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Learning is Neither Sufficient Nor Necessary:
An Agent-Based Model of Long Memory in
Financial Markets

Neil Rayner **, Steve Phelps® 1. Introduction
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) _ has become increasingly popular [10]. These agent-
University of Essez, based models hold great promise in the construc-
Colchfester,‘ CO4 35Q, UK. tion of regulatory frameworks and financial market
E-mail: {njwray,sphelps} @essex.ac.uk institutions that are robust within an uncertain
world. They enable us to perform stress tests which
Nick Constantinou incorporate effects such as behavioural biases or
b Essex Business School (EBS), nonlinear emergent phenomena. Such mode?s have
been used, for example, to analyse the possible ef-
fects of different financial regulatory frameworks
such as Basel II [12], Tobin taxes [27] and the ef-
fects of intervention by central banks on exchange
rate fluctuations [38].
Financial markets exhibit long memory phenomena; Agent-based models are able to capture complex
certain actions in the market have a persistent in- trading behaviour and market micro-structure
fluence on market behaviour over time. It has been which is difficult to incorporate in traditional
conjectured that this persistence is caused by social equation-based models. The rules that trading
learning; traders imitate successful strategies and dis- agents use to make théir decisions can take the
card poorly performing ones. We test this conjecture 8 . . .. .
. L i form of inductive heuristics which are gradually
with an existing adaptive agent-based model, and we . . .
learnt over time [23]. This allows for more realis-

note that the robustness of the model is directly re- - A > X
lated to the dynamics of learning. Models in which tic models of trading agent decision making, us-
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learning converges to a stationary steady state fail to ing heuristics which are consistent with empirical
produce realistic time series data. In contrast, models observations from the controlled study of actual
in which learning leads to continuous dynamic strat- human subjects [13].

egy switching behaviour in the steady state are able One approach to validating agent-based mod-
to reproduce the long memory phenomena over time. els is to demonstrate that they produce simulated
We demonstrate that a model which incorporates con- time series data which are consistent with the

trarian trading strategies results in more dynamic be-
haviour in steady state, and hence is able to pro-
duce more realistic results. We also demonstrate that a
non-learning contrarian model that performs dynamic
strategy switching produces long memory phenomena
and therefore that learning is not necessary.

empirically-observed stylized facts of actual finan-
cial markets, and that these characteristics are in-
sensitive to the settings of model free parameters;
that is, we attempt to show that the model is ro-
bust. We focus on well known stylized facts of high-
frequency time series data observed in real finan-
cial markets and we analyse to what extent differ-
ent model assumptions are consistent with these
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phenomena.
*Corresponding author: First Author, address of first au- In this research we test the hypothesis that the
thor. stylized facts of observed long memory are caused

Al Communications
ISSN 0921-7126, IOS Press. All rights reserved


edward
Typewritten Text
AI Communication, Special Track Soft Computing in Finance and Economics
Accepted for publication, June 2013


2 An Agent-Based Model of Long Memory in Financial Markets

by agents imitating each other. Specifically, we
analyse long memory properties with the following
attributes:

1. over periods of time volume can be consis-
tently high or low [25];

2. similar volatilities appear in the market in
clusters [8,15,28,29,31];

3. signs of orders (that is, buy orders have a
positive sign and sell orders have a negative
sign) like volatility and volume exhibit long
memory [3,19,20]; and

4. returns do not exhibit long memory [7], sim-
ilar returns do not cluster together, and high

frequency returns exhibit anti-persistence [32].

The outline of this paper is as follows. In Sec-
tion 2 we provide some background on coevolu-
tionary algorithms and their role in agent-based
models. In Section 3 we describe an existing agent-
based model [17,18] within which agents learn
trading strategies from each other. We introduce
our extensions to this important model, describing
a model which possesses increased contrarianism.
Contrarian traders trade against the perceived wis-
dom of the market and will for example sell when
the market is buying. We analyse empirical data
and validate the existing model in Section 4 and
present our results in Section 5 where we show
that this model does indeed generate long memory
phenomena while learning. In Section 6 we anal-
yse the ability of the two models to generate sta-
ble long memory phenomena under free-parameter
variation and over extended periods of time. We
demonstrate that the existing model is not robust
to changes in free parameters and that in steady
state the model does not produce, in general, long
memory phenomena. However in contrast, our ex-
tended model does. We also perform a sensitiv-
ity analysis comparing agent strategy characteris-
tics and their impact on long memory (following
the approach of [39]). In Section 7 we run a non-
learning version of our extended model reporting
our results and demonstrating that long memory
phenomena can be generated without learning. Fi-
nally in Section 8 we conclude.

2. Agent-Based models

Research in multi-agent systems has been influ-
enced by theoretical models from economics and

game-theory where agents behave with rational ex-
pectations [34]. Sometimes these theoretical mod-
els fail to capture observations in empirical finan-
cial data from real-world financial exchanges [24].
A. Lo [21] introduces the “adaptive markets hy-
pothesis” where agents learn behaviours rather
than adopting rational expectations. He suggests
this may be able to explain observed phenomena
present in empirical financial data.

Agent-based models simulate the microstructure
and behaviour of the agents in a market with sim-
ple adaptive behaviours. B. Lebaron et al [17,16]
adopt this approach and demonstrate that they are
able to reproduce statistical qualities of empirical
financial data (“stylised facts”).

Agent-based computational finance (ACF) mod-
els can be usefully divided into two types [4,14]:
firstly N-type models which adopt a limited set
of agent types meaning the degree of heterogene-
ity can be low. For example a 2-type model might
have two types of agent one employing a funda-
mentalist strategy and the other a chartist strat-
egy (more will said about these strategy types in
Section 3), and secondly Santa-Fe Institute mod-
els where each agent can be distinct from all other
agents within the model. The agents within these
models adapt strategies over time and tend to have
a high degree of heterogeneity. Our research adopts
the Santa-Fe Institute model approach and builds
on work in [18].

