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Abstract

In some expensive multiobjective optimization problems, several function evaluations can be carried out at one time. Therefore,
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called MOEA/D-EGO, for dealing with expensive multiobjective optimization. MOEA/D-EGO decomposes a MOP in question
into a number of single objective optimization subproblems. A predictive model is built for each subproblem based on the
points already evaluated. Effort has been made to save the overhead for modeling and to improve the prediction quality. At each
generation, MOEA/D is used for maximizing the expected improvement metric values of all the subproblems and then several
test points are selected for evaluation. Experimental results on a number of test instances have shown that MOEA/D-EGO is very
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I. INTRODUCTION

In some engineering optimization problems, the evaluation of candidate solutions could be extremely computationally and/or
financially expensive since it requires time-consuming computer simulation or expensive physical experiments. Therefore, any
methods, which are able to produce reasonably good solutions within a given (often very tight) budget on computational
cost/time, are of great practical interest. This paper aims at developing such a method for approximating the Pareto front of
an expensive multiobjective optimization problem (MOP).

Since the publication of the seminal work of Jones et al on the EGO in 1998 [1], the Gaussian stochastic process model
(also called Kriging [2] or DACE stochastic process model [3]) has been widely accepted as one of the most efficient methods
for dealing with an expensive single-objective optimization problem [4], [5]. It assumes that the objective function is a sample
of a Gaussian stochastic process. The distribution of the objective function value at any untested point can be estimated based
on data collected during the previous search, then a figure of merit for evaluation of the objective function at a new point,
such as the expected improvement [6] and the probability of improvement [7], could be defined for determining which point
should be evaluated next. Much effort has been made to incorporate the Gaussian stochastic process and other response surface
methods [4], [8], [9] into evolutionary algorithm (EA) frameworks for single objective optimization [10]–[17].

In the case of multiple objectives, the goal is to find a number of well-representative Pareto optimal solutions. A few attempts
have been made to introduce the Gaussian process model into evolutionary multiobjective optimization [18]–[24]. Keane [21]
and Emmerich et al [23] have generalized the probability of improvement and the expected improvement to multiobjective
optimization. All these generalized metrics of a untested point are based on the likelihood that it could not be dominated by
the non-dominated solutions found so far. Single objective EAs are used for maximizing one of these metrics for determining
which point should be evaluated next. By nature, these scalar metrics on their own are unable to predict the most possible
location of the whole Pareto front and thus could not generate multiple candidate solutions at one single iteration, which makes
them not very suitable on parallel computing environments.

The ParEGO, proposed by Knowles [24], applies the EGO algorithm to a randomly-selected aggregation function for finding
a point to evaluate next in the search space. Its performance on a set of test instances with 150-200 function evaluations is very
promising. The major drawback of the ParEGO is that it just considers one aggregation function at each iteration and therefore
its criterion for locating a new point to evaluate may be appropriate for optimization of the selected aggregation function but
not necessarily optimal for the multiobjective problem itself. ParEGO is not able to generate multiple candidate points at one
iteration either. In [20], Jeong and Obayashi used NSGA-II [25] to optimize the expected improvements of all the individual
objectives in a MOP and locate candidate solutions to evaluate next. They tested their method on two real-life problems. In
principle this method can generate several candidate points to evaluate at one iteration; it, however, does not make the full use
of statistical information provided by the Gaussian process model and thus it is not very efficient in dealing with expensive
MOPs as shown in [26].

Naturally, parallel computing is a basic tool for solving an expensive MOP, particularly when function evaluation only
involves computer simulation as in many engineering design problems. Parallel computing could be able to carry out several
function evaluations at the same time. Therefore, it is very desirable to develop and study methods which could generate several
test points simultaneously at each iteration. This paper represents an attempt along this line.

MOEA/D (multiobjective evolutionary algorithm based on decomposition) [27] is a recent multiobjective evolutionary
algorithm framework. Like MOGLS [28]–[30] and MSOPS [31], it is based on conventional aggregation approaches. MOEA/D
decomposes a MOP into a number of single objective optimization subproblems. The objective of each subproblem is a (linear or
nonlinear) weighted aggregation of all the individual objectives in the MOP. Neighborhood relations among these subproblems
are defined based on the distances among their aggregation weight vectors. Each subproblem is optimized in MOEA/D by
using information mainly from its neighboring subproblems. The experimental studies have shown that MOEA/D performs
very well on a number of multiobjective problems [27], [32]–[35].

In this paper, we propose MOEA/D-EGO, MOEA/D with the Gaussian stochastic process model for expensive multiobjective
optimization. At each iteration in MOEA/D-EGO, a Gaussian process model for each subproblem is built based on data
obtained from the previous search, and the expected improvements (or any other metrics) of these subproblems are optimized
simultaneously by using MOEA/D for generating a set of candidate test points. Then a few of them are selected for evaluation.
The major features of MOEA/D-EGO include:
• Due to the parallel nature of MOEA/D, MOEA/D-EGO is able to generate several test points to evaluate, which makes

it suitable in parallel computing environment.
• Since MOEA/D works with a number of single optimization subproblems, any metrics for measuring the merit for function

evaluation at a new point, developed for single objective optimization such as the expected improvement and the probability
of improvement, could be readily used in MOEA/D-EGO.

• A fuzzy clustering based modeling method is used. It could improve the prediction quality without significantly increasing
the computational cost.

• At each iteration, a predictive distribution model is first built for each individual objective in the MOP, the predictive model
for the objective in each subproblem is then induced. In such a way, the overhead for modeling is reduced significantly.
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The remainder of this paper is organized as following. Section II introduces multiobjective optimization problems. Section III
presents the algorithm framework. Section IV-VI gives the details of the algorithm. Section VII presents experimental results.
Finally, Section VIII concludes the paper.

