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Abstract

This paper introduces a general regime switching Lévy process, and constructs the
characteristic function in closed form. Correlations between the underlying Markov
chain and the asset returns are also allowed, by imposing asset price jumps whenever
a regime change takes place. Based on the characteristic function the conditional
densities and vanilla option prices can be rapidly computed using the FFT. It is
shown that the regime switching model has the potential to capture a wide variety of
implied volatility skews. The paper also discusses the pricing of exotic contracts, like
barrier, Bermudan and American options, by implementation of a quadrature method.
A detailed numerical experiment illustrates the application of the regime switching
framework.
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1 Introduction

The implied volatility skew (or smile) has been long recognized as the pattern
that summarizes the failures of the Black-Merton-Scholes (henceforth BMS) op-
tion pricing formula. Using a set of observed option prices, one can invert the
BMS formula and retrieve the volatility that would price each one of these con-
tracts correctly. Typically, these volatilities vary substantially across different
strike prices and maturity horizons, indicating that the simple geometric Brow-
nian motion might not be sufficient to capture all features of options markets.
A typical textbook argument would link the volatility skew with (risk neutral)
return distributions that are substantially skewed and leptokurtic, contrasting
the normal returns assumed in the BMS framework. Therefore, it appears that
options markets and the study of the volatility skew could reveal significant
information regarding the true dynamics of the underlying asset price. This
information can be valuable, not only from a vanilla pricing and hedging point
of view, but for the more daunting task of pricing and hedging exotic contracts.

The unique BMS price is an outcome of market completeness, which renders
derivative contracts redundant securities. That is to say, in frictionless markets
their payoff structure can be replicated using primitive securities, such as the
underlying asset and the riskless bond. When attempting to capture the implied
volatility patterns, research on extensions of the BMS framework has taken two
distinctive approaches regarding completeness. In most cases, sacrificing market
completeness would be equivalent to introducing extra stochastic factors, which
cannot be dynamically hedged using the primitive securities alone.

The “local volatility” models of Derman and Kani (1994) and Dupire (1994)

L' See for example Ghysels, Harvey, and Renault (1996) for an overview of the empirical
stylized facts and their relationships to implied volatilities.
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retain the market completeness and assume that the underlying price follows
a diffusion similar to the BMS one but allowing for the volatility to depend

explicitly on time and the underlying price

% = udt + o(S,t)dB,

where S denotes the underlying asset price, p is the constant mean return and
o is a volatility function of the asset and time. It can be shown that such
a specification leads naturally to a (binomial or trinomial) tree that exhibits
inhomogeneous transition probabilities across its nodes. This approach per-
mits flexible volatility structures, and, in principle, can be accurately calibrated
to any volatility surface. Since the assumption of one source of uncertainty is
maintained, all derivative contracts are redundant and can therefore be perfectly
replicated and hedged. Unfortunately, the volatility function o(S, ) is not al-
ways sufficiently smooth, and often takes counterintuitive forms. In addition,
the large number of parameters can easily lead to overfitting and instabilities.
Therefore, the local volatility models have not been successful in producing for-
ward curves, and thus do not offer acceptable prices for exotic contracts.

A different approach has been taken in the stochastic volatility and/or jump
diffusion frameworks (see for example Merton 1976; Hull and White 1987; Heston
1993; Bates 1998; and Duffie, Pan, and Singleton 2000, inter alia). The assump-
tion of a single source of randomness is now dropped and either the volatility
assumes a stochastic form of its own, or price discontinuities in the form of
randomly arriving jumps are introduced. In both cases market completeness is
sacrificed, although in the case of stochastic volatility the market can be com-

pleted using a number of derivative contracts. Although such models do not



1 Introduction 4

offer the perfect calibration fit of local volatility models, they can compensate
by offering a robust alternative, where all parameter values admit an intuitive
interpretation.

In this paper we will consider a class of models that belong in the second
class. The instantaneous asset log-returns are generated by one of N candidate
Lévy processes. A Markov chain with NV states will specify the process that
generates the data at any point in time. Thus, the analysis takes place in a
“regime switching” framework. Since the seminal papers of Hamilton (1989,
1990), regime switching models have been applied to virtually every economic
and financial time series. They offer a robust, yet parsimonious, methodology to
model variables with conditional distributions that evolve and change through
time. The business cycle, the collapse of speculative bubbles, interest and ex-
change rate fluctuations, asset pricing with fundamental uncertainty, and the
analysis of volatility regimes are but a small number of areas that have bene-
fited from the regime switching approach.?

Despite their popularity as an econometric tool, regime switching models
have not been used for the purpose of option pricing. This stems from the un-
availability of closed form solutions for such specifications, except for the very
restrictive two-state case This paper attempts to bridge this gap, by con-
structing the characteristic function of a general regime switching Lévy process.
Based on the characteristic function, vanilla option prices can be rapidly com-
puted using the FFT procedure of Carr and Madan (1999). Therefore, a regime

switching model can be calibrated to a whole implied volatility surface in a

2For examples of the rtegime switching framework see Hamilton (1990),
Hamilton and Susmel (1994), Driffill and Sola (1998), [Veronesi (1999, 2001) and
Ang and Bekaert (2002) inter alia.

3See Naik (1993) for the two-state model with Brownian innovations, and
Konikov and Madan (2001) for the two-state model with Lévy innovations.
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matter of minutes.