M. Kampouridis et al [14] claim that financial
markets are non-stationary, and that strategies
that worked at one time become either ineffective
or have reduced effectiveness over time. Adaption
of strategies is important in maintaining strategy
effectiveness over time. Researchers adopt various
adaptive approaches for both the N-type and the
Santa-Fe Institute types of model [14,18,30,33].

An important question in this research is how
do agents interact and learn. Ecologists under-
stand that when animals interact they can af-
fect each others evolution e.g. predators and prey,
or hosts and parasites. This interaction is called
co-evolution where the fitness of individuals in
the ecology is dependent on one another. Co-
evolutionary algorithms can be interpreted as
models of social learning [37] in which agents im-
itate strategies of other more successful agents.
B. LeBaron et al [16] motivates the importance
of coevolving models: “A trader’s performance de-
pends critically on the behaviour of others.” M.
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Kampouridis et al [14], S. Martinez-Jaramillo et
al [30] and ourselves consider coevolution to be an
important feature of financial markets, although
we demonstrate in this paper that many of the
“stylised facts” of financial markets can be pro-
duced without co-evolution. S. Martinez-Jaramillo
et al [30] describe a coevolutionary development
platform called CHASM which supports the pop-
ulation of a double auction order driven market
for multiple heterogeneous agents. This research
follows a similar approach to CHASM. However,
S. Martinez-Jaramillo et al [30] use a genetic pro-
gramming tool called EDDIE [35,36] to adapt
strategies using a large variety of financial indica-
tors while this research uses a much simpler model,
adopting a genetic algorithm and a simpler set of
financial indicators.

3. The Model
3.1. Agent Expectations

We adopt an adaptive expectations model with
three classes of strategy which are used to form
expectations about future returns:

1. fundamentalists value a stock through an un-
derstanding of its hypothetical underlying
value, in other words, based on expectations
of the long term profitability of the issuing
company;

2. chartists form valuations inductively from
historical price data; and

3. noise traders make forecasts on the basis of
data which they believe constitutes a signal,
but is in fact uncorrelated with the future
value of the asset [5,26].

Although chartist strategies should not be prof-
itable according to the efficient markets hypoth-
esis [21], this is not necessarily true if the mar-
ket is outside of an efficient equilibrium. For ex-
ample, if many agents adopt a chartist forecasting
strategy it may be rational to follow suit as the
chartist expectations may lead to a self-fulfilling
prophecy in the form of a speculative bubble. Thus
there are feedback effects from these three classes
of forecasting strategy and it is important to study
the interaction between them in order to under-
stand the macroscopic behaviour of the market as
a whole.

We model the market mechanism as a continu-
ous double auction with limit orders. Our model
is implemented as a discrete-event simulation us-
ing a Bernoulli process [2] to model time; on any
given time-step, agents arrive at the market with
probability .

Orders are executed using a time priority rule:
the transaction price is the price of the order which
was submitted first regardless of whether it is a bid
or ask. If an order cannot be executed immediately
it is queued on the order-book [17,18].

All orders have a limited order life, after which
they are removed from the order book if they have
not been successfully matched (a constant exoge-
nously set to 200 units of time).

If a bid exceeds the best ask (lowest ask price
on the order book) it is entered at the ask price
(converted into a market order rather than a limit
order). If an ask is lower than the best bid (highest
bid price on the order book) it is entered at the bid
price (again converted into a market order rather
than a limit order).

The sign (buy or sell) and the price of the or-
der for agent i at time ¢ is determined as a func-
tion of each agent’s forecast of the expected return
T(i,t,t+7) for the period ¢ + 7 (7 a constant defin-
ing the time horizon over which price expectations
are made). The forecasted price for agent i is set
according to:

Plistrr) =Pt - € 0D (1)

where p; is the quoted price at time t, and the
sign of the order is buy iff. p¢; ¢4,) > py or sell iff.
Dliyitr) < Dt-

We adopt the framework of [17,18] in which the
forecasted expected return for the period ¢ + 7 of
agent ¢ at time ¢ is calculated with a linear combi-
nation of fundamentalist, chartist and noise-trader
forecasting rules:

Plitttr) =T f(itt+r) + Te(itttr) T (2)
Pr(i tt+7)
TiGterr) = fae - (F;tpt> (3)
Pe(i,t,t+r) = Clit) “ TLy (4)
Pritt+r) = Nit) * €Gib) (5)

In Equation 3, F is the “fundamental price”
(which is exogenous and constant for all agents),
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p¢ is given the value of the transaction at the pre-
vious time step or in the absence of a transaction
the midpoint of the spread, €; ) are random iid.
variables distributed ~ N(0,1) and ry, is a fore-
cast based on historical data, in our case a moving
average of actual returns over the horizon period
LZ’Z
L;

1 Pt—j — Pt— _7 1 (6)

Pt —j—1

Z ]=1

The period L; is randomly and uniformly ini-
tialised from the interval (1,/,,4,). The linear co-
efficients f(; ), c,¢) and n; ) denote the weight
that agent i gives to each class of forecast amongst
fundamentalist, chartist and noise-trader respec-
tively at time t. Bids (b}) and asks (a!) (that is
buys and sells) are entered into the market with a
markup or markdown:

bi = i pir (1= ki) (7)
ai = ﬁi,t-&-‘r(l + ki) (8)

where k; is randomly and uniformly initialised
from an interval (0, kynaz)-

3.2. Evolutionary Algorithm

To model imitation [17,18], agents use a co-
evolutionary Genetic Algorithm to learn the coef-
ficients f; +), ¢y and ng ). Each agent records
its own forecast error as the market progresses and
generates a fitness score s;.

1
2 (pe — Ei(pr))? ©)

S; =

After every 5000 time steps, the population of
agents reproduces. The fitness score of agent i is
given by:

s

Z‘Sz

We use these fitness scores to produce the next
generation of agents using fitness proportionate
selection [1]. The next generation consists of the
same number of agents as the previous generation
(steady-state evolution). Each member of the new
generation is picked at random from the previ-
ous generation with a probability of S;. When an
agent is selected for reproduction, one of its strat-

S; =

(10)

egy weights f,c,n or history horizon value L; is
inherited.

