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In this paper we extend option pricing under Lévy dynamics, by assuming
that the volatility of the Lévy process is stochastic. We therefore develop
the analog of the standard stochastic volatility models, when the underly-
ing process is not a standard (unit variance) Brownian motion, but rather
a standardized Lévy process. We present a methodology that allows one
to compute option prices, under virtually any set of diffusive dynamics for
the parameters of the volatility process. First, we use ‘local consistency’ ar-
guments to approximate the volatility process with a finite, but sufficiently
dense Markov chain; we then use this regime switching approximation to ef-
ficiently compute option prices using Fourier inversion. A detailed example,
based on a generalization of the popular stochastic volatility model of Heston
(1993, RFS), is used to illustrate the implementation of the algorithms.
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1 Introduction

Over the last thirty years, a vast number of pricing models have been pro-
posed as an alternative to the classic Black and Scholes (1973) and Merton
(1973) approach (henceforth BMS), driven by the well documented biases of
the BMs formula. Moving into the implied volatility space, observed option
prices exhibit well defined patterns across moneyness and maturity. In some
markets, such as the currency markets, a convex implied volatility smile is
observed across moneyness, while in others, such as the stock index options
markets, the pattern resembles more a downward sloping skew. Across matu-
rities, the term structure of implied volatilities can be downward or upward
sloping, similar to the term structure of interest rates. In order to accommo-
date for these biases, some of the pivotal BMS assumptions have been relaxed
over the years.

There are two key assumptions that need to be made, in order to price
derivatives in the BMS world: that returns are subject to a single source of
uncertainty, and that asset prices follow continuous sample paths. Under
these two assumptions, a continuously rebalanced portfolio can be used to
perfectly hedge an options position, thus determining a unique price for the
option. Relaxing the assumption of a unique source of uncertainty leads to
the stochastic volatility family of models, where the volatility parameter fol-
lows a separate diffusion, for example the processes in Hull and White (1987),
and Heston (1993). Relaxing the assumption of continuous sample paths,
leads to the jump diffusion models, where infrequent jumps are added to the
standard BMs diffusion, in the spirit of Merton (1976). In both cases the
market is incomplete, and option prices are not determined in a unique way.
A multitude of risk-adjusted probability measures exists, and the information
conveyed in the price process is not sufficient to distinguish between them.
State-of-the-art pricing models combine the two approaches, producing mod-
els that incorporate both stochastic volatility and jumps (the most com-
mon being the ones proposed in Bates (2000) and Duffie, Pan, and Singleton
(2000)). A growing literature is dedicated in reconciling the ‘objective’ and

‘risk-adjusted’ parameters, and in identifying the various prices of risk (see
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for example Bates (1996, 1998), Andersen, Benzoni, and Lund (1998), Pan
(2002), and Eraker, Johannes, and Polson (2003), inter alia).

It has been recently recognized that, although the presence of jumps is
pivotal, allowing for continuous sample paths is not required to correctly
price option contracts (see for example Geman, Madan, and Yor (2001) and
Ané and Geman (2000)). The family of pure jump models, where the under-
lying asset is subject to (perhaps infinitely dense) jumps, suffices to capture
the stylized facts of asset returns, such as the negative skewness and excess
kurtosis. The theory of Lévy processes links such specifications to the charac-
teristic functions of their respective densities, and provides the probabilistic
framework that offers option prices. Broadly speaking, a Lévy log-price will
exhibit a sequence of independent and identically distributed increments, and
offers a more general framework than the lognormal assumption of BMS. The
geometric Brownian motion, which is the cornerstone of the BMS analysis, is
therefore relegated to a special case.

More importantly, assuming a jump process breaks the link between the
statistical properties of the underlying asset and the risk neutral proper-
ties, since a replicating hedge cannot be constructed. Therefore, the ‘risk-
adjusted’ parameters under Lévy dynamics can be separated from the ‘ob-
jective’ set of parameters of the underlying process. Thus, the analysis of the
underlying price process in the ‘risk-adjusted’ world is completely disentan-
gled from the corresponding analysis in the ‘real” world. Therefore, derivative
contracts can be priced in isolation from their underlying assets.

