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Before we come to the main proofs we need to introduce some quantities, Lemmas and Re-
marks that will be needed later on.

LEMMA A.1. Let Yi be independent random variables with common distribution and suppose
that E

(
Y 2
i

)
<∞. Then

1

n

n∑
i=1

Y 3
i = o

(
n

1
2

)
with probability 1 as n→∞.

PROOF. See [Owen 1990], p.98.

REMARK A.2. Let Yi i.i.d. and suppose a measurable function f with Σf = V ar [f (Y )] < ∞
and E [f ] = 0. It follows that fi = f (Yi) are also i.i.d. and E

[
f2
]
<∞. With Lemma A.1 we have

1

n

n∑
i=1

f3
i = op

(
n

1
2

)
.

We introduce the following quantities: a constant s and the function

gn+2 (θ) = 2gn (θ) + scu (θ)u

where gn (θ) =
∑n
i=1 gi (θ) and cu (θ) =

(
u′Ŝ (θ)−1 u

)−1/2

with

Ŝ (θ) =
1

n

n∑
i=1

(gi (θ)− ḡn (θ)) (gi (θ)− ḡn (θ))′ .

Moreover, gn+1 (θ) = −scu (θ)u and

S (θ) =
1

n

n∑
i+1

gi (θ) gi (θ)′ ,

S̃ (θ) =
1

n+ 2

n+2∑
i=1

gi (θ) gi (θ)′ ,

g̃n (θ) =
1

n+ 2

n+2∑
i=1

gi (θ) .

Note that

g̃n (θ) =
1

n+ 2
[ngn (θ) + 2gn (θ)] = gn (θ) .

LEMMA A.3. For given θ suppose E
[
g (Y, θ) g (Y, θ)′

]
<∞ and E [g (Y, θ)] <∞ then

cu (θ) = Op (1) .
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A:2 Nguyen et al.

PROOF. Given the assumptions Σg (θ) = E
[
(g (Y, θ)− E [g (Y, θ)]) (g (Y, θ)− E [g (Y, θ)])′

]
<

∞ exists and Ŝ (θ)
p→ Σg (θ) . Since the variance-covariance matrix Σg (θ) is positive-semidefinite

(p.s.d.) and symmetric, it has positive eigenvalues. Let γ1 (θ) ≥ ... ≥ γd (θ) be the eigenvalues
of Σg (θ). As Ŝ (θ)

p→ Σg (θ), for any unit vector η we have γ−1
1 (θ) + op (1) ≤ η′Ŝ (θ)−1 η ≤

γ−1
d (θ) + op (1) . With the latter it follows cu (θ) = Op (1).

LEMMA A.4. For given θ suppose E
[
g (Y, θ) g (Y, θ)′

]
<∞ and E [g (Y, θ)] <∞ then

S̃ (θ)
p→ S (θ) .

PROOF. With u = ḡn (θ) / ‖ḡn (θ)‖ it is

S̃ (θ) =
1

n+ 2

(
n∑
i=1

gi (θ) gi (θ)′ + gn+1 (θ) gn+1 (θ)′ + gn+2 (θ) gn+2 (θ)′
)

=
n

n+ 2
S (θ) +

s2c2u (θ) + (2 ‖ḡn (θ)‖+ scu (θ))2

n+ 2
uu′. (54)

As ḡn
p→ E [g (Y, θ)], ḡn has order Op (1). With s = O (1) and the given assumptions, cu (θ) =

Op (1), (see Lemma A.3) the last term in (54) is of order[
O (1)Op (1) + (Op (1) +O (1)Op (1))2]O (n−1) = Op (1)O

(
n−1)

= Op
(
n−1) .

Hence, S̃ (θ)− S (θ)→ 0 in probability as n→∞.

A.1. Proof of Theorem 1
The proof in this section is similar to the one in Owen [1990] and Emerson and Owen [2009].
However, to the best of our knowledge there has been no proof published to demonstrate the dis-
tributional convergence of the BAEL for unbiased estimation equations. Throughout this proof
we assume θ = θ0 for which we have E [g (Y, θ0)] = EF0 [g] = 0. For the rest of this section we
will write the argument θ0 only for emphasis, otherwise we will drop the argument for conve-
nience, i.e. gn =

∑n
i=1 gi (θ0) . Moreover we define g∗ = maxi=1:n ‖gi‖ , g̃∗ = maxi=1:n+2 ‖gi‖ and

the following magnitudes hold: i)1 g∗ = op
(
n

1
2

)
, ii)2 ḡn = Op

(
n−1/2

)
iii) gn+1 = Op (1) , iv)

gn+2 = Op (1) and v) g̃∗ = op
(
n

1
2

)
.

