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Abstract: Dispersion trading is a form of highly quantitative volatility trading that attempts to 

exploit relative mispricings between options on ETFs and options on the component assets of 

those ETFs. Trading opportunities are identified by relating the implied volatilities of component 

asset options to the implied volatilities of ETF options using Markowitz portfolio theory. After 

identifying viable trading opportunities, dispersion traders build portfolios of offsetting option 

positions and then hedge these portfolios to reduce their exposure to market risk. This research 

quantifies and compares the relative performances of four hedging strategies across four real-

world volatility dispersion portfolios and three simulated market conditions. Portfolio outcomes 

are explained intuitively and justified within a quantitative financial framework. Conclusions are 

drawn regarding dispersion analysis, portfolio performance, order sizing, the effect of 

commission fees, and optimal hedging strategies. Primary results indicate that portfolio profit is 

strongly related to inter-asset correlations and delta-hedging is generally effective in reducing the 

volatility of portfolio profit. 

Keywords: Options, ETF, Volatility Arbitrage, Dispersion Trading, Correlation, Risk 

Management, Hedging, Derivatives, Quantitative Finance, Markowitz Portfolio Theory 
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1. Introduction 

1.1 Background 

Dispersion trading seeks to profit from relative volatility mispricings that exist between options 

on portfolios of assets, generally exchange traded funds (ETFs), and similar options on all 

component assets in those portfolios. Once a significant mispricing has been detected, traders 

build dispersion portfolios of mispriced options and manage market risk using various hedging 

techniques [1]. Existing academic literature does not provide an adequate comparison of relative 

performances for each viable hedging strategy. It is possible that certain hedging strategies 

outperform others under certain market conditions, or that one hedging strategy is strictly 

superior in all circumstances. The primary research presented in this paper quantitatively 

compares the performances of four hedging strategies across four real-world dispersion 

portfolios and three simulated market conditions. Outcomes are interpreted and 

recommendations are made regarding portfolio hedging. Preliminary conclusions are also drawn 

regarding order sizing and the effect of commission fees. 

Dispersion trading emerged as a distinct trading methodology during the early 2000’s as a 

natural extension of the statistical arbitrage pair-trading strategies prevalent throughout the 

1990’s. Early pioneers of dispersion trading, generally buy-side hedge funds, borrowed ideas 

regarding inter-asset correlation and long-short1 portfolio construction from their statistical 

arbitrageur predecessors, and applied them to the analysis of relative option valuation [1]. They 

further drew on the fundamentals of portfolio theory, as formalized by Harry Markowitz, most 

notably the equation relating portfolio variance to the weighting of the assets within the portfolio 

and the inter-asset covariance relationships. Markowitz’s paper “Portfolio Selection”, published 

in the Journal of Finance in 1952, mathematically derives the formula for the variance of a 

portfolio shown in equation (1) as a matrix multiplication [2]. 

                                                 
1 Long-Short Portfolios: Portfolios which combine purchased securities, known as “long” positions, with sold 

securities, known as “short” positions. 
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(1) 

Where: 

 σ = Portfolio volatility 

 wi = The weight of component i 

 Covar(i,i) = The variance of component i 

 Covar(i,j) = The covariance between components i and j 

Versatile quantitative option pricing models also play a crucial role in volatility dispersion 

analysis. With the advent of the Black and Scholes model in the 1970’s, fair prices for European 

option contracts could be calculated based on their strike price, the underlying asset price, the 

risk free interest rate, the time to maturity, and most importantly the volatility of the underlying 

asset [3]. Risk management procedures mathematically derived from the Black and Scholes 

formulas were suggested in subsequent academic works. The most important of these 

procedures, known as delta-hedging, involves calculating the first derivative of the Black and 

Scholes option price with respect to changes in the underlying asset price, known as delta, and 

then buying or selling delta shares of the asset underlying the option contract. Delta is 

recalculated frequently throughout the life of the option and the number of shares traded on the 

underlying asset is adjusted accordingly [4]. The profitability of the resulting portfolio is dictated 

by the realized volatility of the underlying asset during the life of the option contract, as opposed 

to directional movements in the price of the underlying asset. While the mean expected profit for 

a delta-hedged option is almost the same as the mean expected profit for a naked option, 

assuming zero transaction costs and a reasonably accurate volatility parameter used to calculate 

delta, the volatility of expected profit is generally much lower when an option has been delta-

hedged [4]. In order to exploit this new form of risk-averse volatility trading, options traders 

began using the Black and Scholes equations in reverse to calculate the underlying asset 

volatility implied by the pricing model subject to the option’s observed market price. This 
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“implied volatility” measures an option’s price relative to the market’s expectation of future 

realized volatility on the underlying asset [4]. 

Volatility traders compare an option’s implied volatility to the expected realized volatility on the 

underlying asset, take an appropriate position in the option contract and delta-hedge the option 

until expiration. When the volatility implied by the price of an option is less than the expected 

realized volatility of the underlying asset, traders buy the option and delta-hedge the long option 

position accordingly [4]. Figure 1 shows the relationship between realized underlying asset 

volatility and profit for a long position in an option which has been delta-hedged. Conversely, 

when the volatility implied by the price of an option is greater than the expected realized 

volatility of the underlying asset, traders sell the option and delta-hedge the short option position 

accordingly. Figure 2 shows the relationship between realized underlying asset volatility and 

profit for a short position in an option which has been delta-hedged. Profitability on an option 

contract which has been bought and delta-hedged increases as realized volatility increases, while 

profitability on an option contract which has been sold and delta-hedged decreases as realized 

volatility increases. 

 

Figure 1. Effect of realized volatility on profit for a long position in an option which has been 

delta-hedged. Profitability is strongly positively correlated to realized volatility. 
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Figure 2. Effect of realized volatility on profit for a short position in an option which has been 

delta-hedged. Profitability is strongly negatively correlated to realized volatility.  

1.2 Dispersion Trading Fundamentals 

1.2.1 Volatility Dispersion Analysis 

Dispersion traders combine the fundamentals of option volatility trading and Markowitz 

portfolio analysis to relate the value of ETF options, which represent options on a portfolio of 

assets, to the value of options on each of the component assets in that ETF. A covariance matrix 

interrelating the ETF portfolio components is constructed, generally using historical asset prices, 

in addition to a matrix containing the weights of each component within the portfolio [5]. 

Traders then choose an ETF option contract and pair that option with a similar option on each 

ETF portfolio component asset. Implied volatilities are calculated for all options chosen by the 

trader. Next, the implied volatilities from the options on the component assets are inserted into 

the covariance matrix along the diagonally bisecting axis corresponding to the variances of each 

component asset. A modified Markowitz portfolio variance is then calculated using the modified 

covariance matrix and the matrix of ETF component asset weights as shown in equation (2). 
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Finally, the modified Markowitz portfolio variance is compared to the implied volatility of the 

chosen ETF option including a dispersion term beta, and portfolios of appropriate positions in 

the ETF option, and some number of the component asset options, are constructed [5]. 

 

 

(2) 

 

 

Where: 

 β = Dispersion term 

 wi = The weight of component i 

 Imp. Vol(i) = The implied volatility of component i converted into variance 

 Covar(i,j) = The covariance between components i and j 

 

  

1.2.2 Portfolio Construction and Expected Profit 

When beta is positive, meaning the implied volatility of the ETF option is less than the modified 

Markowitz portfolio volatility, dispersion traders buy the ETF option and sell similar options on 

some number of the component assets. When beta is negative, meaning the implied volatility of 

the ETF option is greater than the modified Markowitz portfolio volatility, dispersion traders sell 

the ETF option and buy similar options on some number of component assets. In order to 

achieve profitability, each leg of the trade, namely short positions and long positions, must be 

sized properly in absolute terms and relative to the other positions in the portfolio. Market impact 

and commission fees must be considered, as they may restrict the maximum or minimum viable 

order size per contract. Issues of order sizing, market impact and commission fees are discussed 

in more depth in the methodology section of this paper. Unfortunately, judgements about the 

relative value of individual options on component assets cannot be easily made, as individual 

asset volatilities would need to be accurately predicted. Dispersion traders must therefore take 
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the same position in all component asset options in order to fully exploit the value of theoretical 

mispricings. This can be difficult to accomplish when considering ETFs with large numbers of 

underlying assets, for example those tracking the S&P 500, as efficiently executing orders on 

500 component options is nearly impossible under real trading conditions. Transaction costs may 

also restrict the number of options on which dispersion bets can be placed. In most cases, 

dispersion traders settle for taking option positions across some subset of component assets. 

The performance of a volatility dispersion portfolio behaves differently from the performance of 

a single delta-hedged option in some important ways. As discussed previously, the profitability 

of a single delta-hedged option is directly related to the realized volatility of the underlying asset. 

