate marginal distribution (UMD) model is the simplest
one and has been used in univariate marginal distribution algo-
rithm [3], population-based incremental learning [2], and com-
pact GA [29]. Let the search space be , UMD model
uses a probability vector to charac-
terize the distribution of promising solutions in the search space,
where is the probability that the value of the th position of a
promising solution is one. The guided mutation operator uses a
probability vector to guide to mutate an
in the following way:

Guided mutation Operator
Input:

and .
Output: .
For to do

Flip a coin with head probability ;
If the head turns up, with probability set , otherwise
set ,
Otherwise, .

End For

Remark 1: In the above guided mutation operator, is di-
rectly copied from the parent or randomly sampled from the
probability vector . The larger is, the more elements of are
sampled from the probability vector . In other words, , similar
to the mutation rate in conventional mutation, controls the simi-
larity between offspring and the parent, while the parent can be
chosen from the best solutions found so far.

Remark 2: In the correlated mutation [30] for real vectors,
the probability of generating an offspring in the steepest ascent
direction is larger than in other directions. In the conventional
mutation for binary strings, the probability of a vector being
generated from the parent vector is entirely determined by
the Hamming distance between and . The guided mutation
operator can be regarded as a discrete counterpart of the corre-
lated mutation. The probability vector in the guided mutation
can be learned and updated at each generation for modeling the
distribution of promising solutions. Since some elements of the
offspring are sampled from the probability vector , it can
be expected that should fall in or close to a promising area.
Meanwhile, this sampling also provides diversity for the search
afterwards.

194 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 2, APRIL 2005

III. ALGORITHM FOR THE MCP

This section describes in detail the main components of the
EA/G for the MCP. In EA/G, each potential solution to the MCP
is encoded as a binary string. At each generation , EA/G main-
tains a population of binary strings and a probability
vector . The whole search procedure is divided into several
phases, the search will focus on different search areas during dif-
ferent phases. New solutions are generated by the guided muta-
tion operator or by sampling randomly from a particular search
area.

A. Representation and Fitness

Given a graph where is its
node set and is its edge set. A set of nodes
is encoded as a string where

if and only if node is in . Therefore, the search space
is . The fitness of is defined as its cardinality
if represents a clique. Since every new solution generated by
the guided mutation will be repaired, there is no need to define
fitness values for infeasible solutions.

B. Partitioning of the Search Space

The search space, for the MCP can be divided
into subspaces as follows:

where . Obvi-
ously, for any and , we have . Any string in

represents a set of nodes with cardinality .
Our goal is to find a clique as large as possible. If we have

found a maximal clique with cardinality , it is not necessary
to explore subspaces afterwards. Moveover, if

was found after a considerable amount of effort, it is unwise
to search these with , since according to the proximate
optimality principle, it is often unlikely that the maximum clique
number is far bigger than .

The proposed algorithm explores different subspaces in the
search space during different search phases. At the beginning, a
lower bound low of the maximum clique number is computed.
The first search phase will be for the area , where

is a predefined integer number. If a maximal clique with a
larger cardinality is found, then the current search phase will
end and the search area for next phase will be . In
such a way, the search is focused on these promising .

C. Repair Heuristic

We can induce a set of nodes from any string in . This
set of nodes, however, may not be a clique. To produce a clique,
we use Marchiori’s heuristic [25], [26] to repair it.

Repair Operator
Input: : a set of nodes, .
Output: : a clique in .
Step 1) Extraction

Step 1.1) Set .
Step 1.2) If , go to Step 2). Otherwise

randomly pick a node from and

remove from .
Step 1.3) Flip a coin with head probability . If the

head turns up, remove from , else
remove from and all the nodes
in that are not connected to .

Step 1.4) Go to Step 1.2).
Step 2) Extension

Step 2.1) Set .
Step 2.2) If , Stop and return . Otherwise

randomly pick up a node from and
remove it from .

Step 2.3) If node is connected to all nodes in ,
then add to .

Step 2.4) Go to Step 2.2).

In the above repair heuristic operator, will be a clique after
Step 1). Generally speaking, should be very small. Otherwise,

would be very small after Step 1) since many nodes in may
be removed. Step 2) simply extends to a maximal clique.

