

1

A Language for Large-Scale Collaboration in
Economics: A Streamlined Computational

Representation of Financial Models

March 3rd 2017; revised September 10th 2018

Jorge M. Faleiro Jr. #1

Centre of Computational Finance and Economic Agents, University of Essex

Wivenhoe Park, Colchester, CO4 3SQ, UK
1 jfalei@essex.ac.uk j@falei.ro

Abstract1— This paper introduces Sigma, a domain-specific

computational representation for collaboration in large-scale for
the field of economics.

A computational representation is not a programming
language or a software platform. A computational representation
is a domain-specific representation system based on three
specific elements: facets, contributions, and constraints of data.
Facets are definable aspects that make up a subject or an object.
Contributions are shareable and formal evidence, carrying
specific properties, and produced as a result of a crowd-based
scientific investigation. Constraints of data are restrictions
defining domain-specific rules of association between entities and
relationships.

A computational representation serves as a layer of
abstraction that is required in order to define domain-specific
concepts in computers, in a way these concepts can be shared in
a crowd for the purposes of a controlled scientific investigation in
large-scale by crowds.

Facets, contributions, and constraints of data are defined for
any domain of knowledge by the application of a generic set of
inputs, procedural steps, and products called a representational
process.

The application of this generic process to our domain of
knowledge, the field of economics, produces Sigma. Sigma is
described in this paper in terms of its three elements: facets
(streaming, reactives, distribution, and simulation),
contributions (financial models, processors, and endpoints), and
constraints of data (configuration, execution, and simulation
meta-model).

Each element of the generic representational process and the
Sigma computational representation is described and formalized
in details.

I. BACKGROUND

Languages are more than a vehicle for communication.
They are often one’s windows to reality. A language shapes
how a person thinks, what can be achieved, and how can be
achieved. Some languages often come from and facilitate the
representation of concepts in a specific domain of knowledge,
and if used outside of that specific domain, could make the
representation of those same concepts more obscure. A person
might, for example, use the German language for philosophy,

1 Large portions of this paper are reproduced as part of [6]

or French for poetry. Using them the other way around might
make a person write more, or being forcibly more verbose, or
even lose clarity. In extreme cases using the wrong language
for a domain of knowledge can impede the expression of the
exact ideas one might intend.

Language defines reality [1] [2]. Human observations that
lead to the scientific inquiry, and drive our process of
discovery are shaped by our method of questioning, and
limited by the language we possess [3]2.

This paper explores literature and evidence showing that
this is not only the case with natural languages but also with a
layer of abstraction that is required to define domain-specific
concepts in computers, in a way that these concepts can be
shared in a crowd. We are calling this conceptual abstraction a
computational representation.

By definition, a computational representation is a
representation system based on three specific elements: facets,
contributions, and constraints of data. A computational
representation serves as a layer of abstraction that is required
in order to define domain-specific concepts in computers, in a
way these concepts can be shared in a crowd for the purposes
of a controlled investigation in large-scale by crowds [4] [5]
[6].

According to the theory of enablers, a computational
representation is a non-cognitive enabler of crowd-based
scientific investigation [6]. Non-cognitive enablers relate to
features that can be directly and purely mapped to a
computational description. Cognitive enablers, on the other
hand, relate to non-computational features associated with the
subjective mechanisms of human understanding of what to
consider knowledge and the underlying fabrics of large-scale
collaboration. Cognitive enablers are not domain specific, and
as a consequence should be the same regardless of the domain
of knowledge under consideration [6].

2 “We have to remember that what we observe is not nature itself but nature
exposed to our method of questioning. Our scientific work (…) consists in
asking questions about nature in the language that we possess and trying to
get an answer from experiments by the means that are at our disposal” –
Werner Heisenberg [3]

2

Similarly to natural languages, a computational
representation grows from the needs of a specialized domain,
and therefore is better suited for use cases relevant to that
specific domain. In some domains of knowledge, like
architectural sciences, one would be more concerned about
spaces, shapes, volumes or colors, and their relationships with
a three-dimensional environment and the effect of the
interaction of those concepts with humans. In legal sciences,
one would be more concerned about possible associations
between real-world entities, and rules defining their behavior
and constraints for interaction. In some other domains, like
bioinformatics, the ability to represent interconnected shapes
and strings could be more relevant. In biophysics, it is
essential to keep track of genotypical and phenotypical traits,
and their relationships with encoded protein sequences with a
vast number of possible combinations. In economics, our
subject of concern, a researcher would be more interested in
the way changes in quantitative measurements, over a time
series, would affect the valuation.

A computational representation must mimic the inherently
free flow of thoughts of the human mind and the speed of
modern vehicles of collaboration, and therefore, by similarity,
a computational representation must be fluid. In contradiction,
computational artifacts, like programming languages and
databases, are born out of strictly technical aspects of a
problem and bred outside of concerns relevant to specific
domains of knowledge. Only after definition, they are
forcedly introduced for use and therefore not able to follow
the free-flow of the evolution of ideas. Computational
artifacts remain frozen to domain-specific requirements of
that specific point in time when the introduction occurred.
When requirements on that domain evolve to follow the
increasing complexity of the problems at hand, those artifacts
would no longer fit, or in a best case require an additional
verbosity, sacrificing the proper semantics of communication.

In opposition to computational artifacts, a computational
representation must be dynamic, able to adapt and evolve to
solve new classes of problems and organize increasingly
complex and powerful computing environments. These new
classes of problems are different from the problems we had to
deal with just a few years back [5]. They require the
collaboration of multi-disciplinary specialists exchanging
different types of artifacts that must be adequately described
and tracked [5] [7]. An investigator must have adequate tools
and methods to approach new problems correctly. On this
sense, an adequate computational representation allows for the
proper description and control of those tools and methods,
allowing them to change in the face of new demands and be
able to address new problems [8].

Unfortunately, the status quo in exploratory research in
general, and in economics in particular, defines a different
reality. The lack of adequate representation and an abundance
of computational power allow, and unintentionally require, a
potentially obfuscated representation of ways to transform and
store data, yielding massive amounts of convoluted and
dissociated information. This paradoxical condition
entangling modern investigative procedures define a vicious
circle. Uncontrolled methods require more computing power,
which enables to transform more data, which as a
consequence bring an incentive for uncontrolled models and

increasing amounts of untraceable data. These, in turn, require
more opaque techniques and computing resources to trace and
decipher that data, the “informatics crisis” [5] [9]. This paper
proposes a computational representation for the field of
economics to allow breaking this never-ending feedback cycle.
We are naming this computational representation Sigma3.

The way in which an investigator describes to an
increasingly complex machine a method to resolve a problem
plays a fundamental role in communication and collaboration,
and as a consequence in the traceability of the process of
investigation and discovery. The amount of data generated in
modern investigative procedures as input and output cannot be
represented to humans the same way as they are to computers
[10]. To make research truly useful, we need human-friendly
ways to visualize, track, store and understand the evidence. In
addition to representing evidence, communicating methods
and procedures must be regarded as of greater importance
than explanatory texts and figures as experimental outputs [11]
[12]. Representation of the methods by which we represent
procedures of investigation cannot be addressed differently
than other items that require human visualization and
interpretation.

Given the intrinsic association of a computational
representation to a domain of knowledge, it would be natural
to expect that a computational representation could be derived
from a domain of knowledge, given a set of well-defined
inputs and general procedures. We are calling this
organization of inputs and general procedures to produce a
computational representation a representational process.

II. A GENERIC METHOD TO PRODUCE COMPUTATIONAL
REPRESENTATIONS: THE REPRESENTATIONAL PROCESS

The outline of a representational process to define a
computational representation for any domain of knowledge is
described in Figure 1.

The outline defined in Figure 1 shows a set of two inputs
and four distinct steps that are necessary to generate a
computational representation composed of facets,
contributions, and constraints of data. Arrows define the flow
of data, and not control. As a consequence, arrows define
dependencies for the execution of a given step.

The two inputs for a representational process, represented
on the top of the diagram, are the entry points for the
representational process. The inputs are a set of domain-
specific cases of use and a computational taxonomy.

Domain-specific cases of use are a collection of exercises
reflecting specific characteristics of concern in that domain of
knowledge. The selection of cases of use should represent an
overreaching and diverse sample of the main activities
relevant to that domain of knowledge. Each case of use
defines the domain-specific knowledge necessary for that
specific scenario to be understood and executed.

3 The name comes from the usual reference to summation in mathematics,
from which we borrow a connotation of aggregation, or collaboration. Sigma
is a computational representation to define exchangeable financial models, for
the specific purpose of communication for participants in large scale for
economics.

3

Figure 1. Representational Process

An outline of a generic process to define a computational representation for
any domain of knowledge on four steps and two inputs: a list of exercises, or
domain-specific cases of use, and a computational taxonomy.

A computational taxonomy is an inventory of computer
technologies available and relevant for the implementation of
cases of use at that moment in time. Examples of items in a
computational taxonomy are technologies to store, retrieve,
analyze, and visualize data and computational methods. A
computational taxonomy is fluid, in a sense that the exact
definition of what is relevant is affected by qualities of the
individual using this process, such as experience, and personal
biases. A discussion on the non-deterministic nature of the
process, concerning a computational taxonomy, is given in
Section III.

The four distinct steps of the representational process
defined in Figure 1 are shown in individual solid boxes:
outline requirements, define aspects of representation, define
contribution taxonomy, and define structural constraints of
data. Incoming arrows in each box define dependencies, and
outgoing arrows define products, or results, of the execution
of that specific step.

 The first step outlines requirements that are relevant for
the definition of a computational representation for a domain
of knowledge. The outline of requirements is produced from a
list of domain-specific cases of use, defined based on
relevancy. Relevancy is given by, as we have mentioned
before, the assumption that the set of cases of use is
representative enough for most of the scenarios of
investigation in that domain of knowledge. If the assumption
is valid, we can infer as a consequence that any investigation
exercise on that domain should depend, at least in a
substantial part, with a combination of one or more of those
requirements. For reasons of completeness, a proper
computational representation for that domain of knowledge
must address all these requirements. As a result, by definition,
what we call a proper computational representation for a
domain of knowledge should intend to represent all cases of
use in the scope defined by the original list of cases of use4.

4 An example of an execution of the outline requirements step is given in the
upcoming Section IV when we define requirements for a computational
representation for the field of economics.

The second step definesf aspects of representation based on
the computational taxonomy and the domain-specific
requirements produced as a result of the first step. The result
of the second step is the set of facets of a computational
representation. An example of an execution of the step to
define aspects of representation is given in the upcoming
Section V when we describe facets and the process of their
definition for a computational representation in economics.

The third step defines a contribution taxonomy based on
facets produced as a result of the second step. The results of
the third step are contributions of a computational
representation. An example of the step to define contributions
is given in the upcoming Section VI when we describe
contributions and the process of their definition for a
computational representation in economics.

The fourth step defines structural constraints of data based
on facets and contributions produced as the result of the
second and third step. The results of the fourth step are
constraints of data, or meta-model, of a computational
representation. An example of the step to define contributions
is given in the upcoming Section VII when we describe
constraints of data and the process of their definition for a
computational representation in economics.

The final result of a representational process, as shown in
Figure 1 by a larger solid box on the right side, is a
computational representation given by facets produced in step
two, contributions produced in step three, and constraints of
data produced in step four. Each of the elements is depicted in
Figure 1 as smaller boxes inside the computational
representation. Facets, contributions, and constraints of data
are detailed over the upcoming sections.