While realized volatility does have an impact on dispersion portfolio returns, the effect is 

lessened by the inclusion of offsetting long and short option positions. In situations where 

component assets become more volatile, volatility on the ETF generally increases as well. In 

situations where component assets become less volatile, volatility on the ETF generally 

decreases as well. In both cases, one leg of the dispersion trade benefits from the changes in 

volatility and one leg of the dispersion trade suffers, resulting in more stable relationships 

between realized volatility and profit. Reduced exposure to realized volatility risk is one of the 

most attractive characteristics of dispersion portfolios [6]. Dispersion portfolios are, however, 

subject to significant correlation risk as a result of the strategy’s reliance on the Markowitz 

portfolio variance equation. Trades that looked profitable under a certain set of assumed inter-

asset covariances may result in losses if realized covariances differ significantly from the 

assumed relationships.  

In order to appreciate the interaction between the realized covariance matrix and the profitability 

of the dispersion portfolio, it is important to understand the ways in which inter-asset 

relationships affect the volatility of a portfolio. For any given set of component asset volatilities 

and weights, the volatility of the index increases as the sum of the covariances between the 

component assets increases. Conversely, index volatility approaches a minimum of zero when 

the sum of the covariances approaches zero. Put more intuitively, when returns on the 

components of the index are largely uncorrelated or hedge each other perfectly, positive returns 

on some components are offset by negative returns on other components, thereby decreasing the 

overall volatility of index returns. This is the primary benefit of proper portfolio diversification 
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espoused by Markowitz in his “Portfolio Selection” paper [2]. Conversely, when the returns on 

the components of the index are strongly correlated, returns on a single component asset are 

generally associated with similar returns on many other component assets, thereby increasing the 

overall volatility of index returns. Therefore, in cases where ETF options have been bought and 

component options have been sold, profitability increases as the sum of the covariances 

increases, driven by increased profitability on the long ETF option positions, and profitability 

decreases when the sum of the covariances approaches zero, driven by decreased profitability on 

the long ETF option positions. In cases where ETF options have been sold and component 

options have been bought, profitability decreases as the sum of the covariances increases, driven 

by decreased profitability on the short ETF option positions, and profitability increases when the 

sum of the covariances approaches zero, driven by increased profitability on the short ETF 

option positions [5]. 

Expected profit for a volatility dispersion portfolio can be calculated using any expected 

covariance matrix. First, Black and Scholes fair values for each option are calculated and 

mispricings are determined subject to bid and ask prices. Each option’s mispricing is then 

multiplied by a scalar that accounts for order sizing, commission fees and market impacts. Long 

option positions have a mispricing equal to the option’s Black and Scholes fair value minus the 

ask price for the contract. Short option positions have a mispricing equal to the bid price for the 

contract minus the option’s Black and Scholes fair value. ETF options should be priced using the 

Markowitz portfolio volatility calculated using the expected covariance matrix while options on 

component assets should be priced using the expected individual asset volatilities. While the 

effects of commission fees and market impact are explored later in this work, for the sake of 

clarity they have been ignored in equations (3) and (4). The scalar applied to each mispricing 

therefore represents the number of contracts bought or sold for each option and is denoted with 

the letter “C”.  

Long ETF options, short component options: 

 

(3) 
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Short ETF options, long component options: 

 

 

(4) 

Where: 

 Bid(i) = Current best bid price for option i 

 Ask(i) = Current best ask price for option i 

 B&S(i) = Black and Scholes price for option i 

 C(i) = Number of contracts traded on option i 

Previous research by Cara Marshall empirically verified the existence of profitable dispersion 

trading opportunities on large equity indexes subject to commission fees, market impact and 

spreads in quoted bid and ask prices [6]. The research presented in this paper partially verifies 

Marshall’s findings.  

 

1.2.3 Hedging and Risk Management 

After building a portfolio of options, dispersion traders look for ways to control the risk 

associated with their positions. Typically, this involves delta-hedging each individual option 

contract, however more sophisticated methods involving the use of variance swaps or volatility 

swaps have been examined in research by Izzy Nelken, who makes a strong case for their 

usefulness [5]. The research presented in this paper focuses on traditional delta-hedging 

protocols and the performance of those protocols under various market conditions.  

Delta-hedging requires the calculation of delta, the first derivative of the Black and Scholes 

option price with respect to the underlying asset price. Due to the importance of the volatility 

parameter in the Black and Scholes pricing model, the delta calculated for an option can change 

significantly when different volatilities are considered. Traders must therefore choose a volatility 

term for use in their delta calculations which performs best under the market conditions expected 

throughout the remaining life of the portfolio. Previous research conducted by Paul Wilmott and 



 

9 

 

Ahmad Riaz into the performance of delta-hedging using various asset volatility parameters 

found that the standard deviation of final profit, or profit volatility, on delta-hedged options 

increased as the difference between the volatility parameter used to calculate delta and the 

realized volatility increased. The two primary volatility parameters used by Wilmott and Riaz 

were realized volatility and implied volatility [7].  

In the case of dispersion portfolios, traders are presented with a third distinct volatility parameter 

to choose from when calculating delta, namely the modified Markowitz portfolio volatility 

calculated using equation (2). Because the Markowitz portfolio volatility incorporates inter-asset 

relationships between all components of the portfolio, it may be useful for hedging dispersion 

trades in certain market conditions. Another, perhaps more elegant way to delta-hedge the 

dispersion portfolio, is to buy or sell at the money straddles on the ETF and its components. 

Straddles are constructed by taking the same position, either long or short, in a put and a call 

struck at the same price. As the delta exposure of a call is equal and opposite to that of a put 

when at the money, positions in the asset underlying the option straddle are not necessary when 

the portfolio is first constructed [4]. However, once the price of the underlying asset has moved 

away from the strike price, the straddle will no longer be self-hedged and the trader must begin 

taking positions in the underlying asset. Unfortunately, delta changes more rapidly for straddle 

positions than for individual options, as the gamma of the long position in both the call and the 

put is positive. As a result, traders attempting to keep their portfolios delta-hedged will need to 

adjust their position in the underlying asset more frequently [4]. 
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2. Research Methodology and Preliminary Results 

2.1 Choosing Assets 

2.1.1 ETFs and Indexes 

Traders conducting volatility dispersion analysis must make a number of important decisions 

when building portfolios. First and foremost, appropriate ETFs must be chosen on which 

profitable dispersion trading opportunities exist. ETFs that track popular equity indexes are 

generally used, as they are characterized by higher liquidity and boast a wide variety of quoted 

option contracts [6]. Weighting methods used within the ETF portfolio are important to consider 

as well. Most equity indexes weight the component assets according to market capitalization2, 

which adds additional complexity to portfolio performance stress testing calculations and 

dispersion analysis techniques. Price-weighted indexes provide an attractive alternative for 

dispersion traders, as the weights of each component asset are directly related to current market 

prices. Preliminary research explored real-world trading opportunities on three price-weighted 

indexes, the Dow Jones Utility Average (DJUA), the Dow Jones Transportation Average (DJTA) 

and the Dow Jones Industrial Average (DJIA). Results indicated that viable trades on the DJUA, 

which is composed of 15 equities, were almost non-existent due to the very limited number of 

option contracts quoted on both the ETF tracking the index (IDU), and the component equities of 

the index. The few contracts that were quoted did not fulfill the option matching criteria that 

were established for this research. Option matching criteria are discussed in detail later in this 

section. Viable trades did however, exist on both the DJTA, which is composed of twenty 

equities, and the DJIA, composed of thirty equities. Trades on the DJIA were, on average, 

significantly more profitable than trades on the DJTA, due to much smaller spreads in quoted bid 

and ask prices. Average quoted spreads for options on the ETF tracking the DJTA (IYT), and the 

components of the DJTA, were between two and three times larger than average quoted spreads 

for options on the ETF tracking the DJIA (DIA), and the components of the DJIA, depending on 

the day. These differences in observed liquidity seem reasonable given the popularity of the 

                                                 
2 Market Capitalization: The total value of outstanding shares in a company. 
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DJIA and the relative obscurity of the DJTA. Despite higher profitability on DJIA portfolios, the 

DJTA was chosen as the primary research portfolio in order to reduce the number of simulated 

assets in the portfolio from thirty-one to twenty-one, thereby reducing the time necessary for 

portfolio simulation. Four portfolios on the DJTA were constructed and subjected to stress 

testing. Quoted spreads on options in two of these portfolios were artificially narrowed in order 

to achieve profitability. In these cases, both bid and ask prices were changed by the same amount 

in order to maintain the mid-market price which was used to calculate implied volatility. 

