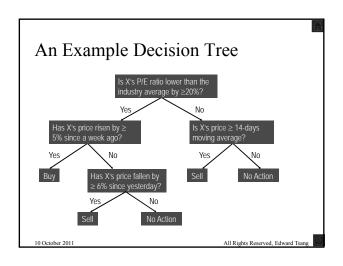

What Computational Finance? • Apply advanced computing to Forecasting and Trading finance & economics (Rare) opportunities, Arbitrage No consensus on definition ◆ Algorithmic Trading Defined by activities Optimization Computational intelligence Portfolio optimization Optimization ◆ Modelling, Simulation & Machine Learning • Challenging fundamentals in Automated Bargaining Economics and Finance Artificial Markets for - Rationality Evolving strategies - Efficient market · Wind-tunnel testing - Homogeneous traders Why Computational Finance? What are the challenges ahead?

What can be done now:	Enabling technology:
Large scale simulation	Must faster machines
Data warehouse	Much cheaper memory
Building complex models	Agent-technology
Efficient exploration of models	Evolutionary computation
	(Multi-Obj) Optimisation
models Decision support	(Multi-Obj) Optimisation experimental game theory,
I I	constraint satisfaction



EDDIE adds value to user input

- ♦ User inputs *indicators*
 - e.g. moving average, volatility, predications
- ♦ EDDIE makes *selectors*
 - e.g. "50 days moving average > 89.76"
- ◆ EDDIE combines selectors into *trees*
 - by discovering interactions between selectors
- Finding thresholds (e.g. 89.76) and interactions by human experts is laborious

0 October 2011 All Rights Reserved, Edward Tsang

Syntax of GDTs in EDDIE-2

Variable is an indicator / feature
Decision is an integer, "Positive" or "Negative" implemented
Threshold is a real number

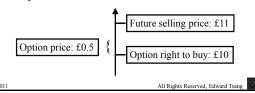
◆ Richer language ⇒ larger search space

10 October 2011

ll Rights Reserved, Edward Tsa

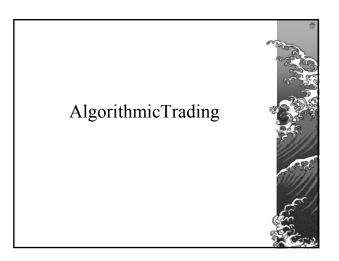
		•	
G:	Expert	More	Define
Given	adds:	input:	target:
Daily	50 days	Volat-	↑4% in
closing	m.a.	ility	21 days?
90	80	50	1
99	82	52	0
87	83	53	1
82	82	51	1

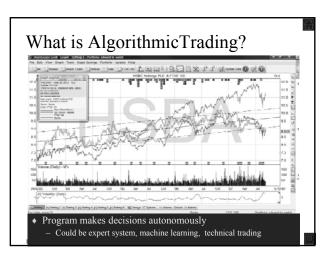
Our EDDIE/FGP Experience


- ◆ Patterns exist
 - Would they repeat themselves in the future?
 (EMH debated for decades)
- ♦ EDDIE has found patterns
 - Not in every series
 (we don't need to invest in every index / share)
- ◆ EDDIE extending user's capability
 - and give its user an edge over investors of the same caliber

10 October 2011

ll Rights Re


Arbitrage Opportunities


- Futures are obligations to buy or sell at certain prices
- Options are rights to buy at a certain price
- If they are not aligned, one can make risk-free profits
 - Such opportunities should not exist
 - But they do in London

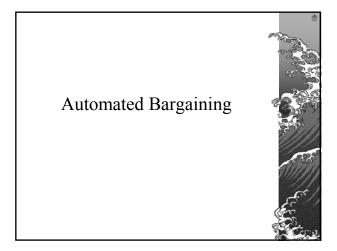
Portfolio Optimization

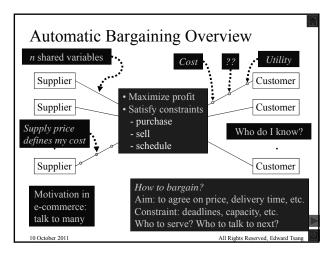
Portfolio Optimization • Typically: — High risk → high return — Diversification reduces risk • Task: find a portfolio — Maximize return, minimize risk • Difficulty: constraints, e.g. — No more than n stocks — Not too much on one stock — Not too much on one sector • Optimization problem — Note: how to measure risk? All Rights Reserved, Edward Tsang