Note that by assumption, iii) follows from Lemma A.3; that is cu = cu (θ0) = Op (1) since
Theorem 1 assumes

Σg = E
[
g (Y, θ0) g (Y, θ0)′

]
<∞.

The latter gives gn+1 = Op (1). Moreover using cu = Op (1) and ḡn = Op
(
n−1/2

)
with the

definition of gn+2, we get

gn+2 = Op
(
n−1/2

)
+Op (1)

= Op (1) .

Finally, as gn+2 = gn+1 = Op (1) , g̃∗ has the same order as g∗, i.e. g̃∗ = op
(
n

1
2

)
. Before we come

to the main proof we need the following Lemma and Remark.

LEMMA A.5. Let θ = θ0 and E
[
g (Y, θ0) g (Y, θ0)′

]
<∞ and E [g (Y, θ0)] <∞, then

S̃ − S p→ 0

1[Chen 2008] p.22.
2[Qin and Lawless 1994] p.318.
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as n→∞.

PROOF. Similarly to Lemma A.4, S̃ = S̃ (θ0) can be written as

S̃ =
n

n+ 2
S +

s2c2u + (bn ‖gn‖+ scu)2

n+ 2
uu
′
.

As cu is of order Op (1) , s = O (1) and from above gn is order of Op
(
n−

1
2

)
, the order of the last

term is[
O (1)Op (1) +

(
Op
(
n−

1
2

)
+O (1)Op (1)

)2
]
O
(
n−1)

=
[
Op (1) + (op (1) +Op (1))2]O (n−1

)
= [Op (1) +Op (1)]O

(
n−1

)
= O

(
n−1

)
Hence S̃ − S → 0 in probability as n→∞.

REMARK A.6. As above for θ = θ0 we have EF0 [g] = 0 and Σg = E
[
g (Y, θ0) g (Y, θ0)′

]
< ∞,

then S → Σg in probability as n → ∞. Furthermore ḡn → EF0 [g] = 0 in probability as n → ∞,
it follows 1

n

∑n
i+1 ‖gi‖

2 → EF0

[
‖g‖2

]
<∞ in probability as n→∞. According to Lemma A.5 we

have S̃ → Σg <∞ and for bn = 2, it is g̃n = gn → EF0 [g] = 0 in probability as n→∞. From the
latter two statements it follows 1

n+2

∑n+2
i+1 ‖gi‖

2 → EF0

[
‖g‖2

]
<∞ in probability as n→∞.

The remainder of this Section proves Theorem 1. The proof is outlined as follows. First we
derive that ‖λ‖ = Op

(
n−

1
2

)
. Knowing that, we show λ = S̃−1g̃n + op

(
n−

1
2

)
, for the sample

covariance matrix S̃. We complete the proof by substituting this expression for λ into the profile
(balance adjusted) empirical log likelihood ratio statistic ˜−2W (θ0), verifying that some other
terms are negligible and using Lemma A.5. Accordingly the proof of Theorem 1 is divided into
three parts.

Part 1:

PROOF. Without loss of generality let σ2
1 ≤ . . . ≤ σ2

m be the eigenvalues of Σg = EF0 [gg′] with
σ2

1 = 1 . For θ = θ0 using 1
1+x

= 1− x
1+x

and λ̂ = λ/ρ, ρ = ‖λ‖ in (23) it follows

0 = λ̂′

n+2

∑n+2
i=1

gi
1+λ

′
gi

= λ̂′

n+2

∑n+2
i=1 gi −

λ̂′

n+2

∑n+2
i=1

giλ
′gi

1+λ′gi

= λ̂′g̃n − 1
n+2

∑n+2
i=1

λ̂′giρλ̂
′gi

1+ρλ̂′gi

= λ̂′g̃n −
ρ

n+2

∑n+2
i=1

λ̂′gig
′
iλ̂

1+ρλ̂′gi

≤ λ̂′g̃n −
ρ

1+ρg̃∗ λ̂
′S̃λ̂

≤ λ̂′g̃n −
ρ(1−ε)
1+ρg̃∗ . (55)

The last inequality follows from the fact that S̃ p→ Σg (,using S p→ Σg and Lemma A.5). Therefore
in probabilty for some some ε > 0 we have

λ̂′S̃λ̂ ≥ (1− ε)σ2
1 = (1− ε) .

