
Simplifying Decision Trees learned by Genetic Programming

Alma Lilia Garcia-Almanza and Edward P.K. Tsang

Abstract— This work is motivated by financial forecasting
using Genetic Programming. This paper presents a method to
post-process decision trees. The processing procedure is based
on the analysis and evaluation of the components of each
tree, followed by pruning. The idea behind this approach is
to identify and eliminate rules that cause misclassification. As
a result we expect to keep and generate rules that enhance
the classification. This method was tested on decision trees
generated by a genetic program whose aim was to discover
classification rules in financial stock markets. From experimen-
tal results we can conclude that our method is able to improve
the accuracy and precision of the classification.

I. INTRODUCTION

Decision trees have been widely used in machine learning
for classification and prediction. However, the overfitting and
complexity of resulting trees have disclosed the necessity
of pruning procedures. Several classifiers have incorporated
pruning methods, for example: Classifier CART implemented
minimal cost-complexity pruning [1], ID3 incorporated re-
duced error pruning and pessimistic pruning [2], while
classifier C4.5 integrated Error-based pruning [3]. Breiman
[1] and Quinlan [2] have asserted that tree simplification can
benefit almost all decision trees when removing parts that
do not contribute to classification accuracy. They argued that
resultant trees are less complex and more understandable.
Furthermore, this simplification helps to control overfitting.

Decision trees generated by Genetic Programming (GP)
[4] tend to grow [5], [6], [7], [8]. However, this growth is
not necessarily proportional to the quality of the resultant
solution. We presume that decision tree simplification can
be beneficial to trees produced by GP. Code growth has
been controlled introducing a variety of methods. These are
grouped in three main types: parsimony pressure, operator
modification and code modification [9]. Parsimony pressure
tries to evolve small solutions penalizing large individuals,
for instance, to establish a maximum depth allowed [4],
tarpeian method [10] or the implementation of Minimum
Description Length principle (MDL) in the fitness function
[11]. Operator modification is represented by no-destructive
crossover [12]. Code modification involves changing the
structure of the code during or after the evolution, e.g.
the pruning method implemented by Eggermont et al. [13].
According to Soule, code modification methods have not
been explored in depth because it involves the use of more
computational resources [12]. However, researches of other

Garcia-Almanza A.L. is with the Department of Computer Science,
University of Essex, (44) CO4 3SQ, UK (phone: (44) 01206-873975; email:
algarc@essex.ac.uk).

Tsang P.K. Edward is with the Department of Computer Science, Uni-
versity of Essex, (44) CO4 3SQ, UK (phone: (44) 01206-872774; email:
edward@essex.ac.uk).

machine learning classifiers [1], [3] prefer pruning techniques
instead of stopping criterions, they have pointed out that
pruning is slower but more reliable because it produces more
exploration.

We propose a new approach called Scenario Method (SM)
to analyse decision trees produced by GP. The aim of this
approach is to produce smaller trees with higher prediction
accuracy. Analysis is done by identifying relevant parts that
contribute to the classification task as well as to separate
those fragments that deteriorate their performance or cause
overfitting. From results we affirm that this method is able to
produce compact trees improving their accuracy1 and their
precision2. This work is illustrated with a dataset composed
by closing prices from the London Financial Market. The
remainder of this paper is organized as follows: Section
II contains an overview of the problem that illustrates our
method, Section III presents the scenario method procedure,
while Section IV describes the experiments to test our
approach. Section V presents the experiment results. Finally,
Section VI summaries the conclusions.

II. PROBLEM DESCRIPTION

To illustrate the Scenario Method, it was applied to a
discovery classification rule problem. The idea is to classify a
financial stock dataset in order to predict future movements in
the stock price. This problem has been addressed previously
by [15], [16], [17]. Every case in the dataset is composed by
a signal and a set of attributes or independent variables. The
signal indicates the opportunities for buying or not buying
and selling or not selling. The signal is calculated looking
ahead in a future horizon of n units of time trying to detect an
increase or decrease of at least r%. The independent variables
are composed by financial indicators derived from financial
technical analysis. Technical analysis is used in financial
markets to analyse the price behaviour of stocks. This is
mainly based on historical prices and volume trends [18].