D. Initialization and Update of the Probability Vector

The probability vector for guided mutation (Section II
above) needs to be initialized and updated in EA/G.

Suppose that the current population has binary
strings
will be initialized as

(1)

at the beginning of each search phase or if the search needs to be
restarted. is the percentage of the binary strings with the value
of the th element being one in . can also be regarded
as the center of .

At each generation in EA/G, some binary strings are
selected from the current population to form the
parent set , which is then used for updating
the probability vector . Let contain strings

, the probability vector is
updated in the same way as in the PBIL algorithm [2]

(2)

for . is the learning rate. The bigger
is, the more contribution of the strings in to the up-
dated probability vector. Learning brings the probability vector

toward the center of the parent set.

E. Algorithm

EA/G works as follows.

Step 0) Set the following parameters: the population size
in the main algorithm (should be a even number),

used in the partitioning of the search space,
used in the update of the probability vector, used
in the guided mutation, and used in the repair
operator.

Step 1) Set , randomly pick an and apply the
repair operator to to obtain a maximal clique .
Set .

ZHANG et al.: AN EVOLUTIONARY ALGORITHM WITH GUIDED MUTATION FOR THE MCP 195

Step 2) Randomly pick strings from and
apply the repair operator to each of them, the
resultant strings form . Then, initialize the
probability vector by (1).

Step 3) Select the best strings from to form
the parent set , and then update the prob-
ability vector by (2).

Step 4) Apply the guided mutation operator to the fittest
string in times, and then apply the
repair operator to the resultant strings to get
cliques. Add these cliques to to
form . If the stopping condition is met,
return the largest clique found so far.

Step 5) Set . Let be the largest clique in .
If , set and go to Step 2).

Step 6) If all the strings in are identical, go to
Step 2), else go to Step 3).

In Step 1), a lower bound low for the maximum clique number
is obtained. The population and the probability vector
are initialized in Step 2) for the search on . Step 3)
selects the fittest strings to become parents and then update .
In Step 4), strings are generated by applying the guided
mutation operator to the fittest string in the current parent set.
The mutated strings are then repaired. These resultant strings
join their parents to form the population of the next generation.
If a larger clique is found (Step 5), the search will move to a
new area in the search space. If all the members in the current
population are identical (Step 6), the search will be restarted to
diversify the population.

The reasons for selecting only the largest clique (i.e., the
fittest clique) to be mutated in Step 4) are twofold. First, it is
desirable that the new cliques are similar to the largest clique
found so far according to the proximate optimality principle.
Second, the other cliques found so far will contribute to the new
cliques via the probability vector .

IV. COMPUTATIONAL EXPERIMENTS

In this section, we study EA/G experimentally and compare
it with HGA [26], the best GA for the MCP, on the DIMACS
benchmark problems. We also compare the performances of
EA/G with MIMIC [31] on these test problems. EA/G has been
implemented in C. As mentioned earlier, the parameter in the
repair operator should be very small. Following the suggestion
in [26], we set . Generally speaking, the lower bound
obtained in Step 1) should not be very far from the maximum
clique number according to the proximate optimality principle.
Therefore, should be set to a small number. is set to 3 in all
the experiments in this paper. We set the population size to 10
as Marchiori did in HGA [26]. The algorithm stops after 20 000
calls of the repair operator. All the experiments were performed
on AMD2400 (2000 MHz).

A. Effects of and

Apart from and , the parameters in EA/G are and
. is the learning rate in the update of the probability vector
. is used in the guided mutation operator for balancing the

Fig. 1. Surface of the average sizes of the largest cliques found in ten runs on
C1000.9.

tradeoff between the global information and location informa-
tion of solutions found so far.

To assess the effects of and on the performance of EA/G,
EA/G is tested on the DIMACS benchmark problem C1000.9
(random graph with 1000 nodes and a density of 0.9) for

and . Fig. 1 shows the
resulting surface of the average size of the largest cliques found
in ten independent runs for different parameter settings of and

. Table I lists the corresponding data.
We conclude the following from the results shown in Fig. 1.
• When , no location information is utilized in the

guided mutation operator. As can be seen, the algorithm
with performs much better than . This
phenomenon clearly indicates that the location informa-
tion does contribute positively to the performance of the
algorithm.