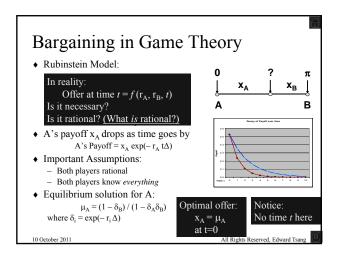
Computer vs Human Traders

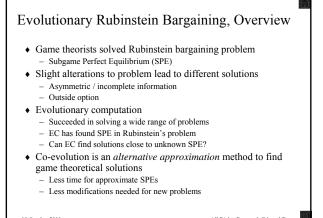
- Programs work day and night, humans can't
- Programs react in miliseconds, humans can't
- Programs can be fully audited, humans can't
- When programs make mistakes, one can *learn* and *change* the culprit codes
 - Failed human traders simply change jobs
- Expertise in computer programs accumulates
 - Human traders leave with his/her experience
- >> Not to mention costs, emotion, hidden agenda, etc.

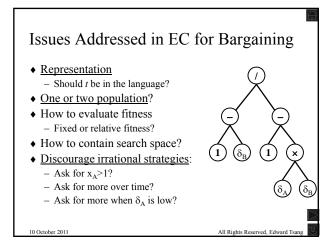
10 October 2011

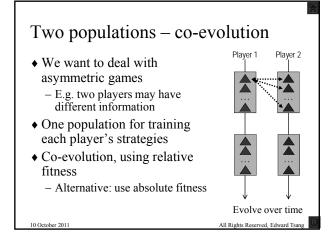

Rights Reserved, Edward T


FAQ in Automated Trading


- ◆ Is the market predictable?
 - It doesn't have to be: just code your own expertise
 - Market is not efficient anyway, herding has patterns
- ♦ How can you predict exceptional events?
 - No, we can't
 - Neither can human traders
- ♦ How can you be sure that your program works?
 - No, we can't
 - Neither were we sure about Nick Leeson at Barrings
 - Codes are more auditable than humans
 - If you can improve your odds from 50-50 to 60-40 in your favour, you should be happy


October 2011


Rights Reserved, Ed



Representation of Strategies A tree represents a mathematical function g Terminal set: {1, δ_A, δ_B} Functional set: {+, -, ×, ÷} Given g, player with discount rate r plays at time t g × (1 - r)^t Language can be enriched: Could have included e or time t to terminal set Could have included power ^ to function set Richer language → larger search space → harder search problem

Incentive Method: Constrained Fitness Function No magic in evolutionary computation Larger search space → less chance to succeed Constraints are heuristics to focus a search Focus on space where promising solutions may lie Incentives for certain properties in function returned: The function returns a value in (0, 1) Everything else being equal, lower δ_A → smaller share Everything else being equal, lower δ_B → larger share Note: this is the key to our search effectiveness

Models with known equilibriums

Complete Information

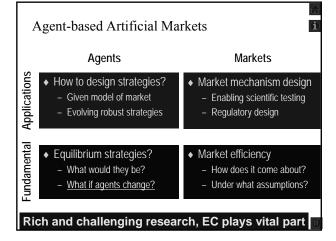
- ◆ Rubinstein 82 model:
 - Alternative offering, both A and B know $\delta_A \& \delta_B$
- Evolved solutions approximates theoretical
- Evolved solutions for problems with outside option Incomplete Information
- Rubinstein 85 model:

 - $\begin{array}{l} \ B \ knows \ \delta_A \ \& \ \delta_B \\ \ A \ knows \ \delta_A \ and \ \delta_B^{weak} \ \& \ \delta_B^{strong} \ with \ probability \ \Omega_{weak} \end{array}$
- Evolved solutions approximates theoretical

