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Abstract- Axelrod’s original experiments for evolving 

IPD player strategies involved the use of a basic GA. In 

this paper we examine how well a simple GA performs 

against the more recent Population Based Incremental 

Learning system under similar conditions. We find that 

GA performs slightly better than standard PBIL under 

most conditions.  This differnce in performance can be 

mitigated and reversed through the use of a ‘guided’ 

mutation operator. 

I.  INTRODUCTION 

Experiments in to evolving strategies to play Iterated 

Prisoners Dilemma (IPD) were initially carried by Axelrod 

in 1987  [1]. These experiments found that from an 

evolutionary stand point Tit-For-Tat was a dominant 

strategy.  In the years since these early results others have 

attempted to evolve IPD strategies and made claims about 

the dominance of various other approaches to playing the 

game  [2] [3] [4].  This paper is not directly concerned with 

the arguments for or against various strategies but is rather 

concerned with how the more recent statistical approaches to 

evolutionary computation compare with traditional GA 

approaches in evolving those strategies. 

 

To this end a series of experiments have been run 

comparing the effectiveness of IPD strategies evolved 

independently by straightforward GA and PBIL 

implementations.  Where PBIL has proven less effective a 

guided mutation operator is shown to improve performance. 

 

The paper introduces the strategy representation scheme 

used, the idea behind PBIL and the guided mutation 

operator, the way in which PBIL and GA were compared 

and the results of that comparison. 

II.  REPRESENTATION 

IPD strategies may be represented in a number of 

different ways partially dependent upon the particular 

variation of IPD being investigated  [5] [6].  For the 

GA/PBIL comparison being undertaken the original Axelrod 

representation for a three-round memory based game was 

used  [1].   

 

Under this system a 0 represents co-operation and 1 

represents defect.  A player's memory contains information 

on the last three rounds of play each of these rounds being 

represented by a bit pair. The bit pair consists of a record of 

both the player’s move and its opponent’s move in one of 

the previous rounds.  Organising the pairs in time order 

provides a six-bit string that can be interpreted as a number 

between 0 and 63.  Assuming a simple cooperate or defect 

reaction to any memory there are therefore a maximum of 64 

possibly responses to a 3-round memory and the IPD 

strategy can thus be represented as a 64 bit string, each 

position in the string providing the response co-operate or 

defect to a specific memory.  The below diagram illustrates 

how the player memory and strategy work together to 

produce a players move in the current round: 

Since at the beginning of a game players start with no 

memory of previous rounds additional information is 

required as part of the representation. To this end an 

additional 6 bits is used to provide the player with an initial 
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starting memory and so its first index into the strategy. As 

play progresses the starting memory is eventually forgotten 

and play continues purely based upon true memories of the 

current interaction.  The starting information could therefore 

be considered as a predisposition of a player towards its 

opponent.   The full IPD representation is shown below: 

III.  INTRODUCTION TO PBIL 

Population based incremental learning (PBIL  [7]) is a 

statistical approach to evolutionary computation that 

combines elements of GAs and Reinforcement Learning. 

 

Under a simple PBIL scenario the basic representation of 

a solution can be the same as in a GA but instead of storing 

each possibility explicitly the population is replaced by a 

probability distribution.  To elaborate further.  If we 

consider a single member of a GA population it consists of a 

chromosome with a number of alleles. Each allele often 

represents some single variable in the solution and may take 

on a number of possible values, for the given population 

member though the value of each alleles is fixed.  Within the 

population of solutions values for particular alleles exist 

with differing frequencies, if each population member was 

identical then only one value for each alleles would exist in 

the population as a whole, at the other extreme a wide 

variety of values would exist for each alleles within the 

population with little variation in frequency among them.  

PBIL essentially represents these frequencies directly and 

dispenses with the population itself.  Thus under PBIL, each 

value of each alleles has a frequency (or probability) of 

existing within a hypothetical population associated with 

itself - the probability of each value within an allele must 

add up to 1. To generate a real solution string it is possible 

to select allele values probabilistically from the PBILs 

probability distribution.  A diagram illustrating the 

difference between GA and PBIL representation can be 

found towards the end of this section (Figure 3). 

