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Abstract

In this paper, market microstructure models are considered to assess the influence of the key
components that derive asset prices. Synchronization techniques and sampling methods are
reviewed. Alternatives to normally distributed asset returns, specifically subordinated Brownian
motion is considered. The influential components of the price processes are then combined under
tick time to recover normality of asset returns via subordination, a process I denote as “natural
time”. Normally distributed returns are obtained with the natural time approach which is also
found to dominate GARCH results.
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I. Introduction

Lying at the heart of numerous financial studies, the assumption of normally distributed financial
returns has been increasingly challenged. The assumptions of the efficient market hypothesis have
been undermined by the microstructure manifestations observed in equidistantly time-spaced
financial series. Several reasons emerge as responsible for the inability of the random walk model
to account for empirically observed market dynamics. The lack of arbitrage, liquidity constraints,
trading frictions and transaction costs, dependence of successive observations and non-stationarity
are some of the key elements that contribute to the non-normality of empirical series (Mandelbrot
(1963); Fama (1965); Engle (1982); Bollerslev 1986)).

The normal distribution assumption is central to many financial theories. However, empirical
results, especially for high frequency data, often provide evidence against the normal distribution
assumption. In this study, I will provide an alternative explanation to the empirical divergence of
financial returns from the normal distribution. The first key observation one needs to make when
evaluating the distribution of asset returns is that most statistical analysis in this area is conducted
using a physical time approach. However, the superimposition of a time grid on the actual time of
trades distorts the actual timing of trades. A second factor that is often overlooked is how the
environment in which the prices are formed evolves over time.

The “natural time” approach that is detailed in Section III, addresses these two key observations
and aims to test the validity of normal distribution under a high frequency setting. Under the
natural time approach, instead of sampling in physical time, transaction time is used to record
each trade as it materializes. By moving to the frequency (tick) domain, the need to force each
trade into a time slot is removed. Furthermore, methods of diurnalization, which remove
deterministic intraday patterns seen in physical time studies, are no longer necessary.

Natural time approach also addresses the trade “environment”. By focusing on the factors through
which prices are formed, the seemingly erratic behavior of volatility is accounted for. Variables
derived from the limit order book are used to a form a gauge for volatility which is used to
subordinate raw returns resulting in normally distributed return series. The ultimate goal of this
research is to find the best approximation for the “natural time” that results in normally distributed
subordinated returns. The choice of sampling frequency and variables used in the subordinator
function are the key to the success of this method.

Previous calendar time based subordination studies have found volume and number of trades to
contain volatility related information such that normality could be recovered under certain periods
(Clark (1973); Ané and Geman (2000); Velasco-Fuentes and Ng (2010)). Corresponding variables
under the frequency domain, namely volume and duration, are used here as well. However, by
using only these variables, the literature has neglected important information contained in the
order book which can be used to explain the price formation process. For this reason, in addition
to volume and duration, order book variables such as the imbalance in the standing order book
and the difference in the number of bid and offer initiated trades are used to augment the models
mentioned above. Asymmetric versions of the same subordination procedure are also tested.



The natural time approach is applied to 3 highly liquid LSE listed stocks for 4 quarters each. In
more than half the cases normality of returns is achieved. Since subordination essentially accounts
for the volatility in the data, the natural time approach is tested against the standard GARCH(1,1)
model. Natural time is found to dominate GARCH results with respect to normality, with the
exception of a single case. These findings suggest that volatility can be modeled efficiently under
tick time sampling so much so that subordination results in normally distributed returns.

The results in this study support the normally distribution assumption that is central to finance.
However, they also point to the changes one needs to make in the standard model such as the
sampling methodology. In addition to providing evidence for the normal distribution assumption,
this research contributes to the literature by focusing on order book variables which contain
relevant information that may be used to forecast volatility. The variables found to be influential
here can be employed by market players to adjust their leverage or by financial regulators to assess
the health of market. Either use will contribute to the efficiency of financial markets.

Section 2 reviews key market microstructure models to identify the instrumental elements of the
price process. Sampling methodologies and synchronization techniques are discussed along with
previous subordination studies. It is in this section, that it will become apparent to the reader why
the move to tick time sampling is necessary. Moreover, the rationale behind variables used to
subordinate the raw returns becomes clear. In Section 3, the natural time model is introduced and
preliminary analysis of the empirical data is presented. Section 4 is dedicated to the model results
and Section 5 concludes.



II. Literature Review

The first subsection of this three-part literature review focuses on how information is conveyed in
financial markets. Several market microstructure models that explain trading patterns are reviewed
and variables that effect price variance are identified. The natural time approach used in this
research combines the variables presented in this subsection while accounting for variance related
information. The second subsection reviews synchronization methods under physical time and
identifies the inherent problems of working in the time domain. Alternate sampling methodologies
are reviewed and the benefits of using tick time sampling, which forms an integral part of the
natural time approach, are discussed. Finally, the last subsection reviews previous subordination
based studies aimed at recovering normality. Natural time combines the variables identified in the
first subsection under a stochastic subordination setting to recover normality of returns under tick
time sampling.

a. Trading Patterns in Market Microstructure

Numerous market microstructure effects that cause return anomalies have been documented in
detail in the extensive microstructure literature (Ait-Sahalia et al. (2010); Bandi & Russell (2008);
Dacorogna et al. (2001)). Much focus has been given to bid-ask spread with two main strands of
models. Inventory-based models argue market makers adjust their quotes to mirror their inventory
positions, while information-based models focus on the costs associated with adverse selection.

Glosten and Milgrom (1985) mapped the bid-ask spread as the market maker’s tool against traders
with insider information. Easley and O’Hara made important extensions to this model introducing
the possibility of no information, varying trade sizes and choice of not trading (Easley & O’Hara
(1987); Easley & O’Hara (1992)). Information-based models underscore important market dynamics
where trade size, duration between consecutive trades and lack of trades reveal information about
price dynamics.

These models also gave rise to the “stealth trading hypothesis” where market participants with
insider information try to avoid information leakage while submitting orders (Barclay & Warner
(1993); Chakravarty (2001)). Insiders are forced to find a balance between the risk of effecting prices
adversely with block trades - impact risk - and price risk, due to order slicing. The stealth trading
hypothesis shows that volume of trades affect market impact.