Models with unknown equilibriums

- ♦ Modified Rubinstein 85 models
- ◆ Incomplete knowledge
 - B knows δ_B but not δ_A ; A knows δ_A but not δ_B
- Asymmetric knowledge
 - B knows δ_A & δ_B ; A knows δ_A but not δ_B
- Asymmetric, limited knowledge
 - B knows δ_A & δ_B
 - A knows δ_A and a normal distribution of δ_B
- Also worked on limited knowledge, outside option
- Future work: new bargaining procedures

Evolutionary Bargaining, Conclusions


- ♦ Demonstrated GP's flexibility
 - Models with known and unknown solutions
 - Outside option
 - Incomplete, asymmetric and limited information
- ◆ Co-evolution is an *alternative approximation* method to find game theoretical solutions
 - Relatively quick for approximate solutions
 - Relatively easy to modify for new models
- Genetic Programming with incentive / constraints
 - Constraints used to focus the search in promising spaces

Artificial Market

Markets are efficient in the long run How does the market become efficient? Do all agents converge in their opinions?

Wind-tunnel testing for new markets

Evolving Agents Should agents adapt to the environment? Co-evolution

The Red Queen Thesis

In this place it takes all the running you can do, to keep in the same place.

- ♦ Chen & Yeh:
 - Endogenous prices
 - Agents are GPs
 - "Peer pressure" (relative wealth) lead to agents retraining themselves
 - Retraining is done by "visiting the business school"

◆ Markose, Martinez & Tsang:

- CCFEA work in progress
- Wealth exhibits Power Law
- Wealth drives retraining
- Retraining is done by EDDIE

10 October 2011

All Rights Reserved. Edward Tsang

Evolving Agents

- ◆ Sunders, Cliff:
 - Zero intelligence agents
 - Market efficiency can be obtained by zerointelligence agents as long as the market rules are properly set.
 - This result challenges the neoclassical models regarding the utility maximization behaviour of economic agents

♦ Schulenburg & Ross

- Heterogenous agents (agents may have different knowledge)
- Agents modelled by classifier systems
- Exogenous prices
- Beat buy-and-hold, trend follower and random walk agents

10 October 201

All Rights Reserved. Edward Tsang

Modelling Simulation and Machine Learning

Hani Hagras Fuzzy Systems for Modelling and reasoning

Edward Tsang Computational finance Constraint satisfaction Machine Learning

Qingfu Zhang
Mathematical modelling
Optimisation
Machine Learning

Research Agenda in Modelling

- ♦ Modelling involves
 - Identifying stake holders, and
 - Describing their relations
- Relations are described
 - Mathematically, or
 - Procedurally
- Modelling give us a chance to find equilibrium of the system

10/10/201

All Rights Reserved Edward Tsans

Research Agenda in Simulation

- Given a model, equilibrium can be found mathematically in simple models
- ◆ In complex models, <u>simulation</u> is the only practical way to find equilibrium
- Simulation may reveal conditions which lead to undesirable outcomes
 - Such as a crash in the stock market
 - One may introduce policies to remove such conditions

10/10/2011

All Rights Reserved, Edward Tsang

Machine Learning in modelling

- ◆ Suppose you want to find a trading strategy
- ◆ You may build a model and simulate the performance of your strategy
- ◆ Then you may change your strategy and try again
- How many models can you test by hand?
- ◆ <u>Machine learning</u> does the search for you (day and night)

10/10/201

All Rights Reserved, Edward Tsang

Sample Projects in Modelling

- ◆ Software Wind-tunnels project
 - Vernon Smith (Economics Nobel Prize laureate, 2002) wind-tunnel tested new auction designs
 - A number of projects have been developed in CCFEA
- High frequency finance project (Olsen sponsored)
 - Model trader behaviour in order to understand the market.
- Automated bargaining project
 - Approximated equilibrium through reinforcement learning
- <u>Flexible workforce management project (BT sponsored)</u>
 - Study different ways to allocate jobs to technicians.
- Related project: <u>constraint satisfaction and optimization</u>
 Computational techniques used in some of the above projects

10/10/2011

All Rights Reserved. Edward Tsang

Why Modelling?

- ◆ Modelling has been used extensively, e.g.
 - War plans, wind-tunnels for aeroplane & car design
- A cost-effective way to assess a situation.
- ◆ Stress testing: answering "what-if" questions
- ◆ Machine learning enables us to *learn* policies and business strategies.
- ♦ Modelling enables us to scientifically evaluate such policies and strategies.