The initial values at time ¢t = 0 for the fun-
damentalist f(; 0y, chartist c(; o) and noise n; g
weights are drawn from the following distributions:

Ja,0) ~ IN(0,0)l,
c(i O) ~ N(070-C)a
n(,0) ~ [N(0,05)] (11)

In addition to the learning of weights after each
5000 units of time, agents mutate one of their
weights with a probability p,, drawing a weight at
random from the distributions in Equation 11 or
drawing a new history horizon value (L;).

3.8. Contrarian Model

We analyse two variants of this basic model; an
existing model in the literature [17,18] in which
forecasting strategies are linear combinations as
per Equation 2 (henceforth we refer to this model
as the LY Model), and our own model in which
each agent adopts either an atomic fundamentalist
(Equation 3), chartist (Equation 4) or noise trader
(Equation 5) forecasting rule and not a linear com-
bination as in the LY model above (Equation 2).
Both our model and the LY model occupy the same
strategy space. In our model however, two out of
the three weights are zero reducing each agent to
just one of the return forecast rules (Equation 3,
Equation 4 or Equation 5).

J. Conrad et al [6] identify two main trading
strategies: momentum strategies based on the fol-
lowing of trends, and contrarian strategies based
on the reversal of trends. Contrarian traders pre-
dict price reversals and make profit (when they are
correct) by positioning themselves to take advan-
tage of that reversal. These two diametrically op-
posed strategies appear to exist simultaneously [6].
For example, in a rising trend momentum strate-
gists will place bid orders (buys) in the market
while contrarian strategists will place asks orders
(sells). Other factors contribute to contrarian like
behaviour. For example “pairs trading” [11] where
a pair of related stocks are traded together such
that when one is relatively expensive and the other
cheap, traders sell the expensive one and buy the
cheap one, a behaviour which is entirely indepen-
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dent of trends in the market. Other contrarian
like behaviour can be caused by events external
to the market, like arbitrage (risk-free profit) op-
portunities. For example, prices for the same stock
can differ between two markets so traders buy in
the cheaper market and sell in the more expensive
market (gaining risk-free profit).

The LY Model implements contrarianism by al-
lowing the chartist weight to go negative (Equa-
tion 11). In the LY Model agents imitate success-
ful strategies, if the most successful strategy em-
ploys a negative chartist weight then agents will
tend to adopt that strategy and this will repre-
sent the strategy of the herd. Contrarian strate-
gists seek to behave in a contrary way to the herd.
To capture this behaviour we introduce additional
contrarianism. We add two contrarian strategies;
one is to negate the learnt trend, so the contrarian
agent predicts a price move in the opposite direc-
tion of the learnt trend (e.g if the learnt chartist
trend is negative then the contrarians will predict
a price move in a positive direction and vice versa),
and the second that the price will not trend in the
learnt direction at all but will remain at its current
level. We have chosen to implement this firstly by
setting the contrarian chartist strategy to be the
negative of the non-contrarian chartist strategy:

fcc(i,t,wr) = _’Fc(i,t,tJrT) (12)
Secondly we set the contrarian fundamentalist and

noise strategies to be the zeroed non-contrarian
fundamentalist and noise strategies:

ffc(i,t,t+fr) = fnc(i,t,t+r) =0 (13)
In the contrarian variant, agents can choose

from the following discrete set of return forecasting
strategies:

{’ﬁc(i,t,t-&-‘r) ) ff(i,t,t+7') ) ’ﬁn(i,t,t+7') )

ffc(i,t,t+7')7 f‘nn(i,t,tﬁﬂr)? ,F‘Cc(i,t,tJrT)}

The same learning process operates in this
model as in the LY model (but with the addition of
the contrarian parameter). So an agent can change
from fundamentalist to chartist or contrarian to
non-contrarian to take advantage of a better strat-
egy. During initialisation of the model values are
drawn randomly from the distributions in Equa-
tion 11 as in the LY model, but each agent also
chooses randomly between being a fundamental-
ist, chartist or noise trader and contrarian or non-
contrarian. Henceforth we refer to this latter model
as “the Contrarian Model”.

4. Methodology and Empirical Data

We compare model assumptions according to
how well a particular model reproduces the long-
memory “stylized facts” of volume, volatility, or-
der signs, and returns. To compare models we
test their long-memory properties using Lo’s mod-
ified rescaled range (R/S) statistic [22] (sometimes
called range over standard deviation). The statis-
tic is designed to compare the maximum and mini-
mum values of running sums of deviations from the
sample mean, re-normalised by the sample stan-
dard deviation. The deviations are greater in the
presence of long-memory than in the absence of
long-memory. The Lo R/S statistic includes the
weighted auto-covariance up to lag q to capture
the effects of short-range dependence. Firstly we
examine the long-memory properties of real-world
data.

The companies in the FTSE 100 represent ap-
proximately 80% of the capital value of the Lon-
don Stock Exchange (LSE), and the FTSE 100
index is a leading UK market indicator. We ex-
amine data from major FTSE 100 companies; in-
traday data from April 2008 to June 2008 (the
stocks presented in Table 1). The LSE operates an
electronic double-auction market and historical in-
traday data can be purchased from the exchange.
Data is provided in the form of three relational
database tables from the LSE electronic market-
place SETS. Given these three database tables it
is possible to infer the actual intraday behaviour
of the market. We have analysed each stock in Ta-
ble 1 for each day over the April 2008 to June
2008 period and present long memory results in
Table 2. The Table shows the percentage of days of
stock data that exhibit long memory for volume,
volatility, order signs and returns. We see that we
obtain long memory in volume, volatility, order
signs but almost none in returns. Table 3 shows
the average return kurtosis, and average Hurst ex-
ponents for volume, volatility, order signs and re-
turns for all the stock days. Hurst values above 0.5
indicate persistence (the reinforcement of trends)
while below 0.5 indicates anti-persistence (mean-
revertion). All of volume, volatility, order signs are
persistent while returns are anti-persistent. The re-
sults demonstrate the “stylized facts” present in
real-world data confirming observations by other
researchers as discussed in Section 1.
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Table 1

