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Before we come to the main proofs we need to introduce some quantities, Lemmas and Re-
marks that will be needed later on.

LEMMA A.1. LetY; be independent random variables with common distribution and suppose
that E (Y;*) < cc. Then

with probability 1 as n — co.
PROOF. See [Owen 1990], p.98. O

REMARK A.2. Let Y; i.i.d. and suppose a measurable function f with ¥y = Var [f (V)] < oo
and E [f] = 0. It follows that f; = f (Yi) are also i.i.d. and E [f*] < co. With Lemma A.1 we have

1 — 1
w2t = (n)
We introduce the following quantities: a constant s and the function

gn+2 (0) = 27, (0) + scu (0) u
—1/2

where g, (0) = 3", g: (0) and ¢, (0) = (u/S OB u) with

Moreover, gn+1 (6) = —sc, (0) v and

SO =130

i+1
1 n+2

$O)= 5> 0000

1 n+2

5.0) = ——= > g:(0).

n+2 —

Note that

90 (0) = == [19,.(9) + 23, ()] = 7, ().

LEMMA A.3. For given 0 suppose E [g(Y,0) g (Y,0)'] < oo and E[g(Y,0)] < co then
cu (0) =0, (1).
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PROOF. Given the assumptions ¥, (0) = E [(g (Y,0) — E[g (Y, 0)]) (9 (Y,0) — E[g(Y,0)])'] <

oo exists and S (0) 5 %, () . Since the variance-covariance matrix 3, (6) is positive-semidefinite
(p.s.d.) and symmetric, it has positive eigenvalues. Let 1 (6) > ... > ~4(0) be the eigenvalues

of 3, (0). As S(0) B %, (0), for any unit vector  we have ;' (0) + 0, (1) < 7/'S(0) 'n <
77" (0) + o, (1) . With the latter it follows ¢, (0) = O, (1). O

LEMMA A.4. For given 0 suppose E [g(Y,0) g (Y,0)'] < oo and E[g(Y,0)] < co then
S50) 2 5().
PRrROOF. With v = g, (8) / ||g» (0)] it is

1

5(0) = n+2<§:mwMRWY+%wM®9m4WY+%wﬂ®%HM®>

_n s¢ (0) + (211gn ()] + scu (0))*
= n+25(9)+ m—— uu'. (54)

As g, & E[g(Y,0)], g» has order O, (1). With s = O (1) and the given assumptions, ¢, (§) =
Op (1), (see Lemma A.3) the last term in (54) is of order

[0(1)0, (1) + (0, (1) +0(1) 0, (1)))] O (") = 0, (1)O (n™")
= Op (nil) .
Hence, S () — S (6) — 0 in probability as n — co. O

A.1. Proof of Theorem 1

The proof in this section is similar to the one in Owen [1990] and Emerson and Owen [2009].
However, to the best of our knowledge there has been no proof published to demonstrate the dis-
tributional convergence of the BAEL for unbiased estimation equations. Throughout this proof
we assume 0 = 6y for which we have E [¢ (Y, 60)] = EF, [g] = 0. For the rest of this section we
will write the argument 0y only for emphasis, otherwise we will drop the argument for conve-
nience, i.e. g, = >, gi (fo) . Moreover we define g* = maxi—1.n ||g:| , §* = maxi=1.n42 ||g:|| and

the following magnitudes hold: i)' ¢* = o, (n%) i) o = O, (n*1/2) i) gnt1 = O, (1), iv)
gnt2 = O0p (1) and v) §* = op (n%)

Note that by assumption, iii) follows from Lemma A.3; that is ¢, = ¢. (60) = O, (1) since
Theorem 1 assumes

By =E[g(Y,00)g(Y,00)] < 0.

The latter gives g,+1 = O, (1). Moreover using ¢, = O, (1) and g, = O, (n’lm) with the
definition of g, 42, we get

gtz =0y (n71?) +0, (1)
=0,(1).

Finally, as gnt+2 = gnt1 = Op (1), §* has the same order as g*,i.e. §* = o, (n%) . Before we come
to the main proof we need the following Lemma and Remark.