10/10/2011

All Rights Reserved. Edward Tsans

Remarks on Modelling

- ♦ Could we be wrong?
 - Of course we will make mistakes!
- ◆ "All models are wrong, but some are useful" (George Box 1987).
- ♦ But a model allows us to improve scientifically
 - Whereas "intuition" goes when people depart
- ◆ "More calculation is better than less, Some calculation is better than none" (translation, The Art of War by Sun Zi 6BC).

10/10/201

All Rights Reserved, Edv

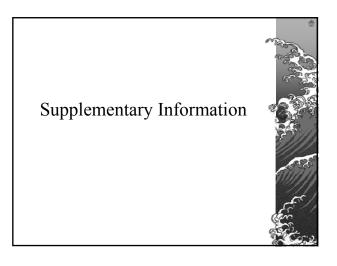
Modelling, Simulation and Machine Learning

For more information: http://www.bracil.net/info/modelling

Conclusions

Computational Finance & Economics

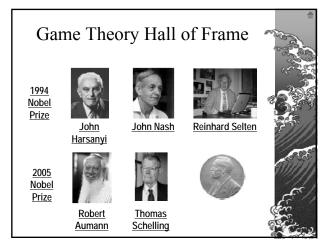
- Computing has changed the landscape of finance and economics research
 - We can do what we couldn't in the past
- ♦ Evolutionary computation plays major roles in
 - Forecasting investment opportunities
 - Approximating subgame equilibrium in bargaining
 - Understanding markets
 - Wind-tunnel testing new market mechanism
- ◆ Our vision: bottom-up micro behaviour analysis


10 October 2011

All Rights Reserved, Edward Tsang

Questions & Comments?

Edward Tsang
http://www.bracil.net/finance
http://edward.bracil.net/
(or just search for Edward Tsang)



Joseph Stiglitz

- Nobel Economic Prize 2001
- Senior VP and Chief Economist, World Bank, 1997-2000
- · Critical view on globalization
- Founder, The Initiative for Policy Dialogue, to:
 - Explore policy alternatives
 - Enable wider civic participation

in economic policymaking

Opportunities and Challenges in CF&E

- ◆ Opportunities
 - New dimensions in market understanding (<u>info</u>)
 - Computer trading will become the norm
 - Wind-tunnel tests will become the norm
- ♦ Challenges:
 - Different types of learning mechanism
 - Large number of parameters to tune
 - What can the simulations tell us?

All Rights Reserved, Edward Tsang

The Computational Finance Community

- Conferences:
 - IEEE International Conference on Computational Ineelligence for Financial Engineering
 - Annual Workshop on Economics with Heterogenous Interacting Agents (WEHIA 2005 at Essex, Markose, Sunders, Dempster)
 - International Conference on Computing in Economics and Finance
 - International Joint Conference on Autonomous Agents and Multi-Agent
- Useful web sites:
 - Tesfatsion's Agent-based Computational Economics
 - Chen's AI-ECON Research Centre
- ◆ IEEE Network on Computational Finance and Economic
- IEEE Technical Committee on Computational Finance and

All Rights Reserved, Edward Tsang

Rationality

Rationality is the assumption behind many economic theories
What does being rational mean?
Are we rational?
The CIDER Theory

What is Rationality?

- ♦ Are we all logical?
- ♦ What if *Computation* is involved?
- ♦ Does *Consequential Closure* hold?
 - If we know P is true and P \rightarrow Q, then we know Q is true
 - We know all the rules in Chess, but not the optimal moves
- "Rationality" depends on computation power!
 - Think faster → "more rational"

'Bounded Rationality" / CIDER Theory

All Rights Reserved Edward Tsans

CIDER: Computational Intelligence Determines Effective Rationality (1)

- You have a product to sell.
- ♦ One customer offers £10
- ♦ Another offers £20
- ♦ Who should you sell to?
- Obvious choice for a rational seller

All Rights Reserved, Edward Tsar

CIDER: Computational Intelligence Determines Effective Rationality (2)

- You are offered two choices:
 - to pay £100 now, or
 - to pay £10 per month for 12 months
- Given cost of capital, and basic mathematical training
- ♦ Not a difficult choice

0 October 2011

All Rights Reserved, Edward Tsang

CIDER: Computational Intelligence Determines Effective Rationality (3)

- ♦ Task:
 - You need to visit 50 customers.
 - You want to minimize travelling cost.
 - Customers have different time availability.
- ◆ In what order should you visit them?

