
In J-P. Rennard (Eds.), Handbook of research on nature inspired computing for economics
and management, Chapter 18, 2006 (to appear)

Games, supply chains and automatic strategy discovery using
evolutionary computation

Timothy Gosling, Nanlin Jin and Edward Tsang

University of Essex
Department of Computer Science,
University of Essex,
Wivenhoe Park,
Colchester,
CO4 3SQ
United Kingdom

Telephone: +44 1206 872770

Fax: +44 1206 872788

Email: {tdbgos, njin, edward}@essex.ac.uk

In J-P. Rennard (Eds.), Handbook of research on nature inspired computing for economics
and management, Chapter 18, 2006 (to appear)

Games, supply chains and automatic strategy discovery using
evolutionary computation

Abstract- The use of Evolutionary Computation is significant for the development and

optimisation of strategies for dynamic and uncertain situations. Evolutionary

Computation has already been used successfully for strategy generation and this chapter

introduces three such cases in the form of work on the Iterated Prisoners Dilemma,

Rubinstein’s Alternating Offers Bargaining Model and the Simple Supply Chain Model.

The last of these demonstrates how recent statistical approaches to Evolutionary

Computation have been applied to complex supply chain situations that traditional

game-theoretical analysis has been unable to tackle.

INTRODUCTION
The use of Evolutionary Computation is important in the development of strategies for

dynamic, uncertain situations or for any situation where a simple strategy has many

parameters to tune. While game theory and theories of equilibrium are highly effective tools

for the analysis of various problems they suffer from being unable to deal with the increased

complexity and uncertainty inherent in many real-life situations. Strategies requiring a large

number of parameters to be tuned can not effectively be optimised by hand both because those

numbers may be so large but primarily because interactions between the parameters are often

difficult to understand.

In J-P. Rennard (Eds.), Handbook of research on nature inspired computing for economics
and management, Chapter 18, 2006 (to appear)

One such problem is that of supply chains and what strategies should be used by participants’

to operate effectively within them. Tackling this problem is important because trading

electronically will become increasingly important in the future and a need will exist, if it does

not already, for many of the transactions to be handled fully automatically (0; 0; 0). Even

relatively simple supply chain scenarios prove difficult to analyse and it is usually necessary

to resort to domain knowledge in order to develop strategies. While this approach to strategy

creation is capable of producing good solutions it is difficult to foresee how they will respond

in unexpected situations, guarantee robustness and ensure maximum effectiveness in the face

of change. Furthermore even an effective hand crafted solution is likely to require a large

number of parameters to be tuned and doing this manually could well prove impossible either

because the number of parameters is so large or because they interact in a way that is difficult

to understand.

Evolutionary Computation (EC) gives us the potential to address these issues. By defining the

supply chain environment, or indeed any other environment, in terms of a reasonable strategy

representation scheme and practical strategy evaluation mechanism, EC is able to evolve

strategies and/or good parameter sets to tackle the problem.

In this chapter we will be looking at three different strategy generation problems and how EC

can be used to tackle them. The first of these, Iterated Prisoners Dilemma (IPD), introduces

strategy generation using EC and shows how different algorithms have been used to tackle the

same problem. The second problem, Rubinstein's Alternating Offers Bargaining Model

(RAOBM), is used to demonstrate that EC can find a known optimal strategy. The final

In J-P. Rennard (Eds.), Handbook of research on nature inspired computing for economics
and management, Chapter 18, 2006 (to appear)

problem is defined by the Simple Supply Chain Model (SSCM). For the SSCM we show how

EC can be used to tackle a far more complex strategy evolution problem by using a supporting

strategy framework. In each case we examine why a particular EC algorithm is most

appropriate while discussing past efforts and presenting recent work.

GAMES THEORY
Game theory has been highly successful in its application to situations such as the prisoner’s

dilemma (PD) and Rubinstein’s bargaining game along with many others. By starting from a

notion of rationality and often, complete information it has proven invaluable and provided a

good indication of how to behave in different situations. Since its initial formulation various

theories of equilibrium have been posited to help explain how and why certain outcomes do

(or should) occur within a game. Some of these, along with other terms, will be referred to

during the course of this chapter and we briefly recap on these now.

Dominant strategy – A strategy that yields superior results regardless of the opponent’s move.

Dominant Strategy Equilibrium – The outcome of a game reached when all players have a

dominant strategy and play it.

Nash Equilibrium – The set of possible results reached by player’s playing the best possible

strategy in response to their opponents move.

In J-P. Rennard (Eds.), Handbook of research on nature inspired computing for economics
and management, Chapter 18, 2006 (to appear)

Sub Perfect Game Equilibrium (SPE) – The result of a game if each player moves such that a

Nash Equilibrium strategy is played at each sub game, avoiding the worst possible out comes

at each stage of a game.