Major FTSE 100 companies data set ranging over the pe-
riod from April to June 2008. (The LSE dataset used is 3.42
GB in size and covers over 550 days)

Company Sector

Astrazeneca Plc Pharmaceuticals and Biotechnol-

ogy
British American To- | Tobacco
bacco Plc
BG Group Oil and Gas Producers
Bhp Billiton Plc Mining

British Petroleum Plc Oil and Gas Producers

Bovis Homes Plc Household Goods

Pharmaceuticals and Biotechnol-
ogy

HSBC Holdings PLC Banks

Royal Dutch Shell Plc Oil and Gas Producers

Glaxosmithkline Plc

Table 2

Major FTSE 100 companies data. Percentages of runs with
long memory for volume, volatility, order signs and returns
at various time lags ranging from 4 x 30 seconds to 10 x 30
seconds.

Lag Volume Volatility Order Returns
Signs

q=4 92.2 90.0 73.2 3.5

q=6 91.3 88.0 70.4 3.5

q=8 90.1 85.5 66.8 3.4

q=10 | 88.5 83.0 63.0 3.7

Table 3
Major FTSE 100 companies data (sampled every 30 sec-
onds). Return distribution kurtosis. Hurst exponents for
volume, volatility, order signs and returns.

Return Hurst Hurst Hurst Or- | Hurst
Kurtosis Volume | Volatility der Signs Returns
169 |070 | 066 | 0.66 0.46

Our first experiment tests the conjecture that
imitation (in the LY Model) is sufficient to pro-
duce the long memory phenomena by attempting
to reject the null hypothesis that long memory is
caused by the strategies that each agent adopts,
and not by learning at all. The model is simulated
in two sequential phases: firstly, a learning phase,
and secondly, a commitment phase. In the learn-
ing phase the agent’s genetic algorithm searches
for strategies with high relative fitness (see Equa-
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Fig. 1. LY Model. Fundamentalist (f), Chartist (c), Noise
(n) mean weights and Chartist Standard Deviation (o)
(represented by the bars) with time. In the first half of the
experiment learning is switched on and we see movements
in mean weight values and changes in the standard devia-
tions of weight distributions (only chartist shown here). In
the second part of the experiment learning is switched off
and the means of weights and weight distribution cease to
change.

tion 9 and Equation 10). In the commitment phase
agent’s commit to a learnt strategy and perform
no further learning.

The default experiment time is 2.5 x 10° time
units (consistent with [17,18]). The experiment is
executed for three times the default experiment
time (3 x 2.5 x 10° units of time); the first 2.5 x 105
units of time are discarded to allow the model to
stabilise. The learning phase is executed for the
remaining half of the experiment time (the default
time) and then the commitment phase runs for
the same period (default parameter values are dis-
played in Table 4 these values have been taken
from [17,18]). Parameter values are varied ran-
domly as described in Table 7 and Table 10.

5. Validation Results for
LY Model

In Figure 1 we show the mean value (across all
agents) of the fundamentalist (f), chartist (¢) and
the noise trader weight (n) with respect to time.
It also shows the chartist weight distribution stan-
dard deviation (o.) (the noise and fundamental-
ist weight distribution standard deviation are not
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shown but behave in a similar manner). As we can
see in Figure 1 there is a period of fluctuation in
the mean weights as the agents move about in the
strategy space. However, as we would expect, when
the commitment phase starts at time ¢t = 5 x 10°,
the mean and standard deviation of the weights
remains constant.

The experiment was executed 500 times. Tables
5 and 6 show the percentage of simulation runs
which exhibit long memory in volume, volatility,
signs of orders (buy or sell orders) and returns. In
the first phase (the learning phase presented in Ta-
ble 5) we see the long memory characteristics we
are expecting with this model. In the second phase
(the commitment phase presented in Table 6) long
memory properties have largely disappeared. It is
not, therefore, sufficient to have the correct mix of
strategies in order to generate long memory. This
implies that there is something about the dynam-
ics of weight changing (caused in this case by the
learning process) which is causing these phenom-
ena.

One feature of the results obtained is the relative
weakness of the long memory for order signs. These
models make one particular simplifying assump-
tion that may have implications for order sign long
memory; the absence of an inventory, all trader or-
ders are presented to the market with one unit of
asset. In reality financial traders have a finite as-
set resource and present orders of varying volume
sizes. In particular when traders need to buy or
sell large quantities of an asset they will often split
their orders into a set of smaller orders to minimise
the market impact (the affect on asset price). A
large single order entered into the market can at-
tract very poor prices i.e a large order to buy will
consume sellers orders starting with the cheapest
and depending on the order size and the available
volume on the order book will consume more and
more expensive orders. F. Lillo et al [20] demon-
strate that order-splitting introduces long-memory
in order signs also B. LeBaron et al [16] demon-
strate that the LY Model with order-splitting (and
without imitation) produces order sign long mem-
ory. It is our conjecture that with the addition of
an inventory and order splitting the weak order
long memory results might improve.

6. Model Robustness

In this section we review the robustness of the
LY Model and the Contrarian Model by perform-

Table 4
Default Values for All Models.

’ Parameter ‘ Value

Std dev of fundamental weight | 1.0
(94)

Std dev of chartist weight (o) | 1.5

Std dev of noise weight (o) 0.5

Probability of mutation per | 0.08
generation (py,)

Probability of entering the | 0.5
market \ per time step

Maximum markup or mark- | 0.5
down (kmax)

Maximum period over which | 100 units of time

trends are calculated (lmaz)

Period over which price expec- | 200 units of time

tations are made (7)

Fundamental price (F) 1000
Number of Traders 1000
Order Life 200 units of time
Tick Size (the smallest price | 0.1
differential)
Table 5

LY Model Learning Phase. Percentages of runs with long
memory for volume, volatility, order signs and returns at
various time lags ranging from 4 x 50 (200 units of time) to
10 x 50 (500 units of time).