Using (55) gives

ρ

(1 + ρg̃∗)
≤ λ̂

′
g̃n

1− ε . (56)
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Since g̃n = gn and λ̂′g̃n
1−ε is of order Op

(
n−

1
2

)
with equation (56) it follows

ρ = ‖λ‖ = Op
(
n−

1
2

)
. (57)

Part 2:

PROOF.
First define ϑi = λ

′
gi. Having established an order bound for ‖λ‖ and with g̃∗ = op

(
n

1
2

)
it is

max
i=1:n+2

|ϑi| = Op
(
n−

1
2

)
op
(
n

1
2

)
= op (1) . (58)

Using 1
1+x

= 1− x− x2

1+x
in (23) we get

0 =
1

n+ 2

∑n+2
i=1

gi
1+λ

′
gi

= 1
n+2

∑n+2
i=1 gi

(
1− λ

′
gi +

(
λ
′
gi

)2

1+λ
′
gi

)

= g̃n − S̃λ+ 1
n+2

∑n+2
i=1

gi

(
λ
′
gi

)2

1+λ
′
gi

. (59)

The last term is bounded above by norm

1

n+ 2

n+2∑
i=1

gi
(
λ
′
gi
)2

1 + λ′gi
≤ max

i=1:n+2
‖gi‖

1

n+ 2

n+2∑
i=1

‖λ‖2 ‖gi‖2
∣∣∣1 + λ

′
gi

∣∣∣−1

= g̃∗ ‖λ‖2 1

n+ 2

n+2∑
i=1

‖gi‖2
∣∣∣1 + λ

′
gi

∣∣∣−1

. (60)

With the given order of g̃∗ and λ, Remark A.6 and (58), the order of equation (60) becomes

op
(
n

1
2

)(
Op
(
n−

1
2

))2

Op (1)Op (1) = op
(
n−

1
2

)
.

Using the latter in equation (59) gives

λ = S̃−1g̃n + op
(
n−

1
2

)
. (61)

Part 3:

PROOF. By (58) we may expand

log (1 + ϑi) = ϑi −
1

2
ϑ2
i + ηi, (62)

where for some finite B > 0,

P
(
|ηi| ≤ B |ϑi|3 , 1 ≤ i ≤ n+ 2

)
→ 1 (63)

as n→∞. Substituting (62) in (22) we get
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−2W̃ (θ0) = 2

n+2∑
i=1

log (1 + ϑi) = 2

n+2∑
i=1

ϑi −
n+2∑
i=1

ϑ2
i + 2

n+2∑
i=1

ηi.

Remark3 A.2 and (63) give an order bound for the last term

2

∣∣∣∣∣
n+2∑
i=1

ηi

∣∣∣∣∣ ≤ 2B ‖λ‖3
n+2∑
i=1

‖gi‖3

= 2B ‖λ‖3
[
n∑
i=1

‖gi‖3 + ‖gn+1‖3 + ‖gn+2‖3
]

= 2BOp
(
n−

1
2

)3 [
op
(
n

3
2

)
+Op (1) +Op (1)

]
= 2BOp

(
n−

3
2

) [
op
(
n

3
2

)]
= op (1) . (64)

Let us rewrite (64) by

λ = S̃−1g̃n + β,

with ‖β‖ = op
(
n−

1
2

)
. Using the latter and re-substituting ϑi = λ

′
gi in (22) gives

− 2W̃ (θ0) = 2

n+2∑
i=1

λ′gi −
n+2∑
i=1

(
λ′gi

)2
+ op (1)

= 2 (n+ 2)λ′g̃n − (n+ 2)λ′S̃λ+ op (1)

= 2 (n+ 2)
(
S̃−1g̃n + β

)′
g̃n − (n+ 2)

(
S̃−1g̃n + β

)′
S̃
(
S̃−1g̃n + β

)
+ op (1)

