Exercises for "Prolog for beginners"
set by Edward Tsang, University of Essex, 2005

Exercise 1. (10%)
(an easy start)

Assume that facts are stored in the database in the form of:

parent(P, C) /* meaning: P is the parent of C */
female(X)) /* meaning: S is female */

Given any atom Y, if female(Y) fails, then Y is assumed to be male.

(note that this is different from the stipulation in (Bratko 1990)).
Define:

uncle(X, Y)
which succeeds when X is the uncle of Y, and fails otherwise.
For example, given the database:

parent(tom, bob).

parent(tom, jim).

parent(bob, ann).

parent(bob, pat).

female(pat).

female(ann).
When called by:

?- uncle(jim, Y).

your program should instantiate Y to ann and pat. Test the
robustness of your program carefully. For example, does it
work with both X and Y instantiated or uninstantiated?

Exercise 2. (20%)
(Exercise on recursion)

Assume that the database contains facts of the form:
parent(Parent, Child)

Define common_ancestor/3 such that when called by:
?- common_ancestor(X, Y, CA)

with X and Y instantiated, instantiate CA to the common ancestor
of Xand Y. If X is the ancestor of Y or vice versa, then CA should

be instantiated to the ancestor of the two. common_ancestor(X, Y, CA)

should fail if X and Y have no common ancestors.
For example, given:

parent(pam, bob).

parent(tom, bob).

parent(tom, liz).

parent(bob, ann).

parent(bob, pat).

parent(pat, jim).
in the database, if the following call is made:

?- common_ancestor(ann, jim, CA).

your program should instantiate CA to bob.
If called by:

?- common_ancestor(liz, tom, X).

your program should instantiate X to tom.

Exercise 3. (30%)
(Exercise on list manipulation)

Assume that the database contains facts of the form:
parent(Parent, Child)

Define ancestor_link/3 such that when called by:
?- ancestor_link(X, Y, Link)

with X and Y instantiated, instantiate Link to a list which contains

the ancestors of both X and Y which forms the link between X and Y.

Link should start with X, followed by the ancestors of X up to
the common ancestor of X and Y, followed by the children of this
common ancestor down to and including Y.

For example, given:

parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

in the database, if the following call is made:
?- ancestor_link(ann, jim, Link).

your program should instantiate Link to [ann, bob, pat, jim].
Note that your program needs not return the shortest possible link.

Exercise 4. (40%)
(The Dutch National Flag Problem)

Define the predicate:
dutch_national_flag(List, SortedList)

such that given a list of unspecified number and unspecified order
of atoms 'wW', 'r and 'b’, return a list with all the 'r' placed

before 'w', which are all before 'b'.

For example, when called by:

?- dutch_national_flag([w, b, b, b, r, w], SortedList)

your program should instantiate SortedList to: [r, w, w, b, b, b].
Note that not necessarily all r, w and b are present in the input
list. For example, when called by:

?- dutch_national_flag([w, b, w], SortedList)
your program should instantiate SortedList to [w, w, b].

Challenge:

Challenge yourself by implementating dutch_national_flag/2
using 'difference lists' (Refer to (Bratko 1990) for the

use of difference lists.). If you can do that, you may
consider yourself "quite good in Prolog".