Lag Volume Volatility Order Returns
Signs

q=4 70 74 13 2

q=06 69 71 11 2

q=8 68 69 11 3

q=10 | 68 68 10 3

Table 6

LY Model Commitment. Percentages of runs with long
memory for volume, volatility, order signs and returns at
various time lags ranging from 4 x 50 (200 units of time) to
10 x 50 (500 units of time).

Lag Volume Volatility Order Returns
Signs

q=4 2 3 2 4

q=6 2 2 2 4

q=8 2 2 3 4

q=10| 3 1 3 4

ing two sets of experiments. The two models dif-
fer from each other. The LY model adopts a lin-
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Table 7

Ranges of Parameter Values

Parameter Value

Probability of mutation per | 0.05 to 0.20
generation (pm)

Probability of entering the | 0.5 to 1.0
market ()

Maximum markup or mark- | 0 to 0.5
down (kmaz)

Maximum period over which | 50 to 150 units of
trends are calculated (Imqq) time

Period over which price expec- | 1 to 200 units of
tations are made (7) time

ear combination of rules whereas the Contrar-
ian model uses an atomic forecast strategy spec-
ified by Equations 3-5. In addition, in the Con-
trarian model, agents adopt a contrarian or non-
contrarian strategy. In the first experiment we do
not vary free-parameters associated with the fore-
casting strategy and in the second we do. Any im-
pact on robustness due to this difference is then
apparent.

0.1. Free Parameter Variation

In this experiment we vary a selection of the
free-parameters by drawing from uniform distribu-
tions described in Table 7. We have extended the
experiment execution time to highlight any prob-
lems in robustness with respect to time. The ex-
periments were run for 10 times the default time
(10 x 2.5 x 10° units of time). Fifty sets of ran-
dom parameter variations were executed with 10
executions for each set (totalling 500 for 2.5 x 10°
units of time). The first 2.5 x 10° units of each ex-
periment are discarded to allow the models time
to stabilise.

In Table 8 we present the results of the first ex-
periment. We note the LY Model produces weak
order sign long memory. With the Contrarian
Model (Table 9) the order sign long memory is
about double that of the LY Model. In addition the
percentage of runs with long memory in volatility
and volume is significantly larger. The Contrar-
ian Model is producing results consistent with the
empirical data observed in Table 2 apart from a
weakness in order sign long memory.

Table 8

Free Parameter Variation Experimental Results for LY
Model. Percentages of runs with long memory for volume,
volatility, order signs and returns at various time lags rang-
ing from 4 x 50 (200 units of time) to 10 x 50 (500 units of
time).

Lag Volume Volatility Order Returns
Signs

q=4 59 60 18 1

q=06 57 55 16 1

q=8 55 53 14 2

q=10 | 54 51 12 2

Table 9

Free Parameter Variation Experimental Results for Con-
trarian Model. Percentages of runs with long memory for
volume, volatility, order signs and returns at various time
lags ranging from 4 x 50 (200 units of time) to 10 x 50 (500
units of time).

Lag Volume Volatility Order Returns
Signs

q=4 85 78 37 0

q=6 84 77 37 0

q=8 83 77 38 0

q=10 | 82 76 38 0

6.2. Extended Free Parameter Variation

In the LY Model we sum contributions of
chartist, fundamental and noise returns to make
our return prediction (as in Equation 2) while with
the Contrarian Model only one of chartist, funda-
mental and noise returns contributes to our pre-
diction. In the first set of experiments we varied
parameters that do not contribute to weights as-
signed to chartist, fundamental and noise returns
demonstrating that we obtain improvements with
the Contrarian Model without this difference. In
the second set of experiments we vary some addi-
tional free-parameters; the standard deviations of
the Gaussian distributions from which the weights
are chosen (Equation 11). The experiments, as be-
fore, are run for 10 times the default time (10 x
2.5 x 10° units of time) and parameter values were
randomly drawn (uniformly) from the ranges in
Table 10 and 7. Fifty sets of random parameter
variations were executed with 10 executions for
each set (totalling 500 for 2.5 x 105 units of time).
The first 2.5 x 10° units of each experiment are dis-
carded to allow the models time to stabilise. The
Contrarian Model is executed in two modes: firstly
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Table 10

Ranges of Additional Parameter Values. Percentages of
runs with long memory for volume, volatility, order signs
and returns at various time lags ranging from 4 x 50 (200
units of time) to 10 x 50 (500 units of time).

’ Parameter ‘ Value
Std dev of fundamental weight | 0.0 to 3.0
(o)
Std dev of chartist weight (o) | 0.0 to 3.0
Std dev of noise weight (o) 0.0 to 3.0

a reduced mode where the contrarian functionality
is switched off leaving just the atomic extension
to the LY Model (this we refer to as the Atomic
mode), and secondly the normal mode where the
contrarian functionality is switched on and which
includes the atomic extension to the LY Model.
We do this to illustrate the contributions made by
each extension.