A. Facets

A facet, in the context of this research, is defined as “one of
the definable aspects that make up a subject or an object;
denomination of things that are similar or related, but yet
distinct things” [13].

A more intuitive definition of what exactly is a facet is
done by example and would come from a domain in which
concepts are more tangible and organoleptic than in
economics. Intuitiveness, as it is always the case, is achieved
by representing concepts that are keen to one or more of
traditional human senses.

Taking the domain of architecture, or civil engineering
sciences, for example. The representation of ideas is done
through the placement of volumetric shapes considering
restrictions like light, gravity, and the mutually exclusive
placement of objects in space. One example of a typical
representation of that domain is shown in Figure 2.

Three-dimensional shapes, textures, colors, and
measurements can be combined to define concepts like pieces
of furniture, rooms, ambiance, and then extended to derive in
computers notions that can only be asserted at naked eye,
anticipating the effect of the interaction of these concepts with
individuals.

These primary, fundamental elements that can be combined
to generate core concepts on the domain of knowledge are
called facets.

Outline	
Requirements	

Define	Aspects	of	
Representation	

Domain-specific	
cases	of	use	

Computational		
taxonomy	

Computational	
Representation	

Define	
Contribution	
Taxonomy	

Define	Structural	
Constraints	of	

Data	

Constraints	of	
Data		

(Meta-Model)	

Contributions	

Facets	

4

Figure 2. Example of Facets in a Domain of Knowledge

Aspects like volumetric shapes and specific coordinates in a 3D environment
(facets) are used to describe a layout relevant to a specific domain of
knowledge (architecture)

In this example shapes, texture, colors, and measurements
are facets, representable in computers, which make up a
subject or an object relevant to that specific domain of
knowledge: architecture.

At this point, it is important to emphasize one of the core
assumptions of this research: the exact definition of what
constitutes a facet in a specific domain of knowledge is
empirical. In some cases, e.g., our example related to
architectural sciences, the proximity to visual and spatial
concepts makes the establishment of what is indeed a facet -
shapes, textures, color, and measurements - somewhat
intuitive, and as a consequence more natural to derive5.

B. Contributions

In the scope of this research, we call contributions the set
of shareable and formal evidence 6 of an objective
investigation. As shareable evidence they can be exchanged,
reused and traced through something called a record of
provenance 7 , therefore becoming a vehicle for effective
collaboration.

To be qualified as contributions in a crowd-based
investigation scenario, any evidence has to carry specific traits:
evidential properties, intrinsicality, and characteristics of
communication and interaction.

B.1. Evidential Properties
To be defined, shared, reused and traced contributions must

carry particular mandatory traits we call evidential properties:
classification, identification, a record of provenance, and
ownership and security [7].

• Classification: Contributions must follow a
classification system of shareable entities, specific to
the domain of knowledge under consideration, and
referred to as taxonomy of contributions. This

5 For the domain of knowledge of concern for this research, the selection of
facets for a computational representation for the field of economics and their
formalization is given in Section V.
6 The available body of facts or information indicating whether a belief or
proposition is true or valid [83]
7 Chronology of the ownership, custody or location of historical entities [13]

classification system is an organization of shareable
artifacts, organized based on relevant features8.

• Identification: Contributions should be appropriately
identified following common standards for shared
identification in a way to allow reference, sharing, and
ownership [14].

• Provenance: Contributions should carry a record of the
chronology of ownership, custody or location of
contributions, as well as the history of associations of
contributions to entities or participants. We call this
chronological description of custody and location a
record of provenance.

• Ownership and security: Given the sensitive nature of
contributions, contributions should ensure ownership
and access only after proper authorization and
authentication. For that reason, contributions must carry
a record of ownership and authorization.

B.2. Intrinsicality
Contribution properties are defined as either intrinsic or

extrinsic. Intrinsic properties of contributions 9 are not
explicitly described in the representation and are enforced by
an implementation of the computational platform. They can
be assumed to be in place based on physical aspects of the
contribution, regardless of specific indications on the
representation. On the other hand, extrinsic properties are
explicitly represented.

For example, ownership of each revision or improvement
in a contribution occurs without an explicit description in a
representation. As a consequence tracking the ownership of
contributions occurs by the natural exchange of artifacts that
are inherently traceable. In that way artifacts are traced when
they are produced and utilized, making the record or
provenance transparent [7]

B.3. Characteristics of Communication and Interaction
Contributions must carry characteristics to allow

collaboration to take place. Collaboration is a direct result of
how well contributions foster communication and interaction.
A contribution must support three characteristics of
communication and interaction to support large-scale
collaboration: analytical description, granularity, and
simplicity.

• Analytical description: Problems must be proposed in
a way that allows for an analytical description,
following a top-to-bottom structure. Splitting the
description of problems into sub-tasks allows micro-
expertise to be harnessed more directly and
contributions to be naturally generated and associated
with solutions.

• Granularity: A computational representation should
encourage short, small contributions. Small
contributions would make simpler and more

8 The classification of contributions for the domain of economics is depicted
in Figure 15.
9 Intrinsic elements of a representation are elements enforced by an
implementation of the representation. An intrinsic element can be assumed to
be in place regardless of any specific expressions on the representation itself.

5

straightforward for experts to review incoming
collaboration and assess if they are relevant to their
investigation.

• Simplicity: Representation of contributions should be
simple and straightforward. A streamlined
representation would make it easier to refer to
foundational knowledge, as well as making it easier for
participants to communicate and describe contributions.

These properties of analytical description, granularity and
simplicity allow input and results from one experiment to be
seamlessly utilized by other experiments, easing extensions on
models and data to fit additional scenarios by short and
specialized description.

 The contribution taxonomy for the field of economics,
listing the relevant properties for that specific domain of
knowledge, is defined in Section VI.

C. Constraints of Data

Most domains express real entities and relationships using
structural constraints of data. Those constraints define rules of
associations that establish what is feasible in that domain, in
the real world.

These rules of associations define structural constraints of
data in place for a specific domain of knowledge. Those
structural constraints use an abstract layer of data to define
restrictions on a separate layer of abstractions, based
themselves on data, hence the term meta-data10. The set of
structural constraints in a specific domain of knowledge is
called meta-model.

Depending on the complexity of the domain of knowledge,
and what should be represented, meta-data in a specific
domain can follow a classification. A specific meta-model for
the field of economics is described in Section VII.

III. DISCUSSION ON ASSUMPTIONS AND CONSEQUENCES
OF KNOWLEDGE REPRESENTATION THROUGH MODELS

The conceptual layout of a computational representation is,
in essence, a proposal to represent knowledge in a given
specialized field through abstractions commonly called
models.

The representation of knowledge through models is not
something new. There is a long history of academic work
attempting similar tasks in a variety of domains [15] [16].
However, most works concentrate on a comparative analysis,
evaluating properties of specific representations against others.

Alternatively, this research assumes a role-based definition
of knowledge representation. In a role-based definition, a
description of a knowledge system is defined in terms of five
core roles a specific representation plays [17] [7].

• Models are surrogates: a surrogate is by definition a
substitute for the target idea itself, and as a result, a
measurement of how far or how close this surrogate is

10 Data that provides information about other data [13]

from calculations it intends to represent is secondary or
irrelevant.

• Models define human expressions: models should
define measurements and concepts understood by
humans in a language that is adequate for human
consumption, even if not directly natural.

• Models are a medium for efficient computation:
models are a medium for pragmatic efficient
computation, or in other words, models should be able
to be replicated in computers given appropriate
technology and sufficient resources.

• Models establish ontological commitments: models
define ontological commitments for a representation by
defining “a set of decisions about how and what to see
in the world” [18] [19]. Models are approximations of
reality, and as we define them, we make decisions of
what to consider and what to ignore. These decisions
are ontological commitments and are “not an incidental
side effect but they are of essence in our representation”
[17].

• Models define a theory of intelligent reasoning:
Models define a “fragmentary theory of intelligent
reasoning” represented in terms of concepts and
inferences, sanctioned and recommended. Models
represent “some insight indicating how people reason
intelligently” about a problem or investigation [17].

The use of a role-based definition and these core roles
bring important consequences when defining a computational
representation for any domain of knowledge:

The first and most important consequence is that
computational representations are non-discriminatory. In other
words, computational representations should not be measured
by how efficiently they represent a target idea, and therefore
should not be compared to one another. Computational
representations are abstract surrogates for a target idea, and as
such, they are just a set of decisions of what to see in a subject,
and therefore bound to limitations and biases of an observer.

Second, a computational representation and associated
models are fluid and not final. To put differently,
computational representations are not set in stone and are
expected to change whenever noticeable changes in
technology bring new methods and tools, or a new case of use
becomes relevant for that specific domain of knowledge.

These assumptions and consequences are critical when
assessing and understanding features and limitations of any
computational representation defined from the
representational process defined in Section II. These same
assumptions and consequences should be expected in any
representation, and more importantly, in the case of this
research, in a computational representation for the field of
economics.

IV. DOMAIN-SPECIFIC REQUIREMENTS FOR ECONOMICS

A computational representation, as defined previously in
Section I, is a representation system based on facets,
contributions, and constraints of data and used to define

6

concepts related to a specific domain of knowledge, in a way
these concepts can be shared with a crowd to allow controlled
investigation in large-scale.

A computational representation can be defined for any
domain of knowledge by following the steps of the
representational process defined in Section II. According to
the representational process, a computational representation
can be generated for any domain of knowledge given a set of
domain-specific requirements and a computational taxonomy.
The set of domain-specific requirements for the field of
economics is defined over the following Section IV, and the
computational taxonomy is presented as we describe each
facet.

As explained in Section II, a computational representation
is built based on a set of domain-specific requirements
selected by careful examination of specific features of a
number of domain-specific cases of use.

Each case of use defines the knowledge necessary for that
specific scenario to be understood and executed. For the
definition of domain-specific requirements that will be used
for the definition of a computational representation for
economics, each case of use is a separate empirical exercise:

• Assessing the performance of momentum cross-over
strategies using Monte Carlo simulations and historical
backtesting [8]

• Simulation of the performance of real-time strategies
through backtesting [20]

• Profitability of different moving average cross-over
strategies [21]

• Real-time valuation of an equities portfolio [22]

• Assessment of profitability of strategies holding long
positions on fixed-length intervals [23].

• Agent-based simulation of a central limit order book
[24] [25] [26] [27] [28] [29]

Some of these exercises are extensive and relate to novelty
research subjects. Each one of those exercises expresses
specific behaviors, later translated to an outline of features for
proper representation of financial models, and as a
consequence, requirements for a computational representation
for the domain of economics. With that, the requirements for a
computational representation for the field of economics as
listed as follows:

• Simplicity of communication: a financial model is
seldom defined and interpreted by one single group of
users. The notation for its description should be simple
enough to allow communication across a diverse
community of users;

• Predictability: financial models are often defined with
the intent of anticipating behavior or critical events;

• Complexity of the domain of knowledge: financial
sciences deal with subjects that are inheritably complex
and challenging to model;

• Large volume of data: virtually infinite history
associated to a record of time: The record of the

memory of financial models is associated with either
datasets or streams of data that are virtually infinite.

• Sliding window computations: a sequence of
fragments of data has to be evaluated so that adjacent
members in the sequence, fitting a constant sliding time
window, are relevant for the computation of a result11.