• Given (2), the global statistical information collected in
the past makes no contribution to the new probability
vector when . As decreases, the contribution of
the old global statistical information will increase. Fig. 1
shows that the algorithm with is always worse than

. This suggests that the use of the global statistical
information collected in the past can be beneficial.

B. Contributions of the Main Components

The main difference between EA/G and Marchiori’s HGA
is that EA/G uses the guided mutation operator instead of the
uniform crossover operator for generating new offspring. Be-
sides this, EA/G has its strategy for searching different areas in
different search phases. A very natural question is whether the
guided mutation and the partitioning of the search space have
any positive contribution to the performance of the algorithm.
To answer this question, we compare the performance of EA/G
on C1000.9 with the following two algorithms.

• Marchiori’s HGA: It uses the uniform crossover operator
for generating offspring. Partitioning of the search space
is not used in her algorithm.

• Evolutionary algorithm with uniform crossover and parti-
tioning of the search space (EA/UX/P): It is the same as

196 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 2, APRIL 2005

TABLE I
EFFECT OF � AND �: THE AVERAGE SIZE OF THE LARGEST CLIQUES

FOUND FOR DIFFERENT PARAMETER SETTING

Fig. 2. Comparisons of EA/UX/P, EA/G, and HGA on C1000.9.

EA/G, except that it uses the uniform crossover instead of
the guided mutation.

The population size for all these three algorithms is set to 10.
is set to 0.7 and to 0.9 in EA/G, based on the experimental re-

sults in Section IV-A. Ten independent runs for each algorithm
were performed. The average size of the largest cliques found
at each generation over the ten runs was recorded for each algo-
rithm. Fig. 2 plots the evolution of the average size of the largest
cliques for these three algorithms.

As can be seen, EA/UX/P performs better than Marchiori’s
HGA algorithm. Note that the main difference between these
two algorithms is that EA/UX/P adopts the strategy for par-
tioning the search space. Therefore, this experiment supports
our claim that the partitioning of the search space could improve
the performance of the algorithm.

Fig. 2 also shows that EA/G outperforms EA/UX/P, which in-
dicates that the guided mutation operator performs better than
the uniform crossover operator for this test problem. These re-
sults are not surprising since the uniform crossover operator
only uses the location information of the selected parents while
the guided mutation operator combines the global statistical in-
formation with the location information of the parents.

When and , EA/G generates its offspring in
the same way as UMDA, while HGA uses uniform crossover
[30]. We can observe from Figs. 1 and 2 that the performance
of EA/G with and is worse than that of HGA

on C1000.9. Although it has been shown that the behaviors of a
GA with uniform crossover and UMDA are very similar in the
case of large populations [3], our observation suggests that the
differences between UMDA and a GA with uniform crossover
can be significant in the case of a small population. In uniform
crossover, the Hamming distance between two offspring is al-
ways the same as that between their parents, and an offspring
takes at least 50% elements from one of its parent. In contract, an
offspring generated in UMDA can be far away from any mem-
bers in the current population.1

We have recorded the number of the times that Step 2) was
executed in EA/G for C1000.9. On average, Step 2) was exe-
cuted 54 times, out of which about 12 times were due to that a
larger clique was found in Step 5).

C. Comparisons With HGA

HGA [26] is the best evolutionary algorithm for the MCP
reported so far. EA/G was compared with HGA on 37 DIMACS
graphs. These graphs are the following:

• and : random graph of size and density
;

• MANN: Steiner triple graph with up to 3321 nodes and
5 506 380 edges;

• and : Brockington graph of size ;
• : Sanchis graph of size ;
• hamming: Hamming graph;
• keller: Keller graph with up 3361 nodes and 4 619 898

edges;
• : P-hat graphs of size .

The two algorithms were run independently for ten times on
each graph. The population size for both algorithms is ten. Both
algorithms were terminated after 20 000 calls of the repair op-
erator. is set to 0.7 and to 0.9 in EA/G. Table II shows the
experimental results including:

• Best: the size of the largest clique found in ten runs;
• Avg: the average size of the cliques found in ten runs;
• std: the standard deviation of the sizes of the cliques found

in ten runs;
• DIMACS: the size of the largest clique found by the algo-

rithms at the second DIMACS challenges;
• time: the run time (in seconds) of each algorithm;
• -test: the result of the one-tailed -test at the 0.05 signif-

icance level for the alternative hypothesis that the mean
size of the cliques obtained by EA/G is larger than that
obtained by HGA. is the absolute value of the statistic.

suggests that EA/G is better than HGA in
terms of solution quality.