One of the well documented stylized facts in the stochastic volatility litera-
ture is the substantial degree of negative correlation between the asset returns
and the volatility process. To accommodate for a correlation structure between
the Markov chain and the asset log-returns, jumps are introduced whenever
the chain switches states. The paper derives the characteristic function in this
general case, allowing these jumps to be deterministic or stochastic. Thus, the
regime switching model can be successfully calibrated to a wide range of asym-
metric volatility skews.

There has been a surge of research in the are of pricing and hedging exotic
contracts.E Typically, finite difference methods are employed, which numeri-
cally solve a partial (integro-) differential equation (PIDE), under the appropri-
ate boundary conditions. In the presence of stochastic volatility, these PIDEs
will be two-dimensional, putting a heavy burden on computing resources. In a
regime switching framework a system of one-dimensional PIDEs has to be solved
instead. This can substantially simplify the numerical complexity. In this paper
we also discuss an alternative based on the QUAD method, recently proposed in
Andricopoulos, Widdicks, Duck, and Newton (2003). The QUAD method uses
the probability density rather than solving the PIDEs and is well suited for the
pricing of barrier, Bermudan and American options.

The paper is organized in the following way: Section [2 lays out the un-
derlying assumptions, presents the regime switching Lévy model and computes
the characteristic function. Section 3| explains how the conditional moments
and densities can be retrieved and discusses the pricing of vanilla and exotic

contracts. A numerical example is presented in section 4 showing examples of

4 A bird’s eye view of a number of exotic contracts and their pricing can be found in Wilmott
(2004).
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volatility structures and exotic prices. Section [5 concludes.

2 Assumptions and the main results

This section lays down the underlying process for the asset price, and gives
the main theoretical results of the paper. In particular, the asset returns are
modelled as a regime switching Lévy process. A correlation structure between
the asset and the regime process is installed, and the characteristic function of

the log-returns is derived.

2.1 The regime structure

Consider a Markov chain s;, taking values in Ey = {1,2,..., N}. Denote the
generator of s; with Q = {q(j,7)}, where i,j € Ey. Also denote with E =
{(4,7) : i,j € Eo,i # j} the set of all possible state transitions. The generator

of the Markov chain will define the infinitesimal transition probabilities,

P(sira = jlse = i) = q(j,)A + o(A), for i # j

P(siza =t]s; =1) =14 q(i,79)A + o(A), otherwise

The above structure implies the relationship ¢(i,i) = — Z#i q(4,1).
Also denote with TU+) the set of the (stopping) times, where these regime

shifts take place, that is to say

T — {t >0:8._ =1,5 :j}

for all (j,7) € E.
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2.2 The Lévy structure

We will now turn into the mechanism that generates the underlying asset price,

which we assume takes the form
St = exXp Xt

The log-price process X; will be constructed from a collection of Lévy processes,
as described below.

Consider a collection of independent Lévy processes, indexed by i € Ey, say
Y}. The increments of the log-price process will switch between the N Lévy

processes, depending on the state s,
dXt == dY;St

Each one of the Lévy processes Y/, is assumed to have a Lévy-Ité6 decompo-

sition of the form

dY; = p'dt + o'dB; + / ZN'(dz,dt)
R/{0}

In the above expression, ¢ is the drift and o' is the diffusion coefficient of the
continuous path. For any Borel set A € B(R/{0}), N*(A,t) is a Poisson random
measure, with v(+) its associated Lévy measure, describing the discontinuities.

Now consider the conditional characteristic function of each process Y;, as a

function of the initial value y, and the time ¢

V' (y,t) = EY exp(iuY})
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with initial condition ’(y,0) = exp(iuy). By construction, this function will

satisfy the forward Kolmogorov equation, given for instance in Qksendal (1991)
0" (y, 1) = /"¢ (y, 1)

The generator «7® is applied to the function y — v%(y,t) and is given by (see

for example Applebaum, 2004, p. 139)

@%yf(y)

+/ (f(y+2) — fly) — 20, f(x)1(|2] < 1))v'(d2)
R/{0}

A f(y) = pW'o, f(y) +

Assuming a separation 1(y,t) = exp(iuy)i(t), with 1*(0) = 1, and applying
the generator &7 yields
D' (t) = ' ()¢ (u)

or V' (y,t) = exp(iuy + t¢'(u)), where ¢'(u) is the characteristic exponent or
Léuvy symbol associated with each process Y} (Applebaum, 2004, p. 30). This is
given by

(uo’)?

¢'(u) = tup’ = =

+/ (e — 1 —jusI(|2] < 1)) (d2)
R/{0}
Since dY} will represent an asset log-price increment, it is intuitive to re-parameterize

i (Ui)Q

s /R/{O}(ez — 1= 21(|2] < 1)vi(d2)

With this parametrization, the expected instantaneous asset price growth will
be equal to fi. We assume that this integral is finite and that all Lévy processes

possess at least the first two moments, or equivalently that [ . (2*V2)r(d2) <
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oo. Under the above substitution the Lévy generator can be written as

" / (Fly+2) — F) - (€ — 12, f ) (dz) (2.1)
R/{0}

2.3 The regime switching Lévy process

Recall that log-price increases follow the i-th Lévy process dX; = dY}, given the
regime s; = 7. We will now proceed in determining the characteristic function

of X;. Given Xy = z and sy = i, we denote the characteristic function
Y(x,i,t) = E@D exp(iuX,)