 

To update a GAs population, population members are 

first evaluated and then recombine in some way to generate 

a new population.  Members with a higher fitness have a 

greater probability of either finding their way in to the new 

population or helping generate new population members.  

Mutation is usually used to help increase diversity and 

reintroduce information that may have been lost at an earlier 

stage. 

 

PBIL updates in a rather different manner. What needs to 

be updated is the probability distribution rather than a fixed 

population.  The simplest way to perform the update is to 

find a good candidate solution and then increase the 

probability of each of the values of its alleles in the 

distribution (positive learning). The reverse can be done 

with a bad candidate solution with probabilities of values 

being reduced (negative learning).  The rules for updating 

the probability of values can be quite simple and are usually 

tied to a learning rate (LR). The learning rate determines by 

how much the probability of a value under a given allele 

should increase and thus by how much the remaining value 

probabilities should be reduced.  Fixed or variable learning 

rates can be used; if the LR is variable it may be tied to the 

relative fitness of the candidate solution being used to 

update the distribution. 

 

Since a PBIL system will often have no real population of 

solutions to draw candidates from a temporary pool of 

solutions maybe generated from the distribution.  The 

solutions in this pool can then be evaluated and the best and 

worst used to update the distribution. 

 

Mutation is often used with PBIL to help increase the 

search space much as with GA.  Various schemes to 

implement mutation exist however two common approaches 

are either to vary the value frequencies by some amount with 

low probability or, alternatively, apply mutation with a low 

probability to generated population members before they are 

evaluated.  Recently the guided mutation operator has been 
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proposed ( [10]) and a variation of this is used here.  The 

guided mutation operator works in a similar manner to the 

second mutation mechanism discussed.  A generated 

population member may have some of its values selected at 

random for adjustment.  In the case of normal mutation the 

adjustment itself is also random. Guided mutation uses a 

different approach, drawing upon the last best solution.  In 

this approach the last best solution from the previous 

generation is remembered (this would often be the case 

anyhow) and any time a mutation occurs the mutated value 

is adjusted to reflect the value of the last best solution.  In 

this way the operator acts to constrain variation to solutions 

that have been known to be at least reasonably effective in 

the past. 

 

While the above explanation of PBILs operation is 

sufficient to explain how alleles with a discrete set of values 

or symbols may be represented it does not explain how 

continuous ranges maybe dealt with.  Since continuous 

ranges are not required in the formation of the IPD strategies 

used here, no explanation of how this is accomplished will 

be provided. 

IV.  PBIL SPECIFICS 

The PBIL implementation used for running the IPD 

experiments represents each allele as a cell with a specific 

numeric range and number of symbols.  For the purposes of 

IPD each cell is ranged 0 to 1 with two symbols, i.e. 0 and 1. 

At the beginning of an experiment each cell was set such 

that 0 and 1 had an equal probability. 

   

The positive reinforcement rule used in the experiments 

was simple (taken from  [7]).  The mechanism used is 

described below: 
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No negative learning was used in the experiments.  

Learning rates were varied between experiments but were 

constant within a give experiment.  The range of learning 

rates used was between 10% and 0.5%. 

 

Two different mutation operators were used within the 

experiments.  In the first instance it was applied by changing 

generated population members with a probability of 0.7% 

per allele. When changed a value would simply flip from 1 

to 0 or vice versa.  In the second instance guided mutation 

was used, the last best solution being recalled from the 

previous (non test pool) population.  A guided mutation rate 

of 1% was used.  The last best solution was taken as the last 

population member used to positively reinforce the 

probability distribution.  Many experiments were also run 

with no mutation operator in effect. 

 

A generation in the sense of PBIL consists of the creation 

of a population, evaluation of that population and an update 

of the distribution by the fittest population member.  In all 

the experiments described here PBIL was used with a 

greater number of generations than the GA for reasons 

described later. 