In Table 11 we present the results from the LY
Model. We note that the LY Model produces weak
order sign long memory. While Table 12 and Table
13 show the improvements of the extensions intro-
duced by the Atomic Mode and Contrarian Model.
The Contrarian Model (Table 13) has strong long
memory in volume and volatility, much improved
order sign long memory. In Tables 14 and 16 we
show the Hurst exponents for volume, volatility,
order signs and returns, here we can see that we
obtain a low Hurst exponent for returns of be-
tween 0.3 and 0.4 indicating anti-persistence which
is consistent with observations of real world high
frequency return data [32] and Table 3. We note
also, that we get persistence in volume, volatil-
ity, and order signs (although persistence in or-
der signs is weak under these variations of param-
eter settings). In these tables we also show the re-
turn distribution kurtosis, it is a stylized fact of
real world markets that returns exhibit fat tails
(a high kurtosis) [9]. Excess kurtosis may indeed
be closely linked to volatility clustering and thus
may be linked to long memory as well. We obtain
for the two models values of 4.5 and 4.7 (a Gaus-
sian distribution has a kurtosis of 3). These mod-
els, therefore, do produce fat tails (although not
as strongly as the empirical observations in Table
3).
In Tables 17 and 18 we look at the first 2.5 x 10°
units of time of an experiment. We have separated
out the long memory properties of the execution
of the LY Model into an early part of the test (the

Table 11

Extended Free Parameter Variation Experimental Results
for LY Model. Percentages of runs with long memory for
volume, volatility, order signs and returns at various time
lags ranging from 4 x 50 (200 units of time) to 10 x 50 (500
units of time).

Lag Volume Volatility Order Returns
Signs

q=4 63 63 20 1

q=06 61 58 16 1

q=8 60 57 14 1

q=10 | 60 55 13 1

Table 12

Extended Free Parameter Variation Experimental. Percent-
ages of runs with long memory for volume, volatility, order
signs and returns at various time lags ranging from 4 x 50
(200 units of time) to 10 x 50 (500 units of time). Results
for Atomic Mode

Lag Volume Volatility Order Returns
Signs

q=4 95 87 13 0

q=06 95 87 13 0

q=8 96 87 12 1

q=10 | 96 87 12 1

Table 13

Extended Free Parameter Variation Experimental Results
for Contrarian Model. Percentages of runs with long mem-
ory for volume, volatility, order signs and returns at various
time lags ranging from 4 x 50 (200 units of time) to 10 x 50
(500 units of time).

Lag Volume Volatility Order Returns
Signs

q=4 90 84 41 0

q=06 89 82 41 0

q=8 88 81 42 0

q=10 | 87 80 42 0

Table 14
Extended Free Parameter Variation Experimental Results
for LY Model. Return distribution kurtosis. Hurst expo-
nents for volume, volatility, order signs and returns.

Return Hurst Hurst
Kurtosis Volume | Volatility

Hurst Or- | Hurst
der Signs Returns

4.7 059 ] o0.61 | 0.54 | 04

first 1.25 x 105 units of time) and a later part (the
second 1.25 x 105 units of time). The experiment
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Table 15

Extended Free Parameter Variation Experimental Results
for Atomic Mode. Return distribution kurtosis. Hurst ex-
ponents for volume, volatility, order signs and returns.

Return Hurst Hurst Hurst Or- | Hurst

Kurtosis Volume | Volatility der Signs Returns
43 | 064 [ 0.66 0.50 0.30
Table 16

Extended Free Parameter Variation Experimental Results
for Contrarian Model. Return distribution kurtosis. Hurst
exponents for volume, volatility, order signs and returns.

Return Hurst Hurst Hurst Or- | Hurst

Kurtosis Volume | Volatility der Signs Returns
45 | 066 [ 0.64 0.52 0.31
Table 17

Early Phase Execution Results for LY Model. Percentages
of runs with long memory for volume, volatility, order signs
and returns at various time lags ranging from 4 x 50 (200
units of time) to 10 x50 (500 units of time). The experiment
time is for just the first 1.25x 105 units of time of the default
2.5 x 10° units of time and not the full default 2.5 x 10°
units of time.

Lag Volume Volatility Order Returns
Signs

q=4 100 99 50 50

q=6 100 99 52 55

q=8 100 99 53 57

q=10 | 100 99 54 61

Table 18

Later Phase Execution Results for LY Model. Percentages
of runs with long memory for volume, volatility, order signs
and returns at various time lags ranging from 4 x 50 (200
units of time) to 10x 50 (500 units of time). The experiment
time is for just the second 1.25 x 10° units of time of the
default 2.5 x 10° units of time and not the full default 2.5 x
10° units of time.

Lag Volume Volatility Order Returns
Signs

q=4 69 79 27 25

q=06 70 7 28 28

q=8 70 76 29 29

q=10 | 70 75 29 31

has been run with the default parameters in Table
4. We note that the long memory properties of
the model are changing with respect to time. The

0.62
O  Contrarian Model
0.6% * LY Model

0.58

o o o o o
'S ~ o I3 o o
) © o N iy =)

Fundamental Standard Deviation (o).

o
'S
IS

N

N

N
o
=
N}
w
IN
o

Fig. 2. LY and Contrarian Model fundamentalist standard
deviation with time. The LY Model converges to a narrower
distribution, while the Contrarian Model converges but to
a much lesser extent.
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Fig. 3. LY and Contrarian Model chartist standard devia-
tion with time. The LY Model converges to a narrower dis-
tribution, while the Contrarian Model although it fluctu-
ates does not move far from it’s initial state.

dynamics of the LY Model is changing the long
memory properties of the model.

In order to appreciate why we have differences
in the results of the two models we investigate
the dynamic behaviour of the LY Model and con-
trast it with the Contrarian Model. During learn-
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Fig. 4. LY and Contrarian Model Noise standard deviation
with time. The LY Model diverges to a broader distribution,
while the Contrarian Model remains close to constant.

ing, the strategy weights will change as agents im-
itate more successful strategies. We run the LY
Model and Contrarian Model 100 times using the
default parameter set in Table 4. We present the
results in Figures 2, 3 and 4. The figures show the
standard deviations of the three strategy weight
distributions (fundamental (o), chartist (o) and
noise (o,,)) with respect to time. In Figure 2 the
changes in fundamendalist standard deviation (o)
for the LY Model and Contrarian Model are simi-
lar in that both converge from their initial state to
a narrower distribution. However, the LY Model
converges the most. In Figure 3 the changes in
chartist standard deviation (o.) for the LY Model
and Contrarian Model are quite different. The LY
Model is clearly converging to a narrower distribu-
tion with the result that the agents are becoming
increasingly more homogeneous. The Contrarian
Model, although it is clearly changing, it’s chartist
weight distribution is not significantly converging
away from it’s initial state. In Figure 4 the changes
in noise standard deviation (o) for the LY Model
and Contrarian Model are quite different again.
The LY Model is clearly diverging to a broader
distribution while the Contrarian Model is barely
changing at all. The two Models are noticeably
different in that the LY Model’s weight distribu-
tion changes are much greater than those for the
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LY Model. Fundamental standard deviation (oy). R* = 0.4088.