Evolutionary Stable Strategy (ESS) – A strategy that dominates the population and can not

suffer from invasion by other (mutant) strategies.

Game theory, as stated in the introduction, while highly successful in analyzing different

situations, has difficulty dealing with problems containing a considerable degree of

uncertainty or of a highly dynamic nature (essentially the same thing). If a problem cannot

effectively be captured then its subsequent analysis by game theory is not possible. While

ESS can help explain why, and under what conditions, a particular strategy may become

dominant within a population, it cannot tell us what that strategy may be without the

associated prior game analysis. Evolutionary Computation, by comparison, offers a way to

develop strategies from scratch and discover which (if any) of these are dominant; provided

that a good strategy representation scheme and evaluation method are used.

EVOLUTIONARY COMPUTATION AND PBIL
As is described in earlier chapters, Evolutionary Computation covers a wide range of powerful

problem solving tools, or Evolutionary Algorithms (EAs), that have been inspired by nature

and make use of the concept of natural selection to improve a population of solutions. Three

of these algorithms are considered in this chapter, Genetic Algorithms (Mitchell, 1998),

In J-P. Rennard (Eds.), Handbook of research on nature inspired computing for economics
and management, Chapter 18, 2006 (to appear)

Genetic Programming (Banzhaf, 1998) and Population Based Incremental Learning (Baluja,

1994; Sebag, 1998).

The last of these, PBIL, is a relatively new statistically approach to EC that combines the

concept of a GA with that of reinforcement learning techniques (such as neural networks).

A PBIL algorithm may make use of the same solution representation as a GA however,

instead of a population of solutions, PBIL makes use of a probability distribution. The

probability distribution represents the likelihood of a solution string’s elements (or alleles) of

taking on a particular value. Test solutions are generated from this distribution, evaluated and

used to reinforce the distribution; good solutions increase the likelihood of their element’s

values recurring in future and the reverse for bad solutions. Like GA, PBIL may make use of

mutation to help increase solution diversity and forms of elitism to focus the search (Gosling

2005). While quite new, PBIL has already proven useful for various types of problem solving

(Sukthankar, 1998; Inza, 1999). The basic operation of a PBIL algorithm is shown below:

Figure 1: Basic operation of PBIL

Initialise probability distribution (all
values have equal likelihood)

Generate a population of test
solutions from distribution

Determine the fitness of all members
in the test population

Positively reinforce distribution by
good members and/or negatively
reinforce with bad members

Repeat for some number of
generation or until a sufficiently
good solution is found

In J-P. Rennard (Eds.), Handbook of research on nature inspired computing for economics
and management, Chapter 18, 2006 (to appear)

While discussing EA’s throughout this chapter two key features will recur. First, the solution

representation used by the algorithm is critical to the success of the algorithm in tackling the

problem; a good representation should reduce the search space as far as possible and limit or

remove the possibility of invalid solutions being generated to avoid a combinatorial

explosion. Secondly, the evaluation mechanism must successfully distinguish the quality of

different solutions but at the same time be computational efficient.

ITERATED PRISONERS DILEMMA
Introduction
Iterated Prisoner's Dilemma is an extension of the well known Prisoner's Dilemma (PD) game.

In PD two players, A and B, play two possible moves, cooperate or defect, simultaneously.

The combined choices determine each player's score. IPD is PD played over some number of

rounds, the scores accumulating. The pay-off table for PD is shown below:

The sole Nash Equilibrium for PD is the play (defect, defect). If the number of rounds is

known this is also the best play for IPD. If, however, the number of rounds is unknown an

incentive exists for each player to cooperate in order to avoid uncertain future punishments

from the other for defecting. How to play under these circumstances is open to debate,

3
3

5
0

0
5

1
1

C D

C
D

Player A

Player B

A
B

Pay Off

Figure 2: Prisoner's Dilemma Pay Off Table

In J-P. Rennard (Eds.), Handbook of research on nature inspired computing for economics
and management, Chapter 18, 2006 (to appear)

cooperate is desirable as the long term pay-off for the players would be better but the strategy

should not be open to exploitation.

EC has previously been used to study IPD strategies. In 1987 Axelrod first did so, running a

competition in which strategies were learnt using a GA based system. Axelrod concluded that

Tit-for-Tat (TFT) was the dominant strategy for IPD (0). This result sparked some debate

with various other experiments and analysis by other researchers, some of whom considered

this conclusion incorrect (0; 0; 0; 0). Further EC based work is discussed below in relation to

IPD strategy representation.

We now introduce recent experiments conducted into IPD using a similar setup to Axelrod.

This work aimed to discover how effective Population Based Incremental Learning (PBIL)

was for strategy generation using the more established Genetic Algorithms (GA) for

comparison (0; Gosling, 2005).