 

2.1.2 Component Assets 

The second important decision facing dispersion traders is how to choose which underlying 

assets to place bets on. As mentioned in the introduction, a trader will ideally place bets on all 

the assets in the ETF, however for indexes with a large number of component assets this can be 

nearly impossible. One method calls for the inclusion of the most heavily weighted assets in the 

ETF. In price-weighted indexes, these will be the assets with the highest prices. In cap-weighted 

indexes, these will be the assets with the largest market capitalization. In this way, traders hope 

to capture the majority of the inter-asset correlations used to inform their trade while simplifying 

their portfolio and minimizing transaction costs. Alternatively, the size of each option’s quoted 

spread can be used to filter out positions which are likely to result in losses. If the spread on any 

individual contract exceeds a chosen threshold, no position in that option is taken. In the case of 

the DJTA, it is feasible to take an option position in each of the twenty component assets in the 

index, thereby avoiding the complications associated with asset subset choice. All four portfolios 

in this research were constructed in this way. 

2.2 Matching Option Contracts 

Next, dispersion traders must decide how to match ETF options with component asset options. 

Certain criteria are essential to the success of dispersion analysis and the profitability of the 

portfolio. European contracts must be used for all ETF and component asset options, calls must 

be matched with calls, puts must be matched with puts, and expiration dates must be universal 

across the entire portfolio. Relative moneyness must also be accounted for when matching ETF 
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options with component options. Traders can match moneyness using simple ratios of strike 

price to current underlying asset price, moneyness relative to the volatility of the underlying 

asset, or by using the deltas for each option [5]. In practice, relative moneyness on exchange 

traded options, which are struck at regular price intervals, cannot be exactly matched. Therefore, 

an acceptable error margin when matching options must be established. Portfolios in this work 

were matched using simple ratios of strike price to current underlying asset price, as well as the 

previously mentioned criteria essential for dispersion analysis. Poorly matched portfolios were 

filtered out using equation (5).  

     

(5) 

Where: 

 Strike Price(i) = Strike price on option i 

 Asset Price(i) = Current price of asset underlying option i 

When the mean error in relative moneyness between the ETF option and the matched component 

options exceeded one percent, the portfolio was discarded. Additionally, when the standard 

deviation of moneyness across the matched component options exceeded two percent, the 

portfolio was discarded. Preliminary research indicated that these thresholds filtered out the 

majority of unprofitable portfolios while leaving a reasonable number of profitable trades to 

choose from. Between one-hundred-seventy and two-hundred unique option contracts were 

generally quoted on the DJTA index on any given day. Forty to fifty of those contracts could 

usually be matched with component options subject to these criteria. 

2.3 Order Sizing 

2.3.1 Relative Order Sizing 

Finally, dispersion traders must determine optimal order sizes for each option contract in the 

portfolio. Orders must first be properly sized relative to the other order sizes within the portfolio. 

Relative order sizing between component assets should reflect relative shareholding ratios in the 
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ETF portfolio. In the case of a price-weighted equity index, in which a single share from each 

component equity is included in the ETF portfolio, dispersion traders should trade the same 

number of contracts on each component option. These component options must be balanced with 

an appropriate number of contracts on the ETF option in order to properly offset losses on either 

leg of the trade with profits on the other leg. An appropriate number of ETF options to be traded 

relative to the traded component options can be determined using a “Greek-equating” method. 

Traders using this method calculate the gamma3 or vega4 exposure of the basket of component 

options and then buy or sell ETF options until that exposure has been neutralized. Alternatively, 

the ETF leg of the trade can be balanced according to the summed weights of the component 

assets on which options were traded [5]. Note that the price of an ETF is almost never equal to 

the price of the index which it is designed to replicate. ETFs were designed to allow investors 

with limited capital to purchase shares in broad based index-style securities, and therefore have 

much lower share prices than the indexes they replicate. When considering a price-weighted 

index ETF, equation (6) can be used to calculate the number of ETF option contracts traded for 

every one contract traded on each component asset of the index. 

                          

                   (6) 

  

This equation is derived from the calculation of the index price as a sum of the index’s 

component asset prices and the ETF price as the quotient of the index price and some divisor. 

When the ETF price is equal to the index price, and the divisor is therefore equal to one, a single 

option contract should be traded on the ETF for every option contract traded on the entire basket 

of component options. If only a subset of component assets is chosen, a number of contracts 

equal to the sum of the weights for each chosen component asset would be traded on the ETF for 

every one option contract traded on those chosen component assets. The ETF replicating the 

DJTA (IYT) has a divisor slightly greater than nine. Therefore, if option contracts were traded on 

all component assets in the index, approximately nine contracts would be traded on the ETF for 

every one contract traded on each component. If options were traded on a subset of component 

                                                 
3 Gamma: The second derivative of the option value with respect to changes in the underlying asset price [4]. 
4 Vega: The first derivative of the option value with respect to changes in the volatility parameter [4]. 
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assets which comprised fifty percent of the index price, approximately four and a half options 

would ideally be traded on the ETF for every one option traded on each chosen component asset. 

Dispersion portfolios constructed for this research included trades on all twenty component 

assets in the DJTA as mentioned previously, and therefore included nine contracts on the ETF 

for every one contract on each component asset.  

 

2.3.2 Absolute Order Sizing 

After deciding on the relative sizing appropriate for each leg of the trade, dispersion traders must 

decide how many times to scale up the entire portfolio. Immediate market impact, also known as 

slippage, is the most important factor to consider when determining optimal absolute position 

sizing [6]. Slippage can be generally understood as the difference between the quoted best bid or 

ask price and the volume weighted average execution price (VWAP) realized for a buy or sell 

market order5 respectively. If a trader places a market order to purchase one thousand contracts 

of an option, it is very likely that only some fraction of those thousand contracts can be 

purchased for the quoted best ask price. Once the limit order6 at that best ask price has been 

completely filled, the remaining contracts in the trader’s market order will be filled by limit 

orders sitting at progressively higher prices. By the time the market order has been completely 

executed, the average execution price per contract may be significantly higher than the quoted 

best ask price. The severity of slippage observed on a market order depends heavily on the 

market microstructure of the traded security [6]. Order books which are densely populated with 

large limit orders can absorb large market orders without significant slippage in execution price. 

In contrast, large market orders submitted to sparsely populated order books may be subjected to 

significant slippage in execution price. Slippage can be quantified as the change in filled price 

per executed contract. Suppose that the best ask price for an exchange traded security is currently 

one hundred dollars and a trader places a market buy order for ten units of that security. Assume 

that as the market order is filled, the executed purchase price increases by one dollar for each 

contract after the first. The total price paid for ten units of the security can now be calculated 

using an arithmetic sequence. The sum of an arithmetic sequence is defined by equation (7), 

                                                 
5 Market Order: An order to buy or sell an asset at the best available price. This order is filled immediately. 
6 Limit Order: An order to buy or sell an asset at a certain price. This order may not be immediately filled, if at all. 
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which has been modified to reflect a market order of size “C”, subject to some slippage 

parameter “S”.   

 

                          

                          (7) 

 

If the total transacted order value is known, this equation can be rearranged, as shown in 

equation (8), and solved for “S” in order to quantify the realized slippage in executed price per 

contract. 

 

                     

                  (8) 

  

Where: 

 S = Slippage in executed price per contract 

 C = Size of market order in number of contracts 

 (Bid or Ask) = Current best bid or ask price for traded security 

Financiers can use equations (7) and (8) in conjunction with a chosen slippage parameter to 

model the effects of immediate market impact on optimal order sizing. The parameter “S” should 

be defined according to empirical observations of the market microstructure for the asset in 

question. Assume an options trader believes an option contract is relatively cheap with respect to 

anticipated underlying asset volatility. That is, the trader believes the realized volatility of the 

underlying asset will be significantly higher than the implied volatility on the option. In order to 

take advantage of this trading opportunity, the trader will buy the option and delta-hedge it with 

the underlying asset. However, a decision regarding the number of contracts to be purchased 

remains to be made. If the market order is oversized, the VWAP will differ significantly from the 

best ask price which was used to calculate the implied volatility for the option. If the implied 

volatility calculated for the option using the VWAP, as opposed to the best ask price, exceeds the 

realized volatility on the underlying asset, the trader will lose money on the trade. Under sizing a 
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market order is also not optimal, as additional profit could be made on the trade by purchasing 

additional contracts at prices which are still significantly different from the option’s fair value. It 

follows that the relationship between absolute profit and order sizing is certainly nonlinear.  

Preliminary research found this relationship to be parabolic for profitable option trading 

opportunities when a constant positive slippage parameter was accounted for. In contrast, losses 

accrued by unprofitable opportunities accelerated exponentially with increasing order size. 

Similar results between profitability and order sizing were found for portfolios of options, in this 

case volatility dispersion portfolios. Figure 3 compares the performances of three profitable 

DJIA dispersion portfolios which were constructed by pairing the same ETF option with options 

on the largest ten, twenty and thirty component assets in the index. In all cases, portfolio profit 

reached a maximum at some definite order sizing scalar, however that optimal sizing scalar 

decreased as the number of component assets on which options were traded increased. 