Although Lévy processes are very versatile, from a distribution point of
view, they fail to capture the time series properties of asset returns. In
fact, since the densities assumed are i.i.d., a Lévy process cannot generate
the time-varying higher moments, or the volatility clusters that are typi-
cal of financial time series. This problem has been recognized in the lit-
erature, and has been addressed in two ways: Konikov and Madan (2001)
consider a two-state Markov chain that drives the Lévy process, while more
recently Carr, Geman, Madan, and Yor (2003) (henceforth caMY) introduce

a stochastic clock that induces time-varying higher momentsﬁ Carr and Wu

! Lévy processes are the result of subordinating a Brownian motion to a stochastic clock,
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(2004b) generalize the caMY approach, by introducing correlations between
the asset prices and the activity rates.

The starting point of this paper is a standardized (unit variance over a
unit time interval) Lévy process L', and attempts to ‘create’ the necessary
volatility variation using the process Ly = Lo+ o 4 /s - AL!, where the
variance process v is diffusive. This (more traditional) approach, follows the
existing literature on stochastic volatilit more closely than the subordinat-
ing approach of cGMy. Given a parameter set that describes the log price
dynamics, we turn into computing the prices of European options.

In order to retrieve the option prices, we discretize the volatility state-
space, following the approach of Chourdakis (2004). As an example, we use
the popular square-root diffusion of Heston (1993), to show in detail how this
methodology can be implemented.

For a set of parameters, the implementation consists of three steps: First,
we construct a grid that reflects the possible volatility movements over the
life of the option. Using ‘local consistency’ arguments, we approximate the
volatility diffusion, using a Markov chain that lives on this particular grid.
Finally, we show how the characteristic function of the approximating model
can be computed in closed form.

The corresponding prices can now be computed using standard Fourier
inversion, using an FFT library.

Based on a set of observed contracts, we calibrate a model that exhibits
stochastic Variance-Gamma dynamics. We find that both diffusive and pure-
jump components are necessary, in order to capture the dynamics of the smile.
In particular, we find that Brownian motion are responsible for the leverage

effect, while the discontinuous component is responsible for the tail behavior.

which is considered to increase in an i.i.d. fashion. cGMY subordinate some of the most
common Lévy processes once more, this time to the cumulative square-root diffusion of
Cox, Ingersoll, and Ross (1985).

2 The ‘traditional’ stochastic volatility approach would model the noise element as
fot \/Us - dBs, with B a standard Brownian motion.
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2 The Lévy component

Consider a Lévy process L! with unit variance, having a characteristic triplet
(o, 32, T). This implies that the characteristic exponent (see Bertoin (1996)
for details) is given by the Lévy-Khintchine formula

1
Uri(u) = icu — 552112 + /(1 — exp ius + iuslyy«)I(s)ds

The three members of the triplet («, 3,T") represent the drift, the volatility
of the diffusive part, and the jump structure, respectively. In particular, the
function I'(s) gives the arrival intensity of jumps of size equal to s. Regularity
demands that I integrates 1 A |s|2. The characteristic function of L} is given
by

®,(u) = EyexpilLju = exp tU 1 (u)

We can decompose the Lévy process in a purely continuous, and a purely

discontinuous partE as follows

L =8-Wi++/1-p32-J} (2.1)

We assume that J! is normalized to exhibit unit variance, and that W is a
standard Brownian motion. Then, the above decomposition ensures that L'
is a standardized Lévy process.

Explicit knowledge of the characteristic function of a Lévy process, allows
us to compute the corresponding characteristics of the standardized process.
We will now review some widely used Lévy processes, and show how they

can be standardized, in order to play the role of J! in equation (2.1).

2.1 The Normal Inverse Gaussian process

The Normal Inverse Gaussian (NI1G) process of Barndorff-Nielsen (1998) is
based on the inverse Gaussian process, which is compiled of the times, T},

when a Brownian motion with drift, B = a*-t+ W/, first crosses the level ¢.

3 See for example Carr and Wu (2004a) for a similar decomposition.
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This process will define the relationship between ‘trading’ time and calendar
time. A rapidly increasing B* will imply a faster trading clock, while a
rapidly decreasing B* will imply that trading intensity slows down. The NIG
process is constructed by subordinating a separate Brownian motion with
drift, B; = b* -t + d - Wy, to the times T;, that is to say J; = Br,. The

characteristic exponent of the NIG process is given by

Uye(u) = —d <\/a2 — (b+iu)? — Va2 — bz)

Simple differentiation of the characteristic function will produce the mo-

ments of the process .J. In particular, the variance is equal to %; it is

therefore straightforward to verify that imposing the constraint

(a2 _ b2)3/2

d—
Cl2

will ensure that this pure jump process exhibits unit variance, and can play
the role of J' in (2.1). Tt is also of interest to examine how the higher
moments of this standardized Lévy process behave, after the restriction has
been imposed. As pointed out in Konikov and Madan (2001), for all Lévy
processes, the skewness has an inverse relationship with the square root of
the maturity, while the excess kurtosis is inversely related to the maturity.
Table [1/ gives the relevant formulas. We can observe that the skewness of the
standardized distribution is determined by the parameter b, while a controls

the kurtosis.