Kyle (1985) identifies three major components to market liquidity, namely tightness, depth and
resiliency. Given this setup “Kyle’s A” becomes a measure of market sensitivity to transaction size
where order book imbalances can be used to infer impact of order size (Aldridge (2010)). Ng (2008)
tested the absorption limits of financial markets within a nonlinear framework and report that
markets are incapable of absorbing large block trades introducing additional “time costs of
liquidity”. These findings suggest market participants actively try to balance liquidity and
information costs, and necessitate the need to use some form of liquidity measure in order to
account for high frequency dynamics.

Additional microstructure effects have surfaced with greater availability of high frequency data.
The effect of scheduled macroeconomic announcements on diurnal financial returns and volatility



is one such area. Scheduled announcement studies show the drying of liquidity and a sudden spike
right before and after new releases. Savaser (2011) finds evidence of price contingent stop-loss and
take profit orders surrounding scheduled announcements. Her findings highlight the role of order
book imbalances in accounting for news effects.

Announcement reactions, scheduled or unscheduled, bring another dimension to the price
process. The intensity of trades following sudden changes of sentiment reflects an inevitable
herding behavior following important news. The number of transactions spikes and important
adjustments to asset prices are realized during these short time intervals. This inherent correlation
between number of transactions and return variance has been previously tested in a physical time
setting (Ané and Geman (2000)).

b. Synchronization & Sampling

High frequency time series, unevenly spaced in physical time, requires synchronization for
statistical inference. Two major synchronization methods emerge in literature for homogenizing
high frequency series of a single asset in calendar time.

The “previous tick” method (e.g., Wasserfallen and Zimmerman (1985)) which takes into account
the most recent price at or before a given time, is perhaps the most frequently used method of
fitting inhomogeneous data into an evenly spaced time grid. One major shortcoming of this
method however is spurious jumps observed in case of extended periods of missing data
(Dacarogna, Gengay, Miiller, Olsen and Pictet (2001)).

The second method, “linear interpolation” forms the homogenous time series by interpolating
between the nearest tick data observed just before and after the grid time. While the difference
between the two methods might be negligible, linear interpolation violates causality.

Sampling in physical time further requires data to be adjusted for deterministic market patterns.
Diurnalization, which accounts for the deterministic intraday patterns in the data, utilizes splines,
Fourier transforms or kernel based estimators. Fourier transforms employed in Andersen et al.
(2003) are very smooth processes whereas spline methods employed by Engle and Russell (1998)
are much more flexible. However, the choice of nodes may present problems. Kernel based
estimators as in Ng (2008) face similar setbacks as to the choice of the kernel bandwidth.
Empirically, diurnalization may produce satisfactory results but its exact effects on the data is little
explored (Martens et. al (2002); Allen et al. (2009)).

Despite the fact that the literature predominantly focuses on sampling in physical time, this is not
the only option. Generally referred to as tick time, transaction time accounts for trades as they
materialize. Contrary to calendar time methods which require synchronization, in tick time each
transaction falls nicely on the tick grid. Hence, sampling in tick time inherently eliminates the
need for synchronization. Furthermore, by sampling at a fixed number of ticks, one completely
avoids the processes of diurnalization as the clock moves faster (slower) when market activity is
high (low). Given its advantages in adjusting for market seasonality, tick time will be used in this
research while evaluating the distribution of stock prices in the high frequency domain (Oomen
(2006); Dacorogna et. al (1993)).



c. Time Deformation

The empirical divergence of asset returns from normality, excess skewness and fat tails, has long
spurred interest in alternate distributions such as the exponential and t-distribution. Merton
(1976) proposed the addition of jumps to the original continuous stochastic diffusion process in
Black and Scholes (1973) to account for fat tailed asset returns. Tauchen and Pitts (1983) explored
the possibility of normal mixture distribution, while Mandelbrot (1963) examined the stable
distribution. Mandelbrot posited that although asset returns were approximately independent they
were characterized by unbounded second moments and advocated the use of stable Paretian
distribution. However, substantial evidence against unbounded first and second moments
undermines the applicability of stable processes to financial return series (Perry (1983); Cont
(2001)).

Clark (1973) was the first to apply the subordination process to asset prices to recover normality of
returns. He conjectured that financial return series, which are semimartingales, could be defined as
subordinated Brownian motions. Clark tested the applicability of trade volume as a subordinator
for cotton futures and found evidence in favor of the Gaussian distributed asset returns within an
iid. subordinator increments setting using cumulative trade volume. Karpoff (1987) also
documented the connection between large trades and large price swings and conjectured that it
might be linked to both factor’s shared link to the underlying information process.

Ané and Geman (2000) generalized the subordination framework by relaxing Clark’s i.i.d.
assumption in a finite variance jump setting. They have found transaction frequency to be a better
subordinator compared to volume for S&P future contracts. Geman (2002) has also shown that the
directing process can also be interpreted as the “mixing factor” within a normal mixture
distribution setting, an often used distribution to account for excess skewness and kurtosis in stock
returns. Murphy and Izzeldin (2006) however questioned the reliability of moment estimation
methods in Ané and Geman (2000) and presented counter evidence on recovery of normality using
re-centered number of trades or volume.

Similar to Ané and Geman (2000), Huth and Abergel (2012) used number of transactions to
subordinate the returns for multiple assets. In a multivariate framework, Huth and Abergel (2012)
chose to sample each time a trade occurs in any one of the assets creating a “common stochastic
clock”. Then by subordinating with an event time N, which represents the total number of trades
in all assets under consideration, they obtained results that support normally distributed returns
for 4 asset pairs. However, the large number of trades they have used to obtain normality, which in
one case reaches almost 6,000, and the fact that the joint stochastic clock used only produces
reliable results if the asset pairs have similar trading patterns suggest that their findings may be
mostly attributed to aggregation.

Velasco-Fuentes and Ng (2010) further investigated the use of volume and number of trades as
stochastic time changers. In a study using FTSE-100 futures tick data they have tested cumulative
volume, total number of trades and their linear and quadratic combinations to recover normality.
They have also explored the possibility of asymmetric market response to the sign of returns in
order to reduce skewness. Using first and second order functions of volume and number of trades
Velasco-Fuentes and Ng recover normality in two of the four sub-periods.