• Low latency: responsiveness in near real-time. Given
an event, or stimuli, some cases of use most respond as
quickly as possible to avoid penalizing accuracy of
measurements and profitability of the model itself;

• Event-driven: actions respond to events, originating
from external and unpredictable sources;

• Time-based: tightly coupled with notions of value
variations (e.g., prices, ratios) over discrete time series;

• Graph-oriented: financial models strongly rely on
real-world entities and their ad-hoc relationships.
Entities are associated with nodes and relationships to
edges in graph-oriented representations. The sequence
of transformations and steps to operate on real-world
entities, either sequentially or not, is also graph oriented

We assume that the set of use cases is representative
enough for most of the scenarios of investigation in
economics. If the assumption is valid, we can infer as a
consequence that any financial model should depend, at least
in a substantial part, with a combination of one or more of
those requirements. For reasons of completeness, a proper
computational representation for the field of economics must
address all these requirements. In this sense, by definition, a
proper computational representational should intend to
represent all cases of use in the scope of economics.

V. FACETS

The example provided previously in page 3, when we were
introducing facets, shows that ideas and concepts in
architectural and building sciences are tangible enough to
allow for an almost immediate definition of facets relevant for
that domain of knowledge. The proximity of ideas on
architectural and building sciences to human senses make the
definition of facets more intuitive.

Unfortunately, the definition of ideas and concepts in
financial sciences is mostly non-spatial, and as a consequence,
the designation of facets in our specific case not as intuitive.
In financial sciences, a researcher would be more interested,
for example, in the way changes in quantitative measurements,
over discrete time, would affect the price. These are abstract
concepts, and as a consequence, it is hard to describe them
through concrete, tangible similarities.

According to the representational process defined in
Section II facets are defined based on two inputs: intrinsic
requirements of a domain of knowledge and a computational
taxonomy. The requirements for a computational

11 Examples are a sequence of prices, in which a specific algorithm tracks
features of price variations over different time windows, e.g., during the last
hour, a day, a week. Different windows can be compared with adjacent or
non-adjacent windows for identification of useful patterns.

7

representation for economics were previously defined in
Section IV. A computational taxonomy, as previously defined
in Section II.A, is an inventory of computer technologies
available and relevant for the implementation of domain-
specific cases. The specific computational taxonomy in use is
explored during the definition of each facet when we examine
technology alternatives.

Over the next sections, we detail the exercise to find out the
relevant set of facets for our domain of knowledge: economics.
For that, we formalize the four facets required for the
definition of aspects that make up subjects and ideas in the
field of economics: streaming, reactives, distribution, and
simulation.

A. Streaming

The original idea of streams, put merely, starts with a
vision of a graph in which nodes are processors and edges are
communication paths. Each node holds incoming and
outgoing communication paths to other nodes in the graph.
The basic idea of streaming relates to continuous sequences of
data fragments traveling over communication paths, in which
each node executes specific tasks upon arrival of fragments of
data.

Streams are traditionally used in domains where
concurrency and speed of processing is a core requirement.
Some of those domains include micro-hardware control,
image processing, graphics, sound processing, compression,
networking, encryption, and digital signal filtering [30] [31].
Given similar requirements around performance, time series,
sliding time windows computations, and the graph-oriented
nature of financial models, listed previously in Section IV,
streaming is selected as the first facet in a computational
representation for the field of economics.

A.1. Models of Computation
Streams have been used as a notation for representation of

computational elements in domains of knowledge outside of
economics for a long time [32]. The first reference to an
equivalent paradigm was on bullet notes given by Douglas
McIlroy [33] on October 11th of 1964.

Figure 3. The First Reference to Streams

A bullet summary by Douglas McIlroy on “what’s most important”,
suggesting a function to “have some ways of coupling programs like garden
hoses”, what was referred by subsequent literature as streams

The original insight of “digital hoses”, coined by Douglas
McIlroy [33] evolved through different milestones to
consolidate the idea of streaming systems [32] [31] [34].
Each milestone of the evolution of what were initially digital
hoses refers to a specific model of computation, as shown in
Figure 4.

Figure 4. Timeline of Evolution: Models of Computation

Over time the original idea of “digital hoses” evolved on variations called
“models of computation” from Petri Nets, Computation Graphs,
Communicating Sequential Processes, and Synchronous Dataflow.

Each of these milestones, or models of computation,
present different features and define a computational
taxonomy of streaming systems [31]:

• Petri Nets12: a directed bipartite graph, where nodes
either represent transitions or conditions. A directed
edge specify which pre or post conditions are a
requirement for a transition [35] [36] [37] [38];

• Computation Graphs: a graph-theoretic model for the
description and analysis of parallel computations where
computation steps correspond to nodes of a graph,
while branches represent a dependency between
computation-steps. Each branch is associated with
independent queues of data [39];

• Kahn Process Networks: a distributed model of
computation where deterministic sequential processes
are nodes, and FIFO channels are the edges of a graph
network [40];

• Actors: a graph-based model of concurrent
computation in which nodes are actors, and upon
receipt of messages an actor can send new messages or
create new actors. In this sense, edges can be created on
demand and indicate a communication by message-
passing [41] [42] [43] [44] ;

• Communicating Sequential Processes: a textual and
formal language for describing concurrent interaction

12 Despite of Petri’s original thesis of 1962 [35] the formalization of Petri
Nets as they are currently known only came a bit later, in a 1965 colloquium
[36], published in 1967 [37].

1964:	McIlroy	
“digital	hoses”	

1965:	Petri	Nets	

1966:	
Computa?on	

Graphs	

1973:	Actors	

1978:	
Communica?ng	

Sequen?al	
Processes	

1987:	
Synchronous	
Dataflow	

8

based on primitive processes and events. Primitive
processes are fundamental behaviors, and events
represent indivisible and instantaneous interactions [45]
[46];

• Synchronous Dataflow: a particular case of data flow
in which each node represents a function, and each arc
represents a signal path. It is a simplification of Kahn
Process Network by limiting the number of messages
each node consume and produce per signal [47].

Despite lacking a standard nomenclature, topology, or
modes of communication, all models of computation of
streaming systems can be represented on a higher level by
nodes and edges, arranged as graphs. In fact, the specific
features of the models of computation can be normalized over
three specific features [32] [31] [34]: topology, determinism,
and dynamicity.

• Topology: defines the way in which nodes are arranged
in a network;

• Determinism: establishes if the final results of
execution are always the same, given the same set of
inputs;

• Dynamicity: establishes if execution parameters (i.e.,
amount of buffering and communication patterns) can
be decided and arranged statically and dynamically (i.e.,
at compilation time or runtime) [30] [34] [31] [48]

The streaming facet translates these normalized features of
models of computation – topology, determinism, and
dynamicity – into three specific properties of financial models:
synchronicity, connectivity, and plasticity. These properties
are explained over the next topic when we explain the
mechanics to define financial models using streams.

A.2. Defining Financial Models as Streams
The streaming facet defines a graph-oriented domain-

specific language [49] [50] to define financial models as a
route of fragments of meta-data 𝑥 through a chain of reusable
and exchangeable processors 𝑃!. The chain of processors 𝑃! is
arranged as a function composition, as described in Equation
1 [51] [52] [53].

(𝑃! 𝜊 𝑃! 𝜊… 𝜊 𝑃!)(𝑥) Equation 1. Function
Composition

In the specific representation for the domain of economics,
processors are chained together by a synchronicity operator 𝛿
giving a composition of processors the form shown in
Equation 2.

𝑥 → 𝑃! 𝛿! 𝑃! 𝛿!… 𝛿!!! 𝑃!
Equation 2.

Composition by
Synchronicity

Operator

We call this chain of processors 𝑃!… 𝑃! connected by 𝛿 a
stream. Equation 3 gives an equivalent graph representation,
based on edges and vertices, of the same stream.

𝜙 = (𝑃! , 𝛿!) Equation 3. Graph-
Oriented Representation

of a Stream

In Equation 3, 𝜙 is a directed sub-graph 𝜙(𝑉,𝐸) in which
𝑉, the set of vertices 𝑃!, are processors, and E, the set of edges
𝛿! , are synchronicity operators. The same graph 𝜙 can be
visualized as a connected directional graph, as shown in
Figure 5.

Figure 5. Streams as a directed graph

A stream can be visualized as a connected graph 𝜙(𝑉,𝐸), in which edges are
given by synchronicity operators ð𝒊 and vertices, or nodes, by processors 𝑷𝒊

We assume that a financial model, to be defined in terms of
requirements listed in Section IV, must carry three
fundamental properties:

• Synchronicity: financial models must operate on data
fragments 𝑥 synchronously or asynchronously, where 𝑥
is defined in Equation 1;

• Connectivity: financial models are created by the
composition of smaller, modular pieces that can often
be recursively leveraged as smaller, reusable models;

• Plasticity: the composition and the behavior of a
financial model can change, in real-time, upon arrival
of new data fragments 𝑥, as defined in Equation 1.

Each of these three fundamental properties – synchronicity,
connectivity, and plasticity - is formalized as stream elements,
or interchangeably 13 as graph properties. Over the next
sections, we formalize the representation of financial models
over a stream-oriented language based on these three
fundamental properties.

A.2.1. Synchronicity

In a stream 𝜙, as described in Equation 3, processors 𝑃!
spawn tasks 𝑡!,! in pools of tasks 𝑇! to handle data fragments 𝑥
as they arrive. Each pool holds a variable number of tasks 𝑠,
where the exact value of 𝑠, is irrelevant and associated with
scheduling configuration details.

The synchronicity operator 𝛿! indicates how a fragment 𝑥 is
“handed over” from tasks in pools 𝑇! in processors 𝑃!, to 𝑃!!!,
where each 𝛿! can indicate two distinct modes: synchronous
and asynchronous.

13 As we have shown in Section V.A.1 (through the different models of
computation of streams) graph or stream representations are functionally
interchangeable [32] [31] [34].

P1	 P1	 (…)	 Pn	
δ1	 δ2	 δ(n-1)	

x	

9

In synchronous mode, 𝑇! depends on the completion of 𝑇!!!,
and therefore 𝑇! can only proceed, and consume the next
fragment 𝑥, after termination of task 𝑇!!!.

Alternatively, in asynchronous mode, 𝑇! does not depend
on the completion of 𝑇!!!, and therefore 𝑇! can consume the
next fragment 𝑥 regardless of the result and termination of
𝑇!!!.

A.2.2. Connectivity

Financial models are represented as directed graphs
composed of a limited set of directed sub-graphs 𝜙 , as
described in Equation 3, bound together by connectors. For all
purposes, a connector 𝐶 is a specialization type of processor 𝑃,
as defined in Equation 1 as 𝑃!..!, so that 𝐶 ≅ 𝑃.

As a specialized processor, a connector carries additional
properties to allow the connection of multiple streaming sub-
graphs 𝜙 = (𝑃! , 𝛿!) into larger, interconnected networks of
streams.

The composition of more elaborate, interconnected
networks of streams allows the support of more complex
functions. These functions include the plasticity property,
described through a graph modification connector in the next
section, reactive behaviors described in Section B, the
distribution facet described in Section C, and enabling of
distribution spaces described in Section C.2. A complete
outline of possible connectivity functions is provided later in
this paper, in Section VI.B, when we describe in details the
processor contribution.

A.2.3. Plasticity

A graph representing a financial model should be able to
modify itself upon the arrival of relevant data fragments,
depending on specific requirements of the model under study.

In the scope of this research, the ability to modify a graph
Φ on demand is referred to as plasticity and is given by a
special modification connector 𝐶!. The connector 𝐶! is given
by function 𝑓 of a predicate 𝑃 on data fragment 𝑋, and a sub-
graph template 𝜙, formalized by Equation 4.