For the regime switching model we have the following

Lemma 2.1. The generator of the process X;, conditional on Xy = x and sq = 1,

will be equal to

o fla,i) = (a(i,0) + ) f(2,0) + Y a(G. i) f(x, j)
i#i

Proof. By definition, the generator of X will be equal to

E@d) £(x _ .
o f(, ) :lAi?(} f( A,XA) f(x,14)
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The expectation can be written, by conditioning on the future regime sa, as

B f(Xa,5a) = Y q(f. )BT f(Xa, )A
J#i

+ (14 q(i, ) AYE@) £(X A, 1) + o(A)

Now the conditional quantities E@9 f(Xn,j), for all j = 1,..., N, can be re-
trieved by applying the generator &*, since the increment (over A) will follow

the i-th Lévy process. Therefore,
BT f(Xa,j) = f(2,5) + " f(2.))A + 0(A)
Substituting, and collecting the o(A) terms gives

B f(Xa, 5a) = f(2,1) + (Z 0(,i)f(2,9) + ' (z, z’)) A+ o)
J#i
By the definition of the generator, and passing to the limit A | 0, yields the

result. O

Having established the generator, we now turn to determining the character-
istic function of the regime switching log-price. The characteristic function has
to satisfy a system of forward Kolmogorov equations. We shall show that the

solution of this system is given by a simple matrix exponential.

Theorem 2.2. Assume that X; follows the regime switching Lévy specification,

as described above. The characteristic function of Xy is given by

ECW exp(iuX;) = exp(iuz) - [1" - exp(t - ®(u)) - II] (2.2)
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where the matriz ®(u) has elements given by

i,0) + di(u), ifj=i
B)],, = q(i,7) + ¢*(u) j

q(7,1), otherwise

and I1 is the initial regime distribution. Recall that the functions ¢'(u) are the

conditional characteristic exponents of the i-th Lévy process.

Proof. Since we have N states, the functions {¢(z,4,t),i = 1,..., N} solve a

system of forward Kolmogorov equations, namely
O (i, 1) = (i, i) + ) (w, i, t) + Y q(G, D)0 (w, j, 1)
i

with initial conditions v (x,7,0) = exp(iux), for all i € E,. We conjecture a
solution of the form v (z,,t) = exp(iuz)y(i,t).> Applying the corresponding

generators produces the system

Orb(it) = (qli, i) + &' (W) (i, t) + Y q(4. 1)), 1)
J#i

This system can be written in matrix form as

O (t) = @ (u) - (1)

where ¢(t) = (¢(1,t) ---1(N, t))" and the matrix ®(u) has elements given by

i,1) + o' (u), ifj=1
)], = q(i,i) + ¢'(u), if j

q(4,1), otherwise

5 Please note that we slightly abuse the notation here, by using 1 for both functions.
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The initial condition is once more ¢ (i,0) = 1, for all i € E;. The solution of

this differential equation is given by the matrix exponential,

(1) =1"-exp(t - ®(u))

Thus, given an initial regime distribution, II, and an initial log-price, X, = x,

the characteristic function of the log-price process X; will be given by

E@ exp(iuX,) = exp(iuz) - [1' - exp(t - ®(u)) - ]

2.4 The correlation structure

A number of studies indicate that asset prices can be strongly correlated with
some underlying, possibly unobserved, state processes.@ The most prominent
example is the popular stochastic volatility model of Heston (1993), where a
strong spot/volatility correlation appears to be necessary, in order to capture
the familiar implied volatility skew. In Heston’s framework, the implied volatil-
ity asymmetries are attributed to the pronounced skewness of asset returns. The
leverage effect induced by this correlation is responsible for controlling the skew-
ness. Of course, in the more general Lévy framework, skewness can be controlled
by the appropriate Lévy measure.

In the analysis above, it was maintained that the driving Markov chain, s,

is independent of the log-price process, X;. In this subsection we relax this

6 For instance, the typical asset/volatility correlation is documented in Pan (2002)
within a standard stochastic volatility jump diffusion framework. In a detailed study
Chernov, Gallant, Ghysels, and Tauchen (2003) investigate a number of different volatility
specifications, some of them multi-factor. A stochastic volatility model with jumps, where the
spot price and volatility jump together, is estimated in Eraker (2004).
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assumption, in an attempt to introduce a correlation structure.

One approach of introducing correlations can be found in Naik (1993): every
time the chain switches, that is to say on the stopping times ¢ € Uy, ;e 70D,
there is an associated deterministic jump in the log-price process. A regime shift
from state i to j will induce a price jump of JU9 < oo.” Thus, changes of the
chain will be accompanied by changes of the underlying asset.®

Here we will generalize this approach, and assume the jump to be of a random
magnitude. We will assume that EJU) < oo, for all jumps (j,i) € E

Once again, it is intuitive to re-parameterize the drift of the Lévy processes,
by setting

pi=pi- 2L / (€ =1 < D

= 40, i) (Eexp(JU9) — 1)
J#i
This will ensure that the coefficient g will be equal to the instantaneous growth
of the asset price.
The following lemma gives the generator of the regime switching log-price

process described above

Lemma 2.3. The generator of the process Xy, conditional on Xy = x and sq = 1,

" Although Naik describes this procedure of inducing a spot/volatility correlation, he only
provides option prices for a simplified two-state model with zero correlations.

8 This behavior is consistent with an equilibrium model where dividend growth is regime
dependent. Switches of the price dividend ratio will cause the equilibrium prices to jump
whenever the regime changes.