2.2 The Variance-Gamma process

The Variance-Gamma (VG) process is defined as a Brownian motion with
drift 6 and volatility o, B, = b* -t + d - W,, evaluated at a random Gamma
time, G;. The Gamma process G has (normalized) mean rate equal to one,
and variance rate v, and is assumed independent of the Brownian motion

W. The vG process is thus defined as J; = Bg,. Madan, Carr, and Chang
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(1998) show that the characteristic exponent of .J is given by
1 : Lo o
Uye(u) = —=log | 1 — iufv + Juoy
v

Broadly speaking, out of the three vG parameters, o controls for the
volatility, € is responsible for skewness and v generates kurtosis. The stan-
dardization restriction for the vG process, and the corresponding skewness

and kurtosis are given in table 1.

2.3 The Carr-Geman-Madan-Yor process

The cGMY process generalizes the VG process, introducing a fourth parameter
that controls the finiteness of the activity rate and the variation of the sample
paths. In that sense, the CGMY process nests the Poisson, the NIG, and the
VG processes.

The characteristic function and the corresponding risk adjustments are

given in table 1.

2.4 Processes with a continuous component

In this subsection we discuss the characteristic exponent of processes of the
form (2.1), where both a continuous and a purely discontinuous component
is present. Assuming that the characteristic exponent of the (standardized)

pure jump process is W ;i (u), the characteristic function can be written as

1
EexpiuL' = exp <_§ﬂ2u2 + U (\/ 11— 5%))

Thus, the characteristic exponent of the standardized Lévy process will

be
Uri(u) = —lﬂQuQ + U n (\/1 — BQU)

2

It is also straightforward to verify that the characteristic exponent of L =
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VV L', which will have variance equal to V, will be equal to

Uy (ulV) = —%ﬁv%ﬂ + U (\/V\ﬂ — ﬂ?u) (2.2)

3 The volatility process

Having established the standardized Lévy process, L, we now turn to the
volatility process. We will assume a general diffusive form, namely that the

variance of the log-asset price is given by the following expression

¢ ¢
vy = g +/ w(vs) - ds + / o(vs) - dW (3.1)
0 0

At this stage, the only assumption we need to impose on the functional forms
of p and o, is that they are bounded and continuous functions. The bound-
edness assumption can be further relaxed, if the process v spends ‘negligible’
time outside a compact set S C R. This, for instance, can be the case if the
volatility process is stationary, which is a standard assumption in financial
literature. Then, it suffices to assume that ;1 and o are bounded over S.

Standard processes for the variance include the square-root diffusion of
Feller (1971) and Cox et al. (1985), and the Ornstein-Uhlenbeck process for
the logarithm of the variance, of Melino and Turnbull (1990). The numerical
examples of this paper will concentrate on the square-root diffusion.

We also allow the two diffusions W and W?" to be correlated, with cor-
relation coefficient p. This correlation will represent the well documented
leverage effect. Unfortunately, as pointed out in Carr and Wu (2004b), dif-
fusive components can only be correlated with other diffusive components,
which forces us to assume that W7 is independent of the jump component.
Therefore, although a stochastic volatility pure jump process can be accom-

modated in our framework, we can only consider leverage-neutral processes
of this kind.
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NIG process

U(u) =—d (\/a2 — (b+iu)? — Va2 — 62>

(a2 _ b2)3/2
d=
3b
Skew = m
a® + 4b?