III. SCENARIO METHOD

The main goal of scenario method is to simplify decision
trees by means of rule selection. This procedure involves
dividing the problem using class division. The next step is
to analyses the tree to enumerate its rules (Rule extraction).
Every rule is evaluated (Rule evaluation) to select those rules
that contribute positively to the classification task. Finally,
rules with poor performance will be removed from the tree
(Tree pruning). The above procedures will be explained in
detail in the following sections.

1Accuracy is the proportion of the total number of predictions that were
correct [14]

2Precision is the proportion of the predicted positive cases that were
correct [14]

TABLE I
DISCRIMINATOR GRAMMAR.

G → <Root>
<Root> → ”If-then-else”, <Conjunction> |

<Condition>,”Class”,”No Class”
<Conditional> → <Operation>, <Variable>, <Threshold> |

<Variable>
<Conjunction> → ”and”|”or”,<Conjunction>|<Conditional>,

<Conjunction>|<Conditional>
<Operation> → ”<”, ”>”
<Variable> → Variable1 | Variable2 | ... Variablen

<Threshold> → Real number

A. Class division

To divide the classification problem, a population per each
class will be evolved independently (example of a class is
to Buy). For this purpose decision trees are generated and
evolved using Discriminator Grammar (DG). This grammar3

produces trees which classify or not a single class. Table I
shows the discriminator grammar and Figure 1 illustrates a
decision tree that was created using DG. At this point we
introduce the concept of Conditional Node, which refers
to any node with syntax <Conditional> in discriminator
grammar. Class division has previously been applied by other
researches such as Teller [20], who evolved an individual
program per class using Parallel Architecture Discovery and
Orchestration (PADO).

B. Rule extraction

This process analyses the decision trees in order to delimit
their rules. Let T be a tree with syntax DG. T is composed
by rules, so it can be expressed as the union of its rules such
as T = (R1 ∪ R2 ∪ · · ·Rn) where Ri is a rule and n is the
total number of rules in T. In order to satisfy the tree T at
least one rule must be satisfied. A rule Rk is a minimum
set of conditions that satisfy the tree T. The rule Rk can be
expressed as the intersection of conditional nodes such as
Rk = (nk1 ∩ nk2 ∩ · · ·nkt) where nki is a condition and kt
is the number of conditions in rule Rk . To satisfy rule Rk

every condition in this rule has to be satisfied. Let us define
Rule Map as a matrix that lists the rules of a tree T and the
conditions that composed every rule. The kth-row in the rule
map contains the conditions of rule Rk. Given that the size
of rules could be different, the size of the matrix will be N
x L, where N is the number of rules in the tree, and L is the
size of the largest rule. When the length of a rule is smaller
than L the empty spaces will be fulfilled using 0. Figure 1
shows an example of a decision tree and its rule map. The
rule map is used to control the interactions between rules.

C. Rule evaluation

This section explains the procedure to evaluate the per-
formance of each rule in the tree T. Every rule Ri ∈ T
is compared against the training dataset and the result is

3The term grammar refers to a representation concerned with the syntactic
components and the rules that specify it [19]

Fig. 1. Example of an individual generated by DG and its Rule Map.

TABLE II
CONFUSION MATRIX.

Predicted/Actual Positive Negative
Positive TP - True Positive FP - False Positive
Negative FN - False Negative TN - True Negative

registered in a Confusion Matrix 4. Thus there will be a
confusion matrix Mi for each rule Ri ∈ T . Table II displays
a confusion matrix for the classification of two classes.

It is important to keep in mind that this problem is exposed
to imbalanced classes because the number of opportunities
for investors may be infrequent. According to Kubat et al.
[21], when imbalanced classes take place, it is not reliable
to measure the performance of a classifier only using the
equation of accuracy. This work is not only focused on the
accuracy improvement but also in the precision improvement
because every decision involves an investment. To illustrate
this, suppose that every time a true positive is succeeded we
gain 1 unit, but every time a false positive is predicted we
loss the same amount, in the best of the cases. Thus the
number of true positives has to be bigger than the number of
false positives; otherwise the final result will be a negative
balance. Taking into account the previous consideration, we
propose Equation (1) to measure the rule contribution.