- ♦ This is a very hard problem
- Some could make wiser decisions than others

10 October 2011

All Rights Reserved, Edward Tsang

The CIDER Theory

- ◆ <u>Rationality involves Computation</u>
- ◆ Computation has limits
- ◆ <u>Herbert Simon</u>: <u>Bounded Rationality</u>
- <u>Rubinstein</u>: model bounded rationality by explicitly specifying decision making procedures
- ◆ Decision procedures involves algorithms + heuristics
- ◆ Computational intelligence determines effective rationality
- Where do decision procedures come from?
- Designed? Evolved?

10 October 20

All Rights Reserved, Edward Tsang

1978 Nobel Economic Prize Winner

- ◆ Artificial intelligence
- "For his pioneering research into the decisionmaking process within economic organizations"
- "The social sciences, I thought, needed the same kind of rigor and the same mathematical underpinnings that had made the "hard" sciences so brilliantly successful."
- · Bounded Rationality
 - A Behavioral model of Rational Choice 1957

Herbert Simon (CMU)

Artificial intelligence

 $Sources: \underline{http://nobelprize.org/economics/laureates/1978/ http://nobelprize.org/economics/laureates/1978/ simon-autobio.htm. \\$

10 October 2011

All Rights Reserved, Edward Tsang

"Bounded Rationality"

- ♦ Herbert Simon:
 - Most people are only partly rational, and are in fact emotional/irrational in part of their actions
- "Boundedly" rational agents behave in a manner that is nearly as optimal with respect to its goals as its resources will allow
 - Resources include processing power, algorithm and time available
- ◆ Quantifiable definition needed?

October 2011 All Rights Reserved. Edward Tsang

Modelling Bounded Rationality (1998)

- Ariel Rubinstein New York University
- Rational decisions are optimal decisions
 - But decisions makers often try to satisfy constraints
 - Rather than finding optimality
- ◆ Rationality comes from decision making procedures
 - Procedures should be specified
 explicitly
 - This put the study of procedures on the research agenda

10 October 201

All Rights Reserved, Edward Tsang

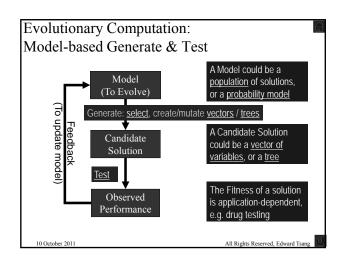
Efficient Market Hypothesis

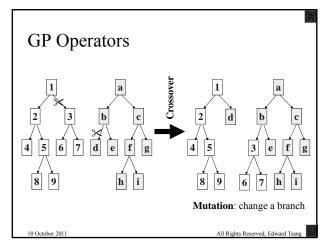
- ◆ Financial assets (e.g. shares) pricing:
 - All available information is fully reflected in current prices
- ♦ If EMH holds, forecasting is impossible
 - Random walk hypothesis
- ♦ Assumptions:
 - Efficient markets (one can buy/sell quickly)
 - Perfect information flow
 - Rational traders

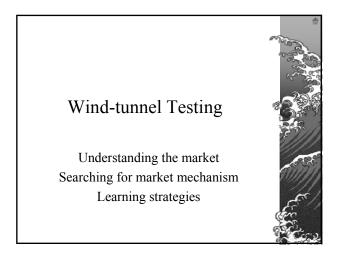
er 2011

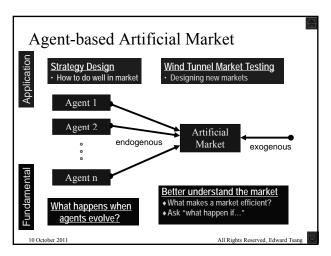
Does the EMH Hold?