III. Methodology

In this research, I take an atypical approach to stochastic subordination. Unlike its predecessors in
literature, this research will be conducted under tick time. By moving to transaction time, the
applicability of the normal distribution assumption is tested for the first time under the frequency
domain. When sampling in tick time, daily deterministic patterns present under physical time
disappears naturally and the need to use diurnalization methods is eliminated. Moreover,
additional errors introduced while conforming to a calendar time grid is no longer present under
tick time.

Furthermore, by using volume-weighted transaction prices and their returns, I also avoid using
quotes which react asymmetrically during unidirectional market swings. Hence, log-returns
calculated from volume-weighted prices are not subject to microstructure contaminations such as
non-synchronous updating of quotes. Instead the effects of the bid-ask bounce are reduced
substantially, and the price on which market players agree is determined by the volume of
transactions.

Four important components affecting price evolution emerged from previous sections, namely
volume, duration, market liquidity and order imbalance. The use of these components under tick
time in a unified subordination framework will be a key contribution of this work. I will account
for various market dynamics by extending the arsenal of possible factors that are most closely
related with information arrival and intrinsic time.

Volume, as per its impact to push prices in a given direction is the first of these factors. However,
as shown in Gillemot, Farmer and Lillo (2006), volume and number of trades cannot totally
account for the volatility observed in the stock markets. This may be caused by the imperfect
correlation these variables have with the latent process which drives volume, number of trades and
volatility. Hence, as per the findings of information-based models, duration between trades is also
added to the subordination framework to account for the speed with which market participants act
in physical time.

The use of duration augments the model in two respects. Given the stealth trading reasoning
presented in the previous sections, and the information-based MMS models, the duration between
trades not only helps capture the speed with which the market moves in real-time but also reveals
the private information content. By including duration between trades I allow physical time related
information to be included in the frequency domain.

In addition to volume and duration, proxies for the liquidity component of the market are included
in my model, namely the net order book imbalance, the difference between standing bid and ask
orders, net traded volume imbalance, the volume difference between bid and ask initiated trades,
and net initiator imbalance, the difference between the number of aggressors on buy and sell sides.
The addition of liquidity variables sets the scene in which the trades occur and adjusts for the
impact of block or frequent trades given market depth or resiliency. However, it is highly unlikely
for liquidity conditions to affect prices like volume of trades, where one consistently drives prices
while the other acts as a determinant (multiplier) of price impact for a given trade. For this reason,



the effects of order book imbalance on the price process is likely to be non-linear. We will test this
assumption during the subordination process.

By including these possibly omitted variables in the subordinator, I aim to regain normality of asset
returns during all states of the world. The use of an asymmetric response function similar to the
one in Velasco-Fuentes and Ng (2010) is also examined. Thus, in addition to linear combinations of
the three factors identified, the importance of nonlinear models will also be tested, given the
inability of linear models in explaining asset price fluctuations.

The stochastic time change that will be applied to the raw return series can be described as follows.
Define the log-price series of an asset sampled under calendar time as:

Xcal (Ci) = {X(Cl)! X(Cl): X(CI)' L X(Cn—l): X(Cn)} (1)
Similarly define a stochastic (parent) process:

Wear(q:) = {W(q1), W(q2), W(qs), -+, W(qm-1), W(gm)}, )

where g denotes market’s intrinsic time. The stochastic parent process, W,,;, is Brownian Motion
in our case.

If a strictly increasing stochastic process:

S(Ci) = {S(Cl); S(CZ)' S(C3),, ---'S(Cn—l)ls(cn)}) (3)

exists such that :
q = s(c), (1)
then, the price process can be summarized as:
Xea(©) = Wea(s(0). (5)

In Equation (5), the price series X.4;(c), is said to be subordinated to the parent process W4 (s(c))
and the subordinator s(c) is a cadlag process that measures market’s intrinsic time which flows at
variable rates (Velasco-Fuentes and Ng (2010)).

Alternatively, the return series, r,4;(c) can be expressed as:
Tear(€) = AW,q (S(C)), (6)

where AW (S(Ci)) = Wcal(s(ci)) - Wcal(s(ci—l)) .

Sampling under tick time, where t represents transaction time, asset returns, 73;.,(t) can then be
expressed as:

Ttick (t) = AWiick (S (t)) (7)



where AWy (s(t)) = Wiiere (s(t)) — Wik (s(ti-1)) -

Then, given that subordinated parent process AW, (s(t)) in Equation (7), is a Brownian Motion,
normally distributed returns should be obtained by using the following transformation:
ick(t)
Ry = %N N (Usub) Tsub), (8)

where R; and 1y (t) represents time deformed and tick returns respectively, and s(-) is the
subordination function.

Let the unique subordinator sy(+), with which the return series achieve perfect “normality” under
tick-time sampling, be called “natural time”. Then the goal of this study is to find the best
approximation for natural time via the choice of sampling frequency and subordinator sy, using
various linear and nonlinear combinations of volume, duration and order book imbalance
parameters.

The linear subordinator utilized for in this study can be summarized as:

s(+) = p subordinator. (9)

Maximum likelihood estimation (MLE) methodology is used to estimate the coefficient @ where a
(subordination-adjusted) normal distribution is specified as the resulting distribution. The
subordination-adjusted log likelihood function that is employed in MLE estimations takes into
account the fact that this subordinated return series follow a normal distribution with unknown
but finite mean and variance. Additionally, the use of 100-tick sampling frequency dampens
autocorrelations within the tick data.

Given this structure, the joint probability distribution function for the subordinated tick time
series can be expressed as:

f(RtlthZ: 'Rtn| ":“tickﬂo-tick) (10)

where R, is the time deformed returns described in Equation (8).

Equation (10) can also be expressed as:

2
Teick®_

1 1 ( m #thk)
Re Ry, R | 5 Htick Otick) = ———= €xXP —=Diicke1—————¢- 1
f( ti 1Y, tn| Htick tlck) Utickn(m)n p ZZtlck—l ‘thick ( )

Then the log-likelihood function is:
_n 2 n 1 Vs e

InLF C, teicks Otick) = —5Inoge —7In2m — Ezg?ck=1—2 . (12)

To evaluate the ability of the linear subordinators to transform the tick returns into a normally
distributed series, time deformed return series are tested with Kolmogorov-Smirnov (KS) and
Jarque-Bera (JB) tests. The use of KS test is justified by the favorable aspects of the dataset used in
this study. KS test, which requires a large dataset, is capable of providing useful estimations due to



the large number of data points present. Furthermore, unlike the Jarque-Bera statistics, which
focuses on skewness and kurtosis, KS test is known to be sensitive to the location and shape
parameters. By using both KS and ]B statistics, I account for all of the first four moments while
testing for normality.

