CC283 Intelligent Problem Solving

02/03/2009

Simplified ID

Machine Learning

Decision Tree Learning

3

Edward Tsang (All rights reserved)

(Simplification: random attribute selection)

Machine Learning Basics

* Given data observed

Attempt to find patterns (training)
Use patterns to predict future (testing)
Supervised learning

— User tells machine what to find

 Unsupervised learning

— Let the machine find “interesting” patterns, e.g.
find clusters

Edward Tsang (All rights reserved)

Example Classification Problem: Play Tennis?

Day Outlook Temper. Humid. Wind Play? Examp|e Decision Tree
1 Sunny Hot High Weak No
2 Sunny Hot High Strong No
3 Overcast Hot High Weak Yes
4 Rain Mild High Weak Yes)
5 Rain Cool Normal Weak Yes Sunny Overcast ~ Rain
6 Rain Cool Normal Strong No ~ ' ~
7 Overcast Cool Normal Strong Yes Yes
8 Sunny Mild High Weak No
9 Sunny Cool Normal Weak Yes High Normal Strong Weak
10 Rain Mild Normal Weak Yes / N / N
11 Sunny Mild Normal Strong Yes No Yes No Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Weak Yes « Decision to make: play tennis?
14 Rain Mild High Strong No
Edward Tsang (All rights reserved) Edward Tsang (All rights reserved)
i) Reality | Prediction
Confusion Matrix B _ Performance Measures
> + Ideal Predictions Actual Predictions, Example
Prediction
- - + - +
2
- + - = '?E = 7 0 7 = 5 2 7
_ - o
=) + 0 3 3 + 1 2 3
S | —| S _
& 7 3 10 6 4 10
+ + +
g + RC = (5+2) +10 = 70%
6/ 4| 10 r Py Precision = 2 + 4 = 50%
Recall=2 +3=67%
Edward Tsang (All rights reserved) Edward Tsang (All rights reserved)
Edward Tsang (all rights reserved)

CC283 Intelligent Problem Solving 02/03/2009

ID3 for machine learning Prolog Implementation of Facts

attribute(outlook, [sunny, overcast, rain]).

(
° |D3 performs Supervised Iearnlng attnbute(temperature, [hOt, m||d, COOI])
attribute(humidity, [high, normal]).
(

* Itbuilds decision trees attribute(wind, [weak, strong]).

« Perfect fitting with training data
» Like other machine learning techniques: example([outlook=sunny, temperature=hot, humidity=high,
.) wind=weak], play=no).
— No guarantee that it fits testing data example([outlook=sunny, temperature=hot, humidity=high,
— Danger of “over-fitting” wind=strong], play=no).
example([outlook=overcast, temperature=hot, humidity=high,
wind=weak], play=yes).

Edward Tsang (All rights reserved) Edward Tsang (All rights reserved)
S Expected
1 outlook=sunny _ Example: ID3 Picks an attribute
2 temperature=hot conclusion(play=no) Output
2 temperature=mild i i _
3 humidity=high conclusion(play=no) * Pick an attribute A m
3 humidity=normal conclgsion(play:yes) 3 Compute Gain(S, A): Sunny Overcast Rain
2 temperature=cool conclusion(play=yes)] / ' AN
1 outlook:ovgrcast conclusion(play=yes) i OUIIC_’O!(' % D1-, D3+, D4+,
1 outlook=rain — Humidity: 0.151 D2-, D7+, D5+,
2 temperature=hot conclusion(category not seen before) — Wind: 0.048 D8-, D12+, D6-,
2 temperature=mild . D9+, D13+ D10+,
3 humidity=high ~ Temperawre:0.029 1y, | g Lo
4 wind=weak conclusion(play=yes) Outlook is plcked [2+, 3-] [3+, 2-]
es
Edward Tsang (All rights reserved) Edward Tsang (All rights reserved)
Simplified ID3 in Action (1) Simplified ID3 in Action (2)
1) Notall examples 1) Expand Outlook=Sunny Outlook = Sunny
agree on conclusion Sunny Overcast Rain 2) Notall examples agree | D1-, D2-, D8-, D9+, D11+
2) Pick one attribute / | \ 3) Pick one attribute /Humldlty\
» “Outlook” is picked
. P D1-, D3+, D4+, > “Humidity” is picked High Normal
3) D|V|de_examples D2-, D7+, D5+, 2 Divid | / \
according to values D8-. p12+,| | De-,) Divide examples oL Dor
in Outlook DY+, D13+ | |D10+, 5) Build two branches D2-. D11+
4) Build each branch D11+ [4+, 0] D14- > “No” for “High” D8-
recursively [2+ 3] 3+ 2] > “Yes” for “Normal” Yes
» “Yes” for “Overcast”
Edward Tsang (All rights reserved) Edward Tsang (All rights reserved)

Edward Tsang (all rights reserved) 2

CC283 Intelligent Problem Solving 02/03/2009

Simplified 1D3 in Action (3) ID3 in Action — Tree Built
1) Expand Outlook=Rain Outlook = Rain

Sunny Overcast Rain

2) Not all examples agree | P4+ D5+, 5\?‘de10+~ D14- - ' .
H 1 In . qs -
3) Pick one attribute 7 < Humidity Yes
> “Wind” is picked Strong Weak] D3+,
L | / N High Normal D7+, Strong Weak
4) Divide examples D6-, D4+, 7 N\ D12+, / N
5) Build two branches D14- D5+, No Yes D13+ No Yes
» “No” for “Strong” D10+ D1-, D9+, D6-, D4+,
D2- D11+ D14- D5+
> “Yes” for “Weak” , ,
es” for “Weal Vs Do o
Edward Tsang (All rights reserved) Edward Tsang (All rights reserved)