VG process

1 1
U(u) = —=log <1 — iufv + §u2021/>
v

1 — o2

vV — 9
1—0%)(2 2
Skew:( JL( +a7)
2 4
XKurt = (1 0222 0)

CGMY process

U(u) = CT(-Y) (M —iu)" + (G — iu)" — MY —

G2 M2 1
T(-YV)(Y =1)Y G"M? + G*MY
Y -2 GYM?+G3MY
GM  GY M2+ G2MY
Y -2 Y -3 GYM*+G'‘MY
GM _GM GYM?+G2MY

C —

Skew =

XKurt =

GY)

Tab. 1: Standardization of three Lévy process. The table presents the char-
acteristic exponent of the NIG, VG and CGMY processes, and the
restriction that has to be imposed on the parameters to ensure that
the process exhibits unit variance. The table also gives a measure or
the corresponding skewness and excess kurtosis of the Lévy process
under this restriction. The actual skewness over a time interval 7 is
equal to Skew/\/T, and the actual kurtosis is equal to 3+ X Kurt/r.
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4 The asset price process

This section combines the definitions of the previous parts, and constructs a
stochastic volatility model for a Lévy process. We assume that the log-price

of the underlying asset, say y; follows a process of the form

t
ytzyo+/ py(vs) - dt + Y /vy - AL (4.1)
0

s<t

Under the risk-adjusted measure, the functional form of p, has to be
chosen, as to ensure that the discounted price process forms a martingale. In

particular, we demand
expyo = exp —rt - Egexp iy, (4.2)

Conditioning on the path of the variance process (v,), we can rewrite the
expectation as

exp (?Jo + /Ut iy (vs) - dt) - Ey (vs)f)”

Using now that fact that the increments AL! are independent, and using

Eq

exp (Z Vs - AL;)

s<t

the definition of the characteristic exponent, we can express the innermost

expectation as

t
HEO [eXp (\/E . AL;) ‘ vs} = Hexp Ui (—1iy/vs) = exp/ Uri(—1y/vs)ds
s<t s<t 0

It is straightforward now to recognize that setting
py(v5) =17 — Upi(—i/ug) =r — ¥ (—ifvy) (4.3)

will satisfy (4.2), and render the discounted process a martingale.
To illustrate the above relationship, we can use the trivial example of the
Brownian motion, used in the BMS paradigm. In this case, the process L'

is just a standard Brownian motion, with characteristic exponent Wy (u) =
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—1y2 2. Then, from

su”. In addition, the variance process is constant, v, = o
equation (4.3), the required drift of the risk-adjusted process is p, = r — %02,
which is the familiar log-normality adjustment of the BMS formula.
As another example, which is more related to the current paper, we can
consider the VG process under stochastic volatility. Then, following equation

(4.3), we can identify that the risk-adjusted drift should be (where of course

1552)

V=

1 1
iy (vs) =7+ = log (1 — Jusbv — 51}30%)
v

5 Approximating the volatility diffusion

As explained in detail in Kushner (1990) and Dupuis and Kushner (2001),
a diffusion of the form can be approximated arbitrarily well using a
carefully selected Markov chain, that lives on a finite grid. The Markov
chain has to satisfy the local consistency requirements, namely that it exhibits
the same instantaneous drift and volatility as the diffusion in question.? In
essence, the log-price process is approximated by a sufficiently dense regime
switching model; Chourdakis (2004) shows how closed form characteristic
functions for such regime switching models can be used to approximate option
prices, and how correlations between the state process and the prices process

can be introduced.

5.1 The local consistency concept

In order to implement the approximation method, we will need a variance
grid Y" = {V{",---,V{ }, indexed by h > 0. Assume that as h — 0: ()
VI, — V]| = 0forall j = 1,--- N, or in other words that the grid
becomes progressively denser; (ii) N, — oo, or that the grid becomes larger,

and (7i7) that the grid tends to cover the support of the diffusion (3.1). We

4 Kushner and DiMasi (1978) generalize this approach for jump diffusions. Therefore,
the same technique could be in principle employed in the case where the volatility was
driven by a Lévy process as well. Of course, in this case the structure of the approximating
chain will be more complicated, and, in particular, moving to non-neighboring variance
states has to be allowed.
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will denote the approximating chain with v € T, and the corresponding rate
matrix with Q" = [¢/";].

Assume for a moment that at time ¢, the values of the variance process
and the approximating chain coincide, v; = v'. It can be shown, for example
in Aft-Sahalia (2002), that allowing switches to the neighboring states V;’il
and V" | is sufficient to ensure local consistency.

