
Population Based Incremental Learning with Guided MutationVersus Genetic

Algorithms: Iterated Prisoners Dilemma

Timothy Gosling

Dept. of Computer Science

University Of Essex

C04 3SQ, England

Email: tdbgos@essex.ac.uk

Nanlin Jin

Dept. of Computer Science

University Of Essex

C04 3SQ, England

Email: njin@essex.ac.uk

Edward Tsang

Dept. of Computer Science

University Of Essex

C04 3SQ, England

Email: edward@essex.ac.uk

Abstract- Axelrod’s original experiments for evolving

IPD player strategies involved the use of a basic GA. In

this paper we examine how well a simple GA performs

against the more recent Population Based Incremental

Learning system under similar conditions. We find that

GA performs slightly better than standard PBIL under

most conditions. This differnce in performance can be

mitigated and reversed through the use of a ‘guided’

mutation operator.

I. INTRODUCTION

Experiments in to evolving strategies to play Iterated

Prisoners Dilemma (IPD) were initially carried by Axelrod

in 1987 [1]. These experiments found that from an

evolutionary stand point Tit-For-Tat was a dominant

strategy. In the years since these early results others have

attempted to evolve IPD strategies and made claims about

the dominance of various other approaches to playing the

game [2] [3] [4]. This paper is not directly concerned with

the arguments for or against various strategies but is rather

concerned with how the more recent statistical approaches to

evolutionary computation compare with traditional GA

approaches in evolving those strategies.

To this end a series of experiments have been run

comparing the effectiveness of IPD strategies evolved

independently by straightforward GA and PBIL

implementations. Where PBIL has proven less effective a

guided mutation operator is shown to improve performance.

The paper introduces the strategy representation scheme

used, the idea behind PBIL and the guided mutation

operator, the way in which PBIL and GA were compared

and the results of that comparison.

II. REPRESENTATION

IPD strategies may be represented in a number of

different ways partially dependent upon the particular

variation of IPD being investigated [5] [6]. For the

GA/PBIL comparison being undertaken the original Axelrod

representation for a three-round memory based game was

used [1].

Under this system a 0 represents co-operation and 1

represents defect. A player's memory contains information

on the last three rounds of play each of these rounds being

represented by a bit pair. The bit pair consists of a record of

both the player’s move and its opponent’s move in one of

the previous rounds. Organising the pairs in time order

provides a six-bit string that can be interpreted as a number

between 0 and 63. Assuming a simple cooperate or defect

reaction to any memory there are therefore a maximum of 64

possibly responses to a 3-round memory and the IPD

strategy can thus be represented as a 64 bit string, each

position in the string providing the response co-operate or

defect to a specific memory. The below diagram illustrates

how the player memory and strategy work together to

produce a players move in the current round:

Since at the beginning of a game players start with no

memory of previous rounds additional information is

required as part of the representation. To this end an

additional 6 bits is used to provide the player with an initial

1 0 1 0 1 0

Player A Memory

r-3 r-2 r-1

A-B A-B A-B

1 0 1 0 1 0 = 21
16 32 4 8 1 2

1 0 0 1 1

1 0 2 21 62 61 63

1

Player A Strategy

Player Move:

Bit Value:

Move index:

Time:

r = Current Round

0 1 0 1 0 1

Player B Memory

r-3 r-2 r-1

B-A B-A B-A

0 1 0 1 0 1 = 42
16 32 4 8 1 2

Player B Strategy

… … 1 1 0 0 0 0

1 0 2 42 62 61 63

1 … … 0

Moves in round r
Player A Player B

1 = Defect 0 = Co-op

Figure 1. Player Memory and Strategy Representation

starting memory and so its first index into the strategy. As

play progresses the starting memory is eventually forgotten

and play continues purely based upon true memories of the

current interaction. The starting information could therefore

be considered as a predisposition of a player towards its

opponent. The full IPD representation is shown below:

III. INTRODUCTION TO PBIL

Population based incremental learning (PBIL [7]) is a

statistical approach to evolutionary computation that

combines elements of GAs and Reinforcement Learning.

Under a simple PBIL scenario the basic representation of

a solution can be the same as in a GA but instead of storing

each possibility explicitly the population is replaced by a

probability distribution. To elaborate further. If we

consider a single member of a GA population it consists of a

chromosome with a number of alleles. Each allele often

represents some single variable in the solution and may take

on a number of possible values, for the given population

member though the value of each alleles is fixed. Within the

population of solutions values for particular alleles exist

with differing frequencies, if each population member was

identical then only one value for each alleles would exist in

the population as a whole, at the other extreme a wide

variety of values would exist for each alleles within the

population with little variation in frequency among them.