 

To perform an update of the probability distribution two 

sets of IPD strategies were generated.  The first ‘update’ or 

‘population’ set was relatively small and used for updating 

the distribution; the second ‘test’ set was used purely for 

evaluating the first set.  An example would be a population 

set of 10 coupled with a test set of 99.  In this case each of 

the 10 population members would be tested against each of 

the 99 testing members to find its fitness.  The population 

member with the highest mean score against each of its 99 

opponents would be used to update the distribution. 

 

  This mechanism is necessary to even out the disparity in 

information use between the GA and PBIL when updating. 

While the GA (in a sense) makes use of its entire population 

to create a new population the PBIL system only uses one 

population member to update the distribution.  Different 

ways of resolving this disparity might be used but the one 

above was selected for its ease of understanding.  By 

selecting a smaller population size played against a larger 

testing pool the quality of individual evaluations may be 

maintained.  By repeating the process for a larger number of 

generations than the GA a fairer use of information by both 

is maintained.  In each case the total number of games 

played and solution evaluations must be maintained or bias 

will be introduced. To help prevent bias the following must 

hold: 
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With the above in mind a population size 100 GA running 

for a 100 generations could be played against a PBIL system 

using a population size of 10 and a testing pool of 99 

running for 1000 generations.  If however the GAs 

population was reduced a corresponding reduction in the 



population size, test pool size or number of generations 

would be required by the PBIL system.  Some combinations 

evidently will be more effective than others and in the 

course of these experiments different variations were 

considered. 

 

For the purposes of comparison with the GA ten IPD 

strategies are generated at various points through out the 

experimental run (the GA records corresponding data after 

every generation).  The ten strategies are generated in 

exactly the same way as for evaluation or testing.  The 

interval between points at which comparison strategies are 

recorded can be determined by: 

 

GAgensPBILgensrvalOutputInteComparison /=  

 

The experimental random number generator seeds were 

select from the system clock, most of the PBIL experiments 

were conducted using the random number generator found in 

 [8], the remaining experiments used the standard Java JDK 

random number generator. 

V.  GA SPECIFICS 

Individual strings (strategies) in the initial population are 

generated randomly with 50% possibility of choosing 

“Defection” and 50% possibility of choosing “Cooperation” 

at every bit of every 70-bits string.  

 

Performance (fitness) of a string is evaluated by the 

average score that it earns from playing Iterated Prisoners’ 

Dilemma with every other string in the same population.  

 

Like natural selection, individuals having higher fitness 

are selected with higher probability. First of all, the fittest 

string is ensured to be selected as a parent, which is called 

“Elitism”. Each of rest parents is chosen using the “Roulette-

Wheel Algorithm”. A random number 

),0[ 21 popSizefffr +++∈ K is created, then the string i 

whose fitness notated if  is selected, 

where ii fffrfff +++<≤+++
−

KK 21121 . [9] 

 

Strings are selected pair-wise and undergo one-point 

crossover, exchanging portions of strings of each other. 

Newly created intermediate strings mutate with very low rate 

(0.7%) by randomly alternating one bit of “cooperation” to 

“defection”, or vice verse. 

 

The offspring of the parent strings go on to form a 

completely new population for the next generation. 

 

Strings used for comparison with PBIL are the first 10 

strings chosen of every generation by Roulette-Wheel 

selection without Elitism. 

VI.  GAMES 

Part of the evaluation process of an IPD strategy involves 

playing against other IPD strategies. To this end each game 

used for evaluation consisted of 150 moves being played 

and the standard score grid below being used: 

The same game parameters were used for the comparison 

discussed below. 

VII.  GA AND PBIL COMPARISON 

Providing a comparison between GA and PBIL systems in 

a way that provides neither with an advantage is difficult, 

however as much bias as possible has been removed.  The 

following describes how the comparison was eventually 

realized. 

 

To provide a comparison between the GA and PBIL 

systems for evolving IPD strategies, both systems were run 

independently and their resulting strategies tested against 

one another. 

