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Evolutionary Bargaining

Game theory: Two players alternative offering game
Subgame perfect equilibrium found

What is my share??
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Player A Player B

Slight game modification 
Laborious work on new solutions

Perfect rationality assumption

Technical details (non-trivial)
Co-evolution
Incentive methods invented

y

 Proposal: EC for approximating solutions on new games

Two players alternative offering game

Player 1: How about 70% for me 30% for you?

Player 2: No, I want 60%

Player 1: No, how about 50-50?

t = 0, Player 1’s pay off is 70%
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y

Player 2: No, I want at least 55%

 If neither players have any incentive to compromise, 
this can go on for ever

 Payoff drops over time – incentive to compromise

 A’s Payoff = xA exp(– rA tΔ) Let r1 be 0.1, Δ be 1

t = 2, Player 1’s pay off is 50%  e0.1  2 = 41%

Payoff decreases over time

Decrease of utility over time
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Decay of Payoff over time

0.6

Bargaining in Game Theory
 Rubinstein 1982 Model:

 = Cake to share between A and B 
(= 1)

A and B make alternate offers
xA = A’s share           (xB =  – xA)
rA = A’s discount rate

0 ?
xA xB

A B

In reality: 
Offer at time t = f (rA, rB, t)

Is it necessary?
Is it rational? (What is rational?)
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t = # of rounds, at time Δ per round

 A’s payoff xA drops as time goes 
by

A’s Payoff = xA exp(– rA tΔ)

 Important Assumptions: 
– Both players rational
– Both players know everything

 Equilibrium solution for A:
A = (1 – B) / (1 – AB)

where i = exp(– ri Δ)

Notice: 
No time t here

Optimal offer: 
xA = A

at t=0

Evolutionary Computation 
for Bargaining

Technical Details

Issues Addressed in EC for Bargaining

 Representation
– Should t be in the language?

 One or two population?
 How to evaluate fitness

/

 
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– Fixed or relative fitness?

 How to contain search space?
 Discourage irrational strategies:

– Ask for xA>1?
– Ask for more over time?
– Ask for more when A is low?

A B

1 B 1

A run through
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Two populations – co-evolution

We want to deal with 
asymmetric games
– E.g. two players may have 

different information

Player 1

…

Player 2

…
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One population for training 
each player’s strategies

Co-evolution, using relative 
fitness
– Alternative: use absolute fitness 

Evolve over time

… …

Representation of Strategies

 A tree represents a mathematical function g
 Terminal set: {1, A, B}
 Functional set: {+, , ×, ÷}
 Given g, player with discount rate r plays at time t
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g p y p y
g × (1 – r)t

 Language can be enriched:
– Could have included e or time t to terminal set
– Could have included power ^ to function set

 Richer language  larger search space  harder 
search problem

Incentive Method: 
Constrained Fitness Function
 No magic in evolutionary computation

– Larger search space  less chance to succeed

 Constraints are heuristics to focus a search 
– Focus on space where promising solutions may lie
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 Incentives for the following properties in the function 
returned:
– The function returns a value in (0, 1)
– Everything else being equal, lower A smaller share
– Everything else being equal, lower B larger share

Note: this is the key to our search effectiveness
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Incentives for Bargaining
 F(gi) =

GF(s(gi)) + B
B ≥ 3 (tournament selection is used)

If gi in (0,1] & 
SMi > 0 & SMj > 0

GF(s(gi)) + ATT(i) + ATT(j) If gi in (0,1] & 
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 GF(s(gi)) is the game fitness (GF) of a strategy (s) based on 
the function gi, which is generated by genetic programming

 When gi is outside (0, 1], the strategy does not enter the games

(SMi ≤ 0 or SMj ≤ 0)

ATT(i) + ATT(j) – e(–1/|gi|) If gi NOT in (0,1]

C1: Incentive for Feasible Solutions

The function returns a value in (0, 1]

The function participates in game plays

The game fitness (GF) is measured
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A bonus (B) incentive is added to GF
– B is set to 3

– Since tournament is used in selection, the absolute 
value of B does not matter (as long as B>3) 

f

C2: Incentive for Rational A

 Everything else being equal, lower A smaller share 
for A

Given a function gi:
 The sensitive measure SMi(i, j, α) measures how 

much gi decreases when i increases by α
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gi i y

1 If SMi(i, j, α) > 1

– e(1/ SMi(i, j, α)) If SMi(i, j, α) ≤ 1
Attribute ATT(i) =

f

0 < ATT(i) ≤ 1
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C3: Incentive for Rational B

 Everything else being equal, lower B larger share
for A

Given a function gi:

 The sensitive measure SMj(i, j, α) measures how 
h i h  i b
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much gi increases when j increases by α

1 If SMj(i, j, α) > 1

– e(1/ SMj(i, j, α)) If SMj(i, j, α) ≤ 1
Attribute ATT(j) =

f

0 < ATT(j) ≤ 1

Sensitivity Measure (SM) for i

 SMi(i, j, α) = 

[gi(i  (1 + α), j)  gi(i, j)] 
÷ gi(i, j)