LEMMA A5. Let 0 =69 and E [g(Y,60) g (Y,600)'] < oo and E[g(Y,00)] < oo, then
S-S50

I[Chen 2008] p.22.
2[Qin and Lawless 1994] p.318.
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asn — oo.
PROOF. Similarly to Lemma A.4, S = S (6) can be written as
2 2 — 2
o SE A Gl +sen? o

S:n+25+ n-+2

As ¢, is of order O, (1) , s = O (1) and from above g, is order of O, (n’%), the order of the last
term is

[O (1)0, (1) + (o,, (n*%) +oMmo, (1))2] 0(n ™)

Hence S — S — 0in probability as n — co. O

REMARK A.6. As above for § = 6y we have Er, [g] = 0 and X, = E [g(Y,60) g (Y,600)'] < oo,
then S — X, in probability as n — oco. Furthermore g, — EFr, [g] = 0 in probability as n — oo,
it follows £ 37 ||g:l|> = Enr, [||g]I?] < oo in probability as n — oc. According to Lemma A.5 we
have S — ¥, < oo and for b, = 2, it is G, = 7, = Er, [g] = 0in probability as n — co. From the

latter two statements it follows n}r2 E;ff lgill> = Er, [HgHQ] < oo in probability as n — oo.

The remainder of this Section proves Theorem 1. The proof is outlined as follows. First we
derive that ||| = O, (n’%). Knowing that, we show \ = g’lﬁn + op (n’%), for the sample
covariance matrix S. We complete the proof by substituting this expression for ) into the profile
(balance adjusted) empirical log likelihood ratio statistic —2W (6y), verifying that some other

terms are negligible and using Lemma A.5. Accordingly the proof of Theorem 1 is divided into
three parts.

Part 1:

PROOF. Without loss of generality let 07 < ... < o2, be the eigenvalues of 3, = Er, [g¢'] with
of =1.For 0 =0y using 17 = 1 — 2 and A = \/p, p = [|A]| in (23) it follows

14+x
0= N n+2 gi _ X nt2 N Zn+2 giN g;
T n+2 i=1 14X'g; = nt2 i=1 9i n+2 i=1 1+4+Xg;
_ N o L n+2 Xg;pXg;
n n+2 =1 1+ﬂ;\/9i
_ 5\/1 _p n+2 Ngighh
= D e s
= o 1%
< NG, — 132 NS4
NG p(1—¢)
< ANGn = Tipge - (55)

The last inequality follows from the fact that S % %, (,using S & 3, and Lemma A.5). Therefore
in probabilty for some some ¢ > 0 we have

NSX

\Y%
—
—
|

™
N
Q

Ll o]
|

—
—
|

™
N

Using (55) gives

P« 2n (56)
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Since g,, = g,, and % is of order O, (n’%) with equation (56) it follows

p=II\ =0, (n—%). (57)

Part 2:

PRrROOF.
First define ¥; = A’ g;. Having established an order bound for |[A]] and with g* = o, (n%) it is

max _[9;] = Op (nié) op (n%) =o0,(1). (58)

i=1in+2

1im:1—$—%in(23)weget

Using

/ 2
o 1 n+2 g, _ 1 n+2 ! (A gi)
0=23 +2 2uist Ty, = e 2im i | 1= At s

’ 2
= & nt2 9i(X 9i
= In —SA+ n-IFQ i:+12 1(+>\'g2 ’ 9

The last term is bounded above by norm

’ 2
1 “*291'@91-) 1 e —1

i A —— ST 2-2‘1 N g
T Thw S el g DLl L X

IN

n+2
~x 2 1 2 LT
= a7 |1 i
g A HQ;Hg P+ g (60)
With the given order of §* and A, Remark A.6 and (58), the order of equation (60) becomes
1 _1\\?2 1
Op (n2) (Op (n 2)) Op (1) Oy (1) = 0p (n 2) .
Using the latter in equation (59) gives
A= 87'g, +op (nf%) . (61)
O
Part 3:
PrROOF. By (58) we may expand
log (1 + 191) =1; — %1922 + i, (62)
where for some finite B > 0,
P(mi| <BW:*,1<i<n+2)—1 (63)

as n — oo. Substituting (62) in (22) we get

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.