PBIL essentially represents these frequencies directly and

dispenses with the population itself. Thus under PBIL, each

value of each alleles has a frequency (or probability) of

existing within a hypothetical population associated with

itself - the probability of each value within an allele must

add up to 1. To generate a real solution string it is possible

to select allele values probabilistically from the PBILs

probability distribution. A diagram illustrating the

difference between GA and PBIL representation can be

found towards the end of this section (Figure 3).

To update a GAs population, population members are

first evaluated and then recombine in some way to generate

a new population. Members with a higher fitness have a

greater probability of either finding their way in to the new

population or helping generate new population members.

Mutation is usually used to help increase diversity and

reintroduce information that may have been lost at an earlier

stage.

PBIL updates in a rather different manner. What needs to

be updated is the probability distribution rather than a fixed

population. The simplest way to perform the update is to

find a good candidate solution and then increase the

probability of each of the values of its alleles in the

distribution (positive learning). The reverse can be done

with a bad candidate solution with probabilities of values

being reduced (negative learning). The rules for updating

the probability of values can be quite simple and are usually

tied to a learning rate (LR). The learning rate determines by

how much the probability of a value under a given allele

should increase and thus by how much the remaining value

probabilities should be reduced. Fixed or variable learning

rates can be used; if the LR is variable it may be tied to the

relative fitness of the candidate solution being used to

update the distribution.

Since a PBIL system will often have no real population of

solutions to draw candidates from a temporary pool of

solutions maybe generated from the distribution. The

solutions in this pool can then be evaluated and the best and

worst used to update the distribution.

Mutation is often used with PBIL to help increase the

search space much as with GA. Various schemes to

implement mutation exist however two common approaches

are either to vary the value frequencies by some amount with

low probability or, alternatively, apply mutation with a low

probability to generated population members before they are

evaluated. Recently the guided mutation operator has been

5

0

4

1

3

0

2

1

1

0

0

1

0

0

1

1

2

0

3

1

4

0

5

1

58

0

59

1

60

0

61

1

62

0

63

1 …

Initial Memory Strategy

A B A B A B A

B A B A A B B

C A A B A A C

C B B A C A A

C B A A A B A

GA representation

Population Size: 5

Chromosomes: 10

alleles long

Alleles: Draw a value

from the set {A, B, C}

0 1 2 3 4 5 6 Alleles Number:

G
A

P
o

p
u

latio
n

Alleles Number:

Allele 0 value

frequencies:

A = 1/5

B = 1/5

C = 3/5

0

0.2

0.2

0.6

A =

B =

C =

V
alu

e

F
req

.

1

0.2

0.6

0.0

2

0.6

0.4

0.0

3

0.4

0.6

0.0

4

0.8

0.0

0.2

5

0.4

0.6

0.0

6

0.6

0.2

0.2

Equivalent PBIL Representation

Probability distribution stores information about frequency of

values at each allele.

Figure 2. Complete IPD Representation

Figure 3.Differences between GA and PBIL representation

proposed ([10]) and a variation of this is used here. The

guided mutation operator works in a similar manner to the

second mutation mechanism discussed. A generated

population member may have some of its values selected at

random for adjustment. In the case of normal mutation the

adjustment itself is also random. Guided mutation uses a

different approach, drawing upon the last best solution. In

this approach the last best solution from the previous

generation is remembered (this would often be the case

anyhow) and any time a mutation occurs the mutated value

is adjusted to reflect the value of the last best solution. In

this way the operator acts to constrain variation to solutions

that have been known to be at least reasonably effective in

the past.

While the above explanation of PBILs operation is

sufficient to explain how alleles with a discrete set of values

or symbols may be represented it does not explain how

continuous ranges maybe dealt with. Since continuous

ranges are not required in the formation of the IPD strategies

used here, no explanation of how this is accomplished will

be provided.

IV. PBIL SPECIFICS

The PBIL implementation used for running the IPD

experiments represents each allele as a cell with a specific

numeric range and number of symbols. For the purposes of

IPD each cell is ranged 0 to 1 with two symbols, i.e. 0 and 1.

At the beginning of an experiment each cell was set such

that 0 and 1 had an equal probability.