II. MULTIOBJECTIVE OPTIMIZATION PROBLEM

This paper considers the following continuous multiobjective optimization problem (MOP):

minimize F (x) = (f1(x), . . . , fm(x))T

subject to x = (x1, . . . , xn)T ∈ ∏n
i=1[ai, bi]

(1)

where −∞ < ai < bi < +∞ for all i = 1, . . . , n. F :
∏n

i=1[ai, bi] → Rm consists of m individual objective functions fi,
i = 1, . . . ,m. All the individual objectives are continuous.

∏n
i=1[ai, bi] is called the decision space (or search space) and Rm

is the objective space.
Let u = (u1, . . . , um)T , v = (v1, . . . , vm)T ∈ Rm be two vectors, u is said to dominate v if ui ≤ vi for all i = 1, . . . , m,

and u 6= v. A point x? ∈ ∏n
i=1[ai, bi] is called (globally) Pareto optimal if there is no x ∈ ∏n

i=1[ai, bi] such that F (x)
dominates F (x?). The set of all the Pareto optimal points, denoted by PS, is called the Pareto set. The set of all the Pareto
objective vectors, PF= {F (x) ∈ Rm|x ∈ PS}, is called the Pareto front [36].

In this paper, we assume that the evaluation of F (x) is very expensive and only a very few F -function evaluations can be
carried out in parallel. If an iterative algorithm performs a few function evaluations in parallel at each generation (i.e. iteration)
and its other computational overhead can be negligible compared with its F -function evaluations, then its overall cost can be
measured by the number of its generations. The purpose of our proposed method in this paper is to reduce it as much as
possible.

III. ALGORITHM FRAMEWORK

A. MOP Decomposition

Several approaches have been proposed for decomposing a MOP into a number of single objective optimization subproblems
[36]–[39]. In the following, we introduce two most commonly-used approaches.

1) Weighted Sum Approach: Let λ = (λ1, . . . , λm)T be a weight vector, i. e.,
∑m

i=1 λi = 1 and λi ≥ 0 for all i = 1, . . . , m.
Then the optimal solutions to the following single optimization problems:

minimize gws(x|λ) =
∑m

i=1 λifi(x)
subject to x ∈ ∏n

i=1[ai, bi]
(2)

are Pareto optimal to (1) if the PF of (1) is convex, where we use gws(x|λ) to emphasize that λ is a weight vector in this
objective function while x is the variable vector to optimize. However, when the PS is not convex, the weighted sum approach
could be not able to find some Pareto optimal solutions.

2) The Tchebycheff Approach [36]: In this approach, the single objective functions to be minimized are in the form

gte(x|λ) = max
1≤i≤m

{λi(fi(x)− z∗i )} (3)

where z∗ = (z∗1 , . . . , z∗m) is the reference point, i. e.

z∗i = min
x∈∏n

i=1[ai,bi]
fi(x) (4)

for each i = 1, . . . , m. Under some mild condition, for each Pareto optimal point x∗ there exists a weight vector λ such
that x∗ is the optimal solution of (3) and each optimal solution of (3) is a Pareto optimal to (1). This approach can deal
with nonconvex PFs but its objective function is not smooth at some points. However, it can still be used in the evolutionary
algorithm framework proposed in this paper since our algorithm does not require the derivatives of the objective functions.

To obtain a set of different Pareto optimal solutions of (1), one can solve a set of single objective optimization problems
defined by (2), (3) or any other decompostion methods with different weight vectors.

B. Framework

To solve the expensive MOP (1), MOEA/D with the Gaussian process model (MOEA/D-EGO), proposed in this paper,
chooses a set of N weight vectors λ1, . . . , λN and converts approximation of the PF of (1) into N single objective optimization
problems by a decomposition method. It attempts to solve these N subproblems simultaneously. Suppose that the i-th
subproblem is associated with weight vector λi and its objective function is g(x|λi), MOEA/D-EGO works as follows:

Algorithmic Parameters:
• λ1, . . . , λN : N weight vectors;
• KI : the number of initial points in Initialization; and
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• KE : the number of function evaluations at each generation.
Step 1 Initialization: Generate KI points x1, . . . , xKI from the search space

∏n
i=1[ai, bi] by using an experimental design

method and evaluate the F -function values of these KI points. Set Peval = {x1, . . . , xKI}.
Step 2 Stopping Condition: If the preset stopping condition is met, output the F -function values of all the nondominated

solutions in Peval as an approximation to the PF and stop.
Step 3 Models Building: By using the F -function values of the points in Peval, build a predictive distribution model

for each objective g(x|λi) and then use it to define ξi(x), a metric measuring the merit of evaluating point x for
optimizing g(x|λi).

Step 4 Locating Candidate Points: Using MOEA/D, obtain x̃1, . . . , x̃N , where x̃i is an approximate solution for maxi-
mizing ξi(x).

Step 5 Selecting Points for Function Evaluation: Select KE points from x̃1, . . . , x̃N using a selection scheme.
Step 6 Function Evaluations: Evaluate the F -function values of all the KE selected points in Step 5, then add all these

points to Peval and go to Step 2.
Peval is the set of the solutions which have been evaluated during the previous search. Step 1 initializes Peval. Step 3

defines ξi(x), which are maximized in Step 4 by using MOEA/D. Step 5 determines which points will be evaluated in Step
6. At each generation of MOEA/D-EGO, KE points can be evaluated in parallel.

In Sections IV-VI, we will give and discuss the details of steps 3-5.

IV. MODEL BUILDING

This section discusses the implementation of Step 3 in MOEA/D-EGO.

A. Gaussian Process Modeling

1) Assumptions: To build a cheap surrogate model for an expensive function y = g(x), x ∈ Rn, Gaussian process modeling
makes the following assumptions [1]:
• For any x, g(x) is a sample of the following Gaussian random variable:

µ + ε(x) (5)

where ε(x) ∼ N(0, σ2), µ and σ are two constants independent of x. In other words, the prior distribution of g(x) is
Gaussian distribution with constant mean µ and constant variance σ2.