Simulation Based Estimation Using Extended Balanced Augmented Empirical Likelihood A:5

n-+2 n+2 n+2 n+2

—2W (o) =2 log(1+9;) =2 di—> 95 +2) n.
=1 i=1 i=1

i=1

Remark® A.2 and (63) give an order bound for the last term

n+2

S
=1

n+2

2 2BIAI* D llgill®
=1

IA

=1

n
2B || Al {Z llgill* + llgn+11* + ||gn+2ll3]

280, (n*%)3 [op (n%) +0,(1)+0, (1)]

2BO, (n*%) [op (né)] =0, (1). (64)

Let us rewrite (64) by
A=57"g, + 8,
with [|8]| = op (n_%) . Using the latter and re-substituting ¥; = X g; in (22) gives

_ n+2 n+2
—2W (00) = 23 Ngi =D (Ng:)" +0p (1)
=1 =1

=2(n+2)NG, — (n+2)NSA+o0,(1)
20+2) (575, +8) .~ (n+2) (575, +8) §(575, +8) +0, (1)

= 2 +2) 7,577, + 85,| - (n+2) 7,575, + 2085, + 858] +0r (1)

= (n+2) [7575.) + (0 +2) 858+ 0, (1)

’

= (0 +2)[7,575,] + 0. (1) (65)

As S = 0, (1) (using Lemma A.5 and S 2 3, ), the last equality holds because g,, = g;b and
(n+2) 858 =0m) oy (n?) 0, (1) 0y (n71/?) = 0, (1).

Moreover, as ng;S_lgn converges to a x? distribution with ¢ degrees of freedom, S 5 S and

iz — 1, it follows —2W (6o) — x? in probability as n — co. O

A.2. Proof of Theorem 2

PROOF. Suppose 0 # 6o. As before we drop the argument 6, e.g. g = - >7" g (y:,0) =
L Gis gnt1 = —scu (0) uand gnio = 2Gn (0)+scy () u. Note, due to the law of large numbers,
1GnGnll — 6% and g, — p (9) := E[g(Y,0)] in probability as n — co. By assumption , (6) < oo,
with Lemma A.3 we have ¢, = O, (1). As E [g(Y,0) g(Y,0)'] = 4 (0) + p(6) p ()" < oo and
S5 E[g(Y,0)g(Y,0)] with Lemma A.3 (S 5 9) it follows S = O, (1).

Now, for i = 1, ...,n the terms g; — g, have expected value zero

Elgi—gn] =0

3Under the mild condition of g being a measurable function, it follows with Lemma A.1 that 31 , ||g; I® =

3 1
o (n2> as % A Hgi”S =0 (n2) .

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.



A6 Nguyen et al.

and satisfying all moment conditions such that with Lemma 3 in [Owen 1990, p. 98] it follows
that

Jmax {llgi —3all} =0, (n'/?). (66)
Let A = n~%/35,, M for a positive constant M > 0. Fori=1,....n
Ngi =X (gi = gn) + Ngn. (67)
From the above g, is of order O, (1) therefore the maximum of the first term on the right
hand side in (67) is with (66) of order o, (n’2/3n1/2) = 0p (1). The last term in (67) has the
order n=2/0,(1) = 0,(1) hence

o { [

i=1,...,

} =o0p(1). (68)

Since s and u are of O (1) and cu = Oy, (1) it follows that gn11 = Op (1) and gn42 = Oy (1). Hence
N gnt1 = 0p (1) and X gn42 = 0, (1) therefore

}=0,01). (69)

max { H 5\,91
i=1ln+2

With (69) for i = 1,...,n + 2 we have 1 + X'g; > 0 with probability going to 1. Hence using the
Taylor expansion:

.’E2

log(l+z)=20— —— (70)
g ( ) 2(1+ 5)2
for some £ between 0 and = and the duality of the maximization problem it is
n+2
W(0) = —s log (1+ X g;
() gp{g; g ( g)}

n-+2 B

< - Z log (1 + )\lgz') (71)
i=1

n+42 1 n42 (:\/91)2

S D VAN oV a
12:31 2 i=1 (1 +§i)2

Note, from (69) all &; are within o, (1) neighborhood of 0 uniformly. Therefore the second term
in the last line of (71) is no larger than

n+2

Z (X/gi)z =m+2)XNSA=0(n)0, (n_2/3> O, (1) O, (n_Q/g) =0, (1).

i=1

The first term is
n+2 B B B
Z Ngi = XNngn + 2N g, = nY/382 M + op(1).