To better assess the value of proposed subordinators, the MLE procedure is augmented to include
multiple subordinators as well as additional structural changes to the subordinator function itself.
An asymmetric subordination function is added into the MLE procedure to account for possible
differences in the behavior of the subordinator to the sign of returns.

The returns and their corresponding subordinators are classified according to the sign of returns.
The positive and negative return series are then used to estimate the coefficients for the
subordinators. The corresponding results are combined with the two original return series,
classified according to the sign of returns, to produce the subordinated return distribution.

Additionally, given the existing literature on the autoregressive nature of variance, the past values
of squared returns were used to augment the subordinator. AR(1) terms are used to test this
hypothesis. Finally, the asymmetric and autoregressive extensions to the original linear model are
combined to produce the fourth structural model for the subordinator.

The respective formulas® for each of the four subordinator functions, namely linear, autoregressive,
asymmetric and autoregressive asymmetric, are presented in Equations (13)-(16).

The linear subordinator is of the form:
s(-) = avolume + B duration + y Init Imb? + § Vol I'mb?. (13)
The autoregressive subordinator function includes past values of the squared returns:
s(-) = 9 12 (t — 1) + a volume + B duration + y Init Imb? + &§ Vol Imb?. (14)
The asymmetric subordinator is of the form?:

at volume* + B durationt +y* (Init Imb*)? + 6t (Vol Imb*)?, r =0

s()) = . @
© {a‘ volume™ + ™ duration™ +y~ (Init Imb™)? + 6~ (Vol Imb™)?, r <0 (5)
Finally, the autoregressive asymmetric subordinator function can be expressed as:
() = {19+ Thck 2t — 1) + at volume™ + B* duration™ + y* (Init Imb*)? + 6+ (Vol Imb*)?, v =0 (16)
T W re )2 — 1) + a volume™ + B~ duration™ +y~ (Init Imb™)2 + 6~ (Vol Imb™)2, r <0



Subordination essentially aims to account for the heteroscedasticity in returns, by utilizing
volatility related information. Thus, in many respects, this study could be classified as a volatility
based approach. The use of past square returns then naturally brings to mind the GARCH model
(Bollerslev (1986)). Hence, to make an accurate comparison, a GARCH(1,1) model is separately
estimated. Returns are then subordinated using these estimated GARCH parameters to construct a
benchmark model.

The GARCH(1,1) model used in estimations can be summarized as follows:

Let error term €, represent the mean-adjusted returns which can be decomposed into a time-
varying standard deviation o;;, and a stochastic component Z;;., ~ N(0,1).

€tick (€) = Orick (€) Ziicr (6). (17)
Then the conditional variance under a GARCH(1,1) specification can be expressed as:
Otick® = Po + Prégick (t — 1) + w10 * (E — 1), (18)
where ¢, > 0,90, =0, w; = 0and ¢, + w; < 1.
Then the log-likelihood function for GARCH(1,1) estimation becomes:

1 erier”(® (19)

1 1 .
InLF (Ueickr Otick) = Xi=1 — 2 In2m — gatickz(l) eI}

10



IV. Data & Analysis

The high frequency dataset utilized in this study uses Level 2 SETS data provided by the London
Stock Exchange (LSE) where stocks are traded in a continuous-time double auction system. The
LSE sorts and matches orders first by their price competitiveness and then by their time of
submission. The Level 2 dataset includes the whole order book depth at any given point in time as
well as the actual trade times and prices for realized trades. The order book data includes “public”
orders that appear on the order book and excludes order types such as non-persistent or Iceberg
orders. Hence, the bulk of the information contained in the order book stems from limit and
market orders.

The period under study spans from July 2007 to June 2008. Taking into account the large market
swings during this time, the whole dataset is split into four 3-month periods where the first period
(P1) spans from July 2007 to September 2007. Similarly, P2 covers October 2007 - December 2007,
P3 January 2008 - March 2008 and P4 April 2008 - June 2008. Three highly liquid stocks, HSBC,
SAB Miller and Royal Dutch Shell, are selected for the purpose of this study. Each stock is analyzed
on a period by period basis so as to not include irrelevant past data in high frequency analysis.

The first obstacle one needs to address when working with financial series is autocorrelation. This
phenomenon becomes even worse as the sampling frequency is increased. The fourth period for
HSBC stock was chosen for exemplification purposes and Ljung-Box test was applied to several
sampling tick sizes using a lag size of 20. Autocorrelation was present up to a sampling frequency
of 100 ticks. Autocorrelation and partial autocorrelation functions for HSBC P4 with a sampling
frequency of 100-ticks were also mapped via a correlogram and ACF and PACF decay rate did not
converge albeit being small. Similar results were obtained for other stocks. ACF functions and
Ljung-Box (LB) test statistics for HSBC are presented in Table 1 and Figure 1 respectively.

Table 1: Ljung-Box Test (Lag=20)

Sampling Tick | LB Test | p-value
5 226.8479 0
10 105.6981 | < 0.0001
20 56.3034 | < 0.0001
50 33.5694 0.0292
100 16.1198 0.7092
200 17.0837 0.6475

1



Figure 1: Autocorrelation Function for Returns of HSBC Stock Prices in Period 4
Sampled at 100 Ticks
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Due to the nature of ultra-high frequency data, additional measures to deal with price discreteness
were necessary. Figure 2 shows the return histogram fitted on a normal distribution curve for tick
returns.