• For any x, x′ ∈ Rn, c(x, x′), the correlation between ε(x) and ε(x′), depends only on x− x′, more precisely,

c(x, x′) = exp[−d(x, x′)], (6)

where

d(x, x′) =
n∑

i=1

θi|xi − x′i|pi , (7)

θi > 0 and 1 ≤ pi ≤ 2.
Clearly, c(x, x′) → 1 as d(x, x′) → 0 and c(x, x′) → 0 as d(x, x′) → +∞, which is desirable in modeling a continuous

function g(x). pi is related to the smoothness of g(x) with respect to xi, and θi indicates the importance of xi on g(x). More
details of Gaussian process modeling can be found in [40].

2) Hyper Parameter Estimation: Given K points x1, . . . , xK ∈ Rn and their g-function values y1, . . . , yK , the hyper
parameters µ, σ, θ1, . . . , θn, and p1, . . . , pn can be estimated by maximizing the likelihood that g(x) = yi at x = xi (i =
1, . . . ,K) [1]:

1
(2πσ2)K/2

√
det(C)

exp
[
− (y − µ1)T C−1(y − µ1)

2σ2

]
(8)

where C is a K ×K matrix whose (i, j)-element is c(xi, xj), y = (y1, . . . , yK)T and 1 is a K-dimensional column vector
of ones.

To maximize (8), the values of µ and σ2 must be:

µ̂ =
1T C−1y

1T C−11
(9)

and

σ̂2 =
(y − 1µ̂)T C−1(y − 1µ̂)

K
. (10)
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Substituting (9) and (10) into (8) eliminates the unknown parameters µ and σ from (8). As a result, the likelihood function
depends only on θi and pi for i = 1, . . . , n. An optimization method can then be used for maximizing (8) to obtain estimates
θ̂i and p̂i. Then estimates µ̂ and σ̂2 can be readily obtained from (9) and (10).

(8) is multimodal [1], gradient based methods could be trapped on its local optima. In the experiments in this paper,
Differential Evolution (DE) is employed for maximizing (8). The version used is rand/1/bin whose details can be found in
[41]. The control parameters in DE are set as:
• the population size=20;
• the number of generations=50;
• the crossover rate=0.1; and
• the value of F=0.5.
3) The Best Linear Unbiased Prediction and Predictive Distribution: Given hyper parameter estimates θ̂i, p̂i, µ̂ and σ̂2, one

can predict g(x) at any untested point x based on the g-function values yi at xi for i = 1, . . . , K. The best linear unbiased
predictor of g(x) is [1]:

ŷ(x) = µ̂ + rT C−1(y − 1µ̂) (11)

and its mean squared error is:

s2(x) = σ̂2[1− rT C−1r +
(1− 1T C−1r)2

1T C−1r
] (12)

where r = (c(x, x1), . . . , c(x, xK))T . N(ŷ(x), s2(x)) can be regarded as a predictive distribution for g(x) given the g-function
values yi at xi for i = 1, . . . ,K.

(a) Crisp Clustering (b) FuzzyCM

Figure 1. In crisp clustering, all the points are clustered into several clusters of different sizes, each point belongs to just one cluster. In FuzzyCM used in
this paper, all the clusters are of the same size and one point might belongs to several different clusters.

4) Fuzzy Clustering based Method for Modeling (FuzzyCM): The computational overhead in estimating the hyper parameters
and in computing ŷ(x) and s2(x) depends mainly on K. When K is larger than 200, it is computationally unbearable to optimize
the hyper parameters if all the points are directly used [40]. There are several strategies to deal with this issue. Among them one
is to select a small number of evaluated points for estimation and prediction [42], [43]. Obviously, this strategy doesn’t make
the full use of all the evaluated points. Another commonly used strategy is to cluster all the evaluated points into several small
clusters and then build several local predictive models based on these clusters, the prediction of an untested point is based on
a local predictive model with the closest cluster center to it [44]–[46]. To the best of our knowledge, all these clustering-based
methods use crisp clustering, each evaluated point is assigned to exactly one cluster. One of their major drawbacks is that
their prediction quality is poor if the point to be predicted is in boundary areas among different clusters, since evaluated points
close to it have not been used efficiently.

We propose a fuzzy clustering [47] based modeling method (FuzzyCM) to relieve this drawback. FuzzyCM needs two control
parameters:
• L1: the maximal number of points used for building a local model.
• L2: the number of points for adding one more local model.

where L1 > L2. When K ≤ L1, all the K evaluated points are directly used for building a predictive distribution of g(x) (i.e.
computing the values of ŷ(x) and ŝ2(x) in (11) and (12)) at any untested point x. When K > L1, FuzzyCM works as follows:

Step 1 Set the number of clusters:

csize = 1 + dK − L1

L2
e. (13)
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Step 2 By applying the Fuzzy C-Means Clustering (its details can be found in Appendix A), on all the points in Peval,
generate csize fuzzy clusters; the center of cluster i is vi. Set Pi to be the set containing the L1 points from Peval

with the highest membership degrees to fuzzy cluster i.
Step 3 For each Pi, i = 1, . . . , csize, maximize the likelihood function (8) of all the L1 points in it and obtain a set of

estimate values of the hyper parameters.
To build a predictive distribution N(ŷ(x), ŝ2(x)) of g(x) at a untested point x, we first find its closest fuzzy cluster center

vk (In the case when x has more than one closest cluster centers, the tie is broken at random.), then use the hyper parameter
estimates associated with Pk and points only in Pk to compute ŷ(x) in (11) and ŝ2(x) in (12). In other words, N(ŷ(x), ŝ2(x))
is a predictive distribution given the g-function values on the points in Pk.

In the above method, csize clusters are generated by the Fuzzy C-means Clustering on all the points. Each Pj contains
exactly L1 points which are most likely to belong to cluster center vj when K > L1. Since L1 > L2, there are overlaps
among different Pj’s. Therefore, the prediction quality in boundary areas is improved. Fig. 1 illustrates the difference between
crisp clustering and FuzzyCM.