=1
Therefore (71) gives
W (0) < —n'"36°M + o, (1). (72)

Since M can be arbitrarily large, we have —2n~Y/*WW () — oo for any 6 # 6. O
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A.3. Proof of Theorem 3
Before we come to the proof the following Remark.

REMARK A.7. The last two elements in Assumption 4.1 satisfy the conditions of Lemma A.3,
hence

cu (0) = Op (1)
for all 0 € ©. The considered assumptions and the WLN give
gn (0) % E[g(Y,0)] < 00

forall 0 € ©, that is g (0) = O, (1) . Altogether this result in ||gn+1 (0)|| = ||gn+2 (0)|| = O, (1) for
all 6 € ©.

The proof of Theorem 3 is almost the same as that of Newey and Smith [2004] and is divided
into four parts (three Lemmas and the main proof).

LEMMA A.8. If Assumption 4.1 is satisfied, then for any ¢ with 1/a < ¢ < 1/2 and A,, =
{N A €07}, we have supyee ren
(w.p.a.)l, A, C A, (0)forall 6 c ©.

PROOF.

na2 [N gi (0)] 2 0 and with probability approaching

nyt=1,...,

IN

sup [N (0)]
+2

sup [[All _max sup|g: (0)]
0€EO,NEA,i=1,...,n n i=1,....n+2 gco

1/«
= su A max su i (0 *
N pn Al (2 A 96015) llgi (O] )

n-+2 /e
sup ||\ su i ()]
sup [IA] <;%g llg: (0)]] )

1 n+2 1/a
_ 1/ a
=n sup [|All | = sup ||gi (6

sup (n;:lj%@ng ol )

IN

n n+2 1/
1 1
1/ « o
=n sup ||All [ = su (0 + = su (0
AEEL [RY| (n ;:1 gegHg Qll n¢:§n+19€g”g Qll )

= 00 (n7) (0, (1) + 0, (n7))
= 0p (1)

The second to last line holds due to Remark A.7 and due the assumption FE {sup llg (y,0) ||°‘} <
0

n

oo for some a > 2 that gives 13" supyellgi (0)|* 5 E {sup“g(y,@)ﬂa} < o0, ie.
0€®

Ly supgee llgi (0)|* = Op (1). Overall it follows w.p.a. 1 Xg;(§) € S for all § € © and
Al <m0

LEMMA A.9. If Assumption 4.1 is satisfied, 6 € ©, with 6 5 0y and g (0) = O, (n’lm) ,
then \ = C””gma%ef\n(é)]s 0,)) = argmaz, . (5) St (Ngi (0)) / (n+2) exists with w.p.a.
LA=0, (n*1/2) and SUP)eA,, (5) P (6,X) < po+ Oy (nfl) .

PROOF. Since Assumption 4.1 satisfy the conditions of Lemma A.4 we have S (6) = S (0) .

By assumptions and the UWL (Uniform Weak Law of Large Numbers) we have S () LY 4 (00),
hence S (6) % 3, (f0). By 3, () < oo the smallest eigenvalue S (6) is bounded away
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from O w.p.a. 1. Since p (v) is twice continuously differentiable in the neighborhood of 0 with
Lemma A.8 it follows P (9_7 )\) is twice continuously differentiable on A, with w.p.a. 1. Hence,
X = argmazxen, P (0, )\) exists with w.p.a 1. Furthermore, for g; = g; (9) and any \ on the line
joining A and 0 it follows from Lemma A.8 and p; = —1 that mazi<;<ni2p2 ()\g,- (5)) < —1/2
with w.p.a. 1. Then using the Taylor Expansion of P (6, \) around A = 0 and A on the line joining
A and 0 we get

n+2

po=P(0.0) < P(8.3) = po— NG (6) + LN > 0 (Vg) 9/ (n+2)| A
< po— 23 (6) — N5 (0) A
< po+ | M| |G B)]| = C1 | X)) (73)

where C; a positive constant. Subtracting po — C4 H;\H2 from both sides and dividing H}\H2 we
get C1 ||A|| < ||gn||w.p.a. 1. By assumption we have g, (0) = O, (n_l/z), therefore ||| =
0O, ( -V 2) = 0, (n™¢) . From the latter it follows that X\ € int (An) Wp a.1 and with Lemma