Ev(Ri) =


(

TPi

TPi+FNi

)(
TPi−FPi

TPi+FPi

)
if TPi+FPi>0

0 Otherwise

(1)

Where terms in Equation (1) are the components in the
confusion matrix and PT = TPi+FNi, it is the total number
of positive cases in the dataset. Notice that PT is a constant
number for all Ri because it depends on the dataset. The

4A confusion matrix consists of information about actual and predicted
classifications done by a classifier system. It is an information summary of
the performance of the classifier, it shows the accuracy of predicted class
as well as errors and omissions[14].

first parenthesis of (1) encloses the recall5, it encourages
the increment of true positive cases. The second parenthesis
encloses an expression similar to precision. However, it
severely penalizes the false positive cases. Equation (1)
could be useful to perform classification in risky problems
because it strongly discards the false positive cases.

D. Rule selection

Once the rules in tree T have been evaluated the next
step is to perform a rule selection based on hypothetical
scenarios for the union of rules. The rule with the highest
evaluation is taken as a starting point, let us call it RB . To
disclose the potential of the remaining rules Rη ∈ T, the
Best and the Worst scenario for RBη = (RB ∪ Rη) are
calculated. Where RBη is the union of rules RB (the best rule
of T) and Rη. The best scenario is calculated assuming that
the true positives cases in RB and Rη are not overlapped
and the false positive cases maximally overlap each other.
Thus the best scenario for true positive and false positive
cases are calculated as follows: TPBη

+ = TPB + TPη

and FPBη
+ = max(FPB , FPη). Superscripts are used

to indicate the scenario, it could be worst (-) or best (+).
Subscripts are used to denote rules. The worst scenario is
calculated in exactly the opposite way, it assumes that true
positive cases maximally overlap. And false positive cases
are not overlapped so the total number of false positive
cases is the sum of false positives in both rules. Finally the
worst scenario for true positive and false positive cases is
TPBη

− = max(TPB , TPη) and FPBη
− = FPB + FPη.

Once the best and the worst scenarios were calculated, the
Equation (1) is applied to them as follows:

Ev(RBη
+) = TPB+TPη

P T · TPB+TPη−max(FPB ,FPη)
TPB+TPη+max(FPB ,FPη)

Ev(RBη
−) = max(TPB ,TPη)

P T · max(TPB ,TPη)−FPB−FPη

max(TPB ,TPη)+FPB+FPη

Let us define the Potential of Improvement (PI) as the
capacity of a rule for improving the tree T. PI is calculated
using the distance between Ev(RB) and Ev(RBη

+) as
Figure 2 shows. The potential of improvement is calculated
as follows:

PI(Rη) =


Ev(RBη

+)−Ev(RB)

Ev(RBη
+)−Ev(RBη

−) if Ev(RB)≤Ev(RBη
+)

0 Otherwise

Once the potential of improvement is calculated, it is
necessary to decide whether or not the rule Rη is benefic for
the tree. A threshold from 0% to 100% is used to determine

5The recall (true positive rate) is the proportion of positive cases that
were correctly identified [14].

Fig. 2. Interval of the worst and the best scenario of (RB ∪Rη).