The running time of EA/G is about 16% longer than that of
HGA mainly due to the computational overheads in the guided
mutation operator and partitioning of the search space. How-
ever, this extra time is clearly compensated by the quality of the
solutions produced. The -test results suggest that EA/G outper-
forms HGA on 31 out of 37 graphs in terms of the mean size of

1For example, consider a population containing (1, 0, 0, 0), (0, 1, 0, 0), (0,
0, 1, 0), and (0, 0, 0, 1), the probability vector in UMDA learned from this
population will be (0.25, 0.25, 0.25, 0.25). Vector (1, 1, 1, 1) may be sampled
from this probability vector as an offspring, whose Hamming distance from any
members in the current population is 3. It is impossible for uniform crossover
to produce such an offspring.

ZHANG et al.: AN EVOLUTIONARY ALGORITHM WITH GUIDED MUTATION FOR THE MCP 197

TABLE II
COMPARISON RESULTS BETWEEN HGA AND EA/G. Best: THE SIZE OF THE LARGEST CLIQUE FOUND, Avg: THE AVERAGE SIZE OF THE

CLIQUES FOUND, std: THE STANDARD DEVIATION OF THE SIZES OF THE CLIQUES FOUND, DIMACS: THE SIZE OF THE LARGEST

CLIQUE FOUND BY THE ALGORITHMS, time: THE RUN TIME (IN SECONDS) OF EACH ALGORITHM. t-test: THE T-TEST RESULTS

the cliques found. On 13 graph instances, EA/G found larger
cliques than HGA. Table II also shows that EA/G obtained the
best known results on 30 instances.

D. Comparisons With MIMIC

In the probability model used in the guided mutation oper-
ator in EA/G, all the variables are treated independently of each
other. Only part of the parent solution are altered according to
this model and hence multivariate dependencies are processed
up to some extent but in a rather random way. Advanced EDAs
such as MIMIC [31], FDA [16], and BOA [6] can identify and
utilize some dependence relationships among variables in a very
systematical way. These EDAs are seemingly more powerful in
solving a complicated optimization problem. However, unlike
the guided mutation, these advanced EDAs cannot directly con-
trol the similarity between offspring and the best solutions found
so far. Moreover, only a very limited number of dependence rela-
tionships can be considered in these EDAs due to computational
complexity. This may hinder these pure EDAs from solving a

hard problem. Besides, in the case of evolutionary algorithms
with local search for a hard problem, since the distribution of lo-
cally optimal solutions are often very complicated, the approxi-
mation provided by any advanced EDAs may be very poor.

We compared the performances of EA/G with a MIMIC algo-
rithm, which is the same as EA/G, except that it uses the MIMIC
way to generate new solutions. MIMIC may be the simplest
among the advanced EDAs considering variable dependencies.
The computational complexity of the other advanced EDAs is
prohibitively high for solving large-scale problems. This is why
we chose MIMIC for the comparison.

The parameter setting for EA/G is the same as in
Section IV-C. The population size for MIMIC is set as
100 (small populations may degrade the performance of ad-
vanced EDAs [32]). To have a fair comparison, both MIMIC
and EA/G terminated after 20 000 calls of the repair operator.
The two algorithms were run for ten times on each graph.
The experimental results are given in Table III. The one tailed
-test results at the 0.05 significance level are also presented

198 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 2, APRIL 2005

TABLE III
COMPARISON RESULTS BETWEEN EA/MIMIC AND EA/G. Best: THE SIZE OF THE LARGEST CLIQUE FOUND,

Avg: THE AVERAGE SIZE OF THE CLIQUES FOUND, std: THE STANDARD DEVIATION OF THE SIZES OF

THE CLIQUES FOUND, DIMACS: THE SIZE OF THE LARGEST CLIQUE FOUND BY THE ALGORITHMS,
time: THE RUN TIME (IN SECONDS) OF EACH ALGORITHM. t-test: THE T-TEST RESULTS

in Table III for the alternative hypothesis that the mean size of
the cliques obtained by EA/G is larger than that obtained by
MIMIC. In 29 instances (with), EA/G is better than
MIMIC in terms of the quality of the solutions. The running
time of MIMIC is longer than that of EA/G. This is because that
MIMIC needs additional computational overheads in searching
for an optimal Markovian chain at each generation.