J
The local consistency conditions stipulate that, for § > 0

El (vis —v) = p(vg)d + o(9)

(5.1)
El(vies —v1)* = 0*(v1)0 + 0(9)

The expectations operator E" is applied with respect to the rate matrix Q”.
Kushner shows that given local consistency, the Markov chains indexed by A
will converge weakly to the diffusion (3.1} as h — 0.

Given a grid, equations (5.1) naturally lead to a system that can be solved
to retrieve the approximating rate matrix. For convenience we drop the index
h from the rest of the exposition, keeping in mind though that the results
will only hold asymptotically. Assume that at time ¢, the variance is equal
to V;. Over a time interval §, there are three possibilities: we can remain at
Vj, move up by dy to Vi1 = V;+dy, or move down by dp to V;_1 = V; —dp.

The local consistency conditions can therefore be restated as

—qj,l,dié —+ q]‘+1’de(5 = /L(V})é + 0(5)
j-1,;dp0 + gji1,;dG0 = 0*(V})d + o(9)

The above relationships can lead to the approximations schemes. Passing to
the limit 6 — 0, we can solve the above system to retrieve the rate matrix

elements, for all j =2,--- ,N — 1, as

G-1 = @ty (0 (V3) — dup(V;))
G+1g = gonray (00(V) +dppu(V;)) (5.2)

455 = —%-15 — 9j+1,j

For Q to be a valid rate matrix, we have to ensure that the off-diagonal
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(j/M)th percentile /
/

/]
//

grid points

LA

Fig. 1. Grid construction. Setting the grid points at the (ﬁ +(j— 1)%)—

percentile of the unconditional distribution of the diffusion.

L—o———o0—o0'o0lo0l0olol0 0000
J_1 joj+1...

elements are non-negative. For this reason, when the equations (5.2) above
produce invalid elements, one can replace them with a scheme that always

remains valid

G-1 = aanray (O (Vi) + (dp + du)p (V5))
G+ = garay (@ (Vi) + (dp +du)ut (V5)) (5.3)

q]a.] = _qulvj - q]+17]

The superscripts u* denote the positive and negative parts of p. Both
schemes match the instantaneous drift, but only the first one matches the
instantaneous volatility too.’

We now turn in issues related to the grid construction.
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5.2 The grid

The grid of the Markov chain has to be carefully chosen, keeping in mind
that: (i) it has to be sufficiently dense, in order for the local consistency con-
ditions to apply, and (7) it has to be sufficiently wide, in order for the effect
of truncating the support of the diffusion to be negligible. In this paper, we
will use the unconditional density to create the grid: We can construct an
M-point grid by setting V; equal to the (5i + (j — 1)+ )-percentile of the
unconditional distribution. Figure [1 illustrates this construction. This ap-
proach offers two major benefits: (i) the grid extends and covers the diffusion
support as M increases, and (ii) the grid is tighter where it matters most,
that is to say, where the diffusion is more likely to take values in the future.
Of course other constructions are also possible; for example, if more extreme
values are required, the symmetric regularized Beta function Bgg(-,n) can
be used to ‘spread out’ the percentiles generated aboveE Figure [2| gives
examples of Bgr(-,n) for different values of the parameter 7.

It is assumed that the grid has been selected in such a way, that the be-
havior of the chain on the boundaries is not important. Generally speaking,
this will be the case if the probability of reaching the boundaries (in the rele-
vant time frame) is negligible. These probabilities can be actually examined,
since the time-t transition density of the Markov chain is given by the matrix
exponential P(t) = exptQ. If this is the case, the boundaries can be made
absorbent or reflective, without any significant impact on the approximation

procedure.

5 Tt is straightforward to verify that the instantaneous volatility of approximations (5.3)
is 02(V;) + (dp + dy)|u(V;)|. This will asymptotically converge to the diffusion volatility
o as the grid becomes finer.

6 The symmetric regularized Beta function maps the interval [0, 1] — [0, 1] in a sigmoid

way, maintaining 3 — 1. It is given by Bgg(-,n) = lg(';f;g)

3 , where the numerator and
denominator are the incomplete and complete Beta functions, respectively. It can also be
computed as the cumulative density function of the Beta distribution, with both shape
parameters equal to 7. Setting 7 = 1 results in a linear (in probability) grid, while values

of n > 1 spread out the grid points towards more extreme values.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Probability

Fig. 2: The symmetric regularized Beta function, Bgsg(-,n), for different val-
ues of 7. This function can be used to ‘spread out’ the percentiles
that lead to the grid construction.