Furthermore, the maximum profitability attained by the portfolio increased as the number of 

component assets on which options were traded increased. Finally, the rate at which portfolio 

profitability changed, with respect to changes in order sizing, increased as options were traded on 

larger numbers of component assets. Profitability decayed rapidly for portfolios that included 

options on large numbers of component assets, and more slowly for portfolios that included 

options on fewer component assets. These results are intuitive, as portfolios including options on 

a large number of component assets should capture more of the theoretical mispricing value 

detected in the volatility dispersion analysis, resulting in higher profit potential, while 

simultaneously exposing the portfolio to slippage losses on a larger number of assets. Figure 4 

compares the performances of three unprofitable DJIA dispersion portfolios which were 

constructed by pairing the same ETF option with options on the largest ten, twenty and thirty 

component assets in the index. Losses accrued more gradually, with respect to order size, as the 

number of component assets on which options were traded decreased. Again, these results are 

intuitive, as these portfolios were not profitable to begin with and therefore having fewer losing 

positions, as well as fewer positions subject to slippage losses, proved to be advantageous. 
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Figure 3. Effects of position sizing on the performance of profitable DJIA dispersion portfolios 

subject to a constant positive slippage in executed price per contract.  
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Figure 4. Effects of position sizing on the performance of unprofitable DJIA dispersion 

portfolios subject to a constant positive slippage in executed price per contract.  

 

In the absence of a rigorous empirical study of the market microstructure observed for DJTA 

options, determining a reasonable slippage parameter is impossible. This work therefore chose to 

ignore the effects of immediate market impact and slippage. Because questions regarding 

optimal order sizing become meaningless under such assumptions, portfolios stress tested in this 

research used size scalars of one in all cases, meaning a single option contract was traded on 

each component asset in the index. In accordance with equation (6), nine contracts were 

therefore traded on the ETF in order to balance the portfolios.  
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2.4 Research Assumptions 

A number of important assumptions were made when stress testing dispersion portfolios in this 

research. As mentioned in the previous section, slippage in execution price was ignored on the 

traded option contracts. Slippage in the equities underlying the traded option contracts, which are 

purchased and sold repeatedly during delta-hedging protocols, was also ignored. Although these 

assumptions do not entirely reflect reality, portfolios in which the largest option position consists 

of a mere nine contracts should be subject to very little slippage on average. While spreads 

between quoted bid and ask prices for option contracts were included in the stress testing 

calculations, quoted spreads for underlying equity assets were ignored. Only mid-market prices 

were simulated for each equity in the index. Without exception, the equities that comprise the 

DJTA are very liquid. Spreads between the quoted bid and ask prices for those assets tend to be 

no larger than two or three cents, which accounts for less than four basis points of the average 

asset price in the index. While paying a simulated spread would reduce average simulated 

profitability, the effect would be very slight. Option contracts were assumed to consist of one-

hundred options to buy or sell one stock. Under this assumption, the owner of one call option 

contract has the right to buy one-hundred shares of the underlying stock. All parameters 

associated with option contracts, including prices, payoffs and units of delta risk, were multiplied 

by one-hundred accordingly.  

The final, and most noteworthy assumption made in this research, pertains to commission and 

trading fees. Initially, a proportional fee of fifteen basis points was included in the stress testing 

scenarios. Total transacted dollar value was multiplied by fifteen basis points and then either 

added to the final cost for the purchase of an asset, or subtracted from the final sale price of an 

asset. Portfolios of naked options remained mildly profitable under this proportional fee scheme, 

as proportional costs were paid only once and on the relatively small dollar values of option 

contracts. When delta-hedging was introduced however, profitability suffered dramatically, 

leaving no profitable opportunities. Losses were mainly due to the proportional fees paid on 

relatively high equity prices when first establishing and subsequently closing out delta-hedging 
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positions. Further losses were accrued at every time step as option deltas were recalculated and 

positions in all twenty-one underlying assets were adjusted. In the interest of comparing 

profitable portfolio performances, commission fees were subsequently reduced to zero. 

Assessing the existence of real-world dispersion trading opportunities was not the primary 

objective of this research, therefore priority was given to the comparative analysis of relative 

portfolio performance under different hedging strategies and simulated market conditions. The 

delta-hedged portfolio outcomes, subject to a proportional commission fee, observed in this 

preliminary research provide empirical justification for Nelken’s claim that most dispersion 

trades are conducted using at the money straddles [5]. Combining options on a common 

underlying asset in order to offset the necessary hedging position can seemingly save traders a 

significant amount of money.   

2.5 Data Sourcing and Computational Methods 

Before constructing and stress testing dispersion portfolios, quoted prices on exchange-traded 

option chains were sourced online. Initially, option data was fetched from the Yahoo Finance 

website using an HTML parsing script. The validity of these quotes came into serious question 

however, as a significant number of large risk-free arbitrage opportunities were present in the 

fetched option prices. A new HTML parsing script was then written to fetch option quotes from 

Nasdaq, after which arbitrage opportunities completely disappeared. For the Matlab parsing 

function developed to fetch option chains from the Nasdaq website, see Appendix A. 

In order to stress test dispersion portfolios on the DJTA, it was necessary to simulate the twenty 

component assets in the index over varying time periods. From these simulations, prices for the 

ETF asset (IYT) were extrapolated by summing the simulated prices of all twenty component 

equities at each simulated time-step and dividing by the ETF divisor discussed in the section on 

relative order sizing. Simulations were conducted using Matlab’s multi-asset Monte-Carlo7 

simulator, “portsim”. This function takes input arguments for each asset’s expected return, the 

expected covariance matrix relating the assets, total time-frame to be simulated and the number 

of steps to simulate within that time-frame. Different market conditions can be simulated by 

                                                 
7 Monte-Carlo Simulation: A method for sampling discrete random outcomes of a continuous stochastic process [4]. 
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simply altering the covariance matrix and expected return input arguments. Four different 

portfolios on the DJTA were stress tested under three different market conditions and subject to 

four different hedging protocols, yielding forty-eight unique variable combinations. For each 

combination of variables, the entire portfolio of twenty-one underlying assets was simulated ten-

thousand times over ten time-steps. These parameters were chosen in order to reduce the 

computational time needed to stress-test delta-hedging protocols while still providing a 

sufficiently large sample size on which to compute reliable portfolio performance statistics. 

Twelve Dell computers8 running sixty-four bit Windows 7 operating systems were utilized in 

parallel, thereby reducing the time required to complete all experiments even further. Stress-tests 

took approximately one hour to compute independently when dynamic delta-hedging protocols 

were implemented. 

As mentioned previously, component assets were simulated under three distinct market 

conditions using Matlab’s “portsim” function. The first market condition was based on the 

assumptions that no true correlations exist between assets in the index and that component 

options are efficiently priced. An expected covariance matrix was constructed for this market-

neutral method by inserting the implied variances from each component option contract down 

the diagonal axis of a twenty by twenty zeros matrix. Market-neutral simulation was used to test 

the performance of dispersion portfolios during times of low inter-asset correlation and therefore 

decreased volatility on the index. Figure 5 shows realized asset prices from a single portfolio 

simulation generated using method one. The second market condition was based on historical 

data, and used covariances and expected returns calculated from one year of adjusted closing 

prices for each component asset. Historically-based simulation served as the benchmark for 

portfolio performance under normal market conditions. Figure 6 shows realized asset prices from 

a single portfolio simulation generated using method two. The third market condition was 

created in two steps. First, historically-based simulations were generated using method number 

two as just described. An identical return shock was then applied to every asset at the same 

randomly chosen time period. The value of the return shock was drawn randomly for every 

simulation from a standard normal distribution and then multiplied by a scalar to create an 

                                                 
8 Each computer was equipped with an Intel Core i5-4590 processor clocked at 3.3 gigahertz and was installed with 

eight gigabytes of RAM. Matlab version 2015.a was used to run portfolio stress-testing routines on all computers. 
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average absolute shock value of six percent. Market-shock simulation was used to test the 

performance of dispersion portfolios during times of high inter-asset correlation and therefore 

increased volatility on the index. Figure 7 shows realized asset prices from a single portfolio 

simulation generated using method three. For the Matlab portfolio simulation routine, see 

Appendix B. 

 

Figure 5. A realized simulation of the equity portfolio replicating the DJTA and its associated 

ETF (IYT) under market-neutral conditions. Assets exhibit low correlations during this market 

condition. 
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Figure 6. A realized simulation of the equity portfolio replicating the DJTA and its associated 

ETF (IYT) under historical market conditions. Assets exhibit normal, moderate correlations 

during this market condition. 
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Figure 7. A realized simulation of the equity portfolio replicating the DJTA and its associated 

ETF (IYT) under market-shock conditions. Assets exhibit high correlations during this market 

condition. 