Representing IPD strategies
When developing a strategy it is important to determine what the players know about the

situation, history of play, each others’ behavior and how, generally, they should respond to

that information (probabilistically or deterministically). The answer to these questions has a

profound effect on the nature of the strategies that can be produced, how they can be

represented and subsequently, on the type of EAs that may be used to evolve them.

In answering these questions for IPD a considerable degree of variation is possible. For

instance Nowak and Sigmund (0; 0) dealt with players that responded probabilistically to a

In J-P. Rennard (Eds.), Handbook of research on nature inspired computing for economics
and management, Chapter 18, 2006 (to appear)

memory of only the last round of play. The strategy representation scheme consisted of four

variables, the chance of defection given each possible pay-off. Evolving strategies using this

representation lead to a dominant Pavlov strategy (0) occurring within the population.

Crowley (Crowley, 1996) dealt with varying player memories and IPD strategies based on sets

of hierarchical rules. The rules essentially pattern matched different situations within the

player memory with more explicit rules having greater precedence. For small rule sets and low

memory Crowley found that rules similar to TFT would evolve but in the case of longer

memory and large possible rule sets he noted that far more complex strategies emerged.

Crowley argued that these more complex strategy hierarchies might provide some indication

of how cooperation evolves within nature.

Further examples of the diversity of representations possible when using EAs are Fogel

(1993), who evolved finite state machines in an attempt to probe the necessary conditions for

cooperation to emerge, and Jang (2004), who determined the effect on behavior of players

with no memory that used fixed sequences of moves with varying lengths.

In all of the above cases a variation on GA was used to evolve strategies. This was possible

since the types of strategies selected and their representations could be thought of as fixed

length strings - an ordered set of variables that required optimisation. Since GAs are designed

for the optimisation of such strings they could be applied successfully to these situations. GP,

by comparison, makes use of variable size tree representations of a solution and so is

unsuitable in this instance.

In J-P. Rennard (Eds.), Handbook of research on nature inspired computing for economics
and management, Chapter 18, 2006 (to appear)

PBIL, however, can make use of the same representation schemes as a GA which should

make it equally applicable.

In recent work we examined the relative effectiveness of PBIL and GA in the context of IPD.

For our experiments we selected the classic Axelrod representation. This representation is

based upon players responding deterministically to a memory of only the last three rounds of

play. Since both players make one move per round and there are only two possible moves

(cooperate or defect) a complete player memory comprises 6 elements each of two possible

values. This memory can be translated into 6 binary bits with 1 representing defect and 0

cooperate. 6 bits can be arranged in only 64 possible ways so, with consistent play, a player

has only 64 possible responses to its memory. We therefore use a 64-bit string to represent

the player’s strategy, 1 bit for each possible memory configuration. Since at the beginning of

the game a player would have no past memory, an additional 6 bits is provided to represent a

player’s starting memory or pre-disposition. Thus the total strategy representation is 70 bits in

length. This is shown below:

000-000 (0)
000-001 (1)
000-010 (2)

111-101 (61)
111-110 (62)
111-111 (63)

000-011 (3)

0 1 0 1 1 0 1

…

…
…

M
emory of

player moves

M
emory of

opponent moves Decimal
equivalent

Strategy
to play

0 = Cooperate, 1 = Defect

(000-000)
Pre-disposition

Figure 3: Axelrod IPD representation

In J-P. Rennard (Eds.), Handbook of research on nature inspired computing for economics
and management, Chapter 18, 2006 (to appear)

GA v PBIL comparison
In order to compare GAs and PBIL two systems were set up and run independently. Both

algorithms were used to produce a set of strategies that were then compared in a tournament.

Comparing the GA and PBIL approaches in this way was not straightforward. While the two

approaches used the same representation and both used tournaments to evaluate their

strategies each operate in very different ways. The PBIL test population can not be directly

compared to the GA’s population for instance. For the GA, the entire population is evaluated

and essentially all (or at least much of) that information used for the ongoing evolutionary

process. With a PBIL implementation, only one or two members of the test population are

used to update the probability distribution so, for a large population, much of the evaluation

information would be lost. Comparing GA and PBIL algorithms based on similar population

sizes and number of generation would therefore be unfair.

To achieve a fairer comparison the PBIL system here made use of a relatively large pool of

generated test strategies. Each of these test strategies was played against members of a smaller

evaluation population. The best scoring member from the evaluation population was then used

to reinforce the probability distribution. In this way members of the evaluation population

receive high quality evaluations and fewer evaluations are performed per generation.