In the experiments in this paper, L1 is set to be 80 and L2 is 20.

B. Model Composition

If the predictive distribution models for all the aggregated functions in Step 3 of MOEA/D-EGO are constructed one by
one by using our proposed FuzzyCM, it will incur very high, even unbearable, computational cost. Note that each g(x|λi)
is an aggregation of the MOP individual objective functions f1, . . . , fm, we propose to use the FuzzyCM to build predictive
distribution models for f1, . . . , fm and then from them derive a predictive distribution model for each g(x|λi).

In the following, we explain how to do it in the cases when g(x|λi) are given by (2) or (3). We assume that we have obtained
a predictive distribution model N(ŷi(x), ŝ2

i (x)) for each MOP individual objective function fi(x) in Step 3 of MOEA/D-EGO
and for simplicity, we further assume that all these individual functions are independent of one another statistically.

1) Weight Sum Aggregation: Since

gws(x|λ) =
m∑

i=1

λifi(x),

gws(x|λ) can be regarded as a sample of Gaussian random variable N(ŷws, (ŝws)2). 1, where

ŷws =
m∑

i=1

λiŷi(x), (14)

and

(ŝws)2 =
m∑

i=1

[λiŝ
2
i (x)]2. (15)

Therefore, in Step 3 of MOEA/D-EGO, we can use N(ŷws, (ŝws)2) as a predictive model of gws(x|λ).
2) Tchebycheff Aggregation: Since

fi(x) ∼ N(ŷi(x), ŝ2
i (x))

for all i = 1, . . . , m, we have
λi(fi(x)− z∗i ) ∼ N(λi(ŷi(x)− z∗i ), [λiŝi(x)]2).

fi(x) (i = 1, . . . , m) are independent, so are λi(fi(x)− z∗i ) (i = 1, . . . ,m).
In the case of m = 2, it is from [48] (the details can be found in Appendix B) that

E[gte(x|λ)] = µ1Φ(α) + µ2Φ(−α) + τϕ(α) (16)

and

E([gte(x|λ)]2) = (µ2
1 + σ2

1)Φ(α) + (µ2
2 + σ2

2)Φ(−α)
+(µ1 + µ2)ϕ(α) (17)

where
σ2

i = [λiŝi(x)]2 for i = 1, 2,

µi = λi(ŷi(x)− z∗i ) for i = 1, 2,

τ =
√

[λ1ŝ1(x)]2 + [λ1ŝ2(x)]2,

1Both ŷws and (ŝws)2 are functions of λ and x. For simplicity, we drop them in the notations.
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α = (µ1 − µ2)/τ,

ϕ(t) = (2π)−1/2exp(−t2/2),

and

Φ(t) =
ˆ t

−∞
ϕ(θ)dθ.

Let
ŷte = E(gte(x|λ)) (18)

and
(ŝte)2 = E([gte(x|λ)]2)− (ŷte)2. (19)

As suggested in [48], the distribution of gte(x|λ) can be approximated by N(ŷte, (ŝte)2), which is used in our experiments as
a predictive distribution of gte(x|λ).

In the case of m = 3, note that

gte(x|λ) =
max{max{λi(f1(x)− z∗1), λi(f2(x)− z∗2)}, λ3(f3(x)− z∗3)},

we can, following [48], first build an approximate Gaussian distribution for max{λi(f1(x)− z∗1), λi(f2(x)− z∗2)} as in the
case of m = 2, and then estimate an approximate Gaussian distribution for gte(x|λ) by treating it as the maximum of two
independent Gaussian random variables max{λi(f1(x)− z∗1), λi(f2(x)− z∗2)} and λ3(f3(x)− z∗3).

The above method can be easily generalized to the case when m > 3. However, it might be worthwhile to reduce the number
of objectives for an expensive MOP with more than 3 objectives before solving it since the number of solutions required for
approximating the PF of a MOP increases exponentially with the number of objectives.

C. Expected Improvement

After building a predictive distribution model for each aggregated objective in Step 3 of MOEA/D-EGO, we then define
a metric for measuring the merit of evaluating it at a new untested point for minimizing g(x|λ). In principle, any metrics
developed for single objective optimization can be serve for this purpose. In the experiments in this paper, we use the expected
improvement (EI) proposed in [6].

Suppose N(ŷ(x), [ŝ(x)]2) is a predictive distribution model for an objective function g(x), and the minimal value of g(x)
over all the evaluated points in Peval is gmin, then the improvement of g(x) at a untested point x is

I(x) = max{gmin − g(x), 0}
Thus the expected improvement is:

E[I(x)] = E[max{gmin − g(x), 0}]
It can be written as [1]:

E[I(x)] =

[(gmin − ŷ(x)]Φ(
gmin − ŷ

ŝ(x)
) + ŝ(x)φ(

gmin − ŷ

ŝ(x)
) (20)

The above formula is used in our experiments for computing the expected improvement in our experiments.
Clearly, E[I(x)] is larger at a point x when a predicted g-function value at x (i.e., ŷ(x)) is much smaller than the minimal

function value found so far (i.e., gmin) and/or the value of g(x) is very uncertain (i.e., ŝ(x) is very large). In a sense, maximizing
E[I(x)] balances exploitation and exploration. The expected improvement has been used in the famous EGO with great success
[1].

In summary, Step 3 of MOEA/D-EGO first uses FuzzyCM to build a predictive probability model for each individual fi,
and then derives predictive probability models for all the aggregation objective functions, finally sets ξi(x) to be the expected
improvement of g(x|λi).