[* i - - g
An induced Tree can be: | D3 (tOp) Four cases: | D3 (Sl mp||f|9d)
(a) a Conclusion (see below); or 1. no example covers this branch
(b) a list of subtrees, each of which takes the form: 2. all examples under this subtree agree on the same conclusion

(Attribute=VaIué Tree) 3. no conclusions yet, but run out of attributes

4. classify with unused attributes so far
Note: the fourth clause picks the first unused attribute. ID3 picks
the attribute that minimises "entropy" in the remaining data

(recursive definition).
A Conclusion can be:

(1) not enough experience to cover the newly encountered case; ¥/
(2) conclusion (based on induction); or induce_tree(_, [, conclusion('category not seen before)) :- 1.
(3) inconclusive, as contradictory cases was found in the eg’s. induce_tree(_, [(_, Class)| Examples], conclusion(Class)) :-

* not((member((_, Class1), Examples), Classl \==Class)), !.
induce_tree(Tree) :- induce_tree([], _, conclusion(‘contradiction in examples’)) :- 1.
findall((AttVal, Class), example(AttVal, Class), Examples), induce_tree([Att1 | RestAtts], Examples, ListOfSubtrees) :-
findall(Att, attribute(Att,), Attributes), attribute(Attl, Values), [* retrieve data */

induce_tree(Attributes, Examples, Tree). induce_branches(Attl-Values, RestAtts, Examples, ListOfSubtrees).
Edward Tsang (All rights reserved) Edward Tsang (All rights reserved)
" ID3 branches Induce Branches
induce_branches(Att-ValList, RestOfAtts, Egs, SubtreesToBuild) Att-[Vall| RestVals]
Example: Rest of Attributes
Att-ValList; humidity-[high, normal] SENALE

RestOfAtss: wina] | | - e ~——

Egs: [([outlook=sunny, temp=hot, ...], no), ...] | Branches ! Att = Vall, Att=RestVals | *==re-
SubtreesToBuild: [(humidity=high, no), (humidity=normal, [..J)] y built,with | EgswithAttvall Rest of Attributes
o 1 Att = other ! Rest of Examples
! ' values i .
induce_branches(_-[], _,_,[]). /*nomore values to deal with */ " Tree to be built by Trees to be built by
induce_branches(Att-[Vall| RestVals], RestAtts, Egs, induce_tree induce_branches
[(Att=Vall, Treel)| Trees]) :-
. _ . induce_branches(_-[],_, _,[]). /*no more values to deal with */
CIaSSInygS(Att=Vall, Egs, EgszthAttVaIl, RestEgs)' induce_branches(Att-[Vall| RestVals], RestAtts, Egs, [(Att=Vall, Treel)| Trees]) :-
induce_tree(RestAtts, EgsWithAttVall, Treel), classifyEgs(Att=Vall, Egs, EgsWithAttVall, RestEgs),

induce_tree(RestAtts, EgsWithAttVall, Treel),

induce_branches(Att-RestVals, RestAtts, RestEgs, Trees). induce_branches(AttRestVals, RestAtts, RestEgs, Trees).

Edward Tsang (All rights reserved) Edward Tsang (All rights reserved)

Edward Tsang (all rights reserved) 3

CC283 Intelligent Problem Solving 02/03/2009

ID3 Classify Egs
Remarks on I1D3
classifyegs(_, [1, [1,[1)- 4
classifyEgs(Attval, [(AttValList, Class)| RestEgs], y ggg!z!gg Mg 0 ugge“‘a”d
; . . isi
[(AttValList, Class)| InSet], OutSet) :- . Butwhat if data has n)(;ise’tj
member(Attval, AttValList), !, - I.g. undtar the same situation, contradictory results were
5 opserve
.classn‘yEgs(AL, Re.stEgs, InSet, OULSCR * Besides, what if some values are missing from the
classifyEgs(AttVal, [(AttValList, Class)| RestEgs], decision tree?
InSet, [(AttValList, Class)| OutSet]) :- - E.g. “Humidity = Low”
classifyEgs(AttVal, RestEgs, InSet, OutSet).) lﬁ?;ﬁuag)e handled by C4.5 and Sees (/SR
Edward Tsang (All rights reserved) Edward Tsang (All rights reserved)

Exercise Classification Problem - Admit?
,, H . kE ' H 7
iStudent Maths English Physics IT Exam ID3 ExerCISe admlt Or reJeCt
T A A c B Admit =
2 A A A c Admit £k
3 A B c A Admit Z g m
4 A A B A admit | [A B C
5 B A A € Admit 28 L ! N,
6 B B © A Admit % § 3+, 12-,
7 A B B B Admit 5?.5 6+, 14-
8 B A B C Admit w & A B c 7+, Reject
9 B B A B Admit 223 / \. 9+
10 c A B A Admit - 1+, 5+, 10+, A
11 © A © A Reject | %’(—% 2+, 4+ 11-,
i . 2o
12 2 i g s i:}:zz 3 A+ _ Admit 13- Willthe rule found admit students
= Admit with (B, B, B, B)?
14 B C A C Reject -
Edward Tsang (All rights reserved) Edward Tsang (All rights reserved)

Lessons from the exercise

» Without the right columns in the database,
one cannot learn the underlying rule
— It would help if there were a column “A or B”
* Rules generalise
— they may not be correct
» Some branches may not be covered
— Not shown in the above slide

Edward Tsang (All rights reserved)

Edward Tsang (all rights reserved) 4