TABLE III
EXAMPLE

Rη RB ∩Rη RB ∪Rη

(TPη , FPη) (TPBη , FPBη)
Rη=1 (1, 15) (0, 15) (41, 20)
Rη=2 (10, 2) (10, 1) (40, 21)

the level of pruning, it will be defined as Pruning Threshold
(PT). If (PI(Rη) < Pruning Threshold) the rule Rη will be
pruned. When PT is close to 0 the level of pruning is low,
but when PT is close to 100 a hard pruning is performed.
The experiments included in this paper used different pruning
thresholds (PT = 0%,10%,...90%) to find out the effect of this
parameter.
At this point it is worth addressing an important question:
why is the scenario method preferred rather than the direct
evaluation of the combined rule RBη? One of the reasons
is that the direct evaluation of the new rule consumes more
computational resources. Another reason is that SM avoids
overfitting because it discloses the individual performance of
the rule. To illustrate the last point we present an example
where it is shown that the direct evaluation of RBη and the
comparison against RB does not give a good performance
estimation of Rη. Let us express the evaluation of RB

(Best rule) as follows: RB = (TPB , FPB) = (40, 20).
Now we add the rules R1 and R2 from Table III. The
performance of R1 = (1,15), this shows that it can produce
more misclassifications than accurated results. However, di-
rect evaluation suggests that R1 is able to improve the tree.
In contrast, Scenario Method discards this rule if we apply a
low pruning threshold (greater than 7%). Now let’s analyze
R2, its performance indicates that it is able to classify with a
good rate of precision (83%). Nevertheless, direct evaluation
discards R2 because it classifies the same true positive cases
than RB . However the fact that R2 classifies a subset of RB

in training data does not mean that they classify the same
cases in other dataset. Scenario method only discards R2

when a hard pruning threshold is applied (bigger than 82%).

E. Tree pruning

After rule selection is performed the rules that do not
achieve the expected pruning threshold will be removed.
During the pruning procedure the condition map is used to
detect the interactions between rules and determine which
nodes in bad rules can be pruned without affecting the useful
rules. The pruning pseudocode is described in Figure 3.

Note that not all decision trees are applicable to SM, in

PROCEDURE Prune(T, Rk , ConditionMap)
BEGIN

/*Given the rule Rk =(nk1 ∩ nk2...∩nkj ...)
where nkj is a conditional node and Rk is
the kth-row in ConditionMap*/

FOR each nkj ∈ Rk

IF (nkj /∈ Ri where i 6= k) THEN
/* If nkj is not part of other rule, delete it*/

BEGIN
np → Parent of node nkj
nb →The other child of node np

ng →Parent of node np

nc1, nc2 → The two children of node nkj

/* Delete nkj , its parent and its children*/
T → T − nkj , np, nc1, nc2

T → T + Link between ng and nb

END
ConditionMapkj → 0 /* Set 0 in node map */

RETURN T
END

Fig. 3. Pruning Psedocode

the following cases it is not posible to prune the trees:
1) When the tree is composed by a single rule.
2) When SM does not suggest pruning to improve the

tree.
3) When SM suggests pruning but all conditional nodes

to prune are involved in good rules.
4) When the evaluation of the best rule is inferior to zero.

IV. EXPERIMENTS DESCRIPTION

To test our approach a series of experiments were per-
formed. The objective was to find out the effects of scenario
method in the performance of decision trees. The performace
is measured in terms of the accuracy, precision and tree size.
Scenario method was tested on series of 25 runs. Every
series comprises five populations from different stages of
the evolutionary process. In order to discover the impact of
pruning treshold the experiment was tested with different
values for this parameter. The results of the experiment were
grouped and averaged by generation and pruning threshold.
The training data description and the procedure to generate
the population for the experiment are described in the fol-
lowing sections.

A. Training data description

The dataset that was used to train the GP in the experiment
came from the London stock market. The dataset contains
756 records that describe the behaviour of the closing price6

for TESCO stock (from January, 2001 to January, 2004). The
attributes of each record are composed by indicators derived
from financial technical analysis; these were calculated on

6The settled price at which a traded instrument is last traded at on a
particular trading day

TABLE IV
SUMMARY OF PARAMETERS.

Parameter Value
Population size 1,000
Initialization method Growth
Generations 80
Crossover Rate 0.8
Mutation Rate 0.05
Selection Tournament (size 2)
Elitism Size 1
Control bloat growing RBOS - Tarpeian method, 50 percent

of those trees whose largest branch exceed 7
were penalized with 10 percent of the fitness
for each node which surpassed the largest
branch allowed.

the base of the daily closing price, volume and some financial
indices as the FTSE7.