The positive reinforcement rule used in the experiments

was simple (taken from [7]). The mechanism used is

described below:

() ()

solution candidate thein c positionat Bit value-

1) and 0 (between rate learning The -

ondistributi theof c cell in 1a ofty Probabili-

0.1

c

c

ccc

cand

LR

prob

LRcandLRprobprob −+−×=

No negative learning was used in the experiments.

Learning rates were varied between experiments but were

constant within a give experiment. The range of learning

rates used was between 10% and 0.5%.

Two different mutation operators were used within the

experiments. In the first instance it was applied by changing

generated population members with a probability of 0.7%

per allele. When changed a value would simply flip from 1

to 0 or vice versa. In the second instance guided mutation

was used, the last best solution being recalled from the

previous (non test pool) population. A guided mutation rate

of 1% was used. The last best solution was taken as the last

population member used to positively reinforce the

probability distribution. Many experiments were also run

with no mutation operator in effect.

A generation in the sense of PBIL consists of the creation

of a population, evaluation of that population and an update

of the distribution by the fittest population member. In all

the experiments described here PBIL was used with a

greater number of generations than the GA for reasons

described later.

To perform an update of the probability distribution two

sets of IPD strategies were generated. The first ‘update’ or

‘population’ set was relatively small and used for updating

the distribution; the second ‘test’ set was used purely for

evaluating the first set. An example would be a population

set of 10 coupled with a test set of 99. In this case each of

the 10 population members would be tested against each of

the 99 testing members to find its fitness. The population

member with the highest mean score against each of its 99

opponents would be used to update the distribution.

 This mechanism is necessary to even out the disparity in

information use between the GA and PBIL when updating.

While the GA (in a sense) makes use of its entire population

to create a new population the PBIL system only uses one

population member to update the distribution. Different

ways of resolving this disparity might be used but the one

above was selected for its ease of understanding. By

selecting a smaller population size played against a larger

testing pool the quality of individual evaluations may be

maintained. By repeating the process for a larger number of

generations than the GA a fairer use of information by both

is maintained. In each case the total number of games

played and solution evaluations must be maintained or bias

will be introduced. To help prevent bias the following must

hold:

()

runs system PBIL thegeneration ofnumber The - PBILgens

system PBIL theof size pool testingThe - pPBILtestpo

system PBIL theof size population The - PBILpop

for runs GA thesgeneration ofnumber The - GAgens

size population GA The - GApop

sevaluation solution ofnumber Total - ILevalsGAevals/PB

1

evalsevals

evals

evals

PBILGA

PBILgenspPBILtestpoPBILpopPBIL

GAgensGApopGApopGA

=

××=

×−×=

With the above in mind a population size 100 GA running

for a 100 generations could be played against a PBIL system

using a population size of 10 and a testing pool of 99

running for 1000 generations. If however the GAs

population was reduced a corresponding reduction in the

population size, test pool size or number of generations

would be required by the PBIL system. Some combinations

evidently will be more effective than others and in the

course of these experiments different variations were

considered.

For the purposes of comparison with the GA ten IPD

strategies are generated at various points through out the

experimental run (the GA records corresponding data after

every generation). The ten strategies are generated in

exactly the same way as for evaluation or testing. The

interval between points at which comparison strategies are

recorded can be determined by:

GAgensPBILgensrvalOutputInteComparison /=

The experimental random number generator seeds were

select from the system clock, most of the PBIL experiments

were conducted using the random number generator found in

 [8], the remaining experiments used the standard Java JDK

random number generator.

V. GA SPECIFICS

Individual strings (strategies) in the initial population are

generated randomly with 50% possibility of choosing

“Defection” and 50% possibility of choosing “Cooperation”

at every bit of every 70-bits string.

Performance (fitness) of a string is evaluated by the

average score that it earns from playing Iterated Prisoners’

Dilemma with every other string in the same population.

Like natural selection, individuals having higher fitness

are selected with higher probability. First of all, the fittest

string is ensured to be selected as a parent, which is called

“Elitism”. Each of rest parents is chosen using the “Roulette-

Wheel Algorithm”. A random number

),0[21 popSizefffr +++∈ K is created, then the string i

whose fitness notated if is selected,

where ii fffrfff +++<≤+++
−

KK 21121 . [9]

Strings are selected pair-wise and undergo one-point

crossover, exchanging portions of strings of each other.

Newly created intermediate strings mutate with very low rate

(0.7%) by randomly alternating one bit of “cooperation” to

“defection”, or vice verse.

The offspring of the parent strings go on to form a

completely new population for the next generation.