If i  (1 + α) < 1
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[gi(i, j)  gi(i  (1  α), j)] 
÷ gi(i, j)

If i  (1 + α)  1

 SMi measures how much gi decreases when i

increases by α
(gi is the function which fitness is to be measured)

f

Sensitivity Measure (SM) for j

 SMj(i, j, α) = 

[gi(i, j)  gi(i, j  (1 + α))] 
÷ gi(i, j)

If j  (1 + α) < 1
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[gi(i, j  (1  α))  gi(i, j)] 
÷ gi(i, j)

If j  (1 + α)  1

 SMj measures how much gi increases when j

increases by α
(gi is the function which fitness is to be measured)

f
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Bargaining Models Tackled

Determin
ants

Complete 
Information

Uncertainty

1-sided 2-sided

Discount 
Factors

* Rubinstein 82 * Rubinstein 85
x Imprecise info

x Bilateral 
ignorance
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Factors x Imprecise info

Ignorance

ignorance

+ Outside 
Options

* Binmore 85 x Uncertainty + 
Outside Options

More could be 
done easily

* = Game theoretical solutions known
x = game theoretic solutions unknown

Models with known equilibriums

Complete Information
 Rubinstein 82 model:

– Alternative offering, both A and B know A & B

 Binmore 85 model, outside options:
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– As above, but each player has an outside offer, wA and wB

Incomplete Information
 Rubinstein 85 model:

– B knows A & B

– A knows A

– A knows B is w with probability w0, s (> w) otherwise

Models with unknown equilibriums

Modified Rubinstein 85 / Binmore 85 models:
 1-sided Imprecise information

– B knows A & B; A knows A and a normal 
distribution of B
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B

 1-sided Ignorance
– B knows both A and B; A knows A but not B

 2-sided Ignorance
– B knows B but not A; A knows A but not B

Rubinstein 85 + 1-sided outside option
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Equilibrium with Outside Option

xA
* Conditions

A wA  A A wB  B B

1 w w  (1 w ) w >  
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1  wB wAA(1wB) wB > B B

BwA+(1B) wA > A A wBB(1wA)

1  wB wA>A(1wB) wB>B(1wA)

wA wA+ wA > 1 –

Equilibrium in Uncertainty – Rub85 

2 = w 2 = s
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Evolutionary Bargaining Conclusions

 Demonstrated GP’s flexibility
– Models with known and unknown solutions
– Outside option
– Incomplete, asymmetric and limited information

 Co-evolution is an alternative approximation method 
to find game theoretical solutions
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to find game theoretical solutions
– Perfect rationality assumption relaxed
– Relatively quick for approximate solutions
– Relatively easy to modify for new models

 Genetic Programming with incentive / constraints
– Constraints helped to focus the search in promising spaces

 Lots remain to be done…
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Running GP in Bargaining

Representation, Evaluation

Selection, Crossover, Mutation

Representation
Given A and B, every tree represents a 

constant

+/
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1 B



A 



1A

A B



1 B



1

Population Dynamics

Population of 
strategies

Population of 
strategies

Player 1 Player 2

Evaluate
Fitness
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Select, 
Crossover, 
Mutation

New 
Population

Select, 
Crossover, 
Mutation

New 
Population
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Evaluation

Given the discount factors, each tree is 
translated into a constant x
– It represents the demand represented by the tree. 

All t h < 0 > 1 l t d
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All trees where x < 0 or x > 1 are evaluated 
using rules defined by the incentive method

All trees where 0  x  1 enter game playing

Every tree for Player 1 is played against every 
tree for Player 2

Evaluation Through Bargaining

.46 .31 .65 .20
Player 1 
Fitness

.75 0 0 0 .75 0.75ds

Demands by Player 2’s strategies
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 Incentive method ignored here for simplicity

.24 .24 .24 .24 .24 0.96

.36 .36 .36 0 .36 1.08

.59 0 .59 0 .59 1.18

Pl
ay

er
 1

 D
em

an
d

Selection

Rule (Demand) Fitness Normalized Accumulated

R1 (0.75) 0.75 0.19 0.19

R2 (0.96) 0.96 0.24 0.43
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 A random number r between 0 and 1 is generated

 If, say, r=0.48 (which is >0.43), then rule R3 is selected

R3 (1.08) 1.08 0.27 0.70

R4 (1.18) 1.18 0.30 1.00

Sum: 3.97 1
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Crossover +

1 B



A 



1A

/

A B



1 B



1

Parents
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A

/



1 B



1

+

1 B







1A

A B



Offspring

Mutation

+







1A

+



/



1A

25 November 2009 All Rights Reserved, Edward Tsang

With a small probability, a branch (or a node) 
may be randomly changed

1 B

1A

A B B A

/ 1A

A B