Four distinct hedging protocols were used in stress testing calculations. The first method did not 

utilize delta-hedging, relying instead on naked options from each leg of the trade to hedge the 

risks associated with the other leg. Methods two, three and four delta-hedged each option 

contract using shares of the equities underlying those contracts. Method two used the historical 

volatility of each underlying asset to calculate delta at each simulated time step. Method three 

used the implied volatility calculated for each option contract at time zero, to calculate delta at 

each simulated time step. Method four used the modified Markowitz portfolio volatility 

calculated using equation (2) to calculate delta for all option contracts at each simulated time 

step. Positions in equities underlying the option contracts were opened at time zero when the 

portfolios were first constructed, adjusted at time steps one through nine subject to new delta 

calculations, and closed out at the tenth and final time step. For the Matlab stress testing routine, 

see Appendix C. 
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3. Results 

Four volatility dispersion portfolios on the DJTA were constructed from listed Nasdaq options 

and subsequently stress tested using Monte-Carlo simulation. Two of the constructed portfolios 

were built using call options and two were built using put options. Relative moneyness, as 

defined by the ratio of strike price to asset price, differed to some degree between the portfolios. 

Two portfolios consisted of options very close to the money, one portfolio consisted of options in 

the money and the last portfolio consisted of options out of the money. Time to maturity for each 

portfolio differed as well, ranging from thirteen days to forty-four days. Two portfolios were 

constructed using long positions in the selected ETF option and short positions in the matched 

component options, and two portfolios were constructed using short positions in the selected 

ETF option and long positions in the matched component options. Expected profit was also 

calculated for each portfolio using equations (3) and (4). Important portfolio information has 

been summarized in Table 1.  

 

 

 

Table 1. Option contract data for each portfolio constructed on the DJTA. 

After simulations were run for each portfolio, results were compiled and descriptive statistics on 

portfolio performance were calculated. Tables 2, 3, 4 and 5 summarize the mean profit, volatility 

of profit, percentage of simulations that lost money, and expected shortfall for each portfolio 

subject to market condition and hedging protocol. Mean profit was calculated as the simple 

arithmetic average of final portfolio profit across all simulations. Volatility of profit was 

calculated as the standard deviation of the final portfolio profit across all simulations. The 

percentage of simulations resulting in a loss was calculated as the ratio of negative profit 

outcomes to total number of simulations. Expected shortfall was calculated as the simple 

arithmetic average of final portfolio profits across all simulations that ended with negative 

profits. 
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Table 2. Simulation outcomes for portfolio of at the money calls. ETF options were sold and 

component options were bought in this portfolio. 

 

Table 3. Simulation outcomes for portfolio of in the money calls. ETF options were bought and 

component options were sold in this portfolio. 

 

Table 4. Simulation outcomes for portfolio of at the money puts. ETF options were sold and 

component options were bought in this portfolio. Note that in the case of market-neutral 

simulation, this portfolio was profitable across all ten-thousand simulations. 

 

Table 5. Simulation outcomes for portfolio of out of the money puts. ETF options were bought 

and component options were sold in this portfolio. 

Simulation results should be examined from two perspectives. First, the effect of simulation type 

on mean portfolio profit should be considered subject to the position taken on the ETF option, 

either long or short. Second, the effect of delta-hedging on the volatility of portfolio profit should 

be considered subject to simulation type. Results showed that average portfolio profit was lowest 

for market-neutral simulations, and highest for market-shock simulations, when a long position 

on the ETF option was taken. Conversely, average profit was highest for market-neutral 
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simulations, and lowest for market-shock simulations, when a short position on the ETF option 

was taken. Furthermore, the volatility of portfolio profit was significantly reduced by all forms of 

delta-hedging for market-neutral and historical simulations, but profit volatility was only 

marginally reduced, and in some cases was even increased, by delta-hedging for market-shock 

simulations. More specifically, volatility of portfolio profit under market-neutral simulations was 

minimized for three out of four portfolios when implied volatilities were used to delta-hedge the 

portfolio. Volatility of portfolio profit under historical simulations was minimized for all 

portfolios when historical volatilities were used to delta-hedge the portfolio. Volatility of 

portfolio profit under market-shock simulations was minimized for two out of four portfolios 

when the modified Markowitz portfolio volatility was used to delta-hedge the portfolio. 

4. Discussion 

4.1 Mean Portfolio Profit and Simulation Type 

The observed interactions between simulation type, mean portfolio profit and the position taken 

in the ETF option were expected and are rational within the context of dispersion trading. As 

discussed in the introduction, when inter-asset correlations are high, portfolio volatility increases. 

When inter-asset correlations are low, portfolio volatility decreases. Recall that market-neutral 

simulations were generated using inter-asset correlations of zero and market-shock simulations 

were generated using stronger inter-asset correlations than those observed historically. Because 

long option positions which have been delta-hedged benefit from increased realized volatility, 

portfolios that were long ETF options benefited from the higher inter-asset correlations realized 

during market-shock simulations, and suffered under the lower inter-asset correlations realized 

during market-neutral simulations. See tables 3 and 5 for the relevant data. Conversely, because 

short option positions which have been delta-hedged benefit from decreased realized volatility, 

portfolios that were short ETF options benefited from the lower inter-asset correlations realized 
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during market-neutral simulations and suffered under the higher inter-asset correlations realized 

during market-shock simulations. See tables 2 and 4 for the relevant data. 

4.2 Delta-Hedging 

Delta-hedging outcomes provide a number of insights into the behavior of dispersion portfolios 

under various conditions. First and foremost, results generally support the research of Wilmott 

and Riaz discussed previously, which found that the volatility of profit for a delta-hedged option 

was minimized when realized volatility was used to calculate delta [7]. For market-neutral 

simulations, in which implied volatilities were used to simulate component asset volatility, delta-

hedging with implied volatilities minimized the volatility of portfolio profit in three out of four 

portfolios. While the portfolio consisting of at the money puts summarized in table 4 did not 

conform to this trend, a number of complicating factors were present which may have affected 

results. First, only component assets were assumed to be fairly priced under the market-neutral 

simulation method, meaning that the implied volatility on the ETF option which was sold may 

have been significantly underpriced relative to the realized volatility on the index, resulting in 

miscalculated delta values. Second, it is possible that an insufficient number of time steps were 

simulated for each asset. Because delta is recalculated at each time step, it is possible that larger 

numbers of time steps would result in performance improvements for each hedging protocol. 

Lastly, the observed volatility of portfolio profit may have been affected by the modest number 

of total simulations. As more simulations are generated, random statistical anomalies are 

flattened out by large numbers of more typical outcomes.  

For historical simulations, in which historical volatilities were used to simulate component asset 

volatility, delta-hedging with historical volatilities minimized the volatility of portfolio profit for 

all four portfolios. These results perfectly corroborate work by Wilmott and Riaz [7].  

Lastly, for market-shock simulations, in which historical volatilities were used in conjunction 

with an average return shock of approximately six percent applied to all component assets, delta-

hedging with the modified Markowitz portfolio volatility as calculated using equation (2) 

minimized the volatility of portfolio profit for the portfolios summarized in tables 2 and 3. 

However, profit volatility was minimized for the portfolios summarized in tables 4 and 5 when 
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options were not delta-hedged at all. Again, the small number of simulated time steps is likely 

responsible for these results, especially given the large shock returns that were applied to each 

asset in the portfolio for every simulation. Within the Black and Scholes framework, delta should 

be recalculated and the hedge adjusted at every instant throughout the life of the option in order 

to account for continuous changes in the stochastic geometric Brownian motion underlying the 

model [3]. When simulated movements in the underlying asset price are exceptionally large 

between time steps, the hedge cannot be adjusted throughout the price change, and risk 

management outcomes suffer as a result [4]. Because each portfolio was shocked with the same 

severity, and each portfolio was simulated using the same number of time steps, the portfolio of 

at the money puts experienced the most severe unhedged price changes relative to their 

remaining time to maturity. 

Apart from validating previous industry research, these simulation results provide new insights 

into the performance of delta-hedged dispersion portfolios relative to naked dispersion portfolios. 

While differences in observed mean profits between each delta-hedging protocol were small 

across all portfolios and simulation methods, differences between mean naked profits and mean 

delta-hedged profits were significant in some cases. Standard deviations of the three delta-

hedged mean portfolio profits, calculated across all portfolios and simulation methods, ranged 

from $0.46, on at the money puts simulated using the market-neutral method, to $10.91, on in the 

money calls simulated using the historical method. The average of these standard deviations was 

only $4.49. Closely clustered mean profits for the three delta-hedging methods indicate that 

despite significant effects on the volatility of portfolio profit, the underlying asset volatility used 

to calculate delta had only a minimal effect on mean portfolio profit. In contrast, the largest 

difference between mean naked profit and mean delta-hedged profit across portfolios and 

simulation methods was $60.84, on at the money calls simulated under historical conditions. A 

large discrepancy of $38.74 between mean naked profit and mean delta-hedged profit was also 

observed for in the money calls simulated under historical conditions. When mean delta-hedged 

profits and mean naked profits observed under historical simulations across all portfolios are 

compared to expected profits for each portfolio, as calculated using equations (3) and (4) and 

listed in Table 1, the effect of delta-hedging on mean dispersion portfolio profit becomes clear. 