Strings used for comparison with PBIL are the first 10

strings chosen of every generation by Roulette-Wheel

selection without Elitism.

VI. GAMES

Part of the evaluation process of an IPD strategy involves

playing against other IPD strategies. To this end each game

used for evaluation consisted of 150 moves being played

and the standard score grid below being used:

The same game parameters were used for the comparison

discussed below.

VII. GA AND PBIL COMPARISON

Providing a comparison between GA and PBIL systems in

a way that provides neither with an advantage is difficult,

however as much bias as possible has been removed. The

following describes how the comparison was eventually

realized.

To provide a comparison between the GA and PBIL

systems for evolving IPD strategies, both systems were run

independently and their resulting strategies tested against

one another.

 In running the comparison between GA and PBIL it was

important to not provide a significant advantage to either, it

was also critical that the comparison mechanism itself not be

unfair or subject to too much uncertainty.

 To counter the first problem the PBIL and GA systems

were run for a differing number of generations with differing

population sizes, the total number of evaluations and

individual evaluation quality was maintained however. See

‘PBIL Specifics’ above for more details. To sensibly

compare the GA and PBIL strategies at comparable intervals

in the runs, ten strategies were generated by the PBIL and

recorded for comparison and ten strategies were selected

probabilistically and recorded for comparison by the GA.

The recording process began at initialization and was

performed at regular intervals up until the end of the run in

each system. In the experiments reported here GA runs

3

3

5

0

0

5

Score A

Score B
Co-op Defect

Player A

C
o

-o
p

D

efect

P
lay

er B
 1

1

Figure 4. Standard Pay-off table

lasted 100 or 300 generations, PBIL runs lasted between

1000 and 6000 generations.

 To provide a comparison between a single GA and PBIL

experiment for a given time, each of the ten strategies from

each was played against all the strategies from the

opposition. The results of these games, the mean scores and

standard deviations were recorded. The mean strategy score

for the GA and PBIL at the specified time can then be found

easily. A single comparison such as this, results in 100

games being played. When comparing GA and PBIL runs in

total this process is repeated for all compatible comparison

points in both the PBIL and GA systems (either 100 or 300

points).

 To improve the validity of the results each PBIL and GA

experiment was repeated ten times (unless otherwise stated).

Each of the PBIL and GA experiments could then be

compared to one another and the results averaged. This

results in 100 comparisons being done for a single time

instance and so 10000 games being played between 200

strategies.

VIII. EXPERIMENTAL RESULTS

While a large number of PBIL configurations and

somewhat smaller number of GA configurations were tried,

the most effective GA and PBIL configurations used are

shown below:

Type GA PBIL PBIL+GM

Population Size 100 5 5

Learning Pool NA 99 99

Mutation Rate 0.007 0 0.9

Learning Rate NA 0.025 0.025

Generations 300 6000 6000

Data Points 300 300 300

Table 1: Comparison of most effective GA and PBIL configurations

The first two of these configurations form the basis of the

comparison at the beginning of this section. The third

configuration, PBIL with Guided Mutation, is shown later to

be more effective than the basic PBIL configuration.

The graphs, shown below, use ‘relative mean fitness’ to

demonstrate the relative effectiveness of algorithms being

compared. This is determined by the mean fitness of all of

player A’s strategies divided by the mean fitness of all of

player B’s strategies. Player A and B are determined by

what the graph is attempting to demonstrate. When

comparing various PBIL configurations against GA, player

A will always be the best GA configuration while player B is

each of the tested PBIL configurations. As a result any

score above 1.0 shows greater effectiveness for player A

strategies and anything below 1.0 shows greater

effectiveness for player B strategies.

 The following diagram shows the relative performance

of different PBIL configurations against GA. In this case

the GA parameters are identical to those above and the PBIL

parameters only vary in terms of the learning rate (Figure 5),

PBIL uses no mutation in this instance:

0.5

0.75

1

1.25

1.5

1.75

1 51 101 151 201 251

Generations

R
e
la

ti
v
e
 M

e
a
n

 F
it

n
e
s
s

0.1 0.05 0.025 0.01 0.005

Figure 5: Best GA v Population 5, no mutation PBIL with varying learning

rates. PBIL initial fares well or poorly depending on LR but ultimately

does worse than GA.

