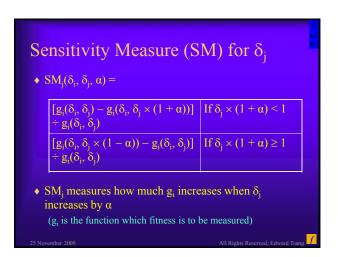
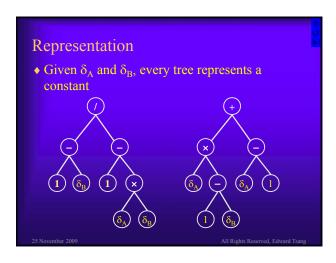
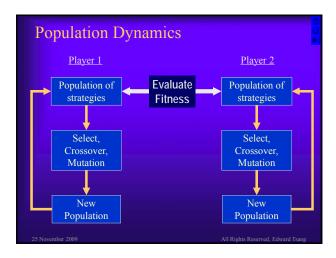

Incentive Method:	
Constrained Fitness Function	
◆ No magic in evolutionary computation	
 Larger search space → less chance to succeed 	
♦ Constraints are heuristics to focus a search	
 Focus on space where promising solutions may lie 	
• Incentives for the following properties in the function returned:	on
- The function returns a value in (0, 1)	
- Everything else being equal, lower $\delta_A \rightarrow$ smaller share	
- Everything else being equal, lower $\delta_B \rightarrow larger share$	
Note: this is the key to our search effectiveness	



Determin	Complete	Uncert	ainty
ants	Information	1-sided	2-sided
Discount	* Rubinstein 82	* Rubinstein 85	x Bilateral
Factors		* Imprecise info	ignorance
		Ignorance	
+ Outside	* Binmore 85	× Uncertainty +	More could be
Options		Outside Options	done easily

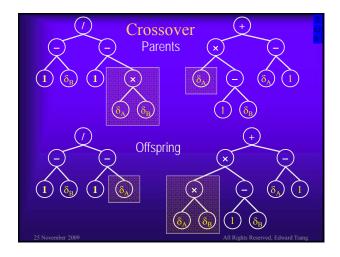
Models with know	n equilibriums
Complete Information	
• Rubinstein 82 model:	
 Alternative offering, both A 	and B know δ_A & δ_B
• Binmore 85 model, outside	e options:
- As above, but each player h	as an outside offer, w_A and w_B
Incomplete Information	
• Rubinstein 85 model:	
$-$ B knows δ_A & δ_B	
– A knows δ _A	
$-$ A knows δ_B is δ_w with proba	ability w_0 , δ_s (> δ_w) otherwise

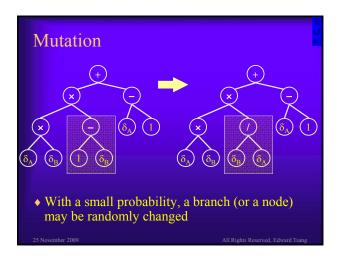

Models with unknown equilibriums	
Modified Rubinstein 85 / Binmore 85 models:	
◆ 1-sided Imprecise information	
– B knows δ_A & δ_B ; A knows δ_A and a normal distribution of δ_B	
♦ 1-sided Ignorance	
– B knows both δ_A and δ_B ; A knows δ_A but not δ_B	
◆ 2-sided Ignorance	
– B knows δ_B but not δ_A ; A knows δ_A but not δ_B	
◆ Rubinstein 85 + 1-sided outside option	


Equilibrium	with Outsid	e Option
$x_{\rm A}^*$	Cond	itions
$\underline{\mu}_{\underline{A}}$	$w_{\rm A} \le \delta_{\rm A} \mu_{\rm A}$	$w_{\rm B} \le \delta_{\rm B} \mu_{\rm B}$
$1-w_{\rm B}$	$w_{\rm A} \leq \delta_{\rm A} (1 - w_{\rm B})$	$w_{\rm B} > \delta_{\rm B} \mu_{\rm B}$
$\delta_{\rm B} w_{\rm A} + (1 - \delta_{\rm B})$	$w_{\rm A} > \delta_{\rm A} \mu_{\rm A}$	$w_{\rm B} \leq \delta_{\rm B} (1 - w_{\rm A})$
$1-w_{\rm B}$	$w_{\rm A} > \delta_{\rm A} (1 - w_{\rm B})$	$w_{\rm B} > \delta_{\rm B} (1 - w_{\rm A})$
$w_{\rm A}$	$w_A + w_A > 1$	_

Equilibriu	m in Un	certai	nty – Ru	ıb85
$V_s = \frac{1 - \delta_s}{1 - \delta_1 \delta_s}$	$\delta_2 =$	δ_{w}	$\delta_2 =$	$\delta_{\rm s}$
$1 - \delta_1 \delta_s$	x_1^*	t^*	x_1^*	t^*
$W_0 < W^*$	$V_{\rm s}$	0	$V_{\rm s}$	0
$W_0 > W^*$	x^{w0}	0	$\frac{1 - ((1 - \frac{1}{x^{w0}}) / \delta_w)}{1 - ((1 - \frac{1}{x^{w0}}) / \delta_w)}$	1
$w^* = \frac{V_s - \delta}{1 - \delta_w + \delta_1 V}$	$\frac{c_1^2 V_s}{c_s (\delta_w - \delta_1)}$	$x^{w_0} = \frac{(1-x)^{w_0}}{1-x}$	$-\delta_w \left(1 - \delta_1^2 \right) $ $\delta_1^2 (1 - w_0) -$	$\frac{(1-w_0)}{\delta_1\delta_w w_0}$
25 November 2009			All Rights Reserved,	Edward Tsang

Evolutionary Bargaining Conclusions	
Demonstrated GP's flexibility	
 Models with known and unknown solutions 	
- Outside option	
 Incomplete, asymmetric and limited information 	
 Co-evolution is an alternative approximation me to find game theoretical solutions 	ethod
 Perfect rationality assumption relaxed 	
 Relatively quick for approximate solutions 	
 Relatively easy to modify for new models 	
◆ Genetic Programming with incentive / constrain	ts
 Constraints helped to focus the search in promising s 	paces
♦ Lots remain to be done	





◆ Given the discount factors, each tree is translated into a constant x It represents the demand represented by the tree. ◆ All trees where x < 0 or x > 1 are evaluated using rules defined by the incentive method ◆ All trees where 0 ≤ x ≤ 1 enter game playing ◆ Every tree for Player 1 is played against every tree for Player 2

E	valuat	ion Tł	nrough	ı Barg	aining	5
		Deman	ds by Play	er 2's str	ategies	
		.46	.31	.65	.20	Player 1 Fitness
spu	.75	0	0	0	.75	0.75
emal	.24	.24	.24	.24	.24	0.96
Player 1 Demands	.36	.36	.36	0	.36	1.08
Playe	.59	0	.59	0	.59	1.18
• I	Incentive	method i	gnored he	ere for sir	nplicity	
25 No	vember 2009				All Rights Reserve	ed, Edward Tsang

Rule (Demand)	Fitness	Normalized	Accumulated
R1 (0.75)	0.75	0.19	0.19
R2 (0.96)	0.96	0.24	0.43
R3 (1.08)	1.08	0.27	0.70
R4 (1.18)	1.18	0.30	1.00
Sum:	3.97	1	