In all cases, mean naked profit is corrected, either upward or downward, towards the expected 
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portfolio profit by delta-hedging the entire portfolio. Further research is needed to explain the 

causes for deviation of mean naked profit from expected portfolio profit, however 

recommendations for effective dispersion trading can still be made in its absence. 

4.3 Recommendations for Dispersion Trading 

Dispersion traders should understand the effects of inter-asset correlation on their dispersion 

portfolios. As evidenced by simulation results, dispersion trades that are long ETF options and 

short component options benefit when correlations increase, and suffer when correlations 

decrease. Dispersion trades that are short ETF options and long component options benefit when 

correlations decrease, and suffer when correlations increase. Traders can therefore use current 

correlations as a signal for dispersion trading opportunities. When inter-asset correlations are 

particularly high, it may be a good time to sell ETF options and buy component options, in 

anticipation of correlations normalizing downwards in the future. Conversely, when inter-asset 

correlations are particularly low, it may be a good time to buy ETF options and sell component 

options, in anticipation of correlations normalizing upwards in the future. 

Dispersion traders looking to reliably realize expected profits on their portfolio should certainly 

delta-hedge each option traded. While particularly risk hungry traders may wish to forgo delta-

hedging in the hopes of capturing directional payoffs on individual equity options, naked 

portfolios will almost certainly experience higher profit volatility, and may also be subject to 

mean potential profits that deviate from expected portfolio profit under various circumstances. If 

commission fees are high, traders may wish to take positions in at the money straddles in order to 

minimize the delta exposure on each underlying asset. Gamma exposure across the portfolio will 

be relatively high in this case, meaning that traders must adjust hedging positions taken in the 

underlying assets on a more frequent basis. Simulation results indicate that if commission fees 

are low enough, it is viable to delta-hedge options without the use of straddles, in which case 

gamma exposure across the portfolio will be fairly low. This will translate to a more stable 

portfolio which requires fewer adjustments to hedging positions in the underlying assets. 

Choosing the proper volatility with which to calculate delta is also important when attempting to 

minimize portfolio profit volatility. Ideally, traders will have constructed an expected covariance 

matrix before placing their trade. Using the asset variances in this matrix to hedge each 
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component option, and the expected Markowitz portfolio volatility to hedge ETF options, is 

likely the best approach. Research results indicate that in some cases, when a trader believes a 

large market-shock may be imminent, using the modified Markowitz portfolio volatility to delta-

hedge all options in the portfolio may be beneficial, assuming the trader can frequently adjust his 

hedging positions. 

4.4 Opportunities for Further Research 

Further research into dispersion trading is necessary. By building on existing work, academics 

can more explicitly address questions regarding component asset subset selection, optimal 

portfolio sizing, option matching criteria and alternative hedging techniques. While relationships 

between mean portfolio profit, volatility of portfolio profit and simulation method were 

considered for portfolios constructed using options on all components in the index, selection of a 

subset of component equities may change the relationships examined in this work. Therefore, 

further research into the effect of component asset subset selection is recommended. Different 

methods for component selection, including selection by largest weight and smallest spread in 

quoted option prices, should be compared. 

Options in this work were matched using a relative moneyness term defined as the ratio of the 

strike price to current underlying asset price. Alternative measures of moneyness were also 

discussed in this work, including moneyness relative to the volatility of the underlying asset and 

the delta of the option. Further research is needed to determine the effect of alternative option 

matching criteria on risk management outcomes and portfolio profitability. 

This research examined basic relationships between absolute portfolio profit and portfolio sizing 

subject to immediate market impact, however questions regarding the effect of hedging protocol 

on that relationship remain. While it is likely that a similar, generally parabolic relationship 

exists, the characteristics of the function defining that relationship may change subject to 

alternative hedging strategies. 

Finally, an extensive and quantitative comparison between the performances of all potential 

dispersion portfolio hedging strategies needs to be conducted. Such a study should examine the 

hedging performance of variance swaps and option straddles, in addition to the standard delta-
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hedging protocols examined in this work. Large samples of dispersion portfolios should be stress 

tested under each hedging method and under different market conditions in order to inform 

dispersion traders regarding optimal portfolio outcomes in various scenarios. A decision making 

framework should be constructed according to observed results.  

5. Conclusion 

Dispersion trading is a form of relative value volatility trading conducted using options on 

portfolios and options on the component assets of those portfolios. Traders building dispersion 

portfolios attempt to control market risk exposure with various hedging techniques. 

Unfortunately, no existing academic literature quantitatively compares the performances of 

different hedging methods with respect to dispersion portfolio performance. The research 

presented in this paper partially addresses this research gap.  

Real-world volatility dispersion portfolios were constructed on the Dow Jones Transportation 

Average, hedged using four distinct protocols and stress tested subject to three simulated market 

conditions. Delta-hedged portfolio outcomes were compared to naked portfolio outcomes across 

each portfolio and simulation method. Preliminary research results indicated that absolute 

portfolio profit is parabolic with respect to portfolio sizing subject to a positive slippage 

parameter, and that commission fees are notably detrimental to portfolios hedged without the use 

of straddles. Primary research results confirmed that mean portfolio profit is strongly related to 

inter-asset correlations and showed that delta-hedging is generally effective in reducing the 

volatility of portfolio profit. 

This work only compared the performances of naked portfolios to the performances of portfolios 

delta-hedged using three different volatility parameters. Future research should primarily seek to 

provide quantitative comparisons between the performances of variance swap hedging and delta-

hedging strategies with respect to dispersion portfolios, however there are opportunities for 

further research into other dispersion trading topics as well. It should be the goal of academics in 
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this field to formalize an entire decision making framework which highlights the strengths and 

weaknesses of each dispersion portfolio hedging strategy across a wide variety of potential risk 

scenarios. Such a framework would ensure the continued growth and profitability of dispersion 

trading into the future.  
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Appendix A 

function [ optiondata ] = GetNasdaqOptionChain( ticker ) 

html = urlread(['http://www.nasdaq.com/symbol/' ticker '/option-chain?dateindex=-1&page=1']);  

numpages = regexpi(html, 'dateindex=-1&page=(\d+)" id="quotes_content_left_lb_LastPage"', 'tokens');  

 

if isempty(numpages) == 0 %Found page number data on first HTML page 

    numpages = str2num(numpages{1}{1}); %Converts numpages from cell string to number 

else %Didn't find page number data on first HTML page 

    numpages = 1; 

end 

  

datearray = []; 

contractarray = []; 

strikearray = []; 

bidarray = []; 

askarray = []; 

volumearray = []; 

trys = 5; 

parfor page = 1:numpages %Every page of option data 

    for trynum = 1:trys %Number of times it has tried to fetch the data 

        try 

            html = urlread(['http://www.nasdaq.com/symbol/' ticker '/option-chain?dateindex=-1&page=' num2str(page)]);  

  

            datedata = regexpi(html, ['(\d{6}).\d{8}-' ticker '-.{3,4}">.{12}<\/a>'], 'tokens'); %Fetches expiration dates 

            contractdata = regexpi(html, ['\d{6}(.)\d{8}-' ticker '-.{3,4}">.{12}<\/a>'], 'tokens'); %Fetches contracts, calls / puts 

            strikedata = regexpi(html, ['\d{6}.(\d{8})-' ticker '-.{3,4}">.{12}<\/a>'], 'tokens'); %Fetches strike prices 

            biddata = regexpi(html, ['\d{6}.\d{8}-' ticker '-.{3,4}">.{12}<\/a><\/td>\s*<td[^>]*>[^<]*<\/td>\s*<td[^>]*>[^<]*<\/td>  

                \s*<td[^>]*>([^<]*)<\/td>'], 'tokens'); %Fetches bid prices 

            askdata = regexpi(html, ['\d{6}.\d{8}-' ticker '-.{3,4}">.{12}<\/a><\/td>\s*<td[^>]*>[^<]*<\/td>\s*<td[^>]*>[^<]*<\/td>   

                \s*<td[^>]*>[^<]*<\/td>\s*<td[^>]*>([^<]*)<\/td>'], 'tokens'); %Fetches ask prices 

            volumedata = regexpi(html, ['\d{6}.\d{8}-' ticker '-.{3,4}">.{12}<\/a><\/td>\s*<td[^>]*>[^<]*<\/td>\s*<td[^>]*>[^<]*<\ 

                /td>\s*<td[^>]*>[^<]*<\/td>\s*<td[^>]*>[^<]*<\/td>\s*<td[^>]*>([^<]*)<\/td>'], 'tokens'); %Fetches volumes 