Figure 2: Histogram for Tick Returns for HSBC Stock Prices in Period 4
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As is apparent from Figure 2, raw returns at the single-tick sampling frequency, is dominated by
price discreteness. Hence, several sampling frequencies were tested to ascertain the exact effects of
sparse sampling on the distribution of returns, results can be found in Table 2. The graphs in
Figure 3 illustrate the relationship between decreasing sampling frequency and return distribution.
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Figure 3: Distribution vs. Sampling Frequency: HSBC Stock Returns in Period 4
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Figure 3 shows that at sparser sampling frequencies the return distribution approaches normality.
However, neither simple aggregation of returns to produce normality is new to the literature, nor
would it be feasible in a subordination study testing the limits of the sampling frequency under
which subordination still produces normality. Thus, to assess the exact effects of sampling

frequency on price discreteness and the distribution of returns, the first moments are computed.
Table 2 contains the results.
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Table 2: Sampling Frequency vs. Moments: HSBC Stock Returns in Period 4

Sampling Frequency Mean Variance | Skewness | Kurtosis

1-Tick -2.41 e-7 9.34 e-8 0.0154 4.4958
5-Ticks -1.30 e-6 3.09 e-7 0.0103 4.1357
10-Ticks -2.67 e-6 5.77 €-7 0.0636 4.1606
20-Ticks -3.71 -6 1.08 e-6 0.0345 4.2115
30-Ticks -6.97 e-6 1.55 e-6 0.0672 41877
40-Ticks -6.12 e-6 2.07 e-6 0.0327 4.1762
50-Ticks -4.70 e-6 2.52 -6 0.0488 4.0486
60-Ticks -9.25 e-6 2.93e-6 0.0989 4.0019
70-Ticks -6.56 e-6 3.45 e-6 -0.0017 3.6552
80-Ticks -9.57 -7 3.83e-6 0.0067 3.3744
go-Ticks -1.12 e-5 4.37 e-6 0.0056 6.4033
100-Ticks -1.37 €-5 4.67 e-6 -0.0020 3.2000
200-Ticks -1.86 e-5 5.96 e-6 0.0108 3.2685
300-Ticks -3.24 e-5 6.94 e-6 -0.0046 3.2053
400-Ticks 4.17 e-6 7.93 e-6 0.0663 3.0219
500-Ticks -4.66 e-5 8.85e-6 0.1828 3.1304

Table 2 suggests the use of 100 ticks as the sampling frequency is appropriate, as sampling at lower
frequencies causes further negative skewness and abnormally low kurtosis values for a high
frequency return series. The results presented in Table 2 were reproduced for all stocks and periods
but they are included here to conserve space. However, the effects of sampling frequency do not
vary much from stock to stock. Thus, a sampling frequency of 100-ticks is used for all stocks and
periods unless mentioned otherwise. In cases, where different sampling frequencies have been
used, the moments of the resulting raw distribution was utilized to determine the new sampling
frequency.

Upon selection of the sampling frequency, the influential variables discussed in the previous
sections can now be tested for validity. Trade volume, cumulated across the selected number ticks,
and its log transformation are used to find the impact of trade size on price formation. Duration
between each sampling point is also used to assess the urgency with which orders have been filled.
In order to assess how the liquidity state of the market influences price movements, the imbalance
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in the order book is computed in various different ways. The Imbalance term cumulates the
volume difference between bid and ask sides for the whole depth of the order book and averages
this number for across the selected sampling frequency. Similarly, Level 1 Imbalance and
Level 3 Imbalance applies the same procedure to the first 1 and 3 levels from the top of the order
book, respectively.

The number of transactions has been previously used by Ané and Geman (2000) to subordinate the
price processes. This measure provides partial information on the number of entities involved, but
does not make any distinction between the direction of trades. Thus, a more transparent measure
is needed, which can be obtained by looking at the difference in the number of unique trades in a
given interval. At each tick, which may include multiple buy and sell orders, the number of
initiators for each side is found and the difference is recorded®. This number is then cumulated for
the span of sampling frequency and divided by the number ticks to form Initiator Imbalance
variable. The same process is repeated for Volume Imbalance taking into account the volume of
trades. A negative number means excess sell side orders where as a positive number denotes buys
side for these two variables. Finally, as per the non-negativity constraint dictated by Equation (8),
log transformations of squared Initiator Imbalance and Volume Imbalance are added into the list
of possible variables.
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Table 3: Regression Analysis’: Mean Adjusted Squared Returns for HSBC in P4
Sampled at 100 Ticks

Regression Statistics

Subordinator _ .
constant | coefficients R
1.8288 e-6 | 2.5488 e-12
Volume 0.0211
(o)
. 6.0325e-6 | -1.2757e-9
Duration (sec) 0.0099
(o)
4.6929 e-6 | -7.3210 e-14
Imbalance o
(0.8409)
.6660 e-6 | 6.5167 e-
Level 1 Imbalance | +°°°° € SIb7 €12 0.0003
(0.5088)
.6626 e-6 .6 -
Level 3 Imbalance 45525 ¢ 3-5090 12 0.0007
(0.2688)
.6872e-6 | -2.8378 e-
Initiator Imbalance b7z e 29370 €7 0.0004
(0.3850)
.6 -6 .1408 e-
Volume Imbalance | +°3%7 ¢ 71499 €I 0008
(0.2607)
-3. - . -6
Log-Volume 3TT4ES | 3015 0.0221
(o)
.0356 e-6 . -8
Log-InitImb® 4o35b¢€ 3-0759 € 0.0121
(o)
-1.8 -6 .6 -
Log-Vollmb® 16930°€ 4 2(57) &7 0.0251
o

Tables 3 shows a peculiar outcome. None of the standing order book variables that describe market
liquidity conditions, namely Imbalance, Level 1 Imbalance and Level 3 Imbalance are found to be
significant in explaining squared returns. This is an unexpected finding, which suggests that
variables related to the active trading environment already contain the necessary liquidity
information. For this reason, all standing order book variables are dropped from further study.
Additionally, Initiator Imbalance and Volume Imbalanceare also removed from further analysis,
as per the non-negativity constraint’. Although the remaining five subordinators are significant in
normalizing the return series at the 5% significance level, confirming the findings of Clark (1973)
and Ané and Geman (2000), volume is also dropped from further subordination runs as similar
results can be produced by the log-volume.
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The coefficients, p-values, log-likelihood function value as well as KS and JB test statistics for the

subordinated returns using the produce described in Equations (13)-(16) are presented in Table 4:

Table 4: Multiple Subordination® Results for HSBC Returns in P4 Sampled at 100 Ticks