Comparing the GA and PBIL can now be done on the basis of the number of evaluations (IPD

games played) used by each. The formula below shows how the populations and generations

of each system may be balanced to allow the comparison:

In J-P. Rennard (Eds.), Handbook of research on nature inspired computing for economics
and management, Chapter 18, 2006 (to appear)

()

evalsevals

evals

evals

PBILGA
PBILgenspPBILtestpoPBILpopPBIL

GAgensGApopGApopGA

=
××=

×−×= 1

runs systemPBIL thegeneration ofnumber The - PBILgens
systemPBIL theof size pool testingThe - pPBILtestpo

system PBIL theof size population The - PBILpop
for runsGA thesgeneration ofnumber The - GAgens

size populationGA The - GApop
sevaluationsolution ofnumber Total - PBILevals & GAevals

In the graphs that follow, the GA and PBIL strategies were compared at time steps equivalent

in terms of number of evaluations. The interval between time steps (in PBIL generations) can

be found by the following:
GAgensPBILgensrvalOutputInteComparison /=

Results and Conclusions
While an extensive set of comparisons was made the best PBIL and GA parameter sets used

are listed below:

Type GA PBIL

Population

Size

100 5

Learning Pool NA 99

Mutation Rate 0.007 Not Used

Learning Rate NA 0.025

Generations 300 6000

Data Points 300 300

Table 1: Best GA and PBIL configurations

In J-P. Rennard (Eds.), Handbook of research on nature inspired computing for economics
and management, Chapter 18, 2006 (to appear)

In order to provide a comparison of relative effectiveness over time, the experiments were

repeated 100 times for each set of parameters and the resulting strategies played against one

another.

PBIL consistently performed slightly worse against the best GA configuration, although in the

early stages it does a little better than the GA.

0.5

0.6

0.7

0.8

0.9

1

1.1

1 26 51 76 101 126 151 176 201 226 251 276

Comparison Points

Re
lat

ive
 M

ea
n F

itn
es

s

Best GA v Best PBIL

Figure 4: Mean GA strategy fitness / Mean PBIL strategy fitness over time. PBIL starts

off well but ultimately does slightly worse than GA. Value greater than one indicates

superior GA performance.

Under low population conditions however, a PBIL with an identical number of evaluations

does better than GA. Reproducing similar GA conditions to those used by Axelrod, for

example, shows PBIL to have superior performance to GA.

In J-P. Rennard (Eds.), Handbook of research on nature inspired computing for economics
and management, Chapter 18, 2006 (to appear)

0.6

0.8

1

1.2

1.4

1.6

1 101 201

Generations

Re
lat

ive
 M

ea
n F

itn
es

s

Axelrod like GA v PBIL

Figure 5: PBIL v GA under Axelrod like conditions. PBIL rapidly performs better than

GA. Values greater than one indicate superior PBIL performance.

The reason for this appears to be that the theoretically infinite population of PBIL is able to

overcome the shortcomings of a lack of solution diversity within a small GA population.

The conclusion of this work was that GA in general is slightly superior to standard PBIL for

strategy generation in this context. PBIL, however, is more effective when only a small

population size or a small number of evaluations are possible.

Efforts to improve PBIL further (Gosling, 2005), using a novel mutation operator, have

allowed it to compete favorably with GA in this context under all conditions.

The use of EAs in this and other work supports the idea that EC is effective at the generation

of game strategies.

In J-P. Rennard (Eds.), Handbook of research on nature inspired computing for economics
and management, Chapter 18, 2006 (to appear)

RUBINSTEINS BARGAINING GAME
Introduction
The Rubinstein’s Alternating Offer Bargaining Model (RAOBM; 0), is a simple economic

complete information game that involves the division of some quantity, a unit pie for instance,

between two players. The aim of the game is for the two players (A and B) to come to a

mutual agreement about how to divide the pie. The game proceeds in rounds, in each round

one player is able to make an offer for how much they should receive and their opponent is

able to accept or reject that offer. If the offer is rejected another round occurs with the

rejecting player making the next offer. This continues until agreement is reached. To add

incentive for the players to agree, each is subject to a discount factor, thus how much they

receive is reduced by the effects of them waiting to obtain it. Since this is a complete

information game the players each know their and their opponents discount factors. Game

theoretic analysis of this game provides a Sub Game Perfect Equilibrium as follows (see 0; 0

for proofs):

GetsAGetsB
DisBDisA

DisBGetsA
DisB
DisA

−=
×−

−=

=
=

1
1

1
first) (respondsfactor discount BPlayer

offer)first (makesfactor discount APlayer

If PlayerA, the first player to make a move, uses the above formula to calculate their offer

(GetsA) there is no rational reason (from a game theory point of view) for the opponent,

PlayerB, to reject it (and obtain GetsB).

In J-P. Rennard (Eds.), Handbook of research on nature inspired computing for economics
and management, Chapter 18, 2006 (to appear)

A considerable body of work exists studying the RAOBM both in its traditional form and

under various alternative conditions. When the model is altered such that the players have

incomplete information (0; 0; 0; 0) or are boundedly rational or irrational (0; 0) the scope for

individual strategies increases dramatically. EC has also been applied to the RAOBM,

comparisons being made to the Sub Game Perfect Equilibrium under various conditions (0; 0;

0).