6 The characteristic function

Chourdakis (2000, 2004) shows that, if some model parameters are considered
stochastic, the (time-t) characteristic function of the log-asset price y; can
be approximated by the characteristic function of the discrete state process.
This function, can in turn be computed in terms of a matrix exponential,
which is based on the rate matrix of the approximating chain, and the condi-
tional characteristic exponents. Correlations are accommodated, by allowing
y; to jump, whenever the volatility switches. In particular, we can rewrite

the joint process of (y,v)

t
Yy = yo+/ Ny(vs)'dt+g Vs - AL
0

s<t

¢ ¢
v = g +/ p(vs) - dt +/ o(vs) - dW
0 0

Using the decompositions: L' = 8- W + /1 — 2. J!, of equation (2.1), and
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W =p- W'+ /1 —p?-Z, for Z a standard Brownian motion, independent

of all other processes, we can write

t t
wo= et [t -dis [ Gpgmaw:
0 0
t
+ [ BVIZ RV dZo+ YT e AL
0

s<t

t t
vy = v0+/ u(vs)-dt+/ o(vs) - dW
0 0

The second expression implies that dW? = -2~ - dv, — uv:) . g4 which

o(vs) o(vs)

can be substituted into the first expression, to give

yt:?JO+/0t (/@(UJ-BM/E%) -dt+/0tﬁp@ﬁ-dvs

+/0tﬂ\/1—p2m-dzs+2\/1—ﬁ?@-AJ;

s<t

The process v; can be now approximated by the Markov chain v, with
rate matrix Q", as described in the previous section. The process y?, which

is driven by this Markov chain, will also converge weakly to

t
1
=0t [ (o) = o TS a3 /i
0 s<t S

s [ BVIZ PV az ISV,

s<t

pn(vl)
o(vh)

We can observe how the leverage effect is incorporated in this approximation:
for p < 0, a volatility increase, Av® > 0, will cause the asset price to jump
downwards. It is also important to note that if the correlation between the
log-price and the variance process is equal to (p.
As Chourdakis (2004) shows, the approximating characteristic function
is given by
O (u) =1 - exp{t®"(u)} - vo (6.1)
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where the matrix " is tri-diagonal, with elements given by

Gii + F(ulVi)  ifj =i
zh](u) =9 GinGu|Vy, Vi) ,ifj=it1
0 , otherwise

Here, ¢ is a vector of ones, and vy is the initial (time-0) distribution of the
parameter v?. For example, if vy = V4, then vy would be a vector of zeros,
with the k-th element equal to one.

The function F(u|V;) is the conditional characteristic exponent, associ-

ated with variance level V;. Putting everything together, and applying (2.2),
we have

PV = 3u (14 35V U (3 TVT= ) - 5py/ T
L 2+ (VT )

The functions G(u|V;, Vi11) are the characteristic functions of the jumps that

(Vi)
o(Vi)

induce correlations, namely

, 1
G(u|V;, Vii1) = exp <—1uﬁp\/v§10(v£) -dD>

1
G(u|Vi, Viy1) = exp <+iuﬂp\/v§la(vh) . dU)

S

7 The pricing of European call options

Summarizing, in order to retrieve the characteristic function of the log-price,

given a set of parameter values, we follow the three steps below:

1. Construct the volatility grid, T = {V4,..., Vx}. The choice of the grid
points can be based, for example, on the asymptotic behavior of the

variance process.

2. Compute the rate matrix of the approximating Markov chain, Q. The

rate matrix will ensure that the chain is locally consistent with the
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variance process.

3. Compute the matrix valued function ¥(u), that enables us to compute

the approximate characteristic function, following equation .

Given the characteristic function, Carr and Madan (1999) show how Eu-
ropean option prices can be computed. A set of option prices can be simul-
taneously computed, by application of the Fast Fourier Transform (FFT).
Chourdakis (2005) shows how the computations can be substantially sped
up. A complete volatility surface can be computed in a matter of seconds.

In particular, given a control parameter (, call prices can be computed,

for log-strikes m, as the following Fourier transforms

Cy(m; () = M /oo exp(—imu)®(u: ) - du, where
0
< exp(—rt)®(u— (C+1)i)
q)t(ug C) - CQ n C —uZ+ (QC -+ 1)u1

See Carr and Madan (1999), Lee (2004) and Chourdakis (2005) for technical

and implementation details.

