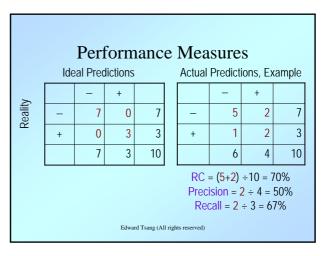

Machine Learning Basics

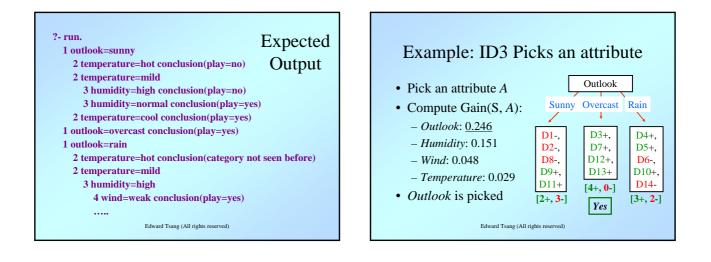

- Given data observed
- Attempt to find patterns (training)
- Use patterns to predict future (testing)
- · Supervised learning
- - Let the machine find "interesting" patterns, e.g.

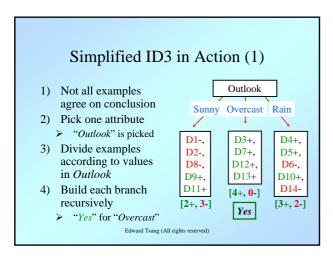
Edward Tsang (All rights reserved)

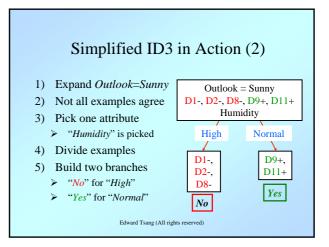
Day	Outlook	Temper.	Humid.	Wind	Play
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

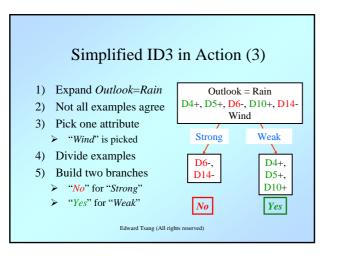
ID3 for machine learning

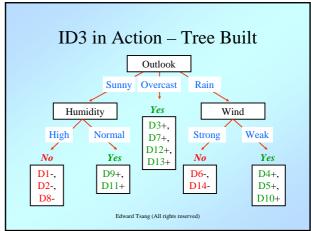
- ID3 performs supervised learning
- It builds decision trees
- Perfect fitting with training data
- Like other machine learning techniques:
 - No guarantee that it fits testing data
 - Danger of "over-fitting"

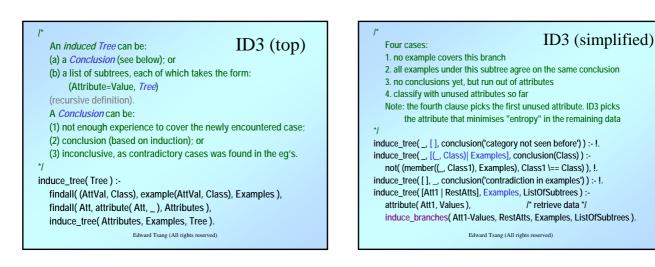

Edward Tsang (All rights reserved)

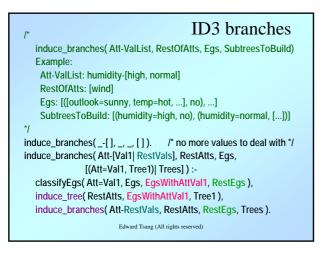

Prolog Implementation of Facts

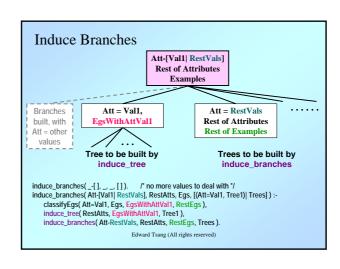

attribute(outlook, [sunny, overcast, rain]). attribute(temperature, [hot, mild, cool]). attribute(humidity, [high, normal]). attribute(wind, [weak, strong]).


- example([outlook=sunny, temperature=hot, humidity=high, wind=weak], play=no).
- example([outlook=sunny, temperature=hot, humidity=high, wind=strong], play=no).
- example([outlook=overcast, temperature=hot, humidity=high, wind=weak], play=yes).


Edward Tsang (All rights reserved)





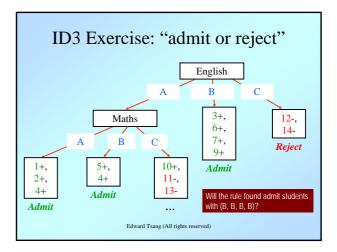


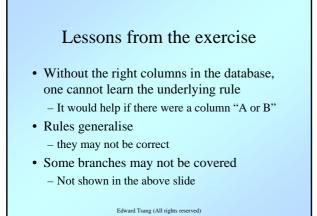
ID3 Classify Egs

classifyEgs(_, [], [], []). classifyEgs(AttVal, [(AttValList, Class)| RestEgs], [(AttValList, Class)| InSet], OutSet) :member(AttVal, AttValList), !, classifyEgs(AttVal, RestEgs, InSet, OutSet). classifyEgs(AttVal, [(AttValList, Class)| RestEgs], InSet, [(AttValList, Class)| OutSet]) :classifyEgs(AttVal, RestEgs, InSet, OutSet).

Edward Tsang (All rights reserved)

Remarks on ID3


- · Decision trees are easy to understand
- · Decision trees are easy to use
- But what if data has noise?


 I.e. under the same situation, contradictory results were observed

 Besides, what if some values are missing from the
- decision tree? – E.g. "Humidity = Low"
- These are handled by C4.5 and See5 (beyond our syllabus)

Edward Tsang (All rights reserved)

Student	Maths	English	Physics	IT	Exam
1	A	A	С	В	Admit
2	А	А	А	С	Admit
3	А	в	С	А	Admit
4	А	А	В	А	Admit
5	В	А	А	С	Admit
6	В	в	С	А	Admit
7	А	в	В	В	Admit
8	В	А	В	С	Admit
9	В	в	А	В	Admit
10	С	А	в	А	Admit
11	С	А	С	А	Reject
12	А	С	С	В	Reject
13	С	А	в	С	Reject
14	в	С	А	С	Reject

Edward Tsang (all rights reserved)