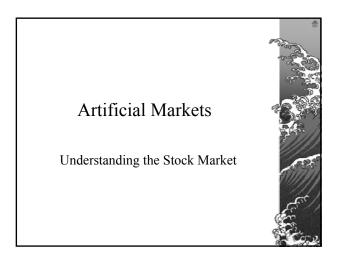
- ♦ It holds for the long term
- ♦ "Fat Tail" observation:
 - big changes today often followed by big changes (either + or -) tomorrow
- ◆ How fast can one adjust asset prices given a new piece of information?
 - Faster machines certainly help
 - So should faster algorithms (CIDER)

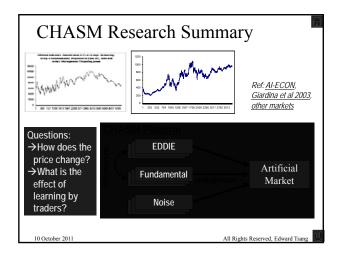

10 October 2011

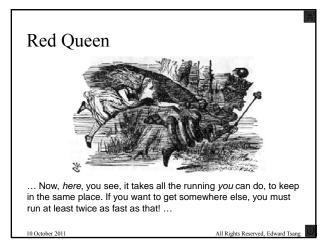

All Rights Reserved, Edward Tsang

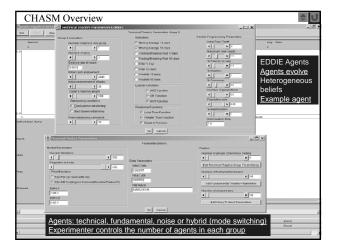

Evolutionary Computation

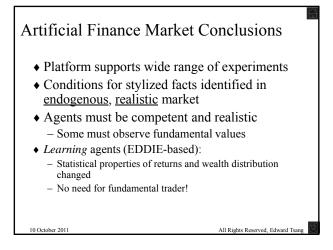

A very brief introduction Genetic Programming

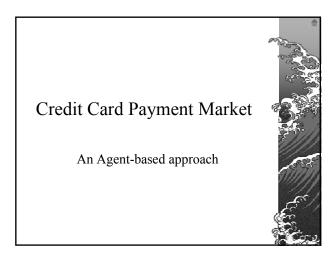


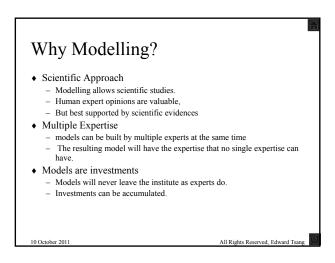


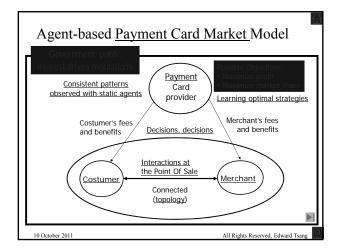








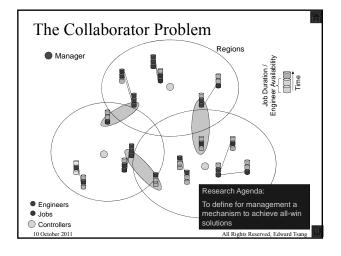


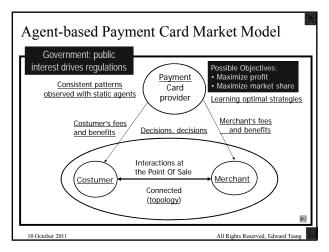


Why Agent Modelling

- ♦ Agent modelling allows
 - Heterogeneity
 - Geographical distribution
 - Micro-behaviour to be modelled
- ◆ Representative models don't allow these
- ♦ Micro-behaviour makes the market

10 October 2011 All Rights Reserved, Edward Tsang


Conclusion, Credit Card Payment Analysis


- Market behavior is complex and hard to analyze
- APCM is useful for studying the card market
- It is a good model of consumers and merchants behavior
 - Could be used to predict demands
- GPBIL could be used for searching strategies under certain requirements
- Observation: rich results... e.g.
 - Market info determines outcomes
 - More information → less dominance

10 October 201

ll Rights R

Market-based Scheduling Staff Empowerment for BT's workforce scheduling