= 2 (n+ 2)
[
g̃
′
nS̃
−1g̃n + β′g̃n

]
− (n+ 2)

[
g̃
′
nS̃
−1g̃n + 2β′g̃n + β′S̃β

]
+ op (1)

= (n+ 2)
[
g̃
′
nS̃
−1g̃n

]
+ (n+ 2)β′S̃β + op (1)

= (n+ 2)
[
g
′

nS̃
−1gn

]
+ op (1) . (65)

As S̃ = Op (1) (using Lemma A.5 and S p→ Σg ), the last equality holds because g̃n = g
′

n and

(n+ 2)β′S̃β = O (n) op

(
n−1/2

)
Op (1) op

(
n−1/2

)
= op (1) .

Moreover, as ng
′

nS
−1gn converges to a χ2 distribution with q degrees of freedom, S̃ p→ S and

n
n+2
→ 1, it follows −2W̃ (θ0)→ χ2

q in probability as n→∞.

A.2. Proof of Theorem 2
PROOF. Suppose θ 6= θ0. As before we drop the argument θ, e.g. ḡn = 1

n

∑n
i=1 g (yi, θ) =

1
n

∑n
i=1 gi, gn+1 = −scu (θ)u and gn+2 = 2ḡn (θ)+scu (θ)u.Note, due to the law of large numbers,

‖ḡ′nḡn‖ → δ2 and ḡn → µ (θ) := E [g (Y, θ)] in probability as n→∞. By assumption Σg (θ) <∞,
with Lemma A.3 we have cu = Op (1). As E

[
g (Y, θ) g (Y, θ)′

]
= Σg (θ) + µ (θ)µ (θ)′ < ∞ and

S
p→ E

[
g (Y, θ) g (Y, θ)′

]
with Lemma A.3 (S̃ p→ S) it follows S̃ = Op (1) .

Now, for i = 1, ..., n the terms gi − ḡn have expected value zero

E [gi − ḡn] = 0

3Under the mild condition of g being a measurable function, it follows with Lemma A.1 that
∑n
i=1 ‖gi‖

3 =

o
(
n

3
2

)
as 1

n

∑n
i=1 ‖gi‖

3 = o
(
n

1
2

)
.
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and satisfying all moment conditions such that with Lemma 3 in [Owen 1990, p. 98] it follows
that

max
i=1,...,n

{‖gi − ḡn‖} = op
(
n1/2

)
. (66)

Let λ̃ = n−2/3ḡnM for a positive constant M > 0. For i = 1, ..., n

λ̃′gi = λ̃′ (gi − ḡn) + λ̃′ḡn. (67)

From the above ḡn is of order Op (1) therefore the maximum of the first term on the right
hand side in (67) is with (66) of order op

(
n−2/3n1/2

)
= op (1). The last term in (67) has the

order n−2/3Op(1) = op(1) hence

max
i=1,...,n

{∥∥∥λ̃′gi∥∥∥} = op (1) . (68)

Since s and u are of O (1) and cu = Op (1) it follows that gn+1 = Op (1) and gn+2 = Op (1). Hence
λ̃′gn+1 = op (1) and λ̃′gn+2 = op (1) therefore

max
i=1:n+2

{∥∥∥λ̃′gi∥∥∥} = op (1) . (69)

With (69) for i = 1, ..., n + 2 we have 1 + λ̃′gi > 0 with probability going to 1. Hence using the
Taylor expansion:

log (1 + x) = x− x2

2 (1 + ξ)2 (70)

for some ξ between 0 and x and the duality of the maximization problem it is

W̃ (θ) = −sup
λ

{
n+2∑
i=1

log
(
1 + λ′gi

)}

≤ −
n+2∑
i=1

log
(

1 + λ̃′gi
)

(71)

= −

n+2∑
i=1

λ̃′gi −
1

2

n+2∑
i=1

(
λ̃′gi

)2

(1 + ξi)
2

 .
Note, from (69) all ξi are within op (1) neighborhood of 0 uniformly. Therefore the second term
in the last line of (71) is no larger than

n+2∑
i=1

(
λ̃′gi

)2

= (n+ 2) λ̃′S̃λ̃ = O (n)Op
(
n−2/3

)
Op (1)Op

(
n−2/3

)
= op (1) .