9 The analysis of the corresponding jumps follows to some extend the methodology of
Merton (1992, Ch. 5).
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15 given by

A f(w,4) = (q(i, ) + ") f(w,8) + Y q(i, DES (@ + J0), j)
J#i

where the expectation is taken with respect to each JU.

Proof. Once again we use the definition of the generator

(2,1) _ 1
o° = lim E f(XA, SA) f(iE, Z)
AL0 A

and expand over the future regime sa

B (Xa,58) = 3 a0 B f(Xa, )A
i
+ (14 q(i, ) A)E® f(Xa, i) + 0(A)

The quantity E@% f(Xx,i), where no regime change takes place, follows from

the definition of the generator, and is equal to
ECVf(Xa,i) = f(a,0) + ' f(2,1) - A+ o(A)

The quantities that incorporate regime switches, E@% f(X, j) for j € Ey, j # i,

will be dependent on the associated jump JU%. In particular, we can write
BUOf(Xa,5) = B f(z 4 T97, ) + 0(A) = Bf (z + TV, j) + 0(A)

where the last expectation integrates the jump size. Substituting in the defini-

tion of the generator and passing to the limit yields the result. O
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The following theorem gives the characteristic function of the augmented
model. Once again matrix exponentiation is sufficient to produce the charac-
teristic function. Observe that the only difference occurs in the off-diagonal

elements of the matrix function ®(u) which are now non-zero.

Theorem 2.4. Assume that X; follows the regime switching Lévy specification,
as described above, together with its correlation structure. Then, the character-

istic function of Xy is given by
E@M exp(iuX,;) = exp(iuz) - [1' - exp(t - ®(u)) - II] (2.3)
where the matriz ®(u) has elements given by

(i’i)+d)i(u)7 ifj=i
@)y = !

q(j,)Eexp(iuJU?), otherwise

and I1 is the initial regime distribution. The quantities Eexp(iuJU?)) are the

characteristic functions of the jump sizes.

Proof. Denote with {¢(z,i,t),7 € Ey} the conditional characteristic functions
Y(x,i,t) = BE@D exp(iuX,)
These satisfy the system of forward Kolmogorov equations

Op(w, i t) = (i, 0) + Y q(, ) (W (w, j, 1) — (i, 1))
J#i

= (q(i,8) + (.0, 1) + Y q(G,i)e(x, j,t)
J#i
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with initial conditions v (z,7,0) = exp(iux), for all i € E,. We conjecture a
solution of the form (z,i,t) = exp(iuzx)y(i,t). Applying the corresponding

generators, derived above, produces the system

O (i, 1) = (q(i, i) + ¢' (W) (i, 1) + > q(j, ) (4, 1) E exp(iu V)
J#i

This system can be written in matrix form as
Ap(t) = @(u) - (1)
where 9(t) = (¢(1,t)---9(N,t))’, and the matrix ®(u) has elements given by

i)+ o), =i
Bl -
q(j,7)E exp(iuJU?),  otherwise

The result follows. O

Remark 2.5. Note that the (i, j)-th element of the matrix exp(¢- ®(u)) in equa-

tions and (2.3) is the Fourier transform of the conditional quantity
P(s; =jlso =1)f(y|Xo = 0,80 =14, = j) (2.4)

where f(y|-) = P(X; € dy|-) is the probability density of the log-return over a
time interval ¢, conditional on the initial and final regimes.
3 Pricing under regime switching

Thus far, the processes of the previous sections describe the price evolution un-

der the statistical (or objective) probability measure. In order to price derivative
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contracts, the risk neutral (or pricing) measure has to be established. We will
assume, from this point onwards, that the parameter set of the regime switching
process is specified under the risk neutral measure directly, and to this end we
impose the restriction g = r. This will not affect the generality of the results,
and it reflects the common practice of calibrating pricing models using derivative
contracts alone. The appendix illustrates a setup based on the FEsscher trans-
form method of Gerber and Shiu (1994), which formally establishes the pricing
measure, quantifies the various prices of risk, and shows how the parameter
values are affected when switching between the two probability measures.
Having established the characteristic function of the log-return in the previ-
ous section, we now investigate a number of applications. In this section we first
derive the moments of the general regime switching Lévy model in closed form
and show how the conditional probability functions can be retrieved. Next, we
set up the system of partial integro-differential equations that derivative prices
will satisfy. The pricing of vanilla and exotic contracts is the topic of the last

two subsections.

3.1 Moments and the risk neutral density

Simple differentiation of the characteristic function yields the ¢-period moments
of any order. The main obstacle in our setting is differentiating the matrix
exponential function. Mathias (1997) gives a simple procedure to carry out
this differentiation analytically. The advantage of this method is that we can
retrieve the derivatives of order {1, ..., k} simultaneously, by computing a single
N(k+1) x N(k + 1) matrix exponential.

The following definition of the block-upper triangular-block Toeplitz matrix

is needed: Given a sequence of N x N matrices Ag, Aq,..., Ay, denote with
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T (Ag, Ay, ..., Ay) the N(k+1)x N(k+1) block-upper triangular-block Toeplitz

matrix, with (7, j)-block equal to the matrix A;_; for j > 4. As an example,

Ay A, A,
g(AOa Al; A2) = 0 AO Al
0 0 A

In our framework, given the matrix ®(u), in order to produce the & deriva-
tives of the matrix exponential exp(t - ®(u)), evaluated at u = 0, we need to

take the following steps:

1. Compute the first k (element-wise) derivatives of the matrix ®(u), evalu-

ated at u = 0, that is to say

dJ

T ,for j=0,...,k

u=0

2. Construct the Toeplitz matrix

1 1
(I’y: ﬁ (@0,ﬂ@1,...,ﬂ@k>

as prescribed above.