A8 X e A, (é) w.p.a. 1. By concavity of P (0,)) and convex1ty of A, (0) it follows P (0,)) =
SUP A, (4) P (6,)) and therefore A = X. Using §» (9) = ( 1/2) ( 1/2) and in
(73) we get

P(8.3) < o+ [\ d @1 - 2 |3 = po+ 00 (071

O
LEMMA A.10. If Assumption 4.1, then

o (2} = 0 (7).

PROOF. Let §; = g: (a) 5= bn (9) and for ¢ in Lemma A.8, \ = —n~<§/||§||. With Lemma

A.8 it follows maxi<i<nt2 |5\’§i| 2 0and X € A, (é)w.p.a. 1. Then for any A on the line joining
X and 0 w.p.a. 1 we have py (Xgi) > —Cs for alli = 1,...,n + 2, where C5 is a positive con-

stant. Given Assumption 4.1, Lemma (A.4) gives — +2 +12 Gigi > 13", 9:9} and by CS (Cauchy-
Schwarz inequality) and UWL it is £ 3" | :g; < (% "1 (supgeo llgi (9)H)2) I & CsI, where

Cj is a positive constant. From the latter it follows that the largest eigenvalue of n%r? >, Gigi is
bounded above w.p.a. 1. Using Taylor Expansion as before

n+2
. L
P(&,)\) :po—>\9+ Zp?(Agl)gzgz/(n+2) >‘
i=1
+
> po+n" gl - Ca [Z /(n+2)| X
> o+ 0 gl - Cn (79

w.p.a. 1, where C = (C2C3. By the Lindeberg-Levy central limit theorem the hypothesis of

Lemma A.9 are satisfied by* 8 = 6. As § and ) being saddle point solutions, (74) and Lemma
A.9 gives:

4Note, gn (00) = Gn (00) -

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.



Simulation Based Estimation Using Extended Balanced Augmented Empirical Likelihood A:9

po+n° llall — Cn~% < P (é,X) <p (@, 5\) < sup 15(90, A) <po+ 0, (n_l) . (75)

AEAW(GO)

Solving the latter for ||g|| gives

gl < Op (n1) +Cn¢ = 0, (n™°) . (76)
The last equality holds because by assumption ¢ < 1/2,thus(—1 < —1/2 < —¢. Now consider
en — 0 and let A = —¢,,g, with (76) A = 0, (n"¢) , so that A € A, w.p.a. 1. Then as in (75)
. )12 . B
o= XNg=C A = po+enllgll® = C2 1317 = po + (1= Cen)en 1 < po + Op (07 -

Since for large enough n, 1 — C1 &, is bounded away from 0 w.p.a. 1 and it follows from the latter
equation, e, [|§]|*> = O, (n™") . The final conclusion follows by standard result from probability

theory, that if e,Y,, = Op(n™") foralle, - 0then Y, =0, (n™"). O
Provided with the given Lemma A.8-A.10 the following proofs Theorem 3.
PROOF. First note, g, (8) = g» (9) then

i (0) — g (v:0)]|| = ||~ (6) - E[9 (v:8)] ]| < sup I3 0) - Bl (v,0)]] &0,

0
where the latter follows from the assumptions and the UWL. As Lemma A.10 gives g, (é) 20

it follows from above E [g (Y, é)} % 0. By assumption E[g(Y,0)] = 0 has a unique solu-
tion at 6o, hence |F [g(Y,6)]|| must be bounded away from 0 outside any neighborhood of
0o. Therefore 6 must be inside any neighborhood of 6y w.p.a. 1, ie. 6 = 6y. With Lemma
A.10 (||n (é) H =0, (n’l/z)) and @ = 6 the hypotheses in Lemma A.9 are satisfied, hence

>

= argmaxke[\n(é)}f’ (é, /\) = argmaz, i () Sty ()\’gi (é)) / (n+ 2) exists with w.p.a. 1,
A= Op (nfl/z). O
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