While games such as the RAOBM have been extensively studied and solutions are known for

various conditions, other games can prove too complex for traditional analysis. EC is of use

in studying such games both to obtain an idea of equilibriums that may exist for the game and

to provide a reasonable playing strategy. To have confidence in this idea we now introduce

recent work that compared the game theory results for RAOBM with game playing strategies

evolved using Genetic Programming (0). The aim of this work was to establish if GP could

be used to effectively approximate the games SPE and so provide a case for its use in tackling

problems that are too difficult to analyse with traditional game theoretic approaches.

Representing RAOBM strategies
The first step in tackling RAOBM with EC was the same as with the IPD problem above, that

is, one of representation. While RAOBM is a complete information game, the aim of

approximating the SPE (and so finishing in the first round) leaves players with little

knowledge. Assuming a unit pie, the players only know one another’s discount factors and

who starts first. With this in mind the objective becomes one of finding a representation that

can make use of this information to come up with a good first offer from the starting player

(PlayerA) that would be accepted (hopefully) by the second player (PlayerB). Essentially

In J-P. Rennard (Eds.), Handbook of research on nature inspired computing for economics
and management, Chapter 18, 2006 (to appear)

what we are looking for is a mechanism that allows the evolution of formulae that can tie the

discount factors together to generate and offer (and accept/reject threshold).

GA and PBIL are not easily able to do this as they deal with fixed length string representations

of problems. Representing solutions is possible, for instance by allowing evolution of the

offer/threshold directly, but these may lack generality (as in this case).

Genetic Programming (GP) by contrast is able to evolve variable size tree structures that may

represent formulae directly. Instead of defining the meaning of a string the use of GP requires

the selection of an appropriate symbol set to use within the tree structures. In general keeping

the set of symbols as simple as possible is the best strategy, allowing evolution do the rest. In

the case of the RAOBM we used the set of non-terminal symbols [+,-,/,*] and terminals

symbols [ADis, BDis, 1, -1] (ADis and BDis being the PlayerA and PlayerB discount factors

respectively). This symbol set is simple but provides sufficient flexibility for evolution of

formulae, like that of the games SPE, to occur, see below:

Because the roles of PlayerA and PlayerB within the RAOBM game are slightly different two

separate populations are maintained for PlayerA and PlayerB strategies. To determine the

fitness of a tree structure within a given population it is evaluated and used to play games

/

- -

1 1 *

=

Dis
A

Dis
B

Dis
B

Figure 6: Example of a GP structure. This example shows

how the games SPE would be represented.

In J-P. Rennard (Eds.), Handbook of research on nature inspired computing for economics
and management, Chapter 18, 2006 (to appear)

against all of the structures in the opposing population. The resulting accumulated pay off is

used as the structures fitness.

The use of two distinct populations is known as a co-evolutionary approach and is appropriate

when competing strategies have to operate under different conditions from one another. In this

case PlayerA and PlayerB strategies would evolve such that PlayerA represents the SPE

shown above while PlayerB would evolve a correspondingly different structure that would

accept the value generated by PlayerA.

Experiments and Results
Using the system of representation and co-evolution described above experiments were run

using the following parameters GP:

Parameter Value

Nodes Non-Terminal (+,-,*,/) Non-Terminal (1,-1,DisA,DisB)

Population Size 100 * 2 (200)

Generations 300

Initial Tree Depth 5

Maximum Nodes 50

Mutation Rate 0.01-0.5

Crossover rate 0-0.1

Table 2: GP Configuration parameters

The experiments were run 100 times each on 10 sets of discount factors; the average score of

the best performing individuals from the final generation were used to determine how closely

In J-P. Rennard (Eds.), Handbook of research on nature inspired computing for economics
and management, Chapter 18, 2006 (to appear)

the population had converged towards the SPE (shown below). As can be seen the SPE was

approximated reasonably well in most cases. It may be observe that this approximation began

to break down where the discount factors tended towards the extreme.

Sets of discount

factors (ADis,BDis)

SPE

(GotA)

GP – Experimental

Average of Player A

Standard Deviation

of Player Average

(0.1, 0.4) 0.625 0.9101 0.0117

(0.4,0.1) 0.9375 0.9991 0.0054

(0.4,0.4) 0.7143 0.8973 0.0247

(0.4,0.6) 0.5263 0.509 0.0096

(0.4,0.9) 0.1563 0.1469 0.1467

(0.5,0.5) 0.6667 0.6745 0.0271

(0.9,0.4) 0.9375 0.9107 0.0106

(0.9,0.6) 0.8696 0.8 0.1419

(0.9,0.9) 0.5263 0.5065 0.1097

(0.9,0.99) 0.0917 0.1474 0.1023

Table 3: ROABM Results, GP approximates the game SPE well

Conclusions
GPs more complex representation scheme can be used effectively to approximate game

theoretically derived equilibriums.