V. LOCATING CANDIDATE POINTS

Step 4 of MOEA/D-EGO is for solving N single optimization problems with the different objectives ξi(x) i = 1, . . . , N . If λi

is close to λj , we call ξi(x) and ξj(x) neighbors. Recall that ξi(x) is set to be the expected improvement of g(x|λi), neighboring
objectives should be similar. Therefore, optimization of ξi(x) can utilize information from its neighboring objectives. This is
the basic idea behind MOEA/D. In Step 4 of MOEA/D-EGO, we use MOEA/D-DE, proposed in [32], for finding the optimal
solutions of these N single optimization problems. Its details can be found in Appendix C.
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VI. SELECTING POINTS FOR FUNCTION EVALUATION

Step 5 in MOEA/D-EGO is to select KE points from N candidate solutions generated in Step 4. These selected KE points
will be evaluated at Step 6. We have the following considerations in implementing Step 5:
• Since the goal of MOEA/D-EGO is to generate a number of well representative Pareto optimal solutions, the points to

be evaluated should be different from the points already evaluated;
• Each solution x̃i obtained in Step 4 of MOEA/D-EGO is for maximizing ξi and therefore the evaluation of these points

is good for optimizing their associated aggregative functions g(x|λi). To encourage the diversity of final solutions in the
objective space, x̃j should not be selected if x̃i has been selected and λi and λi are close.

• The selected points should have high EI values so that the evaluation of these points will, hopefully, lead to substantial
improvement in solution quality.

Based on the above considerations, in Step 5 of MOEA/D-EGO, we select KE points as follows:
Step 1 Set Q = ∅.

For i = 1 to N ,
If x̃i is different from any points in Peval ∪Q, then add x̃i to Q.
End For

Step 2 Using K-Means clustering, cluster all the weight vectors associated with the solutions in Q into KE clusters.
Correspondingly, Q is clustered into KE clusters.

Step 3 Select the point with the highest ξ-value from each cluster.
In the above method, Step 1 guarantees that all the selected points in Step 3 are different from one another and from any
points evaluated in the previous search. Point x̃i is the solution for maximizing ξi and associated with weight vector λi. Steps
2 and 3 ensure that the KE selected points are diverse in the objective space since it does not allow any two selected points
to be associated with very similar aggregative functions. In our implementation of Step 1, two points are different if and only
if their Euclidean distance is larger than 10−5.

VII. COMPARISON WITH PAREGO AND SMS-EGO

This paper is for dealing with expensive multiobjective optimization problems when a small number of function evaluations
can be carried out in parallel. In this section, we compare our proposed MOEA/D-EGO with ParEGO and SMS-EGO [26].
We would like to make the following comments on ParEGO and SMS-EGO.
• Both ParEGO and MOEA/D-EGO are aggregation based. ParEGO optimizes the EI value of one aggregation function

and can generate only one point to evaluate at each generation, while MOEA/D-EGO considers a number of aggregation
functions and is able to produce several points for evaluation. In a sense, MOEA/D-EGO can be regarded as a generalization
of ParEGO.

• As shown in [26], SMS-EGO outperforms ParEGO and the method of Jeong and Obayashi in terms of the number of
function evaluations. SMS-EGO uses the method of Emmerich et al [23] for defining a figure of merit for evaluating a
new point. Like ParEGO, it can only generate one point to evaluate at each generation.

A. Test Instances

The following MOP test instances with various characteristics are used in our experimental studies. All these test instances
are minimization problems.
• ZDT1 [49]

f1(x) = x1,

f2(x) = g(x)
[
1−

√
f1(x)/g(x)

]

where

g(x) = 1 + 9(
n∑

i=2

xi)/(n− 1)

and x = (x1, . . . , xn)T ∈ [0, 1]n. Its PF is convex.
• ZDT2 [49]

f1(x) = x1,

f2(x) = g(x)
[
1− (f1(x)/g(x))2

]

where g(x) and the range and dimensionality of x are the same as in ZDT1. The PF of ZDT2 is nonconvex.
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• ZDT3 [49]

f1(x) = x1,

f2(x) = g(x)
[
1−

√
f1(x)/g(x)− f1(x)

g(x)
sin (10πx1)

]

where g(x) and the range and dimensionality of x are the same as in ZDT1. Its PF is disconnected.
• ZDT4 [49]

f1(x) = x1,

f2(x) = g(x)
[
1−

√
f1(x)/g(x)

]

where

g(x) = 1 + 10(n− 1) +
n∑

i=2

[
x2

i − 10 cos (4πxi)
]
,

and x = (x1, . . . , xn)T ∈ [0, 1]× [−5, 5]n−1. It has many local PFs.
• ZDT6 [49]

f1(x) = 1− exp (−4x1) sin6 (6πx1),
f2(x) = g(x)

[
1− (f1(x)/g(x))2

]

where

g(x) = 1 + 9

[
(

n∑

i=2

xi)/(n− 1)

]0.25

,

and x = (x1, . . . , xn)T ∈ [0, 1]n. Its PF is nonconvex. The distribution of the Pareto solutions very nonuniform, i.e. For
a set of uniformly distributed points in the Pareto set in the decision space, their images is not uniformly distributed in
the Pareto front in the objective space.

• LZ08-F1 [32]

f1 = x1 +
2
|J1|

∑

j∈J1

[xj − x
0.5+

3(j−2)
2(n−2)

1 ]2,

f2 = 1−√x1 +
2
|J2|

∑

j∈J2

[xj − x
0.5+

3(j−2)
2(n−2)

1 ]2

where

J1 = {j|j is odd and 2 ≤ j ≤ n} ,

J2 = {j|j is even and 2 ≤ j ≤ n} ,

and x = (x1, ..., xn)T ∈ [0, 1]n. Unlike ZDT test instances, the PS of LZ08-F1 is a nonlinear curve:

xj = x
0.5+

3(j−2)
2(n−2)

1 , j = 2, . . . , n.