V. CONCLUSION

Conventional GAs use crossover and mutation for generating
offspring, while EDAs sample offspring from a probability
model. Crossover and mutation use the location information
of the parent solutions, while EDAs are based on global infor-
mation about the search space collected in the search process.
We introduced the guided mutation operator for generating
offspring in evolutionary algorithms in this paper. Guided by

a probability model which characterizes the distribution of
promising solutions in the search space, the guided mutation
operator alters a parent solution to generate an offspring.
Combining the global information and location information of
the parent, the guided mutation operator attempts to generate
promising solutions.

In this paper, we proposed EA/G, a hybrid evolutionary algo-
rithm with guided mutation, for the MCP. Besides the guided
mutation operator, EA/G adopts a strategy for searching dif-
ferent areas in different search phases. A comparison was made
between EA/G and HGA, the best hybrid evolutionary algorithm
for the MCP reported so far. Experimental results show that
EA/G outperforms HGA. We also showed that the guided mu-
tation operator and the partitioning of the search space do con-
tribute positively to the performance of the algorithm. The ex-
perimental results show that EA/G performs better than MIMIC
for the MCP, which suggests that location information should
not be ignored and it is not sufficient to use a very limited

ZHANG et al.: AN EVOLUTIONARY ALGORITHM WITH GUIDED MUTATION FOR THE MCP 199

number of dependence relationships for solving a hard opti-
mization and search problem.

It should be pointed out that EA/G is not the best meta-
heuristic for the MCP. The best heuristic for this problem may
be the reactive local search by Battiti and Protasi [35], which is
about ten times faster than HGA and EA/G and can find the best
known results in almost all DIMACS graphs. However, reactive
local search is much more complicated and sophisticated than
EA/G. The main purpose of this paper is to study two simple
techniques, i.e., guided mutation and partitioning of the search
space, and show how they can improve the performance of
an evolutionary algorithm. In the future, we intend to refine
EA/G and apply it to solve other hard optimization and search
problems.

ACKNOWLEDGMENT

The authors are grateful to Dr. Marchiori for sending us the
code of HGA. They also thank X. Yao, the anonymous re-
viewers, the Associate Editor, and P. Mills for their constructive
comments and suggestions.

REFERENCES

[1] F. Glover, “Heuristics for integer programming using surrogate con-
straints,” Dec. Sci., vol. 8, pp. 156–166, 1977.

[2] S. Baluja, “Population-based incremental learning: A method for in-
tegrating genetic search based function optimization and competitive
learning,” School of Comput. Sci., Carnegie Mellon Univ., Pittsburgh,
PA, Tech. Rep. CMU-CS-94-163, 1994.

[3] H. Müehlenbein, “The equation for response to selection and its use for
prediction,” Evol. Comput., vol. 5, pp. 303–346, 1998.

[4] H. Müehlenbein, T. Mahnig, and A. O. Rodriguez, “Schemata, distribu-
tions, and graphical models in evolutionary optimization,” J. Heuristics,
vol. 5, pp. 215–247, 1999.

[5] S. Baluja and S. Davies, “Fast probabilistic modeling for combinato-
rial optimization,” in Proc. 15th National/10th Conf. Artif. Intell./Innov.
Appl. Artif. Intell., Madison, WI, 1998, pp. 469–476.

[6] M. Pelikan, D. E. Goldberg, and E. Cantú-Paz, “BOA: The Bayesian op-
timization algorithm,” in Proc. Genetic Evol. Comput. Conf. (GECCO),
W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela,
and R. E. Smith, Eds., 1999, pp. 525–532.

[7] B. T. Zhang, “A bayesian framework for evolutionary computation,” in
Proc. 1999 Congr. Evol. Comput., 1999, pp. 722–228.