  

            datedata = [datedata{:}]; %Reduces all 2-dimensional fetched cell arrays to 1-dimensional cell arrays 

            contractdata = [contractdata{:}]; 

            strikedata = [strikedata{:}]; 

            biddata = [biddata{:}]; 

            askdata = [askdata{:}]; 

            volumedata = [volumedata{:}]; 



 

36 

 

  

            datearray = [datearray; datenum(datedata, 'yymmdd') - today]; %Converts into number of days from today 

            contractdata = strrep(contractdata, 'C', '1'); %Converts C's and P's into 1's and 0's 

            contractdata = strrep(contractdata, 'P', '0');  

            contractarray = [contractarray; transpose(cellfun(@str2num, contractdata))]; %Converts data from strings to numbers 

            strikearray = [strikearray; transpose(cellfun(@str2num, strikedata) / 1000)]; 

  

            biddata(cellfun(@isempty, biddata)) = {'0'}; %Replaces empty strings with 0's 

            bidarray = [bidarray; transpose(cellfun(@str2num, biddata))]; 

            askdata(cellfun(@isempty, askdata)) = {'0'}; 

            askarray = [askarray; transpose(cellfun(@str2num, askdata))]; 

            volumedata(cellfun(@isempty, volumedata)) = {'0'}; 

            volumearray = [volumearray; transpose(cellfun(@str2num, volumedata))]; 

             

            [strikedata; biddata; askdata; volumedata; contractdata; datedata]; 

             

            break 

        catch %Error was thrown 

            if trynum == trys 

                disp(['Error Fetching Option Data for ' ticker ' Page ' page]) 

            end 

            continue 

        end 

    end 

end 

  

optiondata = [strikearray, bidarray, askarray, volumearray, contractarray, datearray]; %Compile option data into output variable 

  

end 
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Appendix B 

optionrow = input('Row Number of Portfolio to Simulate: '); 

numpers = input('Number of Periods to Simulate Per Asset: '); 

numsims = input('Number of Portfolio Simulations to Generate: '); 

simmeth = input('Portfolio Asset Simulation Method (Correlated Historical Return Based Simulation = 1, Risk-Neutral   

    Simulation = 2, Correlated Shock Simulation = 3): ');  

  

simulatedprices = []; 

if simmeth == 1 %Simulates asset returns using variances, covariances and mean returns from historical daily return data 

    varcovars = cov(allreturns(:,2:end)) * (252 / 365); %Converts trading day covars with calendar day covars 

    simulatedrets = portsim(((mean(allreturns(:,2:end)) + 1).^(252/365) - 1), varcovars, numpers, alloptiondata(optionrow, 6, 1) / 

        numpers, numsims, 'Expected'); 

elseif simmeth == 2 %Simulates neutral returns with user defined variances, zero covariances and mean returns = risk free rate 

    inputvols = input('Vector of Independent Asset Annual Volatilities: '); 

    varcovars = zeros(size(allprices, 2) - 1); %Creates matrix of zeros for varcovar matrix 

    varcovars(eye(size(varcovars)) ~= 0) = inputvols.^2 / 365; %Replaces diagonal of varcovar matrix with daily variances 

    simulatedrets = portsim(ones(1, size(allprices, 2) - 1) * (exp(rfr / 365) - 1) , varcovars, numpers, alloptiondata(optionrow, 6, 1)    

        / numpers, numsims, 'Expected'); 

elseif simmeth == 3 %Simulates correlated extreme market events 

    magnitude = input('Expected Magnitude Decimal Percentage of Market Shock: '); 

    varcovars = cov(allreturns(:,2:end)) * (252 / 365); %Converts trading day covars with calendar day covars 

    simulatedrets = portsim(((mean(allreturns(:,2:end)) + 1).^(252/365) - 1), varcovars, numpers, alloptiondata(optionrow, 6, 1) /  

        numpers, numsims, 'Expected'); 

    for sim = 1:numsims 

        shockreturn = randn(1)*1.2663*magnitude; %Shock return from the standard normal distribution scaled to magnitude 

        shockindex = randi([1 numpers],1,1); 

        simulatedrets(shockindex, :, sim) = simulatedrets(shockindex, :, sim) + shockreturn; 

    end 

end 

for sim = 1:numsims %Converts simulated returns to simulated prices 

    simulatedprices = cat(3, simulatedprices, ret2tick(simulatedrets(:, :, sim), todayprices(2:end))); 

end 

simulatedprices = [sum(simulatedprices, 2) / divisor, simulatedprices]; %Calculates index prices with component prices 

simulatedrets = [zeros(size(simulatedrets, 1), 1, size(simulatedrets, 3)), simulatedrets]; %Adds column of placeholder zeros 

for sim = 1:numsims 

    simulatedrets(:, 1, sim) = tick2ret(simulatedprices(:, 1, sim)); %Calculates simulated returns from index prices 

end 

squaredrets = simulatedrets.^2; %Squares all simulated returns 

simulatedvols = sqrt(mean(squaredrets, 1)) / sqrt((alloptiondata(optionrow, 6, 1) / 365) / size(simulatedrets, 1)); 
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Appendix C 

numplayedassets = input('Number of Largest Components to Pair With Index in Portfolio: '); 

hedgemeth = input('Option Hedging Method (Naked = 1, Delta With Historical Vols = 2, Delta With Implied Vols = 3, Delta  

    With Markowitz Implied Vol = 4): '); 

slippage = input('Average Slippage Per Option Contract After First: '); 

optimize = input('Optimize Order Sizing? (Yes = 1, No = 0): '); 

  

if optimize == 0  

    scaleup = input('Scalar to Upsize Dispersion Portfolio (1 For Least Slippage): '); %How many times to scale up portfolio 

elseif optimize == 1 

    scaleup = (1:20); %Range of order sizing scalars 

end 

  

if slippage == 0 %Avoids bug in calculating slippage 

    slippage = 0.0000000000001; 

end 

  

[~, sortpageindex] = sort(todayprices(2:end), 'descend'); %Creates list of indexes for largest components 

sortpageindex = [1, sortpageindex + 1]; %Adds ETF to list of traded asset indexes 

nameplayedassets = indexfile(sortpageindex(1:numplayedassets + 1)); %Tickers of assets on which options are traded 

numcontracts = zeros(1, length(indexfile)); %Number of contracts traded for each contract 

allassetprofits = zeros(1, length(indexfile), numsims); %Profits across all assets for each simulation 

allaverageprofits = []; %Average simulated portfolio profit for each portfolio sizing 

  

hedgevols = zeros(1, length(indexfile)); %Vols used to calculate delta for each option contract 

if hedgemeth == 2 %Historical vols 

    hedgevols = sqrt(var(allreturns) * 252); 

elseif hedgemeth == 3 %Implied vols 

    hedgevols = transpose(squeeze(alloptiondata(optionrow, 9, :))); 

elseif hedgemeth == 4 %Markowitz implied vol 

    hedgevols = ones(1, length(indexfile)) * alloptiondata(optionrow, 8, 1); 

end 

  

for scale = scaleup 

    numcontracts(1) = round((sum(todayprices(sortpageindex(2:numplayedassets + 1))) / sum(todayprices(2:end))) * divisor *  

        scale); %Number of contracts to trade for index option 

    numcontracts(sortpageindex(2:numplayedassets + 1)) = scale; %Number of contracts to trade for each component in index 

    if hedgemeth == 1 %Naked portfolio 

        for simindex = 1:size(simulatedprices, 3) %Each simulation 
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            for assetindex = sortpageindex(1:numplayedassets + 1) %Each played asset 

                if alloptiondata(optionrow, 5, assetindex) == 1 %Call option 

                    if sign(alloptiondata(optionrow, 10, assetindex)) == 1 %Long position 

                        allassetprofits(1, assetindex, simindex) = max(simulatedprices(end, assetindex, simindex) –  

            alloptiondata(optionrow, 1, assetindex), 0) * numcontracts(assetindex) - sum(alloptiondata(optionrow, 3,    

            assetindex) * [1:slippage:1 + slippage * (numcontracts(assetindex) - 1)]) * (1 + commission); 

                    else %Short position 

                        allassetprofits(1, assetindex, simindex) = sum(alloptiondata(optionrow, 2, assetindex) * [1 - slippage *  

            (numcontracts(assetindex) - 1):slippage:1]) * (1 - commission) - max(simulatedprices(end, assetindex,  

            simindex) - alloptiondata(optionrow, 1, assetindex), 0) * numcontracts(assetindex); 

                    end 

                else %Put option 

                    if sign(alloptiondata(optionrow, 10, assetindex)) == 1 %Long position 

                        allassetprofits(1, assetindex, simindex) = max(alloptiondata(optionrow, 1, assetindex) - simulatedprices(end,  

            assetindex, simindex), 0) * numcontracts(assetindex) - sum(alloptiondata(optionrow, 3, assetindex) *  

            [1:slippage:1 + slippage * (numcontracts(assetindex) - 1)]) * (1 + commission); 

                    else %Short position 

                        allassetprofits(1, assetindex, simindex) = sum(alloptiondata(optionrow, 2, assetindex) * [1 - slippage *  

