Evolutionary Bargaining F]H g

Game theory: Two players alternative offering game

Subgame perfect equilibrium found

What is my share??
Player A <— - Player B ||

Slight game modification > Technical details (non-trivial)
Laborious work on new solutions  Co-evolution
Perfect rationality assumption Incentive methods invented

¢ Proposal: EC for approximating solutions on new games

Two players alternative offering game

Player 1: How about 70% for me 30% for you?
t=0, Player 1’s pay off is 70%

Player 1: No, how about 50-50?
t=2, Player 1’s pay off is 50% x e 01*2=41%

¢ If neither players have any incentive to compromise,
this can go on for ever
¢ Payoff drops over time — incentive to compromise

¢ A’s Payoff=x, exp(—r, tA) Letr, be 0.1, Abe 1

Payoff decreases over time

Decrease of utility over time

Player's Share
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Optimal offer: ~ Notice:
Xp = Mo No time t here

at t=0
U]

Evolutionary Computation
for Bargaining

Technical Details

Issues Addressed in EC for Bargaining

¢ Representation
Should t be in the language?
¢ One or two population?
¢ How to evaluate fitness
Fixed or relative fitn

¢ How to contain search space?

¢ Discourage irrational strategies:
Ask for x,>1?
k for more over time?

— Ask for more when d, is low?

through
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Two populations — co-evolution

. Player 1 Player 2
+ We want to deal with

asymmetric games

— E.g. two players may have
different information
¢ One population for training
each player’s strategies
¢ Co-evolution, using relative
fitness

— Alternative: use absolute fitness

Evolve over time

Representation of Strategies

¢ A tree represents a mathematical function g
¢ Terminal set: {1, 3,, &5}
¢ Functional set: {+, —, %, +}
¢ Given g, player with discount rate r plays at time t
gx(l-n)
¢ Language can be enriched:
— Could have included e or time t to terminal set
— Could have included power * to function set
¢ Richer language - larger search space - harder
search problem

Incentive Method:
Constrained Fitness Function

¢ No magic in evolutionary computation

romising solutions may lie
for the following properties in the function
returned:
The function returns a value in (0, 1)
— Everything else being equal, lower 6, = smaller share
— Everything else being equal, lower 8; = larger share

Note: this is the key to our search effectiveness
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Incentives for Bargaining

* F(g)=

If g, in (0,1] &
tournament selection is used) S_Mi >0& SM. >0

GFE(s(g;)) +ATT@) +ATT(G) |If g in (0,1] &
(SM; <0 or SM; <0)

ATT(@) + ATT(j) — e leh If g NOT in (0,1]

¢ GF(s(g;) is the game fitness (GF) of a strategy (s) based on
the function g;, which is generated by geneti gramming

¢ When g; is outside (0, 1], the strategy does not enter the games

C1: Incentive for Feasible Solutions

¢ The function returns a value in (0, 1]
¢ The function participates in game plays
¢ The game fitness (GF) is measured
+ A bonus (B) incentive is added to GF
— Bissetto3
— Since tournament is used in selection, the absolute
value of B does not matter (as long as B>3)

C2: Incentive for Rational

+ Everything else being equal, lower 8, = smaller share
for A

Given a function g;:

¢ The sensitive measure SM,(6;. 8;, o) measures how

much g; decreases when 9§, increases by o

Attribute ATT(®i) =
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C3: Incentive for Rational oy

¢ Everything else being equal, lower 85 = larger share
for A

Given a function g;:

¢ The sensitive measure SM,(6;, 8;, o) measures how
much g; increases when §; increases by o

If SM{(8;, 8, @) > 1

Attribute ATT(j) =

% (jn

0<ATT(G) <1

Sensitivity Measure (SM) for 9,

¢ SM((§;, 5, o) =

(85, 6)) — gi(8; x (1 — 0), §))]

= g9, 6;)

¢ SM; measures how much g; decreases when 6,
increases by o

(g; is the function which fitness is to be measured)

Sensitivity Measure (SM) for o,

* SM(8;, 5, o) =

= g8, & x (1 +a))] |If & x (1 +a)<1

2:(5;, 6j x (1 —a)) — g(5;, 6j)] 11“6j x(1+a)=>1
+ g(5;, 5j)

¢ SM; measures how much g; increases when ;
increases by o

(g; is the function which fitness is to be measured)
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Bargaining Models Tackled

Conpie
ants Information
* Rubinstein 82 | * Rubinstein 85 |* Bilateral
X Imprecise info |ignorance
Ignorance

+ de |* Binmore 85 ertainty +
Optio side Options

* = Game theoretical solutions known
X = game theoretic solutions unknown

Models with known equilibriums

Complete Information
¢ Rubinstein 82 model:
rnative offering, both A and B know 6, & 8y
¢ Binmore 85 model, outside options
yve, but each p

ffer, w, and wy
Incomplete Information

Models with unknown equilibriums

Modified Rubinstein 85 / Binmore 85 models:
¢ 1-sided Imprecise information

— B kno & dg; A knows 3, and a normal
dist of 6

¢ 1-sided Ignorance

— B knows both 8, and 65; A knows 5, but not 6
¢ 2-sided Ignorance

— B knows & but not 8,; A knows 6, but not 8
+ Rubinstein 85 + 1-sided outside option
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Equilibrium with Outside Option

127N
«

Equilibrium in Uncertainty — Rub85

W= Vs_512Vs
1_5W"'51Vs(5w_51)

- 1—512(1—W0)—515WW0

Evolutionary Bargaining Conclusions

¢ Demonstrated GP’s flexibility
Models with known and unknown solutions
Outside option
— Incomplete, asymmetric and limited information
¢ Co-evolution is an alternative approximation method
irnd ; ol .
rationality assumption relax
r approximate solutions
y easy to modify for new models
¢ Genetic Programming with incentive / constraints
Constraints helped to focus the search in promising spaces
¢ Lots remain to be done...
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Running GP in Bargaining

Representation, Evaluation
Selection, Crossover, Mutation

Representation

¢ Given 6, and Jg, every tree represents a
constant

Population Dynamics
Player 1

Population of Evaluate Population of
' Fitness

Select,
A Crossover,
Mutation Mutation

New
Population Population
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Evaluation

+ Given the discount factors, each tree is
translated into a constant x
— It represents the demand represented by the tree.

¢ All trees where x <0 or x > 1 are evaluated
using rules defined by the incentive method

¢ All trees where 0 < x < 1 enter game playing
¢ Every tree for Player 1 is played against every
tree for Player 2

Evaluation Through Bargaining

Demands by Player 2’s strategies
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Selection

Rl
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¢ A random number r between 0 and 1 is generated
ay, r=0.48 (which is >0.43), then rule R3 is selected
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Crossover
Parents

Mutation

+ With a small probability, a branch (or a node)
may be randomly changed
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