where x1 ∈ [0, 1].
• LZ08-F2 [32]

f1 = x1 +
2
|J1|

∑

j∈J1

(xj − sin(6πx1 +
jπ

n
))2

f2 = 1−√x1 +
2
|J2|

∑

j∈J2

(xj − sin(6πx1 +
jπ

n
))2

where J1 and J2 are the same as those of LZ08-F1. x = (x1, ..., xn)T ∈ [0, 1] × [−1, 1]n−1. Its PS is the following
nonlinear curve:

xj = sin(6πx1 +
jπ

n
), j = 2, . . . , n.

where x1 ∈ [0, 1].
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• LZ08-F3 [32]

f1 = x1 +
2
|J1|

∑

j∈J1

(xj − 0.8x1 cos(6πx1 +
jπ

n
))2

f2 = 1−√x1 +
2
|J2|

∑

j∈J2

(xj − 0.8x1 sin(6πx1 +
jπ

n
))2

where J1 and J2 are the same as those of LZ08-F1. x = (x1, ..., xn)T ∈ [0, 1] × [−1, 1]n−1. Its PS is the following
nonlinear curve:

xj =
{

0.8x1 cos(6πx1 + jπ
n ) j ∈ J1

0.8x1 sin(6πx1 + jπ
n ) j ∈ J2

where x1 ∈ [0, 1].
• LZ08-F4 [32]

f1 = x1 +
2
|J1|

∑

j∈J1

[xj − 0.8x1 cos(2πx1 +
jπ

3n
)]2

f2 = 1−√x1 +
2
|J2|

∑

j∈J2

[(xj − 0.8x1 sin(6πx1 +
jπ

n
)]2

where J1 and J2 are the same as those in LZ08-F1, and x = (x1, . . . , xn)T ∈ [0, 1]× [−1, 1]n−1. Its PS is the following
nonlinear curve:

xj =

{
0.8x1 cos(2πx1 + jπ

3n ) j ∈ J1,

0.8x1 sin(6πx1 + jπ
n ) j ∈ J2.

where x1 ∈ [0, 1].
• DTLZ2 [50]

f1(x) = (1 + g(x)) cos(x1π/2) cos(x2π/2),
f2(x) = (1 + g(x)) cos(x1π/2) sin(x2π/2),
f3(x) = (1 + g(x)) sin(x1π/2),

where

g(x) =
n∑

i=3

x2
i

and x = (x1, . . . , xn)T ∈ [0, 1]2 × [−1, 1]n−2. Its PF is nonconvex. The function value of a Pareto optimal solution
satisfies

∑3
i=1 fi

2 = 1 with fi ≥ 0, i = 1, 2, 3.
• KNO1 [24]

f1(x) = 20− r cos(φ)
f2(x) = 20− r sin(φ)

where

r = 9− {3 sin[
5

2(x1 + x2)2
] + 3 sin[4(x1 + x2)]

+5 sin[2(x1 + x2) + 2]}
φ =

π

12(x1 − x2 + 3)

where x = (x1, x2)T ∈ [0, 3]2. Its PS lies in the line defined by x1 + x2 = 4.4116. there are 15 locally optimal fronts in
this problem.

• VLMOP2 [51]

f1(x) = 1− exp(−
∑

i=1,...,n

(xi − 1/
√

n)2)

f2(x) = 1 + exp(−
∑

i=1,...,n

(xi − 1/
√

n)2)

where x = (x1, . . . , xn)T ∈ [−2, 2]n. Its PF is concave. The Pareto optima lie on the diagonal from xi = −1/
√

n to
xi = 1/

√
n in decision space, i = 1, . . . , n.
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B. Experimental Settings

1) General Settings:
• The number of decision variables (n): it is set to be 2 in KNO1 and VLMOP2, 8 for all the other two objective test

instances and 6 for DTLZ2, and 6 for DTLZ2.
• Initial test points: the number of initial test points (i.e. KI in MOEA/D-EGO) is set to be 11n−1 in all the test instances.

The 11n− 1 initial test points are generated using the Latin hypercube sampling method [52].
• The maximal number of function evaluation: 300 for DTLZ2 and 200 for all the 2-objective instances.
• The number of independent runs: we run each algorithm for each test instance 10 times independently.
2) MOEA/D-EGO:
• The number of function evaluation at each generation: KE is set to be 5 in all the test instances.
• The number of subproblems N and weight vectors λ1, . . . , λN : They are controlled by an integer H . More precisely,

λ1, . . . , λN are all the weight vectors in which each individual weight takes a value from

{ 0
H

,
1
H

, . . . ,
H

H
}.

Therefore, the number of subproblems (weight vectors) is:

N = Cm−1
H+m−1,

where m is the number of objectives. H is set to be 299 for all the 2-objective test instances, and 33 for the 3-objective
instances. Consequently, N is 300 for the 2-objective instances and 595 for the 3-objective instances.

• Aggregation Method: The Techebycheff approach is used. The smallest value of fi found so far is use to substitute z∗i in
z∗.

3) ParEGO and SMS-EGO:
• All the parameter settings of these two methods are the same as in [24] and [26], respectively.
• The source codes of these two methods used in our experimental studies are obtained from their authors.

C. Performance Metric

The inverted generational distance (IGD) [53] is used in assessing the performance of the algorithms in our experimental
studies.

Let P ∗ be a set of uniformly distributed points in the objective space along the PF. Let P be an approximation to the PF,
the IGD from P ∗ to P is defined as:

IGD(P ∗, P ) =
∑

v∈P∗ d(v, P )
|P ∗|

where d(v, P ) is the minimum Euclidean distance between v and the points in P . If |P ∗| is large enough to represent the PF
very well, IGD(P ∗, P ) could measure both the diversity and convergence of P in a sense. To have a low value of IGD(P ∗, P ),
P must be very close to the PF and cannot miss any part of the whole PF.

In our experiments, we select 500 evenly distributed points in PF and let these points be P ∗ for each test instance with 2
objectives, and 990 points for each test instance with 3 objectives.