The GP derived approximation tends to break down when conditions are extreme.

In J-P. Rennard (Eds.), Handbook of research on nature inspired computing for economics
and management, Chapter 18, 2006 (to appear)

While GP does not provide an exact match for the theoretically derived SPE for this game, it

does provide a reasonable approximation in most cases. This tends to suggest that GP would

be useful in studying other problems that require a more complex representation.

THE SIMPLE SUPPLY CHAIN MODEL
Introduction
At present various electronic market places, auctions and negotiation systems exist. In the

near future full electronic supply chains will be possible and indeed desirable to improve

efficiency (0; 0; 0).

This situation however, presents a problem. While humans are good at negotiations and

situation analysis they are less able to handle large volumes of information and numbers of

transactions. What is needed is a computer-based system or strategy for handling these

situations. The strategy does not need to be the perfect negotiator, although it must be

competent, but it must be able to deal with negotiations more rapidly than a human operator

could. As has been stated, while traditional economic approaches are effective in analysing

simple games they fail to tackle the more dynamic problems faced in supply chain situations

and as such cannot be made full use of. The application of knowledge and experience to

develop strategies is possible but suffers from uncertainty about how robust these strategies

would be, especially in unusual circumstances, and how to optimise them for maximum

effect.

In J-P. Rennard (Eds.), Handbook of research on nature inspired computing for economics
and management, Chapter 18, 2006 (to appear)

Making use of evolutionary computation within this domain is reasonable given its

application to other economics problems. As we have shown, provided we can define a

reasonable strategy representation it should be possible for an EA to evolve an effective and

robust solution.

To begin tackling the supply chain problem it is first necessary to model the supply chains we

are interested in more precisely. A system such as the Simple Supply Chain Model (SSCM)

provides one such way and we will introduce this shortly.

Having accomplished this, the next task, as discussed earlier, is to develop a system of

representation for possible solutions and a framework within which that representation may be

used and evaluated. We also need to consider what sort of evolutionary algorithm would be

appropriate for the learning process and how it should be applied.

It should be noted that considerable effort has gone into using EC and other techniques for

negotiation and bargaining with computers. The Trading Agent Competition (Wellman, 2000)

for example partially inspired the SSCM. Some examples of work in negotiation are

Sandholm (2002), Fatima (2000) and Bartolini (2005), while Fatima (2005b) provides a

comparison of evolutionary and game-theoretic approaches to bargaining.

The SSCM
The Simple Supply Chain Model (0; Gosling, 2003b) has been developed to allow the

specification of a simple supply chain starting state. To this end it models three different

types of participant in the supply chain, Customers, Suppliers and Middlemen.

In J-P. Rennard (Eds.), Handbook of research on nature inspired computing for economics
and management, Chapter 18, 2006 (to appear)

Customers have requirements that they wish to be fulfilled. These requirements are for a set of

goods at some maximum price within a certain time frame. Customers require the use of a

Middleman to obtain these sets of goods and so have knowledge of some set of Middlemen

and a maximum outbound communication capability.

Suppliers are able to supply goods at some minimum price and some maximum quantity over

the course of the scenario being modeled. They sell via the Middlemen and so have a known

set of Middlemen along with a maximum outbound communications allocation.

Middlemen are responsible for matching up sets of requirements to available products in an

attempt to make a profit. They are defined purely in terms of their known Suppliers,

Customers and a maximum outbound communications capacity. These are the focus of study

here.

The SSCM defines supply chains in terms of these different participants, the set of products,

the amount of time available for deals to be struck and the communication scheme used by the

participants to interact. The SSCM does not impose restrictions on the way in which

participants may attempt to resolve the chain only the way in which the chain is initially set up

and the means by which communication can occur.

Representation and Evaluation
Determining a representation scheme and evaluation mechanism for SSCM strategies is

challenging simply because the number of possibilities are large. To reduce the scope

In J-P. Rennard (Eds.), Handbook of research on nature inspired computing for economics
and management, Chapter 18, 2006 (to appear)

somewhat, first define different SSCM scenarios that restrict further the conditions the

participants may face under a given SSCM instantiation and secondly concern ourselves

primarily with the Middleman strategy and assume simple strategies on the part of the

Customers and Suppliers. These restrictions may be relaxed later.

In the simplest scenario we assert that there is one Supplier per product and that Suppliers are

passive and have no knowledge of the Middlemen to begin with and that they will not initiate

contact with a Middleman once known. Middlemen have no prior knowledge of Customers

but know of each of the Suppliers they may need to fulfill a Customer’s requirements.

Customers know only of one Middleman each and initiate contact sometime prior to their

earliest cut off point for obtaining goods. These restrictions simplify the Middleman strategy

both by removing the need to mitigate the effects of Customers attempting to find deals

elsewhere and reducing the choice of Suppliers. In more complex scenarios these restrictions

have been relaxed.