Aut [
Subordinator Linear Autoregressive Asymmetric ; oregress.lve
Asymmetric
1.2869 e-14 -9.7201 e-11 -3.5890 e-10 1.4613 e-11
3 ) (01538) (0.0332) (0.0591)
2.6896 e-10 6.3386 e-10 7.9000 e-9 3.1514 €-10
o
(1) (0) (0) (0)
2 ) 7.3386 e+4 ) ) 3.7485 e+5 | 2.5673 e+5
ekt (o) (o) (o)
1.9926 e+6 1.7613 e+5 17673 e+3 | 1.7660 e+3 | 9.2414 e+5 | 7.0897 e+5
Volume
(o) (o) (o) (o) (o) (o)
. 2.4668 e+6 1.8243 e+5 1.7373 e+3 | 1.7701e+3 | 9.6022 e+5 | 7.4304 e+5
Duration
(o) (o) (o) (o) (o) (o)
. ) 7.5385 e+4 1.2095 e+3 2.4497 e+1 | 2.5722 e+1 | 6.6751e+3 | 4.7491 e+3
Log-InitImb
§ (0) (0) (0) (0) (0) (0)
Log-Vollmb® 1.9315 e+6 1.7633 e+5 1.4189 e+3 | 1.4644 e+3 | 9.0276 e+5 | 7.3u8 e+5
(o) (o) (o) (o) (o) (o)
Log-likelihood -11,803 -9,904 -6,034 -11,203
KS Test 0.0437 0.0442 0.0474 0.0443
(0.0031) (0.0026) (9.9740 e-4) (0.0026)
18 15 52 16
B Test
JB Tes (0.0010) (0.0018) (0.0010) (0.0014)

The multiple subordination results presented in Table 4 points to a striking conclusion. Neither
asymmetric or autoregressive asymmetric models produce significantly different results from the
remaining models.” Contrary to the asymmetric approach, the autoregressive model is found to
augment the linear model, further supporting the use of past squared returns. Moreover, the
significance of imbalance terms in addition to volume and duration parameters seems to solidify
the notion that order book information is important in subordination, hence variance estimation.

The findings presented in Table 4 may however be subject to the ubiquitous local extrema problem
as the findings are produced on a single-run. To address this possible shortcoming, the gradient-
based optimization algorithm is augmented with 10 different starting points to cover a vast search
space.® The results for each stock and period using this procedure (Global) are reported in Table 5.
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Table 5: Multiple Subordination Results using Global Procedure

HSBC
P1 P2 P3 P4
Normality (100Ticks) (100Ticks) (100Ticks) (100Ticks)
Linear Autoregressive Linear Autoregressive Linear Autoregressive Linear Autoregressive
0.0748 0.0663 0.0474 0.0481 0.0503 0.0477 0.0456 0.0448
KS Test
(1.2026 e-7) (42692 e-6) (8.2207 e-4) (6.5517 e-4) (2.4969 e-5) (7.7809 e-5) (0.0018) (0.0022)
77 139 642 238 554 1,248 2 o
JB Test
(0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.2947) (0.5000)
KS 0.0529 0.0539 0.0395 0.0415
GARCH Test (4.9487 e-4) (8.3033 e-5) (0.0019) (0.0059)
JB 6 59 57 2
Test (0.0430) (0.0010) (0.0010) (0.4278)
SAB Miller
P1 P2 P3 P4
Normality (100 Ticks) (90 Ticks) (100 Ticks) (70 Ticks)
Linear Autoregressive Linear Autoregressive Linear Autoregressive Linear Autoregressive
0.0453 0.0482 0.0545 0.0438 0.0397 0.0393 0.0506 0.0510
KS Test
(0.1318) (0.0929) (0.0087) (0.0597) (0.0699) (0.0745) (0.0035) (0.0032)
JB Test 85 26 340 234 129 383 25 170
(0.0010) (0.0010) (0.0010) (0.0010) (0.0001) (0.0010) (0.0010) (0.0010)
KS 0.0561 0.0625 0.0324 0.0501
GARCH Test (0.0312) (0.0016) (0.2132) (0.0040)
JB 7 572 30 43
Test (0.0292) (0.0010) (0.0010) (0.0010)
Royal Dutch Shell
P1 P2 P3 P4
Normality (70 Ticks) (100 Ticks) (100 Ticks) (100 Ticks)
Linear Autoregressive Linear Autoregressive Linear Autoregressive Linear Autoregressive
0.0459 0.0462 0.0417 0.0017 0.0383 0.0307 0.0379 0.0379
KS Test
(0.0049) (0.0045) (0.0513) (0.0510) (0.0331) (0.1424) (0.0758) (0.0756)
2,282 392 26 60 525 700 22 43
JB Test
(0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0001) (0.0010)
KS 0.0468 0.0443 0.0350 0.0433
GARCH Test (0.0039) (0.0320) (0.0652) (0.0280)
JB 16 32 164 17
Test (0.0015) (0.0010) (0.0010) (0.0013)
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Table 5 shows that findings regarding asymmetric subordination of HSBC in P4 using single-run
method can be extended to all periods and stocks. One possible reason for the failure of
asymmetric models could be an inherent stability of information flow through the selected
subordinators. As such, asymmetric models could not produce superior results by treating returns
of opposite signs differently.

Furthermore, as is apparent from Table 2, the choice of sampling frequency, which constitutes an
important part of the natural time approach, has a dominant effect on the distribution of raw
returns. While sparse sampling mitigates price discreteness, it eventually reduces the relevance of
past order book data. For this reason, a sampling frequency of 100-ticks was used for all stocks
except for second and fourth periods of SAB Miller. In these periods, normally distributed returns
were obtained without the need for subordination at 100-ticks. Hence, higher sampling frequencies
were chosen to produce comparable raw distributions in terms of their first four moments.

Closer examination of results reveals an interchangeability between log-volume and volume
imbalance terms.’ Either one of two subordinators, when used in conjunction with others, is
significant but they fail to be significant together. While volume imbalance is significant for SAB
Miller and Shell in the second period, the reverse holds for HSBC. However, a combination of
volume and initiator imbalance seems to be the better choice in general since volume imbalance
term is ruled out in 3 out of 4 periods for SAB Miller and Shell. This interchangeability can be
caused by the structural changes in the way variance related information is conveyed in the
market. It might be the case that in some periods, a combination of volume and initiator imbalance
captures variance related information while in others volume imbalance proves to be a better
gauge. Furthermore, convergence of volume and volume imbalance terms, which would convey
similar information when orders are one-sided, can also render the volume imbalance term
redundant. One or both of these factors may be at work in a given period as they are by no means
mutually exclusive.