8 Example: The Variance-Gamma square-root stochastic

volatility process

We now focus on the following specification

t
Y = y0+/ ,uy(vs)-dt—l—g Vs - AL (8.1)
0

s<t

t t
vy = +/ 0,(0 — vy) - dt +/ Gu/Vs - AW (8.2)
0 0

This specification is analogous to the popular Heston (1993) stochastic volatil-
ity model. Our model reduces to the Heston model, if the Lévy process L
is a Brownian motion. In general, we will assume that L has a diffusive
and a jump component, the latter following the Variance-Gamma process of
Madan et al. (1998).
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Following the standard decomposition , we can rewrite the log-price

process as

t t
Y = y0+/ ,uy(vs)-dt+/ Byus AW, + Y V1= B2 /v, - AT
0 0 s<t
We assume that the correlation between the Brownian motion is equal
to p, and that J%V¢ follows the standardized Variance-Gamma process of
section 2.2. Based on this process, we can establish that the (conditional on

the variance) characteristic exponent of the Lévy parts, L is

1 1 1
U (u]V) = —iﬁQVUQ - ;log <1 —iy/1— 2V Vuby + 5(1 - 52)V02u2y>

1—02
02

can determine the risk-adjusted drift by applying (4.3)

In the above relationship, the restriction v = is also applied. Thus, we

oy (vs) =1 — %ﬁzvs + %log (1 — /1= 3%/ vv — %(1 - 52)0502y>

The volatility grid is based on information extracted from the uncondi-
tional distribution of the volatility process. We assume in this example a
grid size of M = 21 points; experimentation showed little differences for var-
ious sizes above 15. Since the variance follows the square-root diffusion, it
is unconditionally distributed as a Gamma random variable with (scale and
20, 3
o2 20, °
on the points with cumulative probability ﬁ +

and

shape) parameters equal to Our base 21-point grid is based

1
21
The minimum and maximum volatility values were approximately 0.4% and

x j for j = 0,...,20.

61.2%, annualized; thus, the approximation method truncates the support
of the volatility process, with /v, € [0.4%, 62.1%]. To ensure that the more
extreme values are attainable, we transform these base probabilities, using
the regularized Beta function, with transform parameter 7 = 3. The result-
ing bounds are now 7 x 10~1% and 106.5%, respectively. Figure|3|gives the
volatility grid, together with the long run volatilities. Overall, a large num-

ber of experiments conducted, suggest that the results are very robust with
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L]
o+ o+ o+ o+ o+ o+ + + + +
1
1 1
1
1
1
1
08 T + + + +
1
1
Ly v v+ o+ 4 + + + +
]
06 1
FoE o+ o+ o+ + + + +
1
1 + o+ o+ o+ + + + + +
1
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1
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Fig. 3: The grid constructed for the 21-point variance process. The axes
measure the corresponding annualized volatility values. The dashed
lines indicate the long run volatilities.

respect to the grid, given that the support covers the bulk of the distribution.
The second step is to identify the rate matrix of the approximating
Markov chain. This can be readily computed using equation or (5.3),

P2V — dyb, (v — V) o2V + (dp + dy)0, (v — V)~

Gvi = Ty v dp) dp(dy + dp
G = 0,V +dpy (v —V5) ¢,V + (dp + du)0,(0 — V)"
AR dy(dy +dp) dp(dy +dp)
45 = —4+1,5 — Qj+1,5

The quantities on the right are used if the quantities on the left are negative.

The process ", which approximates the log-price y, is given by

y?:y0+/t <,uy(vg)— ﬁpev(@—vf)) -dt+2@-Avf
0

Pu o

t
b [ BTV a2+ Y VT= PVl AT
0

s<t
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Therefore, the matrix function ¥”, which enables us to compute the approx-

imate characteristic function, will have elements

([ gii+ iu (,U/y(‘/;') - %(@ - V;))
LA = AV Ve (VT ) i = i

zhy(u) =9\ Gi-1€xp (—iU%dD) Jifj=1—-1
Gi,i+1 €Xp (+iui—de) Jifj =i+ 1
0 . otherwise

\

where W ;i is the characteristic exponent of the standardized Variance-
Gamma process, given in section

Finally, the characteristic function is inverted using the FFT, outlined in
Carr and Madan (1999). In particular, the fractional version of Chourdakis
(2005) is used. The parameter ¢, which dampens the function to be inte-
grated was chosen in the range of % to 3, for options with different maturities.
For options with shorter maturities, higher values of ( were used. Each ma-
turity was integrated using 100 to 250 sampling points, and the integrand
was assumed equal to zero after the seventh decimal place. This determined
the upper integration bound.