With this first scenario as a starting point it is possible to begin defining a strategy

representation.

Initially we consider how the evaluation of any resultant strategy should be undertaken. The

problem maps well into a multi-agent environment and so it makes sense to build a market

simulation system within which the participants can be configured in line with the SSCM and

use their strategies to attempt to resolve the chain. When the chains’ run time is up the

effectiveness of each strategy can be assessed. Since this process is likely to be

In J-P. Rennard (Eds.), Handbook of research on nature inspired computing for economics
and management, Chapter 18, 2006 (to appear)

computationally expensive and/or time consuming it is reasonable to assume the total number

of participants within the system will be limited. For this reason it would not be possible to

evaluate many strategies simultaneously. From the discussion of IPD strategy generation

above this would suggest that PBIL would be superior to GA under these conditions since it is

effective at leveraging small test populations for learning.

A second consideration is the complexity of the strategies to be used. The initial reaction is

that GP would provide the flexibility required to define a complex SSCM strategy and this

would certainly be the case. The problem with this approach however comes in two parts.

Firstly defining a symbol set of sufficient subtlety and complexity to capture the various

aspects of a participant’s role is difficult. Secondly having defined such a set, ensuring that

viable strategies result is problematic; while evolution is powerful the representation must

provide some guidance for it to stand a good chance of success. In each case it seems

reasonable to provide a basic strategy framework within which the algorithm can evolve the

control aspects of the strategy. This removes the problem of wholly invalid strategies being

developed and helps reduce the complexity of the symbol set. The downside of this is that

multiple elements within the framework would need to be evolved simultaneously and the

complexity of how to combine these multiple elements would additionally complicate the use

of a GP algorithm. To simplify the strategy problem further the framework can be extended

with reasonable control elements the parameter of which may then be evolved by an

algorithm. If this approach is taken far enough it is possible to remove the need for GP

altogether and evolved the parameters directly. This is what we have done here building on

Matos’s (1998) bargaining work in particular for the agent negotiation elements. With the

In J-P. Rennard (Eds.), Handbook of research on nature inspired computing for economics
and management, Chapter 18, 2006 (to appear)

strategy representation reduced to a fixed length string of parameters it is possible to use PBIL

or a GA. As stated, a GA would have difficulties under the limited population size available

(as indeed would have GP) so we elect to use PBIL in this instance.

Having selected the algorithm and approach to be taken it is necessary to outline the SSCM

Strategy Framework, its evolvable parameters and the market simulation system with which it

will be used.

SSCM Strategy Framework
The SSCM Strategy Framework (SSF; Gosling, 2003c) is based around the idea of grouping

together customer requirements and handling them as a conglomerate. Incoming customer

requirements are first evaluated and then assigned to a group depending on some set of

characteristics. The possible groupings include one for handling requirements the system has

deemed impossible to fulfill or unprofitable. Requirement groups start in an inactive state (in

which requirements are continually re-evaluated), progress to becoming active (during which

supplier negotiations are undertaken) and finally move to a completion state for reporting

back to the customers. The basic outline of this process is shown below (Figure 7).

Inactive
Groups

Active
Groups

Completion
Groups

Failure
Group

Groups of customer requirements to be dealt with

Report unable to meet
customer requirements

Re-evaluate requirements,
send to failure any that are
likely to be unprofitable

Become active when
conditions allow (timing)

Negotiate with suppliers
for products

Complete post negotiations
(success or failure)

Success, report requirements
met to customers

Failure, send requirements to
failure group

Evaluate new customer requirements for likely profitability and
success at being fulfilled. Send good requirements to some

appropriate inactive group and bad ones to the failure group.

Evaluate New
Requirements

Process
Groups

Continue while time and
comms budget remaining

General Strategy Operation

In J-P. Rennard (Eds.), Handbook of research on nature inspired computing for economics
and management, Chapter 18, 2006 (to appear)

Primary parameters within the SSF are those relating to the evaluation of customer

requirements, the dispersal of requirements to groups and the negotiation mechanism used

with the supplier. For example, the negotiation process, based on work by Matos (0), requires

a set of fourteen parameters for each product type under consideration. These parameters

control estimates for likely values of products, tactics used for negotiation and importance

weighting for those tactics. Other parameters include control for how quickly groups should

become active and what requirements should be accepted.