B. Creation of populations

To test our approach it was necessary to generate popu-
lations from different stages of the evolutionary process. By
doing so a population of 1,000 individuals was created using
DG, it was evolved during 100 generations. Every twenty
generations the whole population was saved, therefore the
result was five populations of 1,000 individuals each, let
us call them P20, P40, · · · , P100 where subscripts indicates
the number of the generation. The objective was to test
our approach in different stages of the evolutionary process.
The mentioned procedure was repeated 25 times in other
to test the experiment with different sets of decision trees.
Finally the experiment results were grouped and averaged by
generation and pruning threshold. Table IV presents the GP
parameters used to evolve the populations.

V. MAIN RESULTS

We now document the results obtained by applying Sce-
nario method to the set of populations described in IV.
The performance of the experiment is measured in terms
of the prediction accuracy, precision, tree size and number
of pruned trees. The experiment was tested using different
pruning thresholds (PT = 0%,10%,..90%). All figures given
in this section denote average results from series of 25 test
runs.

A. Number of pruned trees

Figure 4 plots the number of trees that were pruned
by SM. Every series represents a population in a specific
generation P20, P40, ..P100. As can be seen in X-axis every
population was tested using different pruning thresholds PT
= 0,10,..90%.

Not surpisingly these results show that the increase in
pruned trees is related to the number of generations. The
number of pruned trees grows when the number of gener-
ations increases, this occurs because the tree size increase
and there are more opportunities to perform a pruning .

7An index of 100 large capitalization companies stock on the London
Stock Exchange, also known as ”Footsie.

During earliest generations the number of pruned trees is
low because in early stages of the evolutionary process the
tree size is small and trees must contain more than one rule
in order to be pruned. The average number of rules per tree
in a population in generation 20 = P20 is 1.9. It means that
there is a high number of trees that hold only one rule, as a
consequence they can not be pruned.

On the other hand, as one might expect, the number of
pruned trees increases when pruning threshold increases.
This occurs because SM removes the rules whose PI does
not achieve the PT and the increase of this threhold causes
that many rules have to be pruned. The number of pruned
trees are detailed in Table VII.

B. Accuracy improvement

Figure 5 displays the accuracy improvement achieved
by scenario method. Every curve represents a population
tested with different pruning thresholds. Scenario method
helped to improve the accuracy in almost all populations.
The average improvement in accuracy is 4.6%. The best
results are obtained when PI is less than 60%. However, the
number of pruned trees decreases when threshold does the
same. According to the experiment results the best thresholds
are between 30% and 60%. In this range the accuracy
improvement and the number of pruned trees are high . The
results of some experiments uncovered that it is possible to
have a slightly decrease in the accuracy when the threshold
is close to 100% and the population has converged. It is
because when the PI is big the selection becomes stricter
and some useful rules could be pruned. Table V shows the
accuracy of a normal GP and the new accuracy when SM is
applied.

C. Precision improvement

Figure 6 shows the improvement in the precision achieved
by SM. The average precision improvement is 9%. The
precision improvement declines when PT is close to 100%
or the population start to converge. Table VI describes the
precision before and after SM was applied.

D. Tree size reduction

Figure 7 shows the percentage of reduction in tree size
for each of the population sets. As one might expect the tree
size reduction is related with the pruning threshold. When
PT increases, SM tends to increase the pruning because only
rules with higher PI can achieve the PT. As can be seen from
Table VIII SM reduces considerably the size of the trees,
the average reduction is 27%.

VI. CONCLUSIONS

The experiments have showed the effectiveness of the sce-
nario method for selecting useful parts of the tree, indicating
which of them are able to contribute with the classification
task. The pruning of non useful conditions improved the
accuracy of the tree and the false positive rate.

A. Figures and Tables

REFERENCES

[1] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classifi-
cation and regression trees. United States of America: Wadsworth
International Group, 1984.

[2] J. R. Quinlan, “Simplifying decision trees,” in International Journal
of Machine studies, 1986, pp. 221–234.