 If standard mutation is applied to PBIL its performance

is generally reduced. At low learning rates this effect is

minimal but at higher learning rates the negative effect

becomes more evident The diagrams below show the

reduction in effectiveness caused by standard mutation at

different learning rates (Figure 6, 7):

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1 51 101 151 201 251

Generations

R
e

la
ti

v
e

 M
e

a
n

 F
it

n
e

s
s

No Mutation Mutation

Figure 6: PBIL performance against GA with and without standard

mutation a at low learning rate (0.005). Generation 1- 51, GA does very

well compared to PBIL. Generation 51-101, PBIL recovers somewhat.

Generation 101 onwards, PBIL performance stabilizes but is less effective

than GA.

0.4

0.6

0.8

1

1.2

1.4

1.6

1 51 101 151 201 251

Generations

R
e

la
ti

v
e

 M
e

a
n

 F
it

n
e

s
s

No Mutation Mutation

Figure 7: PBIL performance against GA with and without standard

mutation at high learning rate (0.05). Generations 1-51, PBIL initial

performs well but rapidly looses out to GA. Generation 51 onwards, PBIL

stabalizes doing worse than PBIL. Mutated configuration PBIL does worse

than non mutation equivelent

Increasing the number of tournaments played while

reducing the number of generations of the PBIL yields

results that are generally not quite as favorable although

early performance does tend to be a little better (Figure 8).

In the results show below the PBIL population size has been

increased to 10 while the number of generations has been

reduced to three thousand, various learning rates are shown:

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

1 51 101 151 201 251

Generations

R
e

la
ti

v
e

 M
e

a
n

 F
it

n
e

s
s

0.1 0.05 0.025 0.01 0.005

Figure 8: Best GA v Population size 10, no mutation PBIL with varying

learning rate. Generation 1-51, PBIL performs well or poorly depending

on LR. Generation 51-101, PBIL performance begins to stabalize if it

hasn’t already. Generation 101 onwards, PBIL performance stabailizes but

does worse than GA.

The population size 10 PBIL experiments run with

standard mutation enabled, again perform somewhat worse

(Figure 9):

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

1 51 101 151 201 251

Generations

R
e

la
ti

v
e

 M
e

a
n

 F
it

n
e

s
s

0.1 0.05 0.025 0.01 0.005

Figure 9: GA v Population size 10 PBIL with standard mutation and

varying learning rates. Generation 1-51, PBIL performs according to

learning rate well or poorly. Generation 51-101, PBIL performance

stabalizes if it hasn’t already. Generation 101 onwards, PBIL performance

stabalizes and is worse than GA, often increasingly so.

The above results show that PBIL is beaten by GA in all

of its basic configurations. The use of standard mutation

generally reduces performance still further. We now

introduce the use of guided mutation and gauge how it

affects performance.

In the graph below the best GA configuration is pitted

against PBIL with guided mutation enabled at various, fairly

low, levels (Figure 10):

0.7

1

1.3

1.6

1.9

2.2

0 25 50 75 100 125 150 175 200 225 250 275
Generations

R
e

la
ti

v
e
 M

e
a
n

 F
it

n
e
s
s

0.005 0.015 0.1 0.4 0.01 (big sample)

Figure 10: PBIL with guided mutation v standard configuration GA. PBIL

performs well against GA to begin with losing ground around generation

50. Low (0.005) and high (0.4) levels of guided mutation do not provide a

performance improvement. A level of 0.01 allows PBIL to compare

favourably with GA by around generation 200. The larger sample is 50

PBIL and GA experiments being used.

The result above shows that guided mutation allows PBIL

to recover and compete favourably with the GA when used

at low levels. Far higher levels of guided mutation have also

been investigated and are shown below (Figure 11):

0.5

0.75

1

1.25

1.5

1.75

2

0 25 50 75 100 125 150 175 200 225 250 275

Generations

R
e
la

ti
v

e
 M

e
a

n
 F

it
n

e
s

s

0.8 0.99 0.9 (big sample)

Figure 11: PBIL with guided mutation v best configuration GA. Highest

and lowest levels of guided mutation (0.99 and 0.8) perform well in the

first 25 generations with performance dropping of thereafter. Guide

mutation at 0.9 starts well and continues to perform better than GA

continually. The larger sample is 20 PBIL experiments v 50 GA

experiments.

The above results show that a high level of guided

mutation can boost PBIL performance beyond that of the

standard best GA configuration. This seems somewhat

surprising and suggests that a smaller variation in the PBIL

population from generation to generation can make a

significant contribution to performance.

As a final example we show that PBIL is effective against

GA in the case of only a small population size is available.