[8] P. A. N. Bosman and D. Thierens, “Expanding from discrete to contin-
uous EDAs: The IDEA,” in Proc. Parallel Prob. Solving from Natutre
(PPSN VI), M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J.
J. Merelo, and H.-P. Schwefel, Eds., Paris, France, pp. 767–776.

[9] P. Larrañaga and J. A. Lozano, Estimation of Distribution Algorithms: A
New Tool for Evolutionary Computation. Norwell, MA: Kluwer, 2001.

[10] J. Hastad, “Clique is hard to approximate within n ,” in Proc. 37th
Annu. Symp. Found. Comput. Sci.. Burlington, VT, Oct. 14–16, 1996,
pp. 627–636.

[11] I. M. Bomze, M. Budinich, P. M. Paradalos, and M. Pelillo, “The max-
imum clique problem,” in Handbook of Combinatorial Optimization,
D.-Z. Du and P. M. Paradalos, Eds. Norwell, MA: Kluwer, 1999, vol.
4.

[12] L. Cavique, C. Rego, and I. Themido, “A scatter search algorithm for
the maximum clique problem,” Instituto Politecnico de Lisboa, Portugal,
Tech. Rep. HCES-01-01, 2001.

[13] B. Carter and K. Park, “How good are genetic algorithms at finding
large cliques: An experimental study,” Comput. Sci. Dept., Boston Univ.,
Boston, MA, Tech. Rep. BU-CS-93-015, 1993.

[14] K. Park and B. Carter, “On the effectiveness of genetic search in combi-
natorial optimization,” Comput. Sci. Dept., Boston Univ., Boston, MA,
Tech. Rep. BU-CS-94-010, 1994.

[15] J. He and X. Yao, “From an individual to a population: An analysis of
the first hitting time of population-based evolutionary algorithms,” IEEE
Trans. Evol. Comput., vol. 6, no. 5, pp. 495–511, Oct. 2002.

[16] Q. Zhang, “On stability of fixed points of limit models of univariate
marginal distribution algorithm and factorized distribution algorithm,”
IEEE Trans. Evol. Comput., vol. 8, no. Feb., pp. 80–93, 2004.

[17] J. He and X. Yao, “A study of drift analysis for estimating computation
time of evolutionary algorithms,” Natural Comput., vol. 3, no. 1, pp.
21–35, 2004.

[18] , “Toward an analytic framework for analyzing the computation
time of evolutionary algorithms,” Artif. Intell., vol. 145, pp. 59–97, 2003.

[19] T. Bäck and S. Khuri, “An evolutionary heuristic for the maximum in-
dependent set problem,” in Proc. 1st IEEE Conf. Evol. Comput., 1994,
pp. 531–535.

[20] M. Hifi, “A genetic algorithm-based heuristic for solving the weighted
maximum independent set and some equivalent problems,” J. Oper. Res.
Soc., vol. 48, pp. 612–622, 1997.

[21] A. S. Murthy, G. Parthasarathy, and V. U. K. Sastry, “Clique finding—A
genetic approach,” in Proc. 1st IEEE Conf. Evol. Comput., 1994, pp.
18–21.

[22] T. N. Bui and P. H. Eppley, “A hybrid genetic algorithm for the max-
imum clique problem,” in Proc. 6th Int. Conf. Genetic Algorithms, L. J.
Eshelman, Ed., Pittsburgh, PA, July 1995, pp. 478–484.

[23] C. Fleurent and J. A. Ferland, “Object-oriented implementation of
heuristic search methods for graph coloring, maximum clique, and
satisfiability,” SIAM J. Alg., Discr. Meth., vol. 3, pp. 584–591, 1996.

[24] J. A. Foster and T. Soule, “Using genetic algorithms to find maximum
cliques,” Dept. Comput. Sci., Univ. Idaho, Moscow, ID, Tech. Rep.
LAL95-12, 1995.

[25] E. Marchiori, “A simple heuristic based genetic algorithm for the max-
imum clique problem,” in Proc. ACM Symp. Appl. Comput., 1998, pp.
366–373.

[26] , “Genetic, iterated and multistart local search for the maximum
clique problem,” in Applications of Evolutionary Computing. Berlin,
Germany: Springer-Verlag, 2002, LNCS 2279, pp. 112–121.