[3] J. R. Quinlann, C.45 Programs for Machine Learning. San Mateo
California: Morgan Kaufmann, 1993.

[4] J. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, Massachusetts: The MIT
Press, 1992.

[5] P. Angeline, “Genetic Programming and Emergent Intelligence,” in
Advances in Genetic Programming, K. E. Kinnear, Jr., Ed. MIT
Press, 1994, ch. 4, pp. 75–98.

[6] P. Nordin, F. Francone, and W. Banzhaf, “Explicitly Defined Introns
and Destructive Crossover in Genetic Programming,” in Proceedings of
the Workshop on Genetic Programming: From Theory to Real-World
Applications, J. P. Rosca, Ed., Tahoe City, California, USA, 9 July
1995, pp. 6–22.

[7] T. Soule and J. A. Foster, “Code size and depth flows in genetic
programming,” in Proceeding of the Second Annual Conference, J. R.
Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, and R. R.
Riolo, Eds. Morgan Kaufmann, 1997, pp. 313–320.

[8] W. B. Langdon, “Quadratic bloat in genetic programming,” in Pro-
ceedings of the Genetic and evolutionary Computation Conference
(GECCO-2000), 2000, pp. 451–458.

[9] W. B. Langdon and R. Poli, “Fitness causes bloat,” in Soft Computing
in Engineering Design and Manufacturing, P. K. Chawdhry, R. Roy,
and R. K. Pant, Eds. London: Springer-Verlag, 1997, pp. 13–22.

[10] R. Poli, “A simple but theoretically-motivated method to control
bloat in genetic programming,” in Proceedings of the 6th European
Conference. Springer-Verlag, 2003, pp. 204–217.

[11] H. Iba, H. de Garis, and T. Sato, “Genetic Programming using a
Minimum Description Length Principle,” in Advances in Genetic
Programming, K. E. Kinnear, Jr., Ed. MIT Press, 1994, pp. 265–
284.

[12] T. Soule, Code Growth in Genetic Programming. Moscow, Idaho,
USA: PhD Thesis, College of Graduate Studies, University of Idaho,
15 May 1998.

[13] J. Eggermont, J. N. Kok, and W. A. Kosters, “Detecting and pruning
introns for faster decision evolution,” in The 8th International Con-
ference of Parallel Problem Solving from Nature. Springer-Verlag,
2004.

[14] R. Kohavi and F. Provost, “Glossary of terms,” in Edited for the
Special Issue on Applications of Machine Learning and the Knowledge
Discovery Process, vol. 30, February 1998.

[15] E. P. Tsang, J. Li, and J. Butler, “Eddie beats the bookies,” in
International Journal of Software, Practice Experience, ser. 10,
vol. 28. Wiley, August 1998, pp. 1033–1043.

[16] E. P. Tsang, P. Yung, and J. Li, “Eddie-automation, a decision support
tool for financial forecasting,” in Journal of Decision Support Systems,
Special Issue on Data Mining for Financial Decision Making, ser. 4,
vol. 37, 2004.

[17] E. P. Tsang, S. Markose, and H. Er, “Chance discovery in stock
index option and future arbitrage,” in New Mathematics and Natural
Computation, World Scientific, ser. 3, vol. 1, 2005, pp. 435–447.

[18] W. F. Sharpe, G. J. Alexander, and J. V. Bailey, Investments. Upper
Saddle River, New Jersey 07458: Prentice-Hall International, Inc,
1995.

[19] N. Chomsky, Aspects of the theory of syntax. Cambridge M.I.T. Press,
1965.

[20] A. Teller and M. Veloso, “Neural programming and an internal
reinforcement policy,” in In fisrt international Conference on Simulated
Evolution and learning. Springer-Verlag, 1996, pp. 279–286.

[21] M. Kubat, R. C. Holte, and S. Matwin, “Machine learning for the
detection of oil spills in satellite radar images,” in Machine Learning,
vol. 30. 195-215, 1998.