3. Compute the matrix exponential

B = exp(t-Po)

4. The (1, j) block of ®f, denoted ®f ;, is equal to % times the derivative of the

matrix exponential. Thus, to retrieve the matrix exponential derivatives,
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compute

dJ
—exp(t- P(u =4l-® . for j=0,...,k
17 Pl B0)| =l for )

In many practical applications the matrix ® 5 will be large but sparse. In
such cases the matrix exponential can be computed rapidly using the EXPOKIT
routineJ; of Sidje (1998).

The raw moments (of order j) are therefore easily obtained as the derivatives
of the characteristic function. Assuming, without loss of generality, that X, = 0,
the moments are computed as

W
EO™ X7 = —jl' cexp(t - ®(u)) - m =4l [1- 95, 7]

TG
du u—0

The centered moments follow in a straightforward fashion from the raw ones.

The conditional moments can be subsequently used to approximate the prob-
ability density function of the conditional log-returns. For example, Gram-
Charlier and Edgeworth expansions, or members of the Pearson Type IV density
family, can be used to match the theoretical moments (for details on the ap-
proximation methods see Kendal and Stuart 1977; implementations in a general
option pricing framework are given in Jarrow and Rudd 1982, while density ap-
proximations for Garch models can be found in Duan, Gauthier, and Simonato
1999).

Alternatively, the risk neutral density can be retrieved by inverting the con-
ditional characteristic function numerically. Numerical inversion of Laplace

and Fourier transforms is treated extensively in Abate and Whitt (1992) and

10 The EXPoKIT routines provide Krylov subspace projection approximations of vectors of
the form exp(W) - u. These can be easily adapted to compute the characteristic function or
the exponential of the Toeplitz matrix.
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Abate, Choudhury, and Whitt (1999). Typically, a discretization of the char-
acteristic function is employed, with the trapezoidal rule utilized to approx-
imate the Fourier integral. Using the FFT or the fractional FFT (FRFT)
can substantially speed up the computations, retrieving all density points in
a single F(R)FT run. Details on the FRFT implementation can be found in
Bailey and Swarztrauber (1991).

Note that following remark 2.5, if we invert each element of the matrix
exp(t - ®(u)) separately, we will obtain the weighted conditional probability

densities of the log-returns

f(y,4,7) = P(sy = jlso = 1) - P(Xy — Xo € dy|sg =4, 5, = j) (3.1)

for all regimes 7+ and j. These conditional densities will be used extensively in
section 3.4 where the QUAD method is introduced for the pricing of exotic

options.

3.2 The system of partial integro-differential equations

The price of any derivative contract, V' (z,t), satisfies the Feynman-Kac formula,
that is to say
oV (x,t)+ AV (x,t) —rV(z,t) =0

In this relationship = denotes the log-price, ¢t denotes the time, and &7 is the
appropriate generator (under risk neutrality). r is the risk free rate of return.
Therefore, for the one-state Lévy process (where the generator is given in equa-

tion 2.1), the derivative price satisfies the following partial integro-differential
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equation (see for example Chan 1999; and Cont and Voltchkova 2004)

OV (x,t) + (7" — U;) 0,V (x,t) + %ZGMV(x,t)
—|—/ (V(x+ z,t) = V(x,t) — (e —1)0,V(x,t))r(dz)
R/{0}

=rV(z,t)

Partial integro-differential equations can be solved by finite difference or finite
element methods, in a fashion similar to the numerical solution of PDEs.!'" Of
course, the integral term complicates the analysis, since a quadrature will have
to be implemented at every node of the grid.

Under the regime switching structure, a system of PIDEs will have to be

solved. In particular, the Feynman-Kac formula takes the form

oV (w,t,4) + q(i,1)V(z,t,1)
52 02 )
+ (r — 7) 0,V (x,t,1) + 785”‘/(:5, t, i) + Zq(j, DEV (x4 J0 ¢, 5)
J#i
+/ (V(z+ 2,t,i) — V(x,t,4) — (e* —1)0,V (z,t,4))v' (d2)
R/{0}

=7rV(x,t,i) (3.2)

Although the numerical solution of the above system can be a computation-
ally intensive task, it should not be as demanding as the numerical solution of
the two dimensional PIDEs arising from a standard Lévy model with diffusive
volatility. Nevertheless, in section 3.4/ we investigate an alternative that is based
on an integral recursive representation of (3.2), which offers a fast and robust

method for the pricing of a variety of exotic option contracts.

1 For a brief exposition of the numerical methods involved see Duffy (2005).
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3.3 Vanilla option pricing

European plain vanilla calls and puts can be priced by inverting the characteristic
function. Carr and Madan (1999) show that the (time-0) price of a call option
with strike log-price k can be computed as the (one-sided) Fourier integral

_ exp(—&k)

™

(k) /gaaexp(—dku)n(u;f)du (3.3)

In the above expression, £ is a parameter that controls the speed of the decay
of the integrand, while the function 7(-;-) is given in terms of the characteristic

function of the log-price ¢(-) as follows:

n(u: €) = exp(—rt)o(u - i(§+1))
&+ —u? +i26+ u
Having established the characteristic function of the regime switching Lévy
models in equations (2.2) and (2.3), computing the corresponding option prices
is a straightforward exercise. Based on a set of equidistant abscissas % =
{uq,...,us} one can produce a set of options for a set of equidistant strike log-
prices # = {ky,...,k} by approximating the integral using a quadrature of

the form:

00 l
/0 exp(—ikju)n(u; )du ~ Y " w; exp(—ikjui)n(ui; €) Au

i=1

The weights w; implement the appropriate quadratur, while Aw is the grid
spacing.