𝜙 = 𝑃! , 𝛿!
𝑃:𝑋 → 𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒
𝐶! = 𝑓(𝑃,𝛷,𝜙)

Equation 4. Definition
of Plasticity Function

Plasticity occurs upon arrival of data fragment 𝑋. In case 𝑃
resolves as a 𝑡𝑟𝑢𝑒 for 𝑋, a sub-graph 𝜙 based on template 𝜙
is appended to graph Φ.

In short, this model in Equation 4 allows a graph to modify
itself if an arrival of a data fragment 𝑋 causes the predicate 𝑃
to resolve as 𝑡𝑟𝑢𝑒.

The best way to explain the plasticity property is through
an example, and preferably in finance, through a common use
case. In Figure 6, we depict the example of a definition of a
new pricing route for a stock that should be set up upon

arrival of a new symbol of that stock on a sequential feed of
price ticks.

Figure 6. Graph Modification Connector Example

An example of plasticity through the application of a graph modification
connector, when new symbols arrive and predicate 𝑃 fires 𝑡𝑟𝑢𝑒, a new path
on the graph is added based on the sub-graph template. In this example, the
arrival of symbol AMZN will create a new branch and the modification of the
overall graph.

On this use case it is assumed high-frequency requirements,
so to maximize throughput every branch on the graph is
dedicated to one symbol. The complete set of symbols is not
known in advance. Therefore, a new branch must be created
for every new incoming symbol, the first time an instance of
this symbol is received. On this exercise, each branch
executes the following steps for any given price tick:

• Query current state of the order book for current bid
and ask prices of stock 𝑠;

• Calculate the price of a stock based on current mid-
price, spread, and exponentially weighted moving
average of the mid-price14.

Every incoming fragment 𝑥, arriving at time 𝑡, carries a
tuple (𝑠, 𝑝) where 𝑠 is symbol and 𝑝 is the price. In this
exercise, for the sake of simplification, since our concern is
specifically to exemplify the property of plasticity, we are
only interested in symbols. The sequence of incoming
symbols is given on this example by the sequence in Equation
5.

𝑠: (𝐼𝐵𝑀, 𝐼𝐵𝑀,𝐺𝑂𝑂𝐺,𝐺𝑂𝑂𝐺,𝐴𝑀𝑍𝑁,…) Equation 5.
Sequence of

Incoming Symbols

In response to each item in the sequence, predicate 𝑃 turns
to 𝑡𝑟𝑢𝑒 if this is the first arrival of that symbol on the
sequence. In response to the sequence of symbols in Equation

14 An example of signal attenuation functions are filters based on
exponentially weighted moving average processors [8].

Cs	 Cj	

Split-join	

Query	book	
state	 Calculate	price	

Sub-graph	template	

Query	book	
state	 Calculate	price	

Query	book	
state	 Calculate	price	

Query	book	
state	 Calculate	price	

s=IBM	
s=IBM	
s=GOOG	
s=GOOG	
s=AMZN	

P=true	
P=false	
P=true	
P=false	
P=?	

s=IBM	

s=GOOG	

Graph	modificaGon	on	
arrival	of	new	symbol	AMZN	

10

5, 𝑃 yields a correspondent sequence of results given by
Equation 6.

𝑃: 𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒, 𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒, 𝑡𝑟𝑢𝑒,… Equation 6. Sequence
of Predicate Results

In the previous Figure 6, the configuration of the graph Φ
is shown as a snapshot in time right after the arrival of the
AMZN symbol, as result of the use of a modification
connector 𝐶! . Before that snapshot, the symbol IBM had
arrived, producing sub-graph 𝑠 = 𝐼𝐵𝑀, followed by symbol
GOOG, what produced the sub-graph 𝑠 = 𝐺𝑂𝑂𝐺.

On arrival of symbol AMZM, the predicate 𝑃 yields 𝑡𝑟𝑢𝑒
and the third branch is created and associated with the newly
arrived symbol AMZN. From that point on, arrivals of new
symbols AMZN will be routed through the newly created
branch.

The plasticity property allows for on-demand modifications
on connections of a graph representing a financial model. This
example is an important and common use case on models
related to the trading of financial instruments.

B. Reactives

As stated on requirements defined in Section IV, financial
models must maintain continuous interaction with an ever-
changing state that varies over time and is external to the
financial model at hand. Rules on the financial model have to
trigger specific actions based on external events that can occur
at unpredictable times.

These external changes are by nature unpredictable, and by
definition are hard to represent in conventional, sequential
programming. External changes are associated with events,
and require a number of non-sequential 15 properties for
representation in financial models: inverted control,
abstraction of time management, and abstraction of
synchronicity details [54]:

• Inverted Control: Financial models keep a continuous
and persistent interaction with their execution
environment, executing actions based on events
triggered by external sources. External sources then
drive the order of execution, and as a consequence, in
many particular cases, the rules and control flow of a
financial model is inverted [54].

• Abstraction of Time Management: Financial models
often require a notion of a discrete time series, in which
the modification of the event associated with each time
𝑡! in the time series is performed by behaviors [55] [54].
The event is associated to either a lifecycle change (e.g.,
corporate actions in a stock, roll-over operations in
derivative instruments) or variations of value (e.g., the
price of an asset, ratio of risk exposure) over time. After
a relationship between reactive entities is set,
computation dependencies and handling of events over

15 Some literature considers reactives an extension of stream processing [32].
Given the nature and requirements of financial models we opted to
differentiate between sequential (streams) and non-sequential (reactives) as
two separate and yet complementary facets.

time are automatic and the representation of time is
intrinsic to every event [56].

• Abstraction of Synchronicity Details: Financial
models require the abstraction of synchronicity details
in the event-driven communication. Financial entities
are often defined in terms of relationships with other
entities. In a representation suitable for financial models,
associations are established declaratively, similar to the
way in which cells in a spreadsheet are defined and
associated with a formula16. The declarative association
through formula provides automatic management of
associations between data dependencies. The event-
driven communication synchronizing the state of those
entities is intrinsic to the representation of the
association and therefore transparent.

Functionally, these properties – inverted control,
abstraction of time management and details of event-driven
communication - are related in computer science to what is
commonly called reactive programming [55], and referred in
the scope of this research as a reactive17 facet.

The reactive facet is a declarative paradigm that allows the
definition of what has to be done through reactive
relationships, and let the computational representation
automatically take care of when to do it, and who gets
affected. A similar and more intuitive model is exemplified by
a number of cells in an electronic spreadsheet representing a
formula. Similarly, reactives allow for an intuitive
representation of primitives and formula, in which
composition of formula from primitives and other formula is
defined declaratively [57] [54].

To describe declarative associations of reactive variables,
we take for example the simple formula in Equation 7.

𝐴 = 𝐵 + 𝐶 Equation 7. Reactive
Formula Example

In a sequential representation, variables 𝐵 and 𝐶 would
have to be set first, so that only then the computation of 𝐴
could occur. Alternatively, in a reactive representation, the
formula is declared first, setting a graph of reactive
dependencies. In Figure 7 we show the graph of dependencies
for the formula in Equation 7.

16 The designation of a formula is equivalent to the concept of a formula in an
electronic spreadsheet
17 Functionally equivalent patterns like observers, event-driven programming
and asynchronous callbacks were also considered as possible alternatives to
reactives, but unfortunately they carry their own impeding limitations. The
coordination of individual callbacks, over a shared state, across numerous
code fragments, in which the order of execution cannot be predicted, is an
error prone, cryptic, daunting programming task [54]. Additionally, since
callbacks do not produce a return value, these alternative programming
patterns must perform side effects in order to affect the application state [79].

11

Figure 7. Graph of Reactive Dependencies

The reactive graph, representing a simple formula 𝐴 = 𝐵 + 𝐶. A formula of
functions, operators, or other reactives is set as a graph of communication
between reactives.

The graph in Figure 7 represents that, in case of a change
on the value of either 𝐵 or 𝐶 , the executing environment
abstracts the notion of a discrete time change and event-driven
communication by propagating the modification across all
dependencies in the graph. The exact way a value propagates
over time through a graph of dependencies, in this case from
𝐵 or 𝐶 to 𝐴, can occur in more than one way and is abstracted
from the representation itself.

The reactive paradigm is a broad concept, subject to a
specific classification in terms of basic features, evaluation
model, lifting, and directionality. These classes are related to
special considerations for the use of the reactive paradigm is
used to represent financial models, according to requirements
defined in Section IV.

B.1. Basic Features
Two basic features define the reactive programming

paradigm: behaviors and events. They are often referred to as
duals because one can be used to represent the other. The
behavior feature refers to mutable, time-varying values. The
event feature refers to potentially infinite, immutable
modifications that occur at discrete points in time.

In the computational representation for the field of
economics, behaviors are associated with specialized
processors 𝑅 so that 𝑅 ≅ 𝑃 . The dual of 𝑅 is a virtually
infinite sequence of events 𝑥 , as previously discussed in
Section A.

Given for example two disjoint sub-graphs 𝜙! and 𝜙!!, a
generic synchronicity operator 𝛿, and behaviors associated to
reactive processors 𝑅! and 𝑅!!, as described in Equation 8.

𝜙! 𝛿 𝑅!
𝜙!! 𝛿 𝑅!! Equation 8. Composition

of Streams and Reactives

A reactive function 𝑓!
!(𝑅!, 𝑅!!) is evaluated on the arrival

of either 𝑥! or 𝑥!!, in each of the streams defined by sub-
graphs 𝜙! and 𝜙!!, as shown in Figure 8.

Figure 8. Composition of Streams and Reactives

Reactives are specialized processors in a stream, either as reactive steps in
linear streams, like 𝑅′ and 𝑅′′, or as connectors for disjoint sub-graphs, like
the reactive function 𝑓!

!.

As represented in Figure 8, reactives are specialized
processors in a stream. In the case of 𝑅! and 𝑅!!, they have to
behave like regular, sequential processors for sub-graphs 𝜙!
and 𝜙!!, and at the same time act as reactives for the reactive
function 𝑓!

!(𝑅!, 𝑅!!).

Reactive dependencies and respective flow of execution are
defined declaratively. As a consequence, after the reactive
graph is defined, calculations are not affected by the sequence
of initialization of 𝑅! and 𝑅!!.

B.2. Evaluation Model
The evaluation model of the reactive facet defines how a

change 𝑥 in stream 𝜙 propagates through a dependency graph
of values and computations.

In a pull-based evaluation model, a value is calculated on
demand, or in other words, a value has to be “pulled” from the
source whenever required.

On the other way, in a push-based evaluation model, every
change in value has to be sent to dependent computations. The
push-based propagation is called data-driven since it occurs
by the availability of new data.

The evaluation model has no direct implications on the
representation, but it does, however, have implications on the
distribution facet. Those implications are discussed in detail in
the upcoming Section V.C, related to the distribution facet.

B.3. Lifting
We call lifting the transformation of a generic function

𝑓(𝑥) applied to 𝑥 to a lifted function 𝑓!(𝑅 < 𝑥 >), where
𝑅 < 𝑥 > is a reactive, or behavior, type of 𝑥 [54] given in
Equation 9.

B	

C	

A	+	

P1	 (…)	 Pn	
δ1	 δ(n-1)	

x‘	

R’	

ϕ’	

δ‘	

f'	

P1	 (…)	 Pn	
δ1	 δ(n-1)	

x‘’	

R’’	

ϕ’’	

δ‘’	

f’(R’,	R’’)	

12

𝑙𝑖𝑓𝑡: 𝑓 𝑥 → 𝑓!(𝑅 < 𝑥 >) Equation 9. Reactive
Lift Function

When looking at time step 𝑖 , the resolution of a lifted
function 𝑓! on value 𝑥! yields the original function 𝑓 , as
shown in Equation 10. Mathematical operators (e.g., +, −, ∗)
and user-defined functions, respectively, are functionally
equivalent to lifted operators and functions.