D. Experimental Results

Since SMS-EGO uses all the tested points for building models and it was implemented in MATLAB, it is very difficult to
test it on problems with 8 variables with 200 function evaluations. Actually, SMS-EGO takes about three hours for a single
run with 200 function evaluation even on problems with 2 variable on a computer with 2.8 GHZ. For this reason, we test
SMS-EGO only on two test instances with 2 variables in our experiments. The approximation set generated by each algorithm
in a single run is all the nondominated solutions found during the run.

1) Comparison: Table I presents the statistics of the IGD values of the approximation sets obtained by each algorithm in
ten independent runs. Figs. 2 to 6 plot, in the objective space, the distribution of the approximation set obtained in the run
with the lowest IGD-value of each algorithm for each test instance. Fig. 7 shows the evolution of the average IGD value of
the nondominated solutions found so far with the number of function evaluations in each algorithm for each test instance.

It is evident from Table I that MOEA/D-EGO significantly outperforms ParEGO in terms of IGD metric on ZDT1, ZDT2,
ZDT3, ZDT6 and LZ08-F1. The plots of the final solutions in the objective space in the figures in this section also clearly
show that the approximations generated by MOEA/D-EGO are better than those by ParEGO on these five instances.

On LZ08-F2 LZ08-F3, LZ08-F4 and DTLZ3, there is no much difference between ParEGO and MOEA/D-EGO in terms
of IGD values. It is also very difficult to judge which method is significantly better from the plots of the final solutions on
these four instances.
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Table I
STATISTICS OF THE IGD VALUES OF THE FINAL APPROXIMATION SETS OBTAINED BY MOEA/D-EGO, PAREGO AND SMS-EGO WITH THE SAME

NUMBER OF FUNCTION EVALUATIONS (STD STANDS FOR STANDARD DEVIATION)

Problem The number of ParEGO MOEA/D-EGO
evaluations lowest mean std lowest mean std

ZDT1 200 0.0513 0.0945 0.0316 0.0120 0.0148 0.0016
ZDT2 200 0.0440 0.0864 0.0483 0.0121 0.0156 0.0022
ZDT3 200 0.2071 0.3818 0.1385 0.0435 0.0665 0.0189
ZDT4 200 2.9322 6.2364 3.9068 14.8688 33.3456 12.9428
ZDT6 200 0.4751 0.5736 0.074212 0.0273 0.0585 0.0421
LZF1 200 0.0692 0.0966 0.012500 0.0083 0.0100 0.0011
LZF2 200 0.1624 0.2419 0.045743 0.1297 0.1704 0.0241
LZF3 200 0.0784 0.1264 0.0275 0.1010 0.1488 0.0297
LZF4 200 0.0702 0.087072 0.0116 0.0659 0.0844 0.0144

DTLZ2 300 0.1356 0.1493 0.0101 0.1306 0.1398 0.0085
SMS-EGO MOEA/D-EGO

KNO1 200 0.3933 0.4473 0.0375 0.3552 0.4300 0.1471
VLMOP2 200 0.0058 0.0064 0.0003 0.0043 0.0051 0.0004

On ZDT4, It is clear that ParEGO performs much better than MOEA/D-EGO in terms of IGD metric. However, the plots
of the final solutions show that neither of these two algorithms can approximate the PF satisfactorily.

On KNO1 and VLMOP2, the IGD metric values in Table I indicate that MOEA/D-EGO performs very similarly to SMS-
EGO, which is confirmed by the plots of the final solutions.

We can conclude that overall, the performance of MOEA/D-EGO is not worse than ParEGO and SMS-EGO if the computa-
tional cost is measured by the number of function evaluations. In our experiments, however, MOEA/D-EGO can evaluate five
points simultaneously at every generation, while ParEGO and SMS-EGO can evaluate only one point. Therefore, in a parallel
computing environment, MOEA/D-EGO is much more efficient and than ParEGO and SMS-EGO.

2) More Discussions: It is very clear that the performances of the algorithms vary greatly from instance to instance. For
example, Both ParEGO and MOEA/D-EGO perform much better on ZDT2 than on ZDT4. One of the major reasons might
be that the prediction quality of Gaussian process modeling is better on ZDT2 than on ZDT4. To verify it, we build Gaussian
predictive models for f2 in ZDT2 and ZDT4. In our modeling:
• The number of variables n is 8,
• The points for model building are generated by the Latin Square method,
• The number of the points for model building is 87.
Then, for each test instance, we randomly select 5, 000 points x1, . . . , x5000 from its search space,compute the relative error:

RE =
{∑5000

i=1 [f2(xi)− ŷ(xi)]2}1/2

∑5000
i=1 f2(xi)

where ŷ(xi) is the predicted mean of f2 at point xi. The RE value is 0.0051 for ZDT2 while it is 0.2192 for ZDT4. It implies
that Gaussian process modeling might not be suitable for ZDT4. One should introduce other techniques to deal with it [4].

In addition, we can observe from Fig. 3(d) that MOEA/D-EGO has found several optimal solutions for ZDT6. However, fig.
7(e) shows that the IGD value has not effectively reduced during the last 60 function evaluations. It suggests that the the last
60 test points are mainly for exploration, which wastes the computational resource in this instance. Therefore, the expected
improvement does not always work properly for balancing exploitation and exploration. It should be worthwhile studying how
to overcome this shortcoming for improving the algorithm performance.

VIII. CONCLUSION

In some real world applications, several function evaluations can be carried out at the same time, therefore, it is desirable
to develop methods in which several different test points can be generated simultaneously at each iteration. This paper
proposed such a method, MOEA/D-EGO, for dealing with expensive multiobjective optimization problems. Like other MOEA/D
algorithms, it decomposes a MOP into a number of single objective optimization subproblems. At each iteration, a predictive
distribution model is built for each individual objective in the MOP by using Fuzzy clustering and Gaussian process modeling.
Then, a predictive model for the objective of each subproblem can be induced. MOEA/D are used for maximizing the expected
improvement metrics of all the subproblems and several test points are then selected for evaluation.