Details on the derivation of (3.3) can be found in Carr and Madan (1999).

12 For example a set of weights # = {%, 1,1,...,1, %} implements the trapezoidal rule.
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Chourdakis (2005) shows how the above summation can be rewritten as
‘
> exp(—iija)7;
i=1

for some & and 7;, with j = 1,...,/, and thus it can be rapidly computed using

the fractional FFT (FRFT) procedure.

3.4 The QUAD procedure and pricing of exotics

The QUAD procedure of Andricopoulos et al. (2003) can be used to rapidly pro-
duce prices for exotic contracts, such as discretely monitored barrier or Bermu-
dan options. This is achieved by numerically integrating the option payoffs over
the risk neutral density. As pointed out in Andricopoulos et al. (2003), this
strategy can be thought of as a “perfect” multinomial tree method. Since, in
our regime switching setting, inversion of the characteristic function yields the
risk neutral density, the QUAD procedure is particularly suited for the compu-
tation of exotic prices.

Denote with V' (z,t) the value of the derivative contract at time ¢, conditional
on the underlying log-price being equal to . The QUAD method is based on

the recursive relationship
V(z,t) = exp(—rAt) - E(V(Xipar, t + At)| X, = 1)

If we denote with f(y) the log-return density over a time interval of At, that
is f(y) = P(Xa; — Xo € dy), then we can write the above relationship as the
integral

V(z,t) = exp(—rAt) - /Rf(y —z)V(y,t+ At)dy
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After constructing a log-price grid, the above integral is numerically computed
using the trapezoidal rule over the grid.

When compared to the standard finite difference methods, QUAD typically
evaluates the option values at a substantially smaller number of points. Fig-
ure (1] illustrates this important difference. A discretely monitored up-and-out
call option is priced using finite differences (Crank-Nicolson) and the QUAD
method. The underlying spot and strike prices are set to $100, while the up-
and-out barrier is equal to $120. The maturity of option is one year, and the
barrier is monitored four times over the life of the option (every 0.20 years). In
order to retrieve the option price, the Crank-Nicolson method reconstructs the
price surface at a large number of points between the monitoring dates, while
the QUAD method updates the function on these dates alone. In addition,
QUAD does not attempt to solve the sometimes cumbersome partial (integro)
differential equation; instead it utilizes the risk neutral probability function.

In a regime switching setting we will have to keep track of the conditional
(on the regime i) option values V(x,¢,7). If a model with N regimes is used, we

can write the recursive relationship as
V(z,t,1) = exp(—rAt) - E(V(Xypn, t+ Ot sping) | Xy = 2,80 = 1)

which gives

N

V(z,t,1) = exp(—rAt) - Z/ V(y,t+ At, j)

j=1 7R

X P(Xt—I—At — T € dy|St = 7:, St+ At — j)P(St—I—At = j|St = ’L)
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Fig. 1: Comparison of the QUAD and the finite difference methods. An up-
and-out barrier call is considered, with maturity one year. The spot
and strike prices are set to $100, and the barrier is $120. The option is
monitored discretely every 0.20 years. The stock price follows a geometric
Brownian motion with volatility 20% and the interest rate is 4%. The top
graph illustrates part of the grid and the solution using finite differences;
the bottom graph shows part of the values computed using the QUAD
method.
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Then, using yields

V(z,t,i) = exp(—rAt) - Z/RV(y,t + AL fly — 2,4, 7) (3.4)

As pointed out in remark 2.5, the weighted conditional densities f(y,1,7j) can
be retrieved by taking the inverse Fourier transform of the matrix exponential

exp(t - ®(u)) element-wise.!?

4 A numerical example

In the numerical example that follows we will assume a two-state regime switch-
ing model, alternating between two Brownian motions. The interest rate is set
at 4% and the volatilities for the two Brownian motions are set to 10% and 40%,

respectively. The rate matrix of the underlying Markov chain is given by

—-0.5 2.5
0.5 =25

to reflect the higher persistence of the low volatility regime. Correlations be-
tween the volatility process and the return process are introduced via the jumps
that occur, conditional on a regime change. For simplicity, we consider deter-
ministic jumps, with magnitudes

0 +2%
J =

5% 0

13 Note that since the conditional densities f(y, i, j) are time-invariant, the Fourier inversions
have to be carried out only once and the conditional densities can be stored.
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Tab. 1. Conditional moments of the regime switching model. A two-state Brow-
nian motion model is considered, with correlations introduced via condi-
tional jumps. The time horizon is 0.25 years. The moments conditional
on the high (40%) and low (10%) volatility regimes are presented.

High Vol Low Vol

Vol:  39.16%  23.12%
Skew: -0.0275  -0.9053
Kurt:  +3.0645 +5.8631

This indicates, for example, that a volatility switch from 10% to 40% is accom-
panied by a return jump of —5%. For this experiment we consider a time horizon

of 0.25 years.

4.1 The risk neutral density and moments

Table 1 presents the conditional moments of the above specification, while Figure
2 gives the conditional densities. The conditional moments were computed by
differentiating the characteristic function, using the procedure outlined in sec-
tion 3.1. The conditional densities were constructed using the fractional FFT
procedure, as described in detail in Bailey and Swarztrauber (1991). An adap-
tive 128-point FRF'T was used and the densities were retrieved in under a tenth
of a second on a standard notebook computer.