Fig. 5. LY Model. Long Memory in Volume Versus Fun-
damentalist Standard Deviation (os) with lag (¢ = 4). As
we decrease the initial standard deviation of the fundamen-
tal weight distribution we note that we get decreasing long
memory values in volume.

Contrarian Model. The dynamic characteristics of
the Contrarian Model are more stable than the LY
Model.

Given that the LY Model, in particular, has dy-
namics which are significantly changing the strat-
egy weight distributions, we test to see what the
effects on long memory are with changing the stan-
dard deviations of the weight distributions. We ex-
ecute the models with the default parameter set-
tings in Table 4 and with 100 different initial val-
ues of standard deviation in the range 0.13 to 3.1
and plot the results. We report the R? as a guide
although many of the relationships are non-linear.

Figures 5 and 6 illustrate that as the fundamen-
tal standard deviation (of) becomes narrower the
long memory statistic in volume and volatility re-
duces. The convergence of the LY Model in Fig-
ure 2 is going to have a detrimental affect on the
generation of long memory for volume and volatil-
ity. (We present a more detailed analysis of the ef-
fects on long memory through changes to strategy
weight distribution in the Appendix)
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Fig. 6. LY Model. Long Memory in Volatility Versus Fun-
damental Standard Deviation (o) with lag (¢ = 4). As
we decrease the initial standard deviation of the fundamen-
tal weight distribution we note that we get decreasing long
memory values in volatility.

7. Non-Learning Model

In this section we test a simplified Contrarian
model to illustrate the central role of the dynamics
in producing long memory phenomena.

In this model we modify the Contrarian Model
by switching off the learning process, but retaining
mutation. Agents within this model do not imitate
each other, there is no social learning, agents mod-
ify their strategy weights independently of each
other through random mutation. The selection and
cross-over are switched off, we still continue to in-
troduce new strategies into the population via the
mutation operator. Each agent is initialised with
weights drawn from the distributions in Equa-
tion 11. After each 5000 units of time, agents
may mutate one of their weights drawing a weight
at random from the distributions in Equation 11
or drawing a new history horizon value (L;) or
switching from contrarian to non-contrarian (with
a probability p,, ). The model therefore has no con-
verging learning process only the random muta-
tion of the strategy space. The experiment is a re-
peat of the extended free-parameter variation ex-
periment performed previously, but using a non-
learning Contrarian Model.

By comparing Table 19 and Table 13 we can
see there is very little difference in results be-

Table 19

Experimental Results for Non-Learning Contrarian Model.
Percentages of runs with long memory for volume, volatility,
order signs and returns at various time lags ranging from
4 x 50 (200 units of time) to 10 x 50 (500 units of time).

Lag Volume Volatility Order Returns
Signs

q=4 89 83 40 0

q=6 88 82 41 0

q=8 87 81 41 0

q=10 | 86 80 42 0

Table 20

Extended Free Parameter Variation Experimental Results
for Non-Learning Contrarian Model. Return distribution
kurtosis. Hurst exponents for volume, volatility, order signs
and returns.

Return Hurst Hurst
Kurtosis Volume | Volatility

Hurst Or- | Hurst
der Signs Returns

[ 45 | 067 ] 0.64 0.52 0.31

tween the learning Contrarian Model and the non-
learning Contrarian Model. We conclude from this
that learning or imitation is not necessary for the
generation of long memory and that other models
that have the dynamics of agent strategy change
will also produce long memory. In Table 20 we
show the Hurst exponents for volume, volatility,
order signs and returns. We obtain a low Hurst
exponent for returns of about 0.3 indicating anti-
persistence again, as in Tables 14 and 16. In Table
20 we also show the return distribution kurtosis
which demonstrates that this model also produces
fat tails.

8. Conclusion

While imitation may contribute to the gener-
ation of long memory phenomena in real finan-
cial markets other factors must play a role in
the production of robust long memory phenom-
ena over time (e.g contrarianism). M. Kampouridis
et al [14] point towards a need for continuous co-
evolution and adaption of strategies as a result of
the non-stationary nature of real world financial
markets. Over-commitment to small sets of strate-
gies is ineffective over time. Our model which in-
corporates contrarianism and strong disparity be-
tween strategies is able to generate a more dy-
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namic behaviour in steady state. In contrast the
LY model is not as robust with respect to varia-
tion in free-parameter settings and execution time.
This is caused by the convergence of the Genetic
Algorithm to a smaller and smaller strategy space
and a loss, therefore, of the dynamic that causes
the long memory phenomena. We extended the
important LY model adding atomic agents and
increased contrarianism (the Contrarian Model)
which retains the dynamic necessary to generate
robust long memory phenomena (Section 6).

We demonstrated that it is indeed the dynam-
ics of strategy changing that is the cause of long
memory in these models. A simple Contrarian
Model with no social learning and no imitation but
with agents randomly and independently changing
strategy generates long memory. Learning is not
necessary for the generation of long memory.

Future Research

We conjecture that any model that causes and
maintains a dynamic strategy switching behaviour
will produce stable long memory and that non-
learning heuristic models would also produce pos-
itive long memory. We intend to calibrate the dis-
cussed models to London Stock Exchange high fre-
quency data with a view to identifying weaknesses
in their ability to produce the empirical properties
of the data.

The weakness we experience in long memory for
order signs we conjecture is as a result of a simpli-
fied inventory in these models. [20] and [16] find
that the introduction of order-splitting results in
long memory in order signs. With the addition of
order-splitting we may improve the order sign long
memory characteristics of these models.