𝑓! 𝑅 < 𝑥! > → 𝑓 𝑥! Equation 10. Original
Lifted Function

The representation of the lifting transformation is classified
further in terms of how much additional context is needed
whenever an operator or a function has to be lifted to a
reactive representation. This classification defines a lifting
transformation as manual, explicit, or implicit.

• Manual: on manual lifting, a representation does not
provide transparent lifting. A time-varying value has to
be manually extracted and applied to operators,
functions, or dependent variables.

• Explicit: on explicit lifting, the representation defines a
number of unique operators that can be used to lift a
function 𝑓 to 𝑓!.

• Implicit: on implicit lifting, all operators and functions
of a representation applied to 𝑥, user-defined or not, are
transparently lifted to a reactive item 𝑅 < 𝑥 >.

For simplicity of communication, in the computational
representation for the field of economics, all reactive
transformations are implicitly lifted. This requirement will
impose additional constraints on candidate implementations,
but as a consequence gives a higher level of abstraction to the
representation.

B.4. Directionality
A reactive representation may allow reactive propagation

of changes to occur in one direction – unidirectional – or in
either direction – multidirectional. In requirements listed in
Section IV, there were no specific cases in which
multidirectional propagation was an absolute requirement. As
a consequence, for simplicity, for a computational
representation for the field of economics, only a unidirectional
propagation is required.

C. Distribution

In Section IV we listed some requirements explicitly
related to the operation of financial models in large scale, both
in terms of computational power and storage.

Of those requirements, two specifically - virtually infinite
historical records, and responsiveness – require the use of
distributed resources [58] to be able to scale to more than a
single processing or storage unit. The distribution facet gives
the computational representation the ability to communicate
functions related to scaling up the workload of a financial
model across multiple processors.

 A distribution facet is, in essence, a particular application
of connectors, as described in Section A.2. A connector 𝐶 is a
specialized type of processor 𝑃 so that 𝐶 ≅ 𝑃 . That
specialization means that in addition to the behavior of
processors, a connector carries additional properties to allow
the composition of streaming sub-graphs 𝜙 = (𝑃! , 𝛿!) into
larger, interconnected networks of streams.

On its more generic form, any connector 𝐶! allows for
bridging of a number 𝑛 of incoming sub-graphs 𝜙′ and a
number 𝑚 of outgoing sub-graphs 𝜙′′, as described in Figure
9:

 Figure 9. Connectors and Incoming and Outgoing Streams

Connectors in the distribution facet are used to compose streams by bridging
a number n of incoming sub-graphs 𝜙′ and m outgoing sub-graphs to build
more elaborate graphs.

The generic description of the distribution facet as
connectors for a 𝑛:𝑚 association of incoming to outgoing
sub-graphs of streams has two significant consequences:
improved expressiveness of the streaming notation, and
leveraging of distributed and parallel processing in large scale.

C.1. Improved Expressiveness
The first consequence, improved expressiveness, is related

to the possibility of laying out streams and connectors in
different combinations to define more elaborated patterns [50].
The placement of connectors in different locations of the
streaming graph can define structures like split-joins and
feedbacks [30] [34] [31] [48] [32] [59]. A visual
representation of split-join and feedback loop is given in
Figure 10.

A split-join pattern is given by a pair of connectors, 𝐶! and
𝐶!, positioned around a set of processors. The connector 𝐶! is
placed on the splitting, inbound edge of the set of processors,
while the connector 𝐶! is placed on the joiner, outbound edge
of the set of the processor.

C’	

ϕ’1	

ϕ’2	

ϕ’n	

ϕ’’1	

ϕ’’2	

ϕ’’m	

13

Figure 10. Connectors and Communication Patterns

Combination of connectors used to create more elaborate composite patterns
like split-joins and feedback loops.

Edges for communication in and out of the processor stack
between 𝐶! and 𝐶! are given by the asynchronous operator 𝛿.
As a consequence, fragments leaving 𝐶! might hit all
processors concurrently, and the order of execution of these
processors cannot be guaranteed. Unless specialized
processors are inserted in the flow before the join of 𝐶!, with
the ability of re-establishing the original order of execution,
the overall execution is non-deterministic.

A variation of the split-join pattern, the feedback loop,
given in the lower part of Figure 10, is a re-arrangement of 𝐶!
and 𝐶! to represent a loopback of data fragments. Edges for
communication out of 𝐶! and into 𝐶! are asynchronous, i.e.,
the synchronicity operator 𝛿 is of type asynchronous.

Since there is a requirement of asynchronous
communication on edges from and to 𝐶! and 𝐶!, results of the
execution of the overall stream in a feedback loop are non-
deterministic.

C.2. Parallelism and Distribution Spaces
The second consequence is the possibility of describing an

execution flow spanning multiple computational
environments and locations concurrently. Each of those
disjoint computational environments is called space. A space
by definition can be associated with different processors, in
different locations, as required.

For example, given a connector 𝐶′ and disjoint sub-graphs
𝜙! , 𝜙!′ and 𝜙!′′ on a specific composition, as described in
Equation 11:

𝜙! 𝛿 𝐶!
𝐶! 𝛿 𝜙!!
𝐶! 𝛿 𝜙!!!

Equation 11. Connectors
and Distribution Spaces

Following the definition of the connectivity property of
financial models, described in Section A.2, a larger graph Φ is
defined as a result of connector 𝐶′ applied on sub-graphs 𝜙!,
𝜙!′ and 𝜙!′′ as shown in Figure 11.

Figure 11. Graph Composition by Connectors and Spaces

The application of connectors to sub-graphs defines a generic graph Φ and
multiple spaces 𝑆′ , 𝑆′′ and 𝑆′′′ , which can be optionally associated to
computational resources spanning multiple locations.

Each space is a fragment of a complete graph Φ, in which
boundaries of any space are given by incoming or outgoing
edges of a connector. Each space abstracts details related to
distribution or concurrency aspects of a financial model and
can be at a later time associated to computational resources
spanning multiple locations, without affecting the high-level
representation of the financial model itself.

A complete graph Φ in Figure 11 shows the use of a
connector 𝐶′ to define multiple spaces 𝑆′, 𝑆′′ and 𝑆′′′, each
associated to sub-graphs 𝜙!, 𝜙!′ and 𝜙!′′. Each space and sub-
graph can be associated to different distribution contexts,
without affecting the intuitive description of a financial model.

In essence, connectors allow scaling of a financial model to
handle a virtually infinite load and volume of data by adding
the notion of locality and distribution transparently through
the use of spaces.

 This notion is intrinsic to the representation in a sense that
it is not defined in the financial model described, and
decisions relative to performance, storage, and processing
power can be made at a later time, with no modifications to
the financial model itself.

D. Simulation

Financial models are a representation of complex systems
in which the intent of defining one, in many cases, is to allow
prediction of outcomes, through the application of disciplined,
objective research methods.

Simulations are a fundamental technique for research of
complex problems in many disciplines, especially in financial
sciences, through the application of specialized algorithms [60]
to define, search and test possible viable solutions.
Simulations have an exact placement in a proof pipeline for
crowd-based investigation in economics [5], or in other words,
simulations are the imitation of a system [61]. Financial
models are, in essence, an imitation – a controlled
simplification to the right scale – of large, complex systems.

Cs	 Cj	

Cj	 Cs	

Split-join	

Feedback	loop	

P1	 (…)	 Pn	
δ1	 δ(n-1)	

x‘	 ϕ’	

δ‘	
C’	

P1	 (…)	 Pn	
δ1	 δ(n-1)	

ϕ’’	

P1	 (…)	 Pn	
δ1	 δ(n-1)	

ϕ’’’	

C’	

C’	

Φ	

space	S’	

space	S’’	

space	S’’’	

δ‘’	

δ‘’’	

14

The facet simulation is responsible for representing
methods allowing the anticipation of possible outcomes in
financial models. On that regard, the general topic of
simulations is extensive and under active research [5]. The
primary challenge then, when defining a simulation facet in a
domain of knowledge is to establish the exact level of
simplification that can be applied to models on that
representation, without affecting the quality of insights into
the central problem under simulation.

According to the representational process previously
defined in Section II, any facet, and in this case precisely the
simulation facet, must be selected based on domain-specific
requirements and a computational taxonomy. Domain-specific
requirements were previously defined in Section IV, and
given the importance of the subject of simulation, should be
augmented by the proof pipeline for large-scale collaboration
in economics [5] [6]. A computational taxonomy is given by
various alternatives for classification simulation techniques
[62] [61] [63] [60], shown in Figure 12. According to that
representational process, the combination of requirements and
techniques are enough to select and adjust relevant properties
of simulation for financial models.

Figure 12. Simulation Taxonomy and Relevance to Economics

Simulation facet classified according to a generic taxonomy based on the
presence of time, behavior and data organization. Leafs marked in a dotted
like do not represent relevance to the field of economics.

The taxonomy of a simulation facet organizes all possible
representations in three dimensions according to the presence
of time, behavior and data organization. All three dimensions
of classification are complete and not mutually exclusive, in a
sense that a model requires a concomitant classification in
each of the dimensions.

For example, a model that anticipates the effect of
corporate actions over the price of an asset is static,
deterministic and grid-based, while a model that uses random
shocks to determine the influence of multiple features in the
profitability of a portfolio in closing prices is dynamic time-
stepped, stochastic and grid-based.

D.1. Presence of Time
The first classification takes into consideration the presence

of time [63], or time of change [60]. As the name implies, this

classification considers if time is a significant variable in
defining the outcome of a simulation [62].

Under this classification, system models can be classified
as static or dynamic, respectively by observing if the system
can be adequately modeled without or with a variable
associated with time.

In our cases of use, previously defined in Section IV, it is
clear that the absolute majority of financial models are
dynamic. However, we cannot ignore that some critical
exceptions do not require the presence of time. An example of
a static system relevant to the field of financial sciences would
be the influence of corporate actions on the valuation of
equity assets on the day that a specific action took place.

Dynamic systems are further classified as either continuous
or discrete [63]. Continuous dynamic systems consider that
variables or features into consideration evolve continuously
and are usually subject to modeling through differential
equations, representing continuous modifications of a system.
Some examples outside of economics are often related to
classic mechanics like particles moving in gravitational fields,
or an oscillating pendulum [62]. All observable phenomena
are by nature continuous, but since by definition models are
surrogates of real events, the use of discrete dynamic systems
allow a significant simplification by considering that all
variables of the system are piecewise constant functions of
time, only possessing one of many values within a finite range.

Dynamic discrete systems can be classified even further
depending on the irregularity of the time interval as time-
stepped or event-driven systems.

On time-stepped systems, time intervals are constant or
derived from fractions of time in which periodicity can be
clearly ascertained. Examples of a dynamic discrete system in
finance are models associated with changes in discrete values
(e.g., prices, returns, risk ratios) over a time-series. Dynamic
discrete time-stepped systems account for the majority of the
cases of use in finance.

On event-driven systems 18, time interruptions occur in
irregular intervals, driven by external sources of the model
itself. In finance, such systems are not as usual as systems
based on constant time steps. Event driven-systems should,
however, be considered at least as necessary, and an adequate
tool when investigating sophisticated use cases. Some
examples are related to cases of agent-based simulation of a
central limit order book. In these simulations, software agents
play the role of market participants and are used to gauge the
influence of real-world economic agents to study the effect of
a pre-defined behavior in variations of the price of financial
instruments [24] [25] [26] [27] [28] [29].