 

  In running the comparison between GA and PBIL it was 

important to not provide a significant advantage to either, it 

was also critical that the comparison mechanism itself not be 

unfair or subject to too much uncertainty. 

 

  To counter the first problem the PBIL and GA systems 

were run for a differing number of generations with differing 

population sizes, the total number of evaluations and 

individual evaluation quality was maintained however.  See 

‘PBIL Specifics’ above for more details.  To sensibly 

compare the GA and PBIL strategies at comparable intervals 

in the runs, ten strategies were generated by the PBIL and 

recorded for comparison and ten strategies were selected 

probabilistically and recorded for comparison by the GA.  

The recording process began at initialization and was 

performed at regular intervals up until the end of the run in 

each system.  In the experiments reported here GA runs 

3 

3 

5 

0 

0 

5 

Score A 

Score B 
Co-op Defect 

Player A 

C
o

-o
p

 
D

efect 

P
lay

er B
 1 

1 

Figure 4. Standard Pay-off table 



lasted 100 or 300 generations, PBIL runs lasted between 

1000 and 6000 generations. 

 

  To provide a comparison between a single GA and PBIL 

experiment for a given time, each of the ten strategies from 

each was played against all the strategies from the 

opposition.  The results of these games, the mean scores and 

standard deviations were recorded.  The mean strategy score 

for the GA and PBIL at the specified time can then be found 

easily.  A single comparison such as this, results in 100 

games being played.  When comparing GA and PBIL runs in 

total this process is repeated for all compatible comparison 

points in both the PBIL and GA systems (either 100 or 300 

points). 

 

  To improve the validity of the results each PBIL and GA 

experiment was repeated ten times (unless otherwise stated).  

Each of the PBIL and GA experiments could then be 

compared to one another and the results averaged. This 

results in 100 comparisons being done for a single time 

instance and so 10000 games being played between 200 

strategies. 

VIII.  EXPERIMENTAL RESULTS 

While a large number of PBIL configurations and 

somewhat smaller number of GA configurations were tried, 

the most effective GA and PBIL configurations used are 

shown below: 

  

Type GA PBIL PBIL+GM 

Population Size 100 5 5 

Learning Pool NA 99 99 

Mutation Rate 0.007 0 0.9 

Learning Rate NA 0.025 0.025 

Generations 300 6000 6000 

Data Points 300 300 300 

Table 1: Comparison of most effective GA and PBIL configurations 

The first two of these configurations form the basis of the 

comparison at the beginning of this section.  The third 

configuration, PBIL with Guided Mutation, is shown later to 

be more effective than the basic PBIL configuration. 

 

The graphs, shown below, use ‘relative mean fitness’ to 

demonstrate the relative effectiveness of algorithms being 

compared.  This is determined by the mean fitness of all of 

player A’s strategies divided by the mean fitness of all of 

player B’s strategies.  Player A and B are determined by 

what the graph is attempting to demonstrate. When 

comparing various PBIL configurations against GA, player 

A will always be the best GA configuration while player B is 

each of the tested PBIL configurations.  As a result any 

score above 1.0 shows greater effectiveness for player A 

strategies and anything below 1.0 shows greater 

effectiveness for player B strategies. 

 

  The following diagram shows the relative performance 

of different PBIL configurations against GA.  In this case 

the GA parameters are identical to those above and the PBIL 

parameters only vary in terms of the learning rate (Figure 5), 

PBIL uses no mutation in this instance: 
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  If standard mutation is applied to PBIL its performance 

is generally reduced. At low learning rates this effect is 

minimal but at higher learning rates the negative effect 

becomes more evident  The diagrams below show the 

reduction in effectiveness caused by standard mutation at 

different learning rates (Figure 6, 7): 
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Increasing the number of tournaments played while 

reducing the number of generations of the PBIL yields 

results that are generally not quite as favorable although 

early performance does tend to be a little better (Figure 8).   