The model was calibrated using the closing prices of the sP500 index
options, on the 4th January 2005. Options with deltas outside the 10% to
90% range were discarded. Implied volatilities of out-of-the-money contracts
were used, and option prices were computed based on these values. Zero
dividends and a flat interest rate of 3% were assumed. In total, our dataset
consists of 123 prices, which span a variety of maturities, ranging from two
weeks to two years.

The general specification (8.1-8.2) admits some interesting special cases.
These were used to assess the performance of the model, in terms of the com-
putational speed and the quality of the numerical approximations involved.
We found that the procedures outlined here provide a very robust pricing

mechanism. The special cases are the following:

e For # = 1, the model converges to the familiar stochastic volatility
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model of Heston (1993), since there are no discontinuities present.

o If we further let the volatility to be constant, e.g. by setting ¢ = 0
and v = vy, the process becomes the familiar BMS geometric Brownian

motion.

e Setting p = 41 gives us the special case where the two Brownian mo-
tions are identical, that is to say, the continuous component of the

volatility and price paths is common.

e Setting § = 0 results into a price process that is purely discontinuous.
Such a process is related, but not identical, to the processes discussed
in Carr et al. (2003) (there, volatility variations were achieved with

further subordinations).

e By setting a constant variance, we arrive to the classic vG model of
Madan et al. (1998).

The models were calibrated using a weighted sum of errors as an objective
function. The pricing errors were weighted with %, to reflect the differences
of error variability with maturity (see Carr and Wu (2004a) for details). Fig-
ure 4 gives the observed and fitted prices, together with the corresponding
pricing errors, for the full specification. Table 2 gives the calibrated param-
eters, together with the RMSE (root mean squared error).

One can make the following general remarks: As expected, and in terms
of the RMSE, the fully fledged specification clearly outperforms the rest. The
correlation coefficient between the two Brownian motions is —0.90, indicating
that perhaps one diffusion might suffice to capture both the price and the
volatility dynamics. Indeed, when such a specification is calibrated, we can
observe that the RMSE does not deteriorate substantially.

The correlation coefficient appears to be an important component of the
price dynamics, generating the necessary skewness in the log-prices. It is
important to note, that when the price process is augmented with jumps,
the jump distribution appears to be positively skewed. It also appears that,

when a pure-jump process is considered, the lack of the leverage effect is
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0 1 1 1 1 1 1 1 1 1
950 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450

| 1 1 1 1 1 1 1
950 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450

Fig. 4: The pricing performance of the stochastic volatility model with
Variance-Gamma discontinuities. The upper graph gives the observed
and fitted intrinsic values, for all maturities. The lower graph gives
the weighted errors.
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Full  Heston Single W Pure Jump

NGO 0.1631  0.1549 0.1608 0.1833
0., 0.2607 0.4331 0.3642 0.2489
Vo 0.2976  0.2676 0.2591 0.2561
o} 0.3937  0.4167  0.3441 0.4435
15 0.6931 1 0.6755 0
p -0.9012 -0.4834 -1
o 0.6670 0.7532 0.8476
0 1.2989 1.1387 -1.1938
RMSE  2.0812  2.4289 2.1602 6.3146
Skew 1.045 0 0.976 -0.641
XKurt 1.779 0 1.681 0.880

Tab. 2: Calibrated parameters for a set of models.

the reason of its very bad performance. The RMSE of a pure jump process
is nearly three times the RMSE of the models that also include a diffusive

component.

9 Conclusions

This paper introduced a family of models that generalize the standard Lévy
processes, in the sense that they allow for stochastic volatilities. A generic de-
composition of the Lévy process, together with a discretization of the volatil-
ity process, allow us to compute European option prices, with an arbitrary
degree of accuracy. An example, using the familiar square-root diffusion,
illustrates step-by-step the implementation of the various algorithms.

We find that the methodology presented in this paper offers a robust
alternative to standard stochastic volatility models. The parameters are
easily calibrated, using a standard notebook. Of course, a full analysis of
the usefulness of this approach, would examine the pricing accuracy of the
calibrated models using prices of more exotic contracts. We leave such an

approach for further research.
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