Fig. 4. Pruned trees

Fig. 5. Accuracy improvement

TABLE V
ACCURACY BEFORE AND AFTER SCENARIO METHOD WAS APPLIED.

PT Gen = 20 Gen = 40 Gen = 60 Gen = 80 Gen = 100
(a) (b) (a) (b) (a) (b) (a) (b) (a) (b)

0 .54 .65 .56 .66 .57 .66 .53 .67 .58 .65
10 .55 .64 .57 .65 .58 .65 .53 .67 .59 .65
20 .54 .64 .57 .65 .58 .65 .54 .66 .59 .65
30 .55 .65 .58 .65 .59 .65 .60 .68 .61 .66
40 .55 .65 .59 .66 .59 .65 .61 .68 .62 .65
50 .56 .65 .60 .66 .61 .66 .63 .68 .62 .65
60 .59 .66 .63 .67 .64 .67 .64 .67 .64 .66
70 .63 .67 .65 .68 .66 .68 .66 .68 .67 .68
80 .67 .68 .67 .68 .68 .69 .67 .69 .68 .69
90 .67 .68 .68 .68 .69 .69 .68 .69 .69 .69
100 .67 .68 .68 .68 .69 .69 .68 .69 .69 .69

(a) Accuracy before SM, (b) Accuracy after SM

Fig. 6. Precision improvement

Fig. 7. Tree size reduction

TABLE VI
PRECISION BEFORE AND AFTER SCENARIO METHOD WAS APPLIED

PT Gen = 20 Gen = 40 Gen = 60 Gen = 80 Gen = 100
(a) (b) (a) (b) (a) (b) (a) (b) (a) (b)

0 .41 .59 .43 .57 .47 .62 .46 .64 .50 .58
10 .42 .59 .46 .60 .47 .62 .46 .63 .51 .59
20 .42 .59 .46 .60 .48 .62 .47 .64 .51 .58
30 .43 .59 .47 .60 .49 .63 .53 .69 .52 .61
40 .44 .60 .47 .61 .50 .64 .55 .69 .54 .62
50 .46 .61 .51 .62 .54 .65 .59 .67 .55 .62
60 .54 .66 .57 .67 .58 .66 .60 .67 .59 .64
70 .61 .70 .62 .70 .64 .69 .64 .69 .66 .71
80 .69 .74 .69 .74 .71 .74 .70 .74 .71 .75
90 .72 .75 .72 .76 .74 .77 .72 .76 .74 .76

100 .72 .76 .72 .76 .75 .77 .73 .76 .74 .78

(a) Precision before SM, (b) Precision after SM

TABLE VII
NUMBER OF PRUNED TREES BY SCENARIO METHOD

PT Gen = 20 Gen = 40 Gen = 60 Gen = 80 Gen = 100
0 47.3 53.1 77.0 53.0 95.4
10 48.1 58.8 92.3 88.2 104.8
20 49.4 60.9 89.3 93.8 114.0
30 52.6 63.7 135.7 112.8 159.1
40 116.4 144.7 175.2 162.2 207.5
50 132.4 190.1 204.9 209.6 245.3
60 195.5 237.8 252.1 246.5 306.7
70 238.3 313.7 353.6 324.5 443.3
80 388.4 478.5 481.7 482.5 546.5
90 417.0 521.0 558.4 521.7 575.7

100 427.1 535.9 575.5 556.9 591.9

TABLE VIII
TREE SIZE REDUTION PRODUCED BY SCENARIO METHOD

PT Gen = 20 Gen = 40 Gen = 60 Gen = 80 Gen = 100
0 31% 30% 26% 23% 26%
10 28% 32% 26% 23% 26%
20 29% 31% 24% 21% 26%
30 32% 28% 24% 16% 21%
40 31% 28% 25% 16% 20%
50 31% 28% 24% 18% 21%
60 29% 32% 22% 20% 20%
70 29% 32% 22% 20% 19%
80 34% 35% 27% 27% 24%
90 37% 37% 30% 28% 28%

100 36% 40% 33% 36% 36%