We expect to do further analysis of the two mod-
els including analysing a non-learning version of

the LY Model.
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Fig. 7. LY Model. Long Memory in Order Sign Versus Fun-
damental Standard Deviation (o) with lag (¢ = 4). As we
can see there is little if any linear or non-linear relation-
ship between order signs and size of the fundamental weight
distribution.
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Fig. 8. LY Model. Long Memory in Volume Versus Chartist
Standard Deviation (of) with lag (¢ = 4). As we decrease
the increase the standard deviation of the chartist weight
distribution we note that we get decreasing long memory
values in volume.

Appendix

In this appendix we present a more detailed
analysis of the effects on long memory through
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increase the initial standard deviation of the fundamental
weight distribution we note that we get decreasing long
memory values in volatility.
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Fig. 10. LY Model. Long Memory in Order Signs Versus
Chartist Standard Deviation (o) with lag (¢ = 4). As we
increase the initial standard deviation of the chartist weight
distribution we note that we get decreasing long memory
values in volume.

changes to strategy weight distributions. In Fig-
ure 7 the relationship between the fundamentalist
standard deviation (oy) and order sign long mem-
ory statistic is not significant for these runs. In
Figures 8 and 9 we see the opposite relationship
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Fig. 11. LY Model. Long Memory in Volume Versus Noise
Standard Deviation (of) with lag (¢ = 4). As we decrease
the initial standard deviation of the noise weight distribu-
tion we note that we get decreasing long memory values in
volume.
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Fig. 12. LY Model. Long Memory in Volatility Versus Noise
Standard Deviation (oy) with lag (¢ = 4). As we increase
the initial standard deviation of the noise weight distribu-
tion we note that we get increasing long memory values in
volatility.

to Figures 5 and 6 with a convergence to a lower
chartist standard deviation (o.) having a positive
effect on the generation of long memory. In Fig-
ure 10 we have no significant effect on order sign
long memory statistic. In Figures 11, 12 and 13
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Fig. 13. LY Model. Long Memory in Order Signs Versus
Fundamentalist Standard Deviation (oy) with lag (¢ = 4).
As we increase the initial standard deviation of the noise
weight distribution we note that we get increasing long
memory values in order signs.
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Fig. 14. Contrarian Model. Long Memory in Volume Versus
Fundamentalist Standard Deviation (o) with lag (¢ = 4).
As we increase the initial standard deviation of the funda-
mental weight distribution we note that we get decreasing
long memory values in volume.

volume, volatility and order sign long memory in-
crease with an increase in noise standard deviation
(on)-

To understand the reasons for the relationships
between weight distributions and long memory it
is important to understand that orders that are
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Fig. 15. Contrarian Model. Long Memory in Order Signs
Versus Fundamentalist Standard Deviation (of) with lag

(g=4).
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Fig. 16. Contrarian Model. Long Memory in Volume Versus
Chartist Standard Deviation (o) with lag (¢ = 4). As we
decrease the initial standard deviation of the chartist weight
distribution we note that we get decreasing long memory
values in volume.

distant from the spread (the spread being the price
difference between the best ask (best sell) and best
bid (best buy) orders) are unlikely to transact or
affect the mid price (the price halfway between
the best bid and best ask). Volatility and volume
are affected only by what happens in the region
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Fig. 17. Contrarian Model. Long Memory in Order Signs
Versus Chartist Standard Deviation (o) with lag (¢ = 4).
As we decrease the initial standard deviation of the funda-
mental weight distribution we note that we get decreasing
long memory values in volume.

of the spread. Large weight standard deviations
will generate large weights so that orders are likely
to be entered at large distances from the spread
and therefore have no impact on the price in the
market (transaction prices or mid prices). Small
weight standard distributions will have the oppo-
site effect.

The fundamentalist trader predicts a move back
to a fundamental price and places orders that re-
flect that. The fundamentalist is mean-reverting
and is always encouraging the market to return to
the fundamental price. Mean-reversion is an anti-
persistent behaviour and represses long memory.
A small weight standard deviation for the fun-
damentalist means more anti-persistent behaviour
around the spread and so a reduction in long mem-
ory. In Figures 5 and 6 we see this affect.

The noise trader is contributing a noise com-
ponent to the market; drawing return predictions
from a standard normal distribution which it then
weights. If the noise standard deviation (o) is
small it will affect the spread introducing Gaussian
random orders into the market which will affect
the market price and repress long memory. In Fig-
ures 11, 12 and 13 we see that for small noise stan-
dard deviations long memory in volume, volatility
and order signs is reduced.

The chartist trader follows trends, and so will
generate orders which reflect past behaviour in the

market. For small chartist standard deviations (o)
orders will be placed close to the spread. In Figures
8 and 9, with small values for the chartist standard
deviation (o.), we observe stronger long memory.
Given this sensitivity analysis, we suggest that it is
the chartist trader which is primarily responsible
for causing the long memory we detect in the LY
Model.

In Figure 2 the fundamental standard devia-
tion (o) for the Contrarian Model does converge,
though not as strongly as the LY Model. In Fig-
ure 14 we see that with a decrease in fundamen-
tal standard deviation we get larger long memory
statistics for volume (the behaviour for volatility
is similar). The convergence of the fundamental
standard deviation (o), in Figure 2, rather than
decreasing long memory in volume and volatility is
increasing it. Figure 15 shows that there is no rela-
tionship between the fundamental standard devi-
ation and order sign long memory. In Figure 3 the
chartist standard deviation (o) for the Contrar-
ian Model does not converge significantly consis-
tent with Figure 16 where we see little relationship
between the chartist standard deviation and long
memory for volume (the behaviour for volatility is
similar). Again, in Figure 17 there is no relation-
ship between the chartist standard deviation and
long memory for order sign.

The fundamentalist trader in the Contrarian
Model has a contrarian component. While non-
contrarian fundamentalists are still mean-reverting
and therefore anti-persistent. Contrarian funda-
mentalists are not mean-reverting and are using
the last market price.
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