In the results show below the PBIL population size has been 

increased to 10 while the number of generations has been 

reduced to three thousand, various learning rates are shown: 
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The population size 10 PBIL experiments run with 

standard mutation enabled, again perform somewhat worse 

(Figure 9): 
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stabalizes if it hasn’t already. Generation 101 onwards, PBIL performance 

stabalizes and is worse than GA, often increasingly so. 

The above results show that PBIL is beaten by GA in all 

of its basic configurations. The use of standard mutation 

generally reduces performance still further.  We now 

introduce the use of guided mutation and gauge how it 

affects performance. 

 

In the graph below the best GA configuration is pitted 

against PBIL with guided mutation enabled at various, fairly 

low, levels (Figure 10): 
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The result above shows that guided mutation allows PBIL 

to recover and compete favourably with the GA when used 

at low levels.  Far higher levels of guided mutation have also 

been investigated and are shown below (Figure 11): 
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The above results show that a high level of guided 

mutation can boost PBIL performance beyond that of the 

standard best GA configuration.  This seems somewhat 

surprising and suggests that a smaller variation in the PBIL 

population from generation to generation can make a 

significant contribution to performance. 

 

As a final example we show that PBIL is effective against 

GA in the case of only a small population size is available.  

Approximating the original Axelrod experiments  [1], the 

GA  population is reduced to size 20 with a mutation rate of 

0.7%. The tes is run for 300 generations, somewhat longer 

than the orginal experiments. This GA is run against an 

opponent PBIL using a population size of 5, training pool of 

19 and running for 1200 generations without any mutation.  
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continues to gain grownd and reaches a peak in realtive performance.  

Generation 101-201, PBILs relative performance is degraded but is still 

better than GA.  Generation 201 onwards, PBILs performance stabilizes 

and does better than GA. 

As can be seen from the above, when the GAs population 

is quite small the use of a probability distribution by PBIL 

comes in to its own – it might not use any more evaluations 

but it can certainly generate more effective strategies even if 

it takes it a while. 



IX.  CONCLUSIONS 

The results above show that the use of guided mutation in 

conjunction with PBIL is able to beat a standard GA in 

evolving IPD strategies.  

 

Standard PBIL without guided mutation is unable to beat 

GA at evolving IPD strategies and consistently does slightly 

worse once the systems have stabilized. 

  

The initial relative performance of PBIL may be superior 

to GA if the learning rate is high enough as it is able to learn 

fairly effective strategies quickly; however this tends to be 

accompanied by later worse performance due to overly rapid 

convergence. Setting the learning rate of the PBIL system 

lower tends to allow the GA a better run in the beginning 

and reduces the negative effects of rapid convergence. 

 

Increasing the PBIL population size seems to cause far 

greater variation in performance relative to the learning rate 

used and may help reduce a performance gap when guided 

mutation is not used. 

 

Introducing standard mutation into the PBIL system 

doesn’t seem to remedy the effects of overly rapid 

convergence and indeed seems to generally exacerbate the 

problem.  At higher learning rates and larger population 

sizes mutation would seem to help smooth performance out 

a little over time if not actually improve it. 

 

When the GA population size is reduced PBIL is able to 

perform significantly better than GA.  While the GA 

struggles under a lack of evaluations the PBIL is able to use 

what evaluations it has in the context of a hypothetically 

infinite population and respond accordingly.  When the GA 

population is increased PBIL’s advantage tends to be lost. 

 

Any set of comparisons is difficult. The set of 

comparisons shown here only encompasses one particular 

problem using a limited number of configurations of both 

systems, as such its results shouldn’t be considered 

definitive in arguing whether PBIL or GA is more 

appropriate under much wider conditions.  It does however 

lend additional support to the use of guided mutation. 

 

Further work on the effectiveness of comparable GA and 

PBIL systems should be undertaken to better understand 

when each is more applicable; some form of co evolutionary 

approach may yield interesting results for instance.  It is 

important to establish when a technique is effective and 

when it is not. 
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