Experimental results on a set of test instances have shown that MOEA/D-EGO is not worse than ParEGO and SMS-EGO
if the computational cost is measured by the number of function evaluations. However, MOEA/D-EGO can evaluate several
solutions at the same time, which makes it more suitable for solving expensive MOPs in some real-world applications. We
also found that the prediction quality of Gaussian process modeling is poor in ZDT4 and it makes the algorithms fail in
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approximating the PF, and the expected improvement metric could not balance exploitation and exploration very well in some
instances such as ZDT6. Therefore, more effort is needed in the future to address these issues.

The source code of MOEA/D-EGO can be downloaded from: http://dces.essex.ac.uk/staff/qzhang/.

APPENDIX A: FUZZY C-MEANS (FCM) CLUSTERING

Given K points x1, . . . , xK in Rn, FCM clustering partitions them into csize clusters such that the following objective
function

J =
K∑

i=1

csize∑

j=1

uα
ij ||xi − vj ||2

is minimized, where α is a constant larger than 1, vj ∈ Rn is the center of cluster j, uij is the degree of membership of xi

in cluster j, and ‖ ∗ ‖ is a metric in Rn.
The algorithm works as follows:
Input: • x1, . . . , xK ∈ Rn: the points to be clustered.

• csize: the number of clusters.
• α and ‖ ∗ ‖ used in computing the objective J , and ε used in the stopping criterion.

Output • v1, . . . , vcsize ∈ Rn: the cluster centers.
• uij for i = 1, . . . , K and j = 1, . . . , csize: the membership of xi in cluster j.

Step 1 Initialize u0
ij for for i = 1, . . . , K and j = 1, . . . , csize and set t = 0.

Step 2 Compute

vj =

∑K
i=1(u

t
ij)

αxi

∑K
i=1(u

t
ij)α

for j = 1, . . . , csize.
Step 3 Compute

ut+1
ij =

1
∑csize

k=1

(
||xi−vj ||
||xi−vk||

)2/(m−1)

Step 4 If max1≤i≤k, and 1≤j≤csize
|ut+1

ij − ut
ij | < ε, stop and output vj and uij = ut+1

ij . Otherwise, set t = t + 1 and go
to Step 1.

In our experiments, α = 2, ε = 0.05 and || ∗ || is Euclidean norm. For more details of FCM clustering, please refer to [47].

APPENDIX B: THE MAXIMUM OF SEVERAL NORMALLY DISTRIBUTED VARIABLES [48]

Suppose η1 and η2 are two normally distributed random variables:

ηi ∼ N(σi, σ
2
i ) for i = 1, 2.

and r be the correlation between η1 and η2. Let
ξ = max{η1, η2}

Then
E(ξ) = µ1Φ(α) + µ2Φ(−α) + τϕ(α),

E(ξ2) = (µ2
1 + σ2

1)Φ(α) + (µ2
2 + σ2

2)Φ(−α) + (µ1 + µ2)τϕ(α),

where
τ =

√
σ2

1 + σ2
2 − 2rσ1σ2

and
α = (µ1 − µ2)/τ.



14

APPENDIX C : MOEA/D FOR LOCATING CANDIDATE POINTS [27]

In Step 5 of MOEA/D-EGO, MOEA/D is used for locating candidate points. It works as follows:
Algorithmic Parameters:
• T : the number of the weight vectors in the neighborhood of each weight vector;
• δ : the probability that parent solutions are selected from the neighborhood;
• nr : the maximal number of solutions replaced by each child solution.
Step 1 Initialization

Step 1.1 Compute the Euclidean distances between any two weight vectors and then work out the T closest weight
vectors to each weight vector. For each i = 1, . . . , N , set B(i) = {i1, . . . , iT } where λi1 , . . . , λiT are the T closest
weight vectors to λi.
Step 1.2 Generate N points by uniformly randomly sampling from

∏n
i=1[ai, bj ] and compute their ξi-function values,

i = 1, . . . , N . Set x̃i to be the point with the largest ξi-function value.
Step 2 Update

For i = 1, . . . , N , do
Step 2.1 Selection of Mating/Update Range: Uniformly randomly generate a number rand from (0, 1). Then set

P =
{

B(i) if rand < δ,
{1, . . . , N} otherwise.

Step 2.2 Reproduction: Set r1 = i and randomly select two different indexes r2 and r3 from P , and then generate
a solution ȳ from x̃r1 , x̃r2 and x̃r3 by a DE operator, and then perform a mutation operator on ȳ to produce a new
solution y.
Step 2.3 Repair: If an element of y is out of the boundary of

∏n
i=1[ai, bi], its value is reset to be a randomly selected

value inside the boundary.
Step 2.4 Update of Solutions: Set c = 0 and then do the following:

(1) If c = nr or P is empty, go to Step 3. Otherwise, randomly pick an index j from P .
(2) If ξj(y) > ξj(x̃j), then set x̃j = y, and c = c + 1.
(3) Remove j from P and go to (1).

Step 3 Stopping Criteria If the stopping criteria is satisfied, then stop and output {x̃1, . . . , x̃N}. Otherwise go to Step 2.
In our experiments, the DE and mutation operators and their control parameters used in Step 2.2 are the same as that used in
[32]. More discussions about MOEA/D-DE can be found in [32].
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Figure 2. Plots of the final approximations with the lowest IGD values in the objective space on ZDT1, ZDT2 and ZDT3.
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Figure 3. Plots of the final approximations with the lowest IGD values in the objective space on ZDT4, ZDT6 and LZ08-F1.
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Figure 4. Plots of the final approximations with the lowest IGD values in the objective space on LZ08-F2 LZ08-F3 and LZ08-F4.
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Figure 5. Plots of the final approximations with the lowest IGD values in the objective space on DTLZ2.
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Figure 7. Evolution of the mean of IGD values versus the number of function evaluations. Figs 7(a) to 7(j) are for comparison between MOEA/D-EGO and
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