Dynamic discrete systems are represented in a
computational representation for the field of economics by
adjusting generic streams 𝜙(𝑃, 𝛿) in two specific points to
represent either time-stepped systems or event-driven systems.

Time-stepped systems are replicated by replacing the
generic endpoint 𝑋 of fragments 𝑥 in a stream 𝜙(𝑃, 𝛿) by a
time-paced endpoint 𝑓(𝑇,𝑋) so that the period 𝑇 between

18 We assume agent-based modeling is an extension of tools commonly used
to simulate event-driven dynamic systems [82] [81].

Classifica(on	of	
Simula(on	Models	

Presence	of	TIme	

Sta(c	 Dynamic	

Con(nuous	 Discrete	

Time-stepped	 Event-driven	

Time	Scaled	

Agent	Emula(on	

Behavior	

Determinis(c	

Stochas(c	

Data	Organiza(on	

Grid-based	

Mesh-free	

15

events 𝑥! can be adjusted, as shown in Figure 13.

Figure 13. Simulation of Time-Stepped System

A time-stepped system is simulated by replacing the generic endpoint 𝑋 of
fragments 𝑥 by a periodic function 𝑓(𝑇,𝑋) in which the period 𝑇 is a fraction
of the time-step present in the original system under simulation.

Adjusting 𝑇 to minimal amounts allows for the simulation
in milliseconds of market behaviors that otherwise could only
be observed over long periods, achieving for all practical
purposes a time-squeezing effect. The simulation can then be
replayed as many times as required, with different values for
all relevant features [8].

Event-driven systems are represented in a computational
representation for the field of economics by two different
variations: time scaling and agent emulation.

In the time scaling variation, a generic endpoint 𝑋 of
fragments 𝑥 in a stream 𝜙(𝑃, 𝛿) is replaced by an endpoint
𝑓(𝑘,𝑋), allowing event-driven systems to be replicated by
replaying events 𝑥! from 𝑋 in a different scale of time. The
same time-squeezing effect observed in time-stepped
simulations is achieved by adjusting the time of occurrence of
each event 𝑥! to a shorter scale 𝑘 as 𝑥!! as described in
Equation 12.

𝑡! = 𝑡! +
1
𝑘
𝑡 Equation 12. Time

Scaling

Where 𝑡! is an arbitrary time assigned to the beginning of
the simulation, and 𝑘 is the time compression scale.

In the agent emulation variation, shown in Figure 14,
streams 𝜙(𝑃, 𝛿) play the role of individual software agents,
similar to what some literary references call a process-
oriented paradigm [64], process-modeling [65] or process-
interaction [66].

Each software agent 𝐴!, represented by stream 𝜙(𝑃, 𝛿), is
used to model real-world entities that hold state and evolve in
time. Agents interact through a shared context, either by direct
communication or by modification of state in a shared
resource.

A component called a Discrete-Event Simulation
Environment is responsible for proper scheduling and
coordination of an agent 𝐴! by issuing and capturing
variations of events of type activate, cancel, or yield.

Figure 14. Discrete-Event Simulation Environment

Each stream 𝜙(𝑃, 𝛿) plays the role of software agents 𝐴! , and execution is
done by specific signals activate, cancel or yield. Agent communication and
competing access for shared resources is done through the agent context.

In a higher level, an activate signal marks an agent as
eligible for execution, while a cancel event forces an agent to
release resources and yield execution. Agents notify the
discrete-event simulation environment of specific changes in a
task status by issuing different types of yield signals. A yield
signal tells the discrete-event simulation environment that the
agent can be de-scheduled and action can go to an eligible
agent if such an agent is available [64] [67].

D.2. Behavior
The second classification of simulation models takes into

consideration the randomness of results of the execution of a
model given a constant set of inputs.

In deterministic models, the result of a model execution
depends only on the input given to the model, what means that
repeating a simulation several times will yield the same
results [63]. On the other hand, in stochastic models, the result
of a simulation varies randomly19 [68].

Both deterministic and stochastic behaviors are required for
financial models, and the exact nature of a model is defined
by behaviors of processors and topology of the underlying
graph 𝜙 describing the model, as explained previously in
Sections A, B, and C.

D.3. Data Organization
The third classification of simulation models arranges

simulations as grid-based or mesh-free, depending on the data
organization scheme [60].

In the mesh-free organization [69], data is associated with
individual and disconnected (i.e., mesh-free) nodes called
particles. Updates to a particle are not bound to neighboring
or connected relationships between particles, but instead are
related to interactions to all particles considered relevant. The
mesh-free organization enables the simulation of complex
systems, at the expense of computing power and

19 Pseudo-random models, in which a random outcome is emulated by a pre-
defined sequence of random values, based on a number called a seed, are
indeed a special case of a deterministic model.

P1	 P1	 (…)	 Pn	
δ1	 δ2	 δ(n-1)	

f(T,	X)	

ϕ(P,	δ)	

ϕ(P,	δ)	

ϕ(P,	δ)	

ϕ(P,	δ)	

ac)vate	
cancel	

yield	

Discrete-Event	Simula)on	Environment	

A1	

A2	

A3	

context:	
-	agent	communica)on	
-	shared	resource	access	

16

programming complexity. Use of mesh-free simulation in
finance usually applies to overspecialized cases of use [70]
[71] [72] [73] and as a result was considered out of scope and
left out of the list of cases of use in Section IV.

Alternatively, in the grid-based organization, the state of a
simulation is arranged in discrete cells at particular locations
in a grid. Updates occur to each cell based on previous state
and those of its neighbors, or to cells to which it is connected.
The absolute majority of the financial models are grid-based.

In this proposed computational representation for the field
of economics some of the fundamental constructions -
reactive primitives, functions, and operators - play the role of
cells in a grid-based organization while connections reactive
primitives constructions are arranged in the same way as cell
dependencies.

VI. CONTRIBUTIONS

As defined by the representational process introduced in
Section II, the second element of a computational
representation is referred to as contributions. As introduced in
Section II.B, contributions are defined as shareable and formal
evidence of a scientific crowd-based investigation.

According to the representational process in Section II
contributions are a taxonomy of shareable evidence that is
relevant to cases of use on the domain of knowledge under
study, in this specific case, economics. The cases of use were
described previously in Section IV. According to the
evidential properties discussed in Section II.B, all
contributions must follow a classification system, called
taxonomy of contributions. Contributions for a computational
representation for the field of economics must cover a broad
range of models, methods, and results relevant to financial
sciences [74]. Some examples include datasets in small,
medium or large scale; time series in low, medium or high
frequency; calculation processors and visualization plots; and
results related to historical and real-time execution, simulation
and backtesting. The taxonomy of contributions for the field
of economics is shown in Figure 15.

Figure 15. Taxonomy of Contributions

Contributions are classified as financial models, processors, or endpoints.
Endpoints are either visualization (i.e., plots, animations) or datasets.

All contributions carry the evidential properties defined in
Section II.B, and therefore, in addition to falling in precisely
one classification of the tree in Figure 15, all contributions are
also uniquely identified, carry a detailed record of provenance
and hold enforceable ownership and access information. On a
higher-level, contributions are classified as financial models,
processors or endpoints.

A. Financial Model

The first type of contribution for a computational
representation for the field of economics is a financial model.
Financial Models are by definition a description of observable
phenomena in the field of economics, simplified to the right
scale, and adjusted for use in the process of a crowd-based
investigation [5]. An extensive outline of requirements of
financial models is listed in Section IV.

Since financial models are contributions, they follow what
we call evidential properties of contributions, explained in
Section II.B. As such, financial models can be defined and
reused by different users.

From a representational perspective, financial models are
built based on streams of processors and endpoints, arranged
as graphs. The fundamentals for the description of financial
models as streams are described in Section V.A.2 on page 8.
An example of a generic financial model is depicted as graph
Φ in Figure 11 on page 13. Processors and endpoints as
contributions are explained over the following sections B and
C respectively.

B. Processors

The second type of contribution for a computational
representation for the field of economics is a processor.
Processors are steps on the execution stream and are placed to
perform specific computations on fragments of data 𝑥 , as
already explained in details in Section V.A.2.

Since processors are contributions, they carry evidential
properties of contributions, explained in Section II.B. As such,
processors can be defined and reused across different financial
models (i.e., execution streams, as explained in Section
V.A.2), by different users, whenever that same specific
function is required. Processors are further classified as
handlers, connectors, modifiers, reactives, or agents.

• Handler: the simplest type of a processor is a handler.
A handler applies transformations to a fragment of
meta-data 𝑥 as defined in Section V.A.2;

• Connector: the composition of larger, more complex
financial models from multiple smaller sub-graphs is
possible by using a specialized type of processor called
connectors. Connectors were explained in details in
Section V.A.2 on page 9 when the connectivity
property of financial models as streams is explained;

• Modifiers: modifiers support the plasticity property of
financial models, as extensively explained in Section
V.A.2 on page 9. The plasticity function was formalized
in Equation 4. A practical example of plasticity applied
to finance was described in Figure 6;

Taxonomy	of	
Contribu0ons	

Financial	Model	

Processor	

Handler	 Agent	

Connector	 Reac0ve	

Modifier	

Endpoint	

Visualiza0on	

Plot	 Anima0on	

Dataset	

17

• Reactives: reactives allow the representation of
declarative, non-sequential properties in financial
models: inverted control, abstraction of time
management, and abstraction of synchronicity details.
The formalization of reactive processors was given
previously in Section V.B on page 10.

• Agents: this specialization of a processor is used to
support a sub-classification of event-driven simulation
model called agent emulation. Agent emulation is
described in details in Section V.D.1 on page 14. On
that section, an agent processor is described as software
agent 𝐴!, represented by stream 𝜙(𝑃, 𝛿), in Figure 14.

C. Endpoints

The third type of contributions in a computational
representation for the field of economics is called an endpoint.
Endpoints can be used as either a source or a destination of
data fragments 𝑥 in the execution stream 𝜙(𝑃! , 𝛿!) , as
previously represented in Figure 5 on page 8.

Since endpoints are contributions, they follow what we call
evidential properties of contributions, explained in Section
II.B. As such, endpoints can be defined and reused across
different financial models (execution streams, as explained in
Section V.A.2), by different users, whenever that same
endpoint, or state of data, is required. Depending on the
intended use of the data, endpoints can be further classified as
visualizations or datasets.

Visualizations can be static or dynamic. Static
visualizations, called plots, show a complete and immutable
representation of samples (𝑥! … 𝑥!) in which the window
associated to the interval [𝑖, 𝑗] is constant. On the other hand,
dynamic visualizations - also referred to as animations -
represent mutable windows, or samples, of data. Dynamic
visualizations adjust a geometric representation in real time,
depending on the arrival of new data.

The second type of endpoints is called a dataset. Datasets
are a repository of transformed data fragments, as previously
described in Figure 5, as either an entry point of virtually
infinite streams of data fragments 𝑥, or a destination of the
execution of stream 𝜙(𝑃! , 𝛿!).

Datasets can serve as intermediary entry and exit points of
multiple sub-graphs or streams 𝜙(𝑃! , 𝛿!). In that sense, the
resulting dataset of one execution stream can be a source
dataset in a second, different, execution stream.