                            (numcontracts(assetindex) - 1):slippage:1]) * (1 - commission) - max(alloptiondata(optionrow, 1, assetindex) –  

                            simulatedprices(end, assetindex, simindex), 0) * numcontracts(assetindex); 

                    end 

                end 

            end 

        end 

    else %Delta-hedged portfolio 

        for simindex = 1:size(simulatedprices, 3) %Each simulation 

            for assetindex = sortpageindex(1:numplayedassets + 1) %Each played asset 

                currenthedge = 0; 

                for timeindex = 1:size(simulatedprices, 1) %Each simulated time step  

                    if alloptiondata(optionrow, 5, assetindex) == 1 %Call option 

                        if sign(alloptiondata(optionrow, 10, assetindex)) == 1 %Long call 

                            if timeindex == size(simulatedprices, 1) %Final time period 

                                newhedge = 0; %Close hedge position 

                                allassetprofits(1, assetindex, simindex) = allassetprofits(1, assetindex, simindex) + (currenthedge –  

    newhedge) * simulatedprices(timeindex, assetindex, simindex) * (1 + commission) +  

    max(simulatedprices(end, assetindex, simindex) - alloptiondata(optionrow, 1, assetindex), 0) *  

    numcontracts(assetindex) - sum(alloptiondata(optionrow, 3, assetindex) * [1:slippage:1 + slippage *  

    (numcontracts(assetindex) - 1)]) * (1 + commission); 

                            else %Not final time period 

                                newhedge = - EuropeanOptionDelta(simulatedprices(timeindex, assetindex, simindex),  

                                    alloptiondata(optionrow, 1, assetindex), rfr, (alloptiondata(optionrow, 6, assetindex) - (timeindex - 1) *  

                                    (alloptiondata(optionrow, 6, assetindex) / numpers)) / 365, hedgevols(assetindex), alloptiondata(optionrow,  



 

40 

 

                                    5, assetindex), 0) * numcontracts(assetindex); 

                                if newhedge > currenthedge %Buying shares 

                                    allassetprofits(1, assetindex, simindex) = allassetprofits(1, assetindex, simindex) + (currenthedge –  

                                        newhedge) * simulatedprices(timeindex, assetindex, simindex) * (1 + commission); 

                                else %Selling shares 

                                    allassetprofits(1, assetindex, simindex) = allassetprofits(1, assetindex, simindex) + (currenthedge –  

                                        newhedge) * simulatedprices(timeindex, assetindex, simindex) * (1 - commission); 

                                end 

                                currenthedge = newhedge; 

                            end 

                        else %Short call 

                            if timeindex == size(simulatedprices, 1) %Final time period 

                                newhedge = 0; %Close hedge position 

                                allassetprofits(1, assetindex, simindex) = allassetprofits(1, assetindex, simindex) + (currenthedge –  

                                    newhedge) * simulatedprices(timeindex, assetindex, simindex) * (1 - commission) 

                                    + sum(alloptiondata(optionrow, 2, assetindex) * [1 - slippage * (numcontracts(assetindex) - 1):slippage:1])  

                                    * (1 - commission) - max(simulatedprices(end, assetindex, simindex) - alloptiondata(optionrow, 1,   

                                    assetindex), 0) * numcontracts(assetindex); 

                            else %Not final time period 

                                newhedge = EuropeanOptionDelta(simulatedprices(timeindex, assetindex, simindex),  

                                    alloptiondata(optionrow, 1, assetindex), rfr, (alloptiondata(optionrow, 6, assetindex) - (timeindex - 1) *  

                                    (alloptiondata(optionrow, 6, assetindex) / numpers)) / 365, hedgevols(assetindex), alloptiondata(optionrow,  

                                    5, assetindex), 0) * numcontracts(assetindex); 

                                if newhedge > currenthedge %Buying shares 

                                    allassetprofits(1, assetindex, simindex) = allassetprofits(1, assetindex, simindex) + (currenthedge –  

                                        newhedge) * simulatedprices(timeindex, assetindex, simindex) * (1 + commission); 

                                else %Selling shares 

                                    allassetprofits(1, assetindex, simindex) = allassetprofits(1, assetindex, simindex) + (currenthedge –  

                                        newhedge) * simulatedprices(timeindex, assetindex, simindex) * (1 - commission); 

                                end 

                                currenthedge = newhedge; 

                            end 

                        end 

                    else %Put option 

                        if sign(alloptiondata(optionrow, 10, assetindex)) == 1 %Long put 

                            if timeindex == size(simulatedprices, 1) %Final time period 

                                newhedge = 0; %Close hedge position 

                                allassetprofits(1, assetindex, simindex) = allassetprofits(1, assetindex, simindex) + (currenthedge –  

                                    newhedge) * simulatedprices(timeindex, assetindex, simindex) * (1 - commission) 

                                    + max(alloptiondata(optionrow, 1, assetindex) - simulatedprices(end, assetindex, simindex), 0) *  

                                    numcontracts(assetindex) - sum(alloptiondata(optionrow, 3, assetindex) * [1:slippage:1 + slippage *  

                                    (numcontracts(assetindex) - 1)]) * (1 + commission); 
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                            else %Not final time period 

                                newhedge = EuropeanOptionDelta(simulatedprices(timeindex, assetindex, simindex),  

                                    alloptiondata(optionrow, 1, assetindex), rfr, (alloptiondata(optionrow, 6, assetindex) - (timeindex - 1) *  

                                    (alloptiondata(optionrow, 6, assetindex) / numpers)) / 365, hedgevols(assetindex), alloptiondata(optionrow,  

                                    5, assetindex), 0) * numcontracts(assetindex); 

                                if newhedge > currenthedge %Buying shares 

                                    allassetprofits(1, assetindex, simindex) = allassetprofits(1, assetindex, simindex) + (currenthedge –  

                                        newhedge) * simulatedprices(timeindex, assetindex, simindex) * (1 + commission); 

                                else %Selling shares 

                                    allassetprofits(1, assetindex, simindex) = allassetprofits(1, assetindex, simindex) + (currenthedge –  

                                        newhedge) * simulatedprices(timeindex, assetindex, simindex) * (1 - commission); 

                                end 

                                currenthedge = newhedge; 

                            end 

                        else %Short put 

                            if timeindex == size(simulatedprices, 1) %Final time period 

                                newhedge = 0; %Close hedge position 

                                allassetprofits(1, assetindex, simindex) = allassetprofits(1, assetindex, simindex) + (currenthedge –  

                                    newhedge) * simulatedprices(timeindex, assetindex, simindex) * (1 + commission) 

                                    + sum(alloptiondata(optionrow, 2, assetindex) * [1 - slippage * (numcontracts(assetindex) - 1):slippage:1])  

                                    * (1 - commission) - max(alloptiondata(optionrow, 1, assetindex) - simulatedprices(end, assetindex,  

                                    simindex), 0) * numcontracts(assetindex); 

                            else %Not final time period 

                                newhedge = - EuropeanOptionDelta(simulatedprices(timeindex, assetindex, simindex),  

                                    alloptiondata(optionrow, 1, assetindex), rfr, (alloptiondata(optionrow, 6, assetindex) - (timeindex - 1) *  

                                    (alloptiondata(optionrow, 6, assetindex) / numpers)) / 365, hedgevols(assetindex), alloptiondata(optionrow,  

                                    5, assetindex), 0) * numcontracts(assetindex); 

                                if newhedge > currenthedge %Buying shares 

                                    allassetprofits(1, assetindex, simindex) = allassetprofits(1, assetindex, simindex) + (currenthedge –  

                                        newhedge) * simulatedprices(timeindex, assetindex, simindex) * (1 + commission); 

                                else %Selling shares 

                                    allassetprofits(1, assetindex, simindex) = allassetprofits(1, assetindex, simindex) + (currenthedge –  

                                        newhedge) * simulatedprices(timeindex, assetindex, simindex) * (1 - commission); 

                                end 

                                currenthedge = newhedge; 

                            end 

                        end 

                    end 

                end 

            end 

        end 

    end 
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    allassetprofits = allassetprofits * 100; %Multiply profits by 100 to reflect contract sizing 

    if optimize == 0 

        results = {'Average Portfolio Profit: ', mean(sum(allassetprofits, 2)); 

        'Volatility of Portfolio Profit: ', std(sum(allassetprofits, 2)); 

        '% of Simulations Resulting in Loss:', length(find(sign(sum(allassetprofits, 2)) == -1)) / numsims; 

        'Expected Shortfall:', mean(sum(allassetprofits(1, :, find(sign(sum(allassetprofits, 2)) == -1))))} 

    elseif optimize == 1 

        allaverageprofits = [allaverageprofits, mean(sum(allassetprofits, 2))]; 

    end 

  

end 

 

 

 