The autoregressive subordination model, which uses past squared returns, was also found to
perform generally better than the linear model for all stocks. Although similar results could be
obtained using the linear model in several of the periods where normally distributed subordinated
returns were produced with the autoregressive model, this was not possible for the second period
of SAB Miller and third period of Shell.

In comparison with autoregressive subordination, GARCH(1,1) model does an marginally better job
in periods where subordination fails to produce normally distributed returns. However, in cases
where normally distributed returns were obtained via subordination, GARCH not only produced
worse results but also failed to achieve normality with the exception of a single instance, which
could very well be due to a local minima problem in the subordination procedure. While
subordination resulted in normally distributed returns in 3 periods for SAB Miller and Shell and 1
period for HSBC, GARCH(1,1) based subordination could only produce normal returns in the third
period for SAB Miller. *°
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Conclusion

The work presented in this research paper, focuses on the application of stochastic subordination
to high-frequency returns sampled under transaction time. Previous subordination based studies
have all been performed using calendar time (Clark (1973); Ané and Geman (2000); Velasco-
Fuentes and Ng (2010)). To the best of the my knowledge, subordination has not been applied to
financial returns under tick time sampling before. Furthermore, only a subset of the variables used
in this research were employed in the above mentioned studies. Order book variables which
contain information on both market liquidity and the initiator of trades, have been added into the
subordination procedure, which is another novel contribution of this paper to the literature. This
subordination procedure, which operates under tick time and uses order book variables to
transform the return series into a normally distributed one, is referred to as “natural time” in this

paper.

Previous studies have found volume and number of trades to carry relevant information to price
formation under physical time (Clark (1973); Ané and Geman (2000)). Their counterparts in
transaction time, volume and duration, are also found to be significant in stochastic subordination.
The results show that order book variables and past squared returns also carry important variance-
related information. The addition of these variables into the subordinator augments the model
such that subordinated returns are normally distributed in most cases.

The consistent superiority of natural time approach to the benchmark GARCH based model across
all stocks and periods has profound implications. The success of the natural time approach not
only supports the normal distribution assumption but also indicates that transaction time might be
the right sampling methodology when using high frequency data. Furthermore, as the ability to
successfully normalize returns via subordination essentially hinges on accounting for
heteroscedasticity, the variables used to subordinate returns can also be used to forecast volatility.
Research, combining GARCH(1,1) with exogenous order book variables used here, was also
conducted and GARCH terms were consistently found insignificant in all periods for all stocks.

All in all, this research gives the reader a set of variables that are effective in volatility forecasting.
Market players that have access to the type order book data used in this research may be able to
foretell imminent excess volatility episodes and adjust their positions and leverage accordingly.
Additionally, financial authorities which oversee stock markets could use the information
contained within the order book to prevent a disorderly collapse of the system. Either use of this
information will contribute to the efficiency of financial markets.
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Appendix A1

Multiple Subordination Results for HSBC using Global Procedure

Table A1.1: Linear Subordination Results for HSBC

Linear 1 P2 P3 P4
(100Ticks) (100Ticks) (100Ticks) (100Ticks)
2.7296 e-15 -2.0346 e-15 1.0424 e-13 2.7508 e-15
g (0.0512) (01408) (0 (0.9998)
- 5.3767 e-14 5.7397 €-14 2.6790 e-13 4.5997 e-10
(0.9998) (0.9997) (0.9986) (o)
Volume 2.6997 e+13 1.3925 e+13 6.9045 e+13 1.0000 €+12
(0) (0.0032) (o) (0)
. 5.0572 e+12 71242 €+13 »2.2287 e+13 -1.0000 e+12
Durat
Hranion (0.0086) (0) (0) (0)
Loo-Initimb? 7.3548 e+11 4.8892 e+11 5.5295 e+11 1.0000 €+10
¢ (0) (0 (0.0003) (0
N 6.0521 e+13 1.0000 e+13
Log-Vollmb - -
& (0) ()
Log-likelihood -22,627 -26,360 -31,413 -11,400
Table A1.2: Autoregressive Subordination Results for HSBC
P1 P2 P3 P4
Autoregressive 100Ticks 100Ticks 100Ticks 100Ticks
g (100Ticks) (100Ticks) (100Ticks) (100Ticks)
u 8.7329 e-15 -3.0180 e-15 5.1429 e-17 1.2593 e-16
(o) (0.0008) (0.9601) (0.9024)
2.6825 e-14 3.7524 e-14 4.8381e-14 4.2150 e-14
4
(0.9999) (0.9998) (0.9997) (0.9998)
2 8.5851 e+13 3.5343 e+13 8.5057 e+13 6.1408 e+13
tick=1 (o) (0.0001) (o) (o)
Volume 9.5569 e+13 ) 6.3423 e+13 8.8872 e+13
(0) (0.0235) (0)
. 1.0000 e+14 9.2838 e+13 5.2372 €+13 -2.7778 e+13
Durat
Hrenen ©) © (0.0001) ©
. N 6.8892 e+11 9.8567 e+11 6.6997 e+11 1.4235 e+11
Log-InitImb
# () © 0 ©
5 7-8435 e+13 9.4366 e+13 91453 e+13
Log-Vollmb -
og-volim (o) (0.0006) (o)
Log-likelihood -23,508 -27,069 -34,319 -26,224
Table A1.3: Ljung-Box Test Statistics for Subordinated HSBC Stock Returns
P1 P2 P3 P4
LB Test (100Ticks) (100Ticks) (100Ticks) (100Ticks)
Linear Autoregressive Linear Autoregressive Linear Autoregressive Linear Autoregressive
- 23.9789 17.0894 38.5263 34.2855 36.2941 38.1251 16.9765 16.0319
¢ (0.2433) (0.6472) (0.0076) (0.0243) (0.0142) (0.0085) (0.6545) (0.7146)
2 175.8021 350.0387 216.8248 186.4615 271.0396 132.8735 30.2203 21.9554
r
‘ (o) (o) (0) (o) (o) (0) (0.0664) (0:3429)
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Appendix A2