VII. CONSTRAINTS OF DATA

According to the representational process defined in
Section II, the third element of a computational representation
is called constraints of data. Constraints of data are explained
in details in Section II.C, and define rules of association that
establish what is feasible in a domain of knowledge. Those
structural constraints use an abstract layer of data to define
restrictions on a separate abstraction, based itself on data,
hence the term meta-data. The set of structural constraints in a
specific domain of knowledge is called meta-model.

For our domain of interest, financial sciences, structural
constraints for associations between contributions and facets
are defined in three of different groups of meta-models, based
on its particular use: configuration, execution or simulation
meta-model.

• Configuration meta-model: represents a versioned
snapshot of a configuration of facets, arranged in a
graph, over time. In other words, a structural
description of all graphs defining the execution steps of
a specific financial model. Since execution flows, or
graphs, can change over time, a versioned configuration
meta-model allows the exact definition and
reproducibility of execution flow, at any given moment
in the past. Instances of this meta-model will determine
a reproducible sequence of execution, versions and
provenance tracking of all data used to generate any
specific result set.

• Execution meta-model: represent fragments of
hierarchical data that flow through one or more
compatible steps of a model. Instances of an execution
meta-model are related to one specific configuration
meta-model. In a sense is a description, in structured
data, of concepts inherent to financial sciences: entities,
contracts, instruments, or relationships [8].

• Simulation meta-model: supports the registration of
experiments, results, and methods required to support
an investigation. The registration is a permanent ternary
association between financial models, shocks, and
benchmarks. A financial model is a contribution
describing the problem domain, the hypothesis under
test, and the method under verification. The background
for the definition of the hypothesis under tests and
methods are part of the proof pipeline [5]. Shocks
describe each of the executions of a financial model,
used for recording utilized data, and results of each
individual execution. Benchmarks describe the final
comparison of results, of different shocks, and outline
conclusions [8].

It is important to note that meta-models are defined and
dependent on a finance case of use, or exercise, and should be
defined in an ad hoc fashion, as required. To define an
extensive set of meta-models that could be used in a large
number of financial use cases is not practical, and would yield
no additional insights to justify the increased complexity.

Additionally, some cases of use might require a partial set
of meta-models. For example, for a real-time stock pricing
financial model, given a strict dependency on mid-prices and
a static price calculation function, a simulation and a
configuration meta-model would not be necessary. A financial
model for this specific case of use can rely exclusively on an
execution meta-model [8].

VIII. CONCLUSION

Computers offer a number of overlapping and redundant
ways to represent ideas, mostly because that is an unintended
consequence of the need to support multiple possible
representations across different domains of knowledge.

18

This research understands that part of an effective use of
computational resources is to be able to properly formalize a
domain of knowledge and allow to describe all concepts that
would better fit that specific domain.

This is the intent of this paper in relation to economics: to
formalize an effective computational representation for
financial models in the field of economics.

We define a specific computational representation by
defining a knowledge representation system [75] [19] [17] in
terms of what can be shared, called in the scope of this
research contributions, how to establish fundamental building
blocks called facets, and structural constraints defined by
constraints of data.

Facets define the computational representation in the
framework. Combinations of those facets will serve as
fundamental building blocks to other more complex
abstractions in the conceptual framework. The term
contribution applies to artifacts produced by participants
(users) and transferred, or contributed, to a wider community
of users through a shared scientific support system.
Constraints of data define structural constraints for
associations between contributions and facets, as well as data
descriptions of high-level concepts on a financial model.

A computational representation is a non-cognitive enabler
for crowd-based scientific investigation. As the term suggests,
an enabler defines what is required, or should be in place, to
enable a scientific investigation to occur across a large
number of participants in a crowd [6] [76]. There are two
types of enablers: cognitive and non-cognitive. Cognitive
enablers are domain independent, or in other words, should be
the same regardless of the characteristics of the domain of
knowledge under consideration. This research considers two
cognitive enablers: methods of proof and collaboration in
large-scale [6]. The non-cognitive enabler, on the other hand,
is strongly dependent on the specifics of a domain of
knowledge. The representational process defined in Section II
accounts for the strong dependency between domain-specific
requirements and a computational representation.

A computational representation is, by definition, designed
to evolve and adapt as new features of a domain of knowledge
are introduced or brought into scope [6]. Therefore, a
computational representation is never final. The
computational representation described in this paper, Sigma,
is not an exception. Sigma is intended to evolve as new
financial models are investigated, and their requirements are
brought in for study.

IX. LIST OF EQUATIONS

Equation 1. Function Composition ... 8	
Equation 2. Composition by Synchronicity Operator 8	
Equation 3. Graph-Oriented Representation of a Stream 8	
Equation 4. Definition of Plasticity Function 9	
Equation 5. Sequence of Incoming Symbols 9	
Equation 6. Sequence of Predicate Results 10	
Equation 7. Reactive Formula Example 10	
Equation 8. Composition of Streams and Reactives 11	
Equation 9. Reactive Lift Function ... 12	
Equation 10. Original Lifted Function .. 12	
Equation 11. Connectors and Distribution Spaces 13	

Equation 12. Time Scaling .. 15	

X. LIST OF FIGURES

Figure 1. Representational Process ... 3	
Figure 2. Example of Facets in a Domain of Knowledge 4	
Figure 3. The First Reference to Streams .. 7	
Figure 4. Timeline of Evolution: Models of Computation 7	
Figure 5. Streams as a directed graph ... 8	
Figure 6. Graph Modification Connector Example 9	
Figure 7. Graph of Reactive Dependencies 11	
Figure 8. Composition of Streams and Reactives 11	
Figure 9. Connectors and Incoming and Outgoing Streams 12	
Figure 10. Connectors and Communication Patterns 13	
Figure 11. Graph Composition by Connectors and Spaces 13	
Figure 12. Simulation Taxonomy and Relevance to Economics .. 14	
Figure 13. Simulation of Time-Stepped System 15	
Figure 14. Discrete-Event Simulation Environment 15	
Figure 15. Taxonomy of Contributions ... 16	

XI. BIBLIOGRAPHY

[1] Gary Lupyan and Emily Ward, "Language can boost otherwise unseen
objects into visual awareness," in Proceedings of the National
Academy of Sciences of the United States of America, Stanford, 2013,
pp. 14196-14201.

[2] Raul Rodriguez-Esteban and Andrey Rzhetsky, "Six senses in the
literature: The bleak sensory landscape of biomedical texts," EMBO
Reports, vol. 9, no. 3, pp. 212-215, Mar 2008.

[3] Werner Heisenberg, Physics and Philosophy: The Revolution in
Modern Science, 1st ed.: Torchbooks, 1958.

[4] Jorge M Faleiro Jr and Edward P. K. Tsang, "Supporting Crowd-
Powered Science in Economics: FRACTI, A Conceptual Framework
for Large-Scale Collaboration and Transparent Investigation in
Financial Markets," in 14th Simulation and Analytics Seminar,
Helsinki, 2016.

[5] Jorge M Faleiro Jr, "Automating Truth: The Case for Crowd-Powered
Scientific Investigation in Economics ," CCFEA, University of Essex,
Report 2016.

[6] Jorge Martins Faleiro Jr, "Supporting Large Scale Collaboration and
Crowd-Based Investigation in Economics: A Computational
Representation for Description and Simulation of Financial Models,"
Centre for Computational Finance and Economic Agents, University
of Essex, Colchester, Essex, UK, Doctorate Thesis 21782, 2018.

[7] Jorge M Faleiro Jr and Edward P. K. Tsang, "Supporting Crowd-
Powered Science in Economics: FRACTI, A Conceptual Framework
for Large-Scale Collaboration and Transparent Investigation in
Financial Markets," in 14th Simulation and Analytics Seminar,
Helsinki, 2016a.

[8] Jorge M Faleiro Jr and Edward P. K. Tsang, "Black Magic
Investigation Made Simple: Monte Carlo Simulations and Historical
Back Testing of Momentum Cross-Over Strategies Using FRACTI
Patterns," Centre of Computational Finance and Economic Agents,
University of Essex, Colchester, Working Paper WP078-16, 2016.

[9] Jeremy Goecks, Anton Nekrutenko, and James Taylor, "Galaxy: a
comprehensive approach for supporting accessible, reproducible, and
transparent computational research in the life sciences," Genome
Biology, Nov. 2010, http://genomebiology.com/2010/11/8/R86.

[10] Edward Tufte, Beatiful Evidence, Second Printing ed. Cheshire, CT,
USA: Graphics Press, 2006.

19

[11] Matthias Schwab, Martin Karrenbach, and Jon Claerbout, "Making
Scientific Computations Reproducible," Computing Sci Eng, no. 2, pp.
61-67, 2000.

[12] Robert Gentleman, "Reproducible Research: A Bioinformatics Case
Study," Statistical Applications in Genetics and Molecular Biology,
vol. 4, no. 1, p. Article 2, 2005.

[13] (2016, Sep.) Merriam-Webster Online Dictionary. [Online].
https://www.merriam-webster.com

[14] T Berners-Lee, R Fielding, and L Masinter, "Uniform Resource
Identifier (URI): Generic Syntax," Network Working Group, The
Internet Engineering Task Force, RFC STD: 66, 2005.

[15] Patrick J Hayes, "Naive Phisics I: Ontology for Liquids," Institut Pour
Les Etudes Semantiques et Cognitives, Universite de Geneve, Geneve,
Working Paper 1978.

[16] R Davis and H Shrobe, "Representing Structure and Behavior of
Digital Hardware," IEEE Computer, vol. 16, no. 10, pp. 75-82, Oct
1983.

[17] Randall Davis, Howard Shrobe, and Peter Szolovits, "What Is a
Knowledge Representation?," AI Magazine, vol. 14, no. 1, Spring
1993.

[18] Phillip Bricker, "Ontological Commitment," in The Stanford
Encyclopedia of Philosophy, 2016th ed., Edward Zalta, Ed. Stanford:
Metaphysics Research Lab, Stanford University, 2016,
https://plato.stanford.edu/archives/win2016/entries/ontological-
commitment/.

[19] Agustin Rayo, "Ontological Commitment," Massachusetts Institute of
Technology, Cambridge, Feb 9, 2007.

[20] Jorge M Faleiro Jr. (2015, Jul) QuantLET Example: Backtesting
Momentum Strategies using Streams and Monte Carlo Simulations.
[Online]. http://goo.gl/EWGqyO

[21] Jorge M Faleiro Jr. (2014, Sep) QuantLET Example: Moving Average
Cross Over. [Online]. https://goo.gl/jEo6Mt

[22] Jorge M Faleiro Jr. (2014, Sep) QuantLET Example: Infinite
Spreadsheets. [Online]. https://goo.gl/e5AzKU

[23] Jorge Martins Faleiro Jr. (2013, May) Implementation of a “Cyclical
Long Position Strategy” in QuantLET. Presentation.

[24] Laurent Foata, Michael Vidhamali, and Frédéric Abergel, "Multi-
Agent Order Book Simulation: Mono- and Multi-Asset High-
Frequency Market Making Strategies," in Econophysics of Order-
Driven Markets.: Springer, 2011.

[25] Efstathios Panayi and Gareth Peters, "Stochastic simulation
framework for the limit order book using liquidity-motivated agents
Read More:
http://www.worldscientific.com/doi/abs/10.1142/S2424786315500139
?journalCode=ijfe ," International Journal of Financial Engineering,
Jul 2015.

[26] Rama Cont, Sasha Stoikov, and Rishi Talreja, "A Stochastic Model
for Order Book Dynamics," Operations Research, vol. 58, no. 3, pp.
549-563, May 2010.