It is apparent that the low volatility density is heavily skewed and leptokurtic.
This observation is verified by the entries of Table 1: while conditional on the
high volatility regime the return distribution appears to be close to normal,
the distribution which is conditional on low volatility has a skewness value of
—0.9, and kurtosis equal to 5.9. This is a result not only of the impact of the
conditional jumps but also of the asymmetries in the rate matrix of the Markov

chain.
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Fig. 2: Conditional densities of the regime switching model. See Table (1| for
details. The solid (dashed) line gives the probability density conditional
on the low (high) initial volatility regime.
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4.2 Vanilla prices

Based on the closed form characteristic function, we apply equation (3.3) to
retrieve a set of call option prices, for different strike prices ranging from $70 to
$130 and for maturities up to six months.

Figure 3 presents the implied volatility surface, conditional on a current low
volatility regime. The volatility skews resemble the patterns encountered in
equity and index vanilla option markets. In particular, the smile asymmetry is
apparent, courtesy of the leverage effect which is captured by the regime-change
dependent jumps. Deep in-the-money calls (and equivalently out-of-the-money
puts) exhibit substantially higher implied volatilities. These results are in line

with the highly skewed and leptokurtic conditional density of figure 2.4

14 The implied volatility smile conditional on the high initial volatility regime, which is not
presented here, appears to be fairly flat, ranging from 35% to 40%. This is in line with the
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Fig. 3: The conditional implied volatility surface, based on the regime switch-
ing model described in section 4. The surface is conditional on the low
volatility regime.
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The prices were computed using an adaptive 128-point FRFT procedure,
which sequentially integrated the support of the modified characteristic function
(3.3).'* A dampening parameter £ = 1.5 was used throughout.

The regime switching model is able to produce flexible implied volatility sur-
faces and thus one can calibrate it accurately to a given set of option contracts.
This flexibility can be significantly extended, if one augments the regime de-
pended processes with a Lévy measure, incorporating a jump structure. This
can offer a simple and robust alternative to stochastic volatility models and a

more intuitive approach to the local volatility framework.

nearly normal conditional density, given in figure [2.

15 The support of the modified characteristic function was split in subintervals of the form
[0,50], [50,100], etc. The function was integrated over successive subintervals using FRFT,
until the contribution to the option prices was insignificant.
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Fig. 4. Barrier pricing under regime switching. For the model parameters de-
scribed see section [4l The prices conditional on the high (resp. low)
volatility regime are given in white (resp. black).
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4.3 Exotic prices

In this subsection we will implement the QUAD method, as described in section
3.4, in order to price an up-and-out call with maturity of one year. We assume
that the barrier is set at $120 and that we monitor the barrier four times over
the life of the option, that is to say every 0.20 years. The spot and strike prices
are set at $100.

Thus, in order to implement the QUAD method we need to numerically
invert the weighted densities f(y,1,j) over a set grid. We assume a dense log-
price grid, with spacing % = 0.55%.% The trapezoidal rule was used for the
numerical integration.

Barrier options were computed in a fraction of a second on a notebook. The

16 Although Andricopoulos et al. (2003) suggest a lower value of @ for the log-price grid,
we found that such coarse discretization did not offer a high degree of accuracy.
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resulting patterns are given in figure 4 and are intuitive. The QUAD method
only computes the option prices at the monitoring points: prices given the high
volatility regime are shown in red, while prices given the low volatility regime
are shown in black.

One can observe that during high volatility periods the barrier prices are
lower around the barrier, since the probability of breaching it is substantially
higher. On the other hand, they are higher away from the barrier (out-of-the-
money), since at these price levels the probability of returning in-the-money and
exercising is relatively higher. Overall, the barrier option is more valuable in
the low volatility regime.

With one year to maturity, the barrier options are $0.90 for the high and
$1.70 for the low volatility regime. For comparison, if regime switches were not
present, the barrier prices would have been $0.75 and $4.20, respectively. The
impact of possible volatility changes is obvious, especially if we are currently in a
low volatility period. This observation verifies the sensitivity of barrier contracts
to the time variation of the underlying volatility.

Overall, the QUAD procedure appears to deliver fast and accurate results for
the pricing of discretely monitored options. Andricopoulos et al. (2003) discuss
in detail the QUAD implementation for the pricing of Bermudan options. They
also show how one can extrapolate, in order to compute the prices of continuously
monitored contracts, for example American options. Hedge parameters can be

retrieved using finite differences to approximate the appropriate derivatives.

5 Conclusion

This paper introduces a regime switching Lévy model for the purpose of option

pricing. The analysis is largely focused on the by-products of the conditional
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characteristic function, which is derived in closed form. Moments, the condi-
tional densities, and derivative prices are all evaluated based on these conditional
characteristic functions.

In particular, the paper illustrates how moments of all orders can be retrieved
by numerically computing a simple matrix exponential, while densities are read-
ily available via an application of an FFT. A regime switching approach offers
not only an intuitive model and parameter interpretation but also densities that
can accommodate a very wide range of skewness and kurtosis, providing the
potential to fit a regime switching structure to the market at any point in time.