Market Simulation System
The SSCM Market Simulation System (SMSS) provides an environment within which the

SSF may be used and under which the parameters are evolved. The SMSS consists of two

core components, an agent based supply chain simulator and a market controller. The market

controller maintains a PBIL vector that provides strategy configuration parameters to the

supply chain agents. Further, the controller sets-up the supply chain and evaluates the

performance of agents once completed. This information can be used to reinforce the PBIL

Figure 7: SSCM Strategy Basic Framework

Market Simulation

Supply Chain Controller

0.1
0.2
0.6
0.1

0.01
0.95
0.01
0.03

0.03
0.07
0.1
0.8

PBIL Vector
A
B
C
C

M
idd

lem
an

 St
rat

eg
y P

ara
me

ter
s &

M

ark
et

Co
nfi

gu
rat

ion

Su
pp

ly
Ch

ain
 Fi

na
l S

tat
e a

nd

Ag
en

t P
erf

orm
an

ce
 In

for
ma

tio
n

In J-P. Rennard (Eds.), Handbook of research on nature inspired computing for economics
and management, Chapter 18, 2006 (to appear)

vector for future generations of supply chain players. This process is briefly outlined below

(Figure 8):

The controller is able to configure the supply chain in such a way as to provide different

environment in which to evolve strategies. Examples of different environments are ones

where the available goods are scarce or customer budgets are very limited.

The result of the SMSS is the controller’s final PBIL vector state – this should contain an

effective strategy for the environment presented.

Results and Conclusions
The main focus of experimentation with the SMSS was to determine if strategies could be

evolved within the environment presented and what the limits of adaptability were.

It was found that effective strategies emerged within the SMSS and as expected, that

substitution of those strategies in to new environments leads them to adapt to the new

conditions suggesting no universal strategy is optimal across all conditions.

Having determined that strategies could evolve within the SMSS we then probed the limits of

the system by adjusting the environment in such a way that it became difficult for Middlemen

to make a profit. This was accomplished by increasing the stubbornness of Suppliers

negotiating over prices. These efforts lead to the determination of an adaptation boundary for

this parameter beyond which the system was unable to evolve effective strategies. Further

Figure 8: Market Simulation System Operation

In J-P. Rennard (Eds.), Handbook of research on nature inspired computing for economics
and management, Chapter 18, 2006 (to appear)

work suggested that using pre-evolved strategies close to that boundary condition would allow

for adaptation under the harsher conditions.

While these results have proven interesting the question of how to analyse them further has

proven to be one of considerable importance, visualization has certainly helped but obtaining

definitive evidence of why the strategies have adapted to the environment in a certain way has

proven more difficult. To this end, analysis of the results ideally requires the development of

further analytical tools and this is currently the focus of much effort.

Overall EC has proven effective for evolving strategies in the complex, dynamic environment

offered by the SSCM and the SSF and SMSS have proven an effective way of harnessing the

power of PBIL to this end.

CONCLUSIONS
This chapter has introduced Evolutionary Computation in the context of two well known

games (IPD and RAOBM) and the more complex SSCM. For these games we have shown

that EC is able to evolve effective strategies that equate to the known equilibriums. For the

SSCM we have shown that with careful consideration it is possible to evolve successful

strategies within a strategy framework and supply chain simulation system. Since Game

Theory cannot effectively deal with the uncertainties inherent in situations like the SSCM we

assert that EC, used appropriately, provides a good alternative for this problem and other

complex real-life problems.

In J-P. Rennard (Eds.), Handbook of research on nature inspired computing for economics
and management, Chapter 18, 2006 (to appear)

On a cautionary note, while EC is effective for strategy generation, care must be taken with

the design of a good representation, the selection of an appropriate algorithm and the choice

of a reasonable evaluation scheme. A further consideration is that of analysis. As the

disagreement over stable IPD strategies demonstrates, results may still be open to

interpretation. In the context of the SSCM reaching a full understanding of the results is an

issue.

Finally, Evolutionary Computation has many advantages for the generation or optimisation of

strategies in challenging environments, this approach has had a successful beginning but its

future depends on carefully considered application.

BIBLIOGRAPHY
Ausubel, L.M., Crampton, P., & Deneckere, R.J. (2002). Bargaining with Incomplete

Information. Handbook of Game Theory, Vol 3, Amsterdam: Elsevier Science B.V., chapter

50.

Axelrod, R. (1987). The Evolution of Strategies in the Iterated Prisoner's Dilemma. Genetic

algorithms and simulated annealing, Research notes in AI. 32-41. Pitman/Morgan Kaufmann.

Banzhaf, W., Nordin, P., Keller R., & Kaufmann M. (1998). Genetic Programming An

Introduction. Morgan Kaufmann.

Bartolini, C., Preist, C., & Jennings, N.R. (2005). A software framework for automated

negotiation. Software Engineering for Multi-Agent Systems III: Research Issues and Practical

Applications. Springer Verlag. 213-235.

Binmore, K.. (1994). Game Theory and the Social Contract I, playing fair. MIT Press.

In J-P. Rennard (Eds.), Handbook of research on nature inspired computing for economics
and management, Chapter 18, 2006 (to appear)

Binmore, K. (1998). Game Theory and the Social Contract II, just playing. MIT