Multiple Subordination Results for SAB Miller using Global Procedure

Table A2.1: Linear Subordination Results for SAB Miller

Linear P P2 P3 P4
(100 Ticks) (90 Ticks) (100 Ticks) (70 Ticks)
8.9473 e-13 -8.6463 e-14 6.6771 e-14 2.9076 e-14
g (0-2358) © (0 ©)
1.9255 e-11 3.2818 e-13 1.4066 e-13 1.8632 e-13
o
(0.9776) (0.9989) (0.9995) (0.9993)
Volume 9.9999 e+8 6.5458 e+13 1.0000 e+14 .
(o) (o) (o)
Duration 4.6693 e+8 -2.1460 e+12 11837 e+13 5.7186 e+12
(o) (o) (0.0001) (0.0002)
. 5 1.0000 e+7 1.0000 e+12 2.7082 e+11 -3.9134 e+9
Log-InitImb
s (0) (© (0) ©)
N -1.2608 e+13 8.2618 e+13
Log-Vollmb - -
& (0) ()
Log-likelihood -6,176 -12,649 -15,163 -17,707
Table A2.2: Autoregressive Subordination Results for SAB Miller
Aut . P1 P2 P3 P4
utoregressive (100 Ticks) (90 Ticks) (100 Ticks) (70 Ticks)
1.5232 e-15 1.5490 e-15 5.9718 e-15 -5.5842 e-15
u
(0.4161) (0.4065) (0.0147) (0.0005)
- 4.7791 €14 5.6189 e-14 7-9497 e-14 5.5972 e-14
(0.9999) (0.9998) (0.9997) (0.9998)
2 6.7977 e+13 1.8335 e+13 8.1994 e+13 1.0000 e+14
Tick-1 (0) (0.0029) (0) (0)
Volume ) 9:9925 e+13 9.9877 e+13 )
(0.0001) (o)
Duration 9.1697 e+13 6.8442 e+13 4.6871e+13 1.0000 e+14
(o) (o) (o) (o)
. N 9.9065 e+11 1.0000 €+12 2.8841 e+11 -3.4439 e+3
Log-InitImb
€ (o) (0) (0) (0)
1.0000 e+12
Log-Vollmb® - - -
g (0)
Log-likelihood -10,026 -13,865 -15,747 -18,791
Table A2.3: Ljung-Box Test Statistics for Subordinated SAB Miller Stock Returns
P1 P2 P3 P4
LB Test (100 Ticks) (90 Ticks) (100 Ticks) (70 Ticks)
Linear Autoregressive Linear Autoregressive Linear Autoregressive Linear Autoregressive
19.3210 21.0630 18.7713 23.9882 251293 21.7390 26.2966 271843
T,
‘ (0.5011) (0-3934) (0.5367) (0.2429) (0.1965) (0.3548) (0.1562) (0.1302)
2 108.5900 85.2687 20.6774 33.2963 179.0044 183.8922 133.6843 47.6079
(3.5527€-14) | (4.9200 e-10) (0.4163) (0.0313) (0) (0) (0) (4.8272 e-4)
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Appendix A3

Subordination Results for Royal Dutch Shell using Global Procedure

Table A3.1: Linear Subordination Results for Royal Dutch Shell

Linear P1 P2 P3 P4
(70 Ticks) (100 Ticks) (100 Ticks) (100 Ticks)
4.4576 e-16 -1.0791 e-16 -3.7920 e-5 8.5731 e-14
K (0.9316) (0.9349) (0.0625) (o)
1.9568 e-13 4.2722 €-14 7.5872 e-14 1.9654 e-13
4
(0.9992) (0.9998) (0.9997) (0.9993)
Volume 2.6920 e+13 1.0000 e+14 8.3493 e+13 6.5100 e+13
(o) (o) (o) (o)
Duration 1.0000 e+14 1.0000 e+14 2.3232 e+13 -1.0927 e+12
(o) (o) (o) (0)
. > 7.1329 e+11 2.918 e+11 9.8443 e+11 2.6871 e+11
Log-InitImb
og-tmitim (0.0001) (o) (o) (o)
5 -4.0737 e+13 -2.3712 e+13
Log-Vollmb - -
# (0) (0)
Log-likelihood -20,550 -16,249 -20,801 -16,219
Table A3.2: Autoregressive Subordination Results for Royal Dutch Shell
P P P P
Autoregressive 1 2 3 4
(70 Ticks) (100 Ticks) (100 Ticks) (100 Ticks)
-6.1471 e-15 6.1171 e-14 -7.3507 e-16 -4.5436 e-15
# (o) (o) (0.6480) (0.0003)
3.5711 e-14 7.58201 e-14 6.0001 e-14 41984 e-14
4
(0.9998) (0-9997) (0.9997) (0.9998)
2 1.0000 e+14 6.5455 e+13 1.2339 e+13 5.2155 e+13
tick—1 (o) (0.0072) (0.0002) (o)
7.0068 e+13 1.0000 e+14 4.8654 e+13 9.0192 e+13
Vol
oume (0) (0) (0.0162) (0)
Duration 9.2564 e+13 7.9835 e+13 4.2889 e+13 7.1199 e+13
(o) (o) (o) (o)
. N 8.2570 e+11 -2.2156 e+9 7.1681 e+11 7.9620 e+11
Log-InitImb
€ (o) (0) (0) (0)
Log-Vollmb® ) ) 6.5802 e413 )
(0.0033)
Log-likelihood -22,168 -15,635 -21,063 17,512

Table A3.3: Ljung-Box Test Statistics for Subordinated Royal Dutch Shell Stock Returns

P1 P2 P3 P4
LB Test (70 Ticks) (100 Ticks) (100 Ticks) (100 Ticks)
Linear Autoregressive Linear Autoregressive Linear Autoregressive Linear Autoregressive
75.3423 56.0454 17.0768 17.2084 21.9221 20.7530 13.2405 12.9193
Tt (2.3794 e-8) (2.8615 e-5) (0.6480) (0.6394) (0.3448) (0.4118) (0.8668) (0.8808)
2 475.5357 260.4708 40.2501 33.2846 239.8774 145.2595 492733 31.9224
(0) (0) (0.0046) (0.0314) (0) (0) (2.8u8 e-4) (0.0441)
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