[27] F. Glover and M. Laguna, Tabu Search. Norwell, MA: Kluwer, 1998.
[28] S. Lin and B. W. Kernighan, “An effective heuristic algorithm for the

traveling salesman problem,” Oper. Res., vol. 21, pp. 498–516, 1973.
[29] G. R. Harik, F. G. Lobo, and D. E. Goldberg, “The compact genetic

algorithm,” IEEE Trans. Evol. Comput., vol. 3, no. 4, pp. 287–297, Nov.
1999.

[30] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Com-
puting. Berlin, Germany: Springer-Verlag, 2003.

[31] J. S. De Bonet, C. L. Isbell, and P. Viola, “MIMIC: Finding optima by es-
timating probability densities,” in Advances in Neural Information Pro-
cessing Systems, M. C. Mozer, M. I. Jordan, and T. PetscheVol, Eds,
MA: The MIT Press, 1997, pp. 424–431.

[32] M. Pelikan, D. E. Goldberg, and E. Cantú-Paz, “Bayesian optimization
algorithm, population sizing, and time to convergence,” Illinois Genetic
Algorithm Lab., Univ. Illinois Urbana–Champaign, Urbana, IL, Rep.
No. 2 000 001, Jan. 2000.

[33] J. M. Peña, V. Robles, P. Larrañaga, V. Herves, F. Rosales, and M. S.
Pérez, “GA-EDA: Hybrid evolutionary algorithm using genetic and es-
timation of distribution algorithms,” in Lecture Notes in Artificial Intel-
ligence, Ottawa, ON, Canada, May 2004, pp. 361–371. Proc. 17th Int.
Conf. Ind. Eng. Appl. Artif. Intell. Expert Syst..

[34] D. Thierens, “Scalability problem of simple genetic algorithms,” Evol.
Comput., vol. 7, pp. 331–352, 1999.

[35] R. Battiti and M. Protasi, “Reactive local search for the maximum clique
problem,” Algorithmica, vol. 29, no. 4, pp. 601–637, 2001.

Qingfu Zhang (M’01) received the B.Sc. degree in
mathematics from Shanxi University, Shanxi, China,
in 1984, the M.Sc. degree in applied mathematics
and the Ph.D. in information engineering from
Xidian University, Xi’an, China, in 1991 and 1994,
respectively.

He has been a Lecturer in the Department of
Computer Science, University of Essex, Colchester,
U.K. since 2000. From 1994 to 2000, he worked
in the National Laboratory of Parallel Processing
and Computing, Changsha Institute of Technology,

Hong Kong, China, the Hong Kong Polytechnic University, Hong Kong,
the German National Research Center for Information Technology (now
Fraunhofer–Gesellschaft), Sankt Augustin, Germany, and the University of
Manchester Institute of Science and Technology, Manchester, U.K., as a
Researcher. His main research areas are evolutionary computation, optimiza-
tion, neural networks, and data analysis and their applications.

200 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 2, APRIL 2005

Jianyong Sun received the B.Sc. degree in computa-
tional mathematics from Xi’an Jiaotong University,
Xi’an, China, in 1997. He is currently working to-
wards the Ph.D. degree in computer science from the
University of Essex, Colchester, U.K.

In 2000, he worked in the Department of Computer
Science and Engineering, The Chinese University
of Hong Kong, as a Research Assistant. From 2002
to 2003, he worked in the Department of Computer
Science, University of Essex, as a Senior Research
Officer. His main research areas are evolutionary

computation, optimization, metaheuristics, and telecommunication networks.

Edward Tsang (M’04) received the B.B.A. de-
gree in business administration from the Chinese
University of Hong Kong, in 1997, and the M.Sc.
and Ph.D. degrees in computer science from the
University of Essex, Colchester, U.K., in 1984 and
1987, respectively.

He has broad interest in applied artificial in-
telligence, in particular, computational finance,
scheduling, heuristic search, constraint satisfaction,
and optimization. He is currently a Professor of
Computer Science at the University of Essex, Colch-

ester, U.K., where he leads the Computational Finance Group and Constraint
Satisfaction and Optimization Group. He is also the Deputy Director of
the Centre for Computational Finance and Economic Agents (CCFEA), an
interdisciplinary centre.