The first term is
n+2∑
i=1

λ̃′gi = λ̃′nḡn + 2λ̃′ḡn = n1/3δ2M + op (1) .

Therefore (71) gives

W̃ (θ) ≤ −n1/3δ2M + op (1) . (72)

Since M can be arbitrarily large, we have −2n−1/3W̃ (θ)→∞ for any θ 6= θ0.
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Simulation Based Estimation Using Extended Balanced Augmented Empirical Likelihood A:7

A.3. Proof of Theorem 3
Before we come to the proof the following Remark.

REMARK A.7. The last two elements in Assumption 4.1 satisfy the conditions of Lemma A.3,
hence

cu (θ) = Op (1)

for all θ ∈ Θ. The considered assumptions and the WLN give

ḡn (θ)
p→ E [g (Y, θ)] <∞

for all θ ∈ Θ, that is ḡn (θ) = Op (1) . Altogether this result in ‖gn+1 (θ)‖ = ‖gn+2 (θ)‖ = Op (1) for
all θ ∈ Θ.

The proof of Theorem 3 is almost the same as that of Newey and Smith [2004] and is divided
into four parts (three Lemmas and the main proof).

LEMMA A.8. If Assumption 4.1 is satisfied, then for any ζ with 1/α < ζ < 1/2 and Λn ={
λ : ‖λ‖ ≤ n−ζ

}
, we have supθ∈Θ,λ∈Λn,i=1,...,n+2 |λ′gi (θ)| p→ 0 and with probability approaching

(w.p.a.) 1, Λn ⊆ Λ̂n (θ) for all θ ∈ Θ.

PROOF.

sup
θ∈Θ,λ∈Λn,i=1,...,n+2

∣∣λ′gi (θ)
∣∣ ≤ sup

λ∈Λn

‖λ‖ max
i=1,...,n+2

sup
θ∈Θ
‖gi (θ)‖

= sup
λ∈Λn

‖λ‖
(

max
i=1,...,n+2

sup
θ∈Θ
‖gi (θ)‖α

)1/α

≤ sup
λ∈Λn

‖λ‖

(
n+2∑
i=1

sup
θ∈Θ
‖gi (θ)‖α

)1/α

= n1/α sup
λ∈Λn

‖λ‖

(
1

n

n+2∑
i=1

sup
θ∈Θ
‖gi (θ)‖α

)1/α

= n1/α sup
λ∈Λn

‖λ‖

(
1

n

n∑
i=1

sup
θ∈Θ
‖gi (θ)‖α +

1

n

n+2∑
i=n+1

sup
θ∈Θ
‖gi (θ)‖α

)1/α

= n1/αO
(
n−ζ

) (
Op (1) +Op

(
n−1))

= op (1)

The second to last line holds due to Remark A.7 and due the assumption E

[
sup
θ∈Θ
‖g (y, θ)‖α

]
<

∞ for some α > 2 that gives 1
n

∑n
i=1 supθ∈Θ ‖gi (θ)‖α p→ E

[
sup
θ∈Θ
‖g (y, θ)‖α

]
< ∞, i.e.

1
n

∑n
i=1 supθ∈Θ ‖gi (θ)‖α = Op (1). Overall it follows w.p.a. 1 λ′gi (θ) ∈ = for all θ ∈ Θ and

‖λ‖ ≤ n−ζ .

LEMMA A.9. If Assumption 4.1 is satisfied, θ̄ ∈ Θ, with θ̄
p→ θ0 and ˜̄gn

(
θ̄
)

= Op
(
n−1/2

)
,

then λ̀ = argmaxλ∈Λ̂n(θ̄)P̂
(
θ̄, λ
)

= argmaxλ∈Λ̂n(θ̄)
∑n+2
i=1 ρ

(
λ′gi

(
θ̄
))
/ (n+ 2) exists with w.p.a.

1, λ̀ = Op
(
n−1/2

)
and supλ∈Λ̂n(θ̄) P̂

(
θ̄, λ
)
≤ ρ0 +Op

(
n−1

)
.

PROOF. Since Assumption 4.1 satisfy the conditions of Lemma A.4 we have S̃
(
θ̄
) p→ S

(
θ̄
)
.