Approximating the original Axelrod experiments [1], the

GA population is reduced to size 20 with a mutation rate of

0.7%. The tes is run for 300 generations, somewhat longer

than the orginal experiments. This GA is run against an

opponent PBIL using a population size of 5, training pool of

19 and running for 1200 generations without any mutation.

0.6

0.8

1

1.2

1.4

1.6

1 101 201

Generations

R
e
la

ti
v
e
 M

e
a
n

 F
it

n
e
s
s

Axelrod like GA v PBIL

Figure 12: Axelrod like GA versus PBIL. Generation 1-51, PBIL initially

does badly against the GA due to its low learning rate but is rapidly

gaining ground after about 25 generations. Generation 51-101, PBIL

continues to gain grownd and reaches a peak in realtive performance.

Generation 101-201, PBILs relative performance is degraded but is still

better than GA. Generation 201 onwards, PBILs performance stabilizes

and does better than GA.

As can be seen from the above, when the GAs population

is quite small the use of a probability distribution by PBIL

comes in to its own – it might not use any more evaluations

but it can certainly generate more effective strategies even if

it takes it a while.

IX. CONCLUSIONS

The results above show that the use of guided mutation in

conjunction with PBIL is able to beat a standard GA in

evolving IPD strategies.

Standard PBIL without guided mutation is unable to beat

GA at evolving IPD strategies and consistently does slightly

worse once the systems have stabilized.

The initial relative performance of PBIL may be superior

to GA if the learning rate is high enough as it is able to learn

fairly effective strategies quickly; however this tends to be

accompanied by later worse performance due to overly rapid

convergence. Setting the learning rate of the PBIL system

lower tends to allow the GA a better run in the beginning

and reduces the negative effects of rapid convergence.

Increasing the PBIL population size seems to cause far

greater variation in performance relative to the learning rate

used and may help reduce a performance gap when guided

mutation is not used.

Introducing standard mutation into the PBIL system

doesn’t seem to remedy the effects of overly rapid

convergence and indeed seems to generally exacerbate the

problem. At higher learning rates and larger population

sizes mutation would seem to help smooth performance out

a little over time if not actually improve it.

When the GA population size is reduced PBIL is able to

perform significantly better than GA. While the GA

struggles under a lack of evaluations the PBIL is able to use

what evaluations it has in the context of a hypothetically

infinite population and respond accordingly. When the GA

population is increased PBIL’s advantage tends to be lost.

Any set of comparisons is difficult. The set of

comparisons shown here only encompasses one particular

problem using a limited number of configurations of both

systems, as such its results shouldn’t be considered

definitive in arguing whether PBIL or GA is more

appropriate under much wider conditions. It does however

lend additional support to the use of guided mutation.

Further work on the effectiveness of comparable GA and

PBIL systems should be undertaken to better understand

when each is more applicable; some form of co evolutionary

approach may yield interesting results for instance. It is

important to establish when a technique is effective and

when it is not.

REFERENCES

[1] Robert Axelrod, The Evolution of Strategies in the Iterated

Prisoner's Dilemma, in Davis, L. (ed.), Genetic algorithms and

simulated annealing, Research notes in AI, Pitman/Morgan

Kaufmann, 1987, 32-41

[2] Ken Binmore, Game Theory and the Social Contract I, playing

fair, MIT Press, 1994

[3] Ken Binmore, Game Theory and the Social Contract II, just

playing, MIT Press, 1998

[4] Linster, B., Evolutionary Stability in the Repeated Prisoners'

Dilemma Played by Two-State Moore Machines, Southern

Economic Journal, 1992, pages 880-903

[5] Fogel, D.B. (1993). Evolving behaviors in the iterated prisoner's

dilemma. Evolutionary Computation, 1(1), 77-97.

[6] Crowley, P.H. (1996). Evolving cooperation: strategies as

hierarchies of rules. BioSystems, 37:67-80.

[7] Shumeet Baluja, Population Based Incremental Learning – A

Method for Integrating Genetic Search Based Function

Optimisation and Competitive Learning, (Tech. Rep. No. CMU-

CS-94-163). Pittsburgh, PA: Carnegie Mellon University (1994)

[8] Numerical Recipes in C++: The Art of Scientific Computing – p?

- William H. Press, Saul A. Teukolsky, William T. Vetterling,

Brian P. Flannery

[9] Course cc385, “Genetic Programming and its Applications”, 2003

– University Of Essex, Prof Riccardo Poli

[10] Qingfu Zhang, Jianyong Sun and Edward Tsang, Evolutionary

Algorithm with Guided Mutation for the Maximum Clique

Problem, TEC 2005