Vanilla call (and put) prices for a whole array of strike prices can be com-
puted simultaneously, following the Carr and Madan (1999) procedure. This is a
potentially important feature, since it allows one to calibrate the regime switch-
ing model to market prices capturing the observed volatility skew. The paper
also shows how the QUAD method of Andricopoulos et al. (2003) can be em-
ployed for the pricing of standard exotic contracts, such as barrier or American
options.

The purpose of this paper is largely to introduce the regime switching specifi-
cation and to lay down the potential of this model. Detailed calibration exercises
and the numerical analysis of the stability of the pricing methods are left for

future research.
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A Appendix: The pricing process and the market prices of

risk

A.1 The Esscher transform

Given a process X; that serves as a source of uncertainty or risk, one can define

the function

o exp(dz)
Mi(w;9) = E exp(9X;)

If we denote with f;(z) the pdf of X;, then the function
fi(w;9) = My(2;9) fi(x)

is also a pdf and is call the Esscher transform of the original distribution with
parameter . In that way equivalent probability measures to the original one
can be constructed. Denote with IP the statistical probability measure. Then,
the Radon-Nikodym derivative of an equivalent measure IPy, with respect to the

statistical one is given by the martingale

dIPy

W t = Mt(XtEﬁ)

Thus, the Esscher transform generalizes the popular Girsanov’s formula for gen-
eral stochastic processes.
Consider an asset price that depends on this source of risk, say S; = St(Xt)

The risk neutral Esscher transform has a parameter 9* such that

So = exp(—71t)E.Si(X}) = exp(—rt)EM;(Xy;9)S;(Xy) (A1)

IT1f S; = exp X, it can be easily shown that the function M;(z;9) will be the stochastic
discount factor associated with a power utility function.
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where E, is the expectation taken under the probability measure IPy<. The
parameter ¥* that satisfies the above relationship can be though of as the price
of risk associated with factor X;.

If multiple independent risk factors are present, say Xi,,...,X,;, we can

construct equivalent measures by sequentially applying the Esscher transform:

dlPy,,...s,
dIP

_ dIPy,,. v,
dIP'ﬂl:“"ﬂZ—l

APy, .0,

dIPy, 4,
dIP'ﬂl yees¥p—2

PP,

P,
P

t t t t t

= Mt(Xe,t; ﬁe) : Mt(XE—l,t; 194—1) . 'Mt(XQ,t; 192) : Mt(Xl,t; 191)

We will employ this strategy in order to characterize the pricing measure in our
regime switching Lévy setting. In particular, we have the following sources of

risk to consider:

e The regime risk associated with the Markov chain s;.
e The jump risk associated with the correlation inducing jumps JU*),

e The Lévy risk, associated with the processes Y.

In the following subsections we separately consider each source of randomness

and investigate its implications on the risk neutral process.

A.2 Regime risk

Exponential changes of measure for continuous time Markov chains are exten-
sively discussed in Rolski, Schmidli, Schmidt, and Teugels (1999, 12.3). In par-
ticular, given a set of Esscher parameters {¢,...,0y}, each associated with a
regime, the rate matrix under the equivalent measure will have elements given
by

q*(]a Z) = Q(]: Z) eXp(ﬁj o 192)
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It follows from the above relationship that q.(j,7) > ¢(j,4), that is to say a
transition from ¢ to j is more likely under risk neutrality, iff ¥; > ¢;. This is
an intuitive result: If we consider 1, as a proxy of the risk aversion of regime £,
the relationship ¥; > 1J; would imply that market participants “dislike” regime j
more than regime . Therefore, they would behave as if regime switches towards

7 are more likely than they truly are.

A.3  Jump risk

If the jumps associated with a regime shift from i to j, that is JU?9 are of
random magnitude, then their Esscher transform will imply a Radon-Nikodym

derivative of the form
exp(ﬁ(jﬂ') J(j,i))

under the assumption that the expectation exists. If the jumps are deterministic,
as for example in Naik (1993), then their sizes will be identical under the two
measures. Nevertheless, their frequency will not be the same, since the intensities
of regime switches under risk neutrality can be higher or lower, as discussed in

the previous section.

A.4 Lévy risk

Esscher transforms of Lévy processes are discussed in detail in Chan (1999). In
particular, we fix the Esscher parameter 9 associated with the Lévy process Y.
Then, the Radon-Nikodym derivative that corresponds to this process is given
by

exp(—9'Y) + ' (9))
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where ¢'(9%) = — log E exp(—9'Y}). Based on the characteristic function of Y}
we can express ©'(-) as

(192'01)2

goi(ﬁi) =Py — L — / (e’mz -1+ 19121(|z| < 1))Vi(dz)
2 ®/{0}

Chan (1999) gives the derivation details and the appropriate parameter con-
ditions. The parameter ¥ can be thought of as a proxy of the risk aversion
of the market participants, associated with price shocks that are due to the
corresponding Lévy process, under a power utility framework.

Having established the Radon-Nikodym derivatives for all risk sources, we
identify all equivalent probability measures in terms of the Esscher parameters
9, = {U1,...,9x, 0", ..., 9N, 002 9N-LN1 Pricing measures will satisfy
the martingale restriction (A.1), and thus we have to select the Esscher param-
eters that ensure this.

If we do not have any particular reason to assume that risk aversion itself
is regime dependent, we can set the Esscher parameters for the Lévy processes
equal, that is to say ' = 92 = ... = 9V = 9. In addition, we can also
equate the Esscher parameters that are associated with the jump amplitudes,
912 = = 9=LN) = 9. This can substantially simplify the conversion from

the objective to the pricing probability measure.
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