By assumptions and the UWL (Uniform Weak Law of Large Numbers) we have S
(
θ̄
) p→

∑
g (θ0),

hence S̃
(
θ̄
) p→

∑
g (θ0) . By

∑
g (θ0) < ∞ the smallest eigenvalue S̃

(
θ̄
)

is bounded away
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from 0 w.p.a. 1. Since ρ (v) is twice continuously differentiable in the neighborhood of 0 with
Lemma A.8 it follows P̂

(
θ̄, λ
)

is twice continuously differentiable on Λn with w.p.a. 1. Hence,
λ̌ = argmaxλ∈Λn P̂

(
θ̄, λ
)

exists with w.p.a 1. Furthermore, for ḡi = gi
(
θ̄
)

and any λ̇ on the line

joining λ̌ and 0 it follows from Lemma A.8 and ρ2 = −1 that max1≤i≤n+2ρ2

(
λ̇gi
(
θ̄
))

< −1/2

with w.p.a. 1. Then using the Taylor Expansion of P̂
(
θ̄, λ
)

around λ = 0 and λ̇ on the line joining
λ̌ and 0 we get

ρ0 = P̂
(
θ̄, 0
)
≤ P̂

(
θ̄, λ̌
)

= ρ0 − λ̌′ ˜̄gn
(
θ̄
)

+
1

2
λ̌′
[
n+2∑
i=1

ρ2

(
λ̇′ḡi

)
ḡiḡ
′
i/ (n+ 2)

]
λ̌

≤ ρ0 − λ̌˜̄gn
(
θ̄
)
− 1

4
λ̌′S̃

(
θ̄
)
λ̌

≤ ρ0 +
∥∥λ̌∥∥∥∥˜̄gn

(
θ̄
)∥∥− C1

∥∥λ̌∥∥2
, (73)

where C1 a positive constant. Subtracting ρ0 − C1

∥∥λ̌∥∥2 from both sides and dividing
∥∥λ̌∥∥2 we

get C1

∥∥λ̌∥∥ ≤ ∥∥˜̄gn
∥∥w.p.a. 1. By assumption we have ˜̄gn

(
θ̄
)

= Op
(
n−1/2

)
, therefore

∥∥λ̌∥∥ =

Op
(
n−1/2

)
= op

(
n−ζ

)
. From the latter it follows that λ̌ ∈ int (Λn) w.p.a.1 and with Lemma

A.8 λ̌ ∈ Λ̂n
(
θ̄
)

w.p.a. 1. By concavity of P̂
(
θ̄, λ
)

and convexity of Λ̂n
(
θ̄
)

it follows P̂
(
θ̄, λ̌
)

=

supλ∈Λ̂n(θ̄) P̂
(
θ̄, λ
)

and therefore λ̀ = λ̌. Using ˜̄gn
(
θ̄
)

= Op
(
n−1/2

)
,
∥∥∥λ̀∥∥∥ = Op

(
n−1/2

)
and in

(73) we get

P̂
(
θ̄, λ̀
)
≤ ρ0 +

∥∥∥λ̀∥∥∥∥∥˜̄gn
(
θ̄
)∥∥− C1

∥∥∥λ̀∥∥∥2

= ρ0 +Op
(
n−1) .

LEMMA A.10. If Assumption 4.1, then∥∥∥˜̄gn
(
θ̂
)∥∥∥ = Op

(
n−1/2

)
.

PROOF. Let ĝi = gi
(
θ̂
)

, ĝ = ˜̄gn
(
θ̂
)

and for ζ in Lemma A.8, λ̌ = −n−ζ ĝ/ ‖ĝ‖. With Lemma

A.8 it follows max1≤i≤n+2

∣∣λ̌′ĝi∣∣ p→ 0 and λ̌ ∈ Λ̂n
(
θ̂
)

w.p.a. 1. Then for any λ̇ on the line joining

λ̌ and 0 w.p.a. 1 we have ρ2

(
λ̇′ĝi

)
≥ −C2 for all i = 1, ..., n + 2, where C2 is a positive con-

stant. Given Assumption 4.1, Lemma (A.4) gives 1
n+2

∑n+2
i=1 ĝiĝ

′
i
p→ 1

n

∑
i ĝiĝ

′
i and by CS (Cauchy-

Schwarz inequality) and UWL it is 1
n

∑n
i=1 ĝiĝ

′
i ≤

(
1
n

∑n
i=1

(
supθ∈Θ ‖gi (θ)‖

)2)
I

p→ C3I, where
C3 is a positive constant. From the latter it follows that the largest eigenvalue of 1

n+2

∑
i ĝiĝ

′
i is

bounded above w.p.a. 1. Using Taylor Expansion as before

P̂
(
θ̂, λ̌
)