Dr. Tsang chairs the Technical Committee for Computational Finance under
the IEEE Computational Intelligence Society. Details of his work can be found
at http://cswww.essex.ac.uk/CSP/edward.

	toc
	An Evolutionary Algorithm With Guided Mutation for the Maximum C
	Qingfu Zhang, Member, IEEE, Jianyong Sun, and Edward Tsang, Memb
	I. I NTRODUCTION
	II. G UIDED M UTATION O PERATOR
	Remark 1: In the above guided mutation operator, y_{i} is dire
	Remark 2: In the correlated mutation [30] for real vectors, th

	III. A LGORITHM FOR THE MCP
	A. Representation and Fitness
	B. Partitioning of the Search Space
	C. Repair Heuristic
	D. Initialization and Update of the Probability Vector
	E. Algorithm

	IV. C OMPUTATIONAL E XPERIMENTS
	A. Effects of λ and β

	Fig.€1. Surface of the average sizes of the largest cliques foun
	B. Contributions of the Main Components

	TABLE I E FFECT OF λ AND β: T HE A VERAGE S IZE OF
	Fig.€2. Comparisons of EA/UX/P, EA/G, and HGA on C1000.9.
	C. Comparisons With HGA

	TABLE II C OMPARISON R ESULTS B ETWEEN HGA AND EA/G. Best: T HE
	D. Comparisons With MIMIC

	TABLE III C OMPARISON R ESULTS B ETWEEN EA/MIMIC AND EA/G. Best:
	V. C ONCLUSION
	F. Glover, Heuristics for integer programming using surrogate co
	S. Baluja, Population-based incremental learning: A method for i
	H. Müehlenbein, The equation for response to selection and its u
	H. Müehlenbein, T. Mahnig, and A. O. Rodriguez, Schemata, distri
	S. Baluja and S. Davies, Fast probabilistic modeling for combina
	M. Pelikan, D. E. Goldberg, and E. Cantú-Paz, BOA: The Bayesian
	B. T. Zhang, A bayesian framework for evolutionary computation,
	P. A. N. Bosman and D. Thierens, Expanding from discrete to cont
	P. Larrañaga and J. A. Lozano, Estimation of Distribution Algori
	J. Hastad, Clique is hard to approximate within $n^{1-\epsilon}$
	I. M. Bomze, M. Budinich, P. M. Paradalos, and M. Pelillo, The m
	L. Cavique, C. Rego, and I. Themido, A scatter search algorithm
	B. Carter and K. Park, How good are genetic algorithms at findin
	K. Park and B. Carter, On the effectiveness of genetic search in
	J. He and X. Yao, From an individual to a population: An analysi
	Q. Zhang, On stability of fixed points of limit models of univar
	J. He and X. Yao, A study of drift analysis for estimating compu
	T. Bäck and S. Khuri, An evolutionary heuristic for the maximum
	M. Hifi, A genetic algorithm-based heuristic for solving the wei
	A. S. Murthy, G. Parthasarathy, and V. U. K. Sastry, Clique find
	T. N. Bui and P. H. Eppley, A hybrid genetic algorithm for the m
	C. Fleurent and J. A. Ferland, Object-oriented implementation of
	J. A. Foster and T. Soule, Using genetic algorithms to find maxi
	E. Marchiori, A simple heuristic based genetic algorithm for the
	F. Glover and M. Laguna, Tabu Search . Norwell, MA: Kluwer, 1998
	S. Lin and B. W. Kernighan, An effective heuristic algorithm for
	G. R. Harik, F. G. Lobo, and D. E. Goldberg, The compact genetic
	A. E. Eiben and J. E. Smith, Introduction to Evolutionary Comput
	J. S. De Bonet, C. L. Isbell, and P. Viola, MIMIC: Finding optim
	M. Pelikan, D. E. Goldberg, and E. Cantú-Paz, Bayesian optimizat
	J. M. Peña, V. Robles, P. Larrañaga, V. Herves, F. Rosales, and
	D. Thierens, Scalability problem of simple genetic algorithms, E
	R. Battiti and M. Protasi, Reactive local search for the maximum