[27] Ahmed Murat, Anwei Chai, Xiaowei Ding, Yunjiang Jiang, and
Yunting Sun, "Statistical Arbitrage in High Frequency Trading Based
on Limit Order Book Dynamics," Stanford University, 2009.

[28] Anirban Chakraborti, Ioane Muni Toke, Marco Patriarca, and Frédéric
Aberrgel, "Econophysics: Empirical facts and agent-based models,"
Quantitative Finance, no. 11, pp. 1013-1041, Jan 2011.

[29] Nicholas Tung Chan and Christian Shelton. (2001, Apr.)
DSpace@MIT. [Online]. http://hdl.handle.net/1721.1/7220

[30] Michael Gordon, "Compiler Techniques for Scalable Performance of
Stream Programs and Multicore Architectures," Department of

Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, Cambridge, Thesis 2010.

[31] William Thies, "Language and Compiler Support for Stream
Programs," Electrical Engineering and C omputer Science,
Massachusetts Institute of Technology, Cambridge, Thesis 2009.

[32] Robert Stephens, "A Survey of Stream Processing," Acta Informatica,
vol. 34, no. 7, pp. 491–541 , Jul 1997.

[33] Douglas McIlroy. (1964, Oct.) The Origin of Unix Pipes. [Online].
http://doc.cat-v.org/unix/pipes/

[34] Michael Gordon et al., "A Stream Compiler for Communication-
Exposed Architectures," International Conference on Architectural
Support for Programming Languages and Operating Systems , Aug.
2002.

[35] Carl Petri, "Kommunikation mit Automaten (Communication with
Automata)," University of Bonn, Bonn, Ph.D. Thesis 1962.

[36] Carl Petri, "Grundsätzliches zur Beschreibung diskreter Prozesse,"
Kolloquium über Automatentheorie, pp. 121-140, 1967.

[37] Wilfried Brauer and Wolfgang Reisig, "Carl Adam Petri und die
"Petrinetze" (Carl Adam Petri and "Petri Nets")," Informatik-
Spektrum, vol. 29, no. 5, pp. 369-374, Oct 2006. [Online].
https://www.informatik.uni-
hamburg.de/TGI/PetriNets/history/CAPetriAndPetriNets.pdf

[38] Tadao Murata, "Petri Nets: Properties, Analysis and Applications," in
Proceedings of the IEEE, 1989.

[39] Richard Karp and Rayamond Miller, "Properties for a Model for
Parallel Computations: Determinacy, Termination, Queuing," SIAM
Journal of Applied Mathematics, pp. 1390–1411, Jan 1966.

[40] Giles Kahn, "The Semantics of a Simple Language for Parallel
Programming," Information Processing, vol. 74, pp. 471-475, 1974.

[41] Carl Hewitt, Peter Bishop, and Richard Steiger, "A Universal Modular
ACTOR Formalism for Artifical Intelligence," IJCAI'73 Proceedings
of the 3rd international joint conference on Artificial intelligence , pp.
235-245, Aug 1973.

[42] Irene Greif, "Semantics of Communicating Parallel Processes,"
Electric Engineering and Computer Science, MIT, Cambridge,
Doctoral Dissertation 1975.

[43] William Douglas Clinger, "Foundations of Actor Semantics," Electric
Engineering and Computer Science, MIT, Cambridge, Doctoral
Dissertation 1721.1/6935, 1981.

[44] Gul Agha, "Actors: A Model of Concurrent Computation in
Distributed Systems," Artificial Intelligence Laboratory, MIT,
Cambridge, Technical Report 844, 1985.

[45] Charles Anthony Richard Hoare, "Communicating Sequential
Processes," Communications of the ACM, vol. 21, no. 8, pp. 666-677,
Aug 1978.

[46] Charles Anthony Richard Hoare, Communicating Sequential
Processes. Oxford: Oxford University Computing Laboratory, 2015.

[47] Edward Ashford Lee and David G Messerschmitt, "Static Scheduling
of Synchronous Data Flow Programs for Digital Signal Processing,"
IEEE Transactions on Computers, vol. C-36, no. 1, pp. 24-35, Jan
1987.

[48] William Thies, Michal Karczmarek, and Saman Amarasinghe,
"StreamIt: A Language for Streaming Applications," International
Conference on Compiler Construction (CC 2002), Aug. 2002.

[49] Arie van Deursen and Paul Klint, "Domain-Specific Language Design
Requires Feature Descriptions," Journal of Computing and
Information Technology, vol. 1, pp. 1-17, Oct. 2002.

20

[50] G., Hohpe and B. Woolf, Enterprise Integration Patterns. Boston:
Addison-Wesley, 2012.

[51] Jorge Martins Faleiro Jr. (2007, July) Technofinancial Singularity -
RMS Architectures. [Online]. http://goo.gl/w7ouS8

[52] Diomidis Spinellis, "Notable Design Patterns for Domain-Specific
Languages," Journal of Systems and Software, pp. 91–99, February
2001, http://www.spinellis.gr/pubs/jrnl/2000-JSS-
DSLPatterns/html/dslpat.html.

[53] Arie van Deursen, Paul Klint, and Joost Visser, "Domain-Specific
Languages: An Annotated Bibliography," ACM SIGPLAN Notices,
vol. 35, no. 6, pp. 26-36, June 2000.

[54] Engineer Bainomugisha, Andoni Lombide Carreton, Tom Van
Cutsem, Stijn Mostinckx, and Wolfgang De Meuter, "A Survey on
Reactive Programming," ACM Computing Surveys, vol. 45, no. 4,
Aug. 2013.

[55] David Harel and Amir Pnueli, "On the Development of Reactive
Systems," Logics and Models of Concurrent Systems, pp. 477-498,
1985.

[56] Henrik Nilsson, Antony Courtney, and John Peterson, "Functional
Reactive Programming, Continued," in Proceedings of the 2002 ACM
SIGPLAN, Pittsburg, 2002, pp. 51-64.

[57] David Harel and Amir Pnueli, "Statemate: a working environment for
the development of complex reactive systems," in ICSE '88
Proceedings of the 10th international conference on Software
engineering, Los Alamitos, 1988.

[58] J. Dean and S. Ghemawat, "MapReduce: Simplified Data Processing
on Large Clusters," in OSDI '04, San Francisco, 2004.

[59] Supun Kamburugamuve and Geoffrey Fox, "Survey of Distributed
Stream Processing," School of Informatics and Computing, Indiana
University, Bloomington, 2013.

[60] Jeffery Von Ronne. (2012, Apr) Department of Computer Science,
Carnegie Mellon University. [Online].
http://www.cs.cmu.edu/~tcortina/15110sp12/Unit12PtB.pdf

[61] Stewart Robinson, Simulation: The Practice of Model Development
and Use. West Sussex: John Wiley & Sons, 2004.

[62] Lawrence Leemis and Stephen Park, Discrete-Event Simulation: A
First Course. Williamsburg, VA: Pearson, 2006.

[63] Anthony Sulistio, Chee Shin Yeo, and Rajkumar Buyya, "A taxonomy
of computer-based simulations and its mapping to parallel and
distributed systems simulation tools," Software - Experience and
Practice, vol. 34, pp. 653-673, Apr 2004.

[64] Norm Matloff, Introducton to Discrete-Event Simulation and the
SimPy Language, University of California in Davis, Ed.: University of
California in Davis, 2008.

[65] Dennis Pedgen, "Advanced tutorial: Overview of simulation world
views," in Proceedings of the 2010 Winter Simulation Conference,
Baltimore, 2010, pp. 5-8.

[66] Hans Vangheluwe, "Discrete Event Modelling and Simulation,"
McGill University, Quebec, Article 2014.

[67] Stefan Scherfke. (2014, Jul) Discrete-event simulation with SimPy.
[Online]. https://stefan.sofa-rockers.org/downloads/simpy-ep14.pdf

[68] Harry Perros, Computer Simulation Techniques, North Carolina State
University, Ed. Raleigh, NC, USA: Computer Science Department,
2009.

[69] R A Gingold and J J Monaghan, "Smoothed particle hydrodynamics:
theory and application to non-spherical stars," Monthly Notices of the
Royal Astronomical Society, vol. 181, no. 3, pp. 375–389, Dec 1977.

[70] Yongsik Kim, Hyeong-Ohk Bae, and Hyeng Keun Koo, "Option
pricing and Greeks via a moving least square meshfree method,"
Quantitative Finance, vol. 14, no. 10, pp. 1753-1764, Nov 2013.

[71] Daniel Duffy, "The Meshless (Meshfree) Method in Financial
Engineering," in Finite Difference Methods in Financial Engineering:
A Partial Differential Equation Approach, John Wiley & Sons, Ed.
Oxford, UK: John Wiley & Sons, 2006.

[72] Alexander Guarin Lopez, "Meshfree methods in financial
engineering," University of Essex, Colchester, Thesis 2012.

[73] Greg Fasshauer, "Meshfree Methods," in Handbook of Theoretical
and Computational Nanotechnology, M. Rieth and W. Schommers,
Ed.: American Scientific Publishers, 2006, pp. 33-97,
http://math.iit.edu/~fass/MeshfreeNano.pdf.

[74] Thomas Herndon, Michael Ash, and Robert Pollin, "Does High Public
Debt Consistently Stifle Economic Growth? A Critique of Reinhart
and Rogof," Political Economy Research Institute, University of
Massachusetts Amherst, Amherst, Working Paper JEL codes: E60,
E62, E65, 2013.

[75] Stanford University. (2014, Nov) Stanford Encyclopedia of
Philosophy. [Online]. http://plato.stanford.edu/entries/ontological-
commitment/

[76] Chiara Franzoni and Henry Sauermann, "Crowd science: The
organization of scientific research in open collaborative projects,"
Research Policy, vol. 43, pp. 1-20, 2014. [Online].
http://ssrn.com/abstract=2167538

[77] Jorge Martins Faleiro Jr. (2007, July) Technofinancial Singularity -
RMS Architectures. [Online]. http://goo.gl/w7ouS8

[78] Jorge M Faleiro Jr. (2008, Aug.) QuantLET: an open source, event-
driven framework for real-time analytics. [Online]. http://quantlet.net

[79] Gregory Cooper and Shriram Krishnamurthi, "Embedding Dynamic
Dataflow in a Call-by-Value Language," in European Symposium on
Programming, Berlin, 2006, pp. 294-308.

[80] Laurent Foata, Michael Vidhamali, and Frédéric Abergel, "Multi-
Agent Order Book Simulation: Mono- and Multi-Asset High-
Frequency Market Making Strategies," in Econophysics of Order-
Driven Markets.: Springer.

[81] Andrei Borshchev and Alexei Filippov, "From System Dynamics and
Discrete Event to Practical Agent Based Modeling: Reasons,
Techniques, Tools," in 22nd International Conference of the System
Dynamics Society, Oxford, 2004.

[82] Stefania Bandini, Sara Manzoni, and Giuseppe Vizzari, "Agent Based
Modeling and Simulation: An Informatics Perspective," Journal of
Artificial Societies and Social Simulation, Oct 2009,
http://jasss.soc.surrey.ac.uk/12/4/4.html.

[83] Oxford University, Oxford Dictionary of English, 3rd ed., Angus
Stevenson, Ed.: Oxford University Press, 2010.

[84] Jorge M Faleiro Jr and Edward P. K. Tsang, "Supporting Crowd-
Powered Science in Economics: FRACTI, A Conceptual Framework
for Large-Scale Collaboration and Transparent Investigation in
Financial Markets," in 14th Simulation and Analytics Seminar,
Helsinki, 2016a.