= ρ0 − λ̌′ĝ +
1

2
λ̌′
[
n+2∑
i=1

ρ2

(
λ̇′ĝi

)
ĝiĝ
′
i/ (n+ 2)

]
λ̌

≥ ρ0 + n−ζ ‖ĝ‖ − C2
1

2
λ̌′
[
n+2∑
i=1

ĝiĝ
′
i/ (n+ 2)

]
λ̌

≥ ρ0 + n−ζ ‖ĝ‖ − Cn−2ζ (74)

w.p.a. 1, where C = C2C3. By the Lindeberg-Levy central limit theorem the hypothesis of
Lemma A.9 are satisfied by4 θ̄ = θ0. As θ̂ and λ̂ being saddle point solutions, (74) and Lemma
A.9 gives:

4Note, ˜̄gn (θ0) = ḡn (θ0) .
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ρ0 + n−ζ ‖ĝ‖ − Cn−2ζ ≤ P̂
(
θ̂, λ̌
)
≤ P̂

(
θ̂, λ̂
)
≤ sup
λ∈Λ̂n(θ0)

P̂ (θ0, λ) ≤ ρ0 +Op
(
n−1) . (75)

Solving the latter for ‖ĝ‖ gives

‖ĝ‖ ≤ Op
(
nζ−1

)
+ Cn−ζ = Op

(
n−ζ

)
. (76)

The last equality holds because by assumption ζ < 1/2, thus ζ−1 < −1/2 < −ζ. Now consider
εn → 0 and let λ̀ = −εnĝ, with (76) λ̀ = op

(
n−ζ

)
, so that λ̀ ∈ Λn w.p.a. 1. Then as in (75)

ρ0 − λ̀′ĝ − C
∥∥∥λ̀∥∥∥2

= ρ0 + εn ‖ĝ‖2 − Cε2
n ‖ĝ‖2 = ρ0 + (1− Cεn) εn ‖ĝ‖2 ≤ ρ0 +Op

(
n−1) .

Since for large enough n, 1−C1εn is bounded away from 0 w.p.a. 1 and it follows from the latter
equation, εn ‖ĝ‖2 = Op

(
n−1

)
. The final conclusion follows by standard result from probability

theory, that if εnYn = Op(n
−1) for all εn → 0 then Yn = Op

(
n−1

)
.

Provided with the given Lemma A.8-A.10 the following proofs Theorem 3.

PROOF. First note, ˜̄gn (θ) = ḡn (θ) then∥∥∥˜̄gn
(
θ̂
)
− E

[
g
(
Y, θ̂
)]∥∥∥ =

∥∥∥ḡn (θ̂)− E [g (Y, θ̂)]∥∥∥ ≤ sup
θ∈Θ
‖ḡn (θ)− E [g (Y, θ)]‖ p→ 0,

where the latter follows from the assumptions and the UWL. As Lemma A.10 gives ˜̄gn
(
θ̂
)

p→ 0

it follows from above E
[
g
(
Y, θ̂
)]

p→ 0. By assumption E [g (Y, θ)] = 0 has a unique solu-
tion at θ0, hence ‖E [g (Y, θ)]‖ must be bounded away from 0 outside any neighborhood of
θ0. Therefore θ̂ must be inside any neighborhood of θ0 w.p.a. 1, i.e. θ̂ p→ θ0. With Lemma
A.10 (

∥∥∥˜̄gn
(
θ̂
)∥∥∥ = Op

(
n−1/2

)
) and θ̄ = θ̂ the hypotheses in Lemma A.9 are satisfied, hence

λ̂ = argmaxλ∈Λ̂n(θ̂)P̂
(
θ̂, λ
)

= argmaxλ∈Λ̂n(θ̂)
∑n+2
i=1 ρ

(
λ′gi

(
θ̂
))

/ (n+ 2) exists with w.p.a. 1,

λ̂ = Op
(
n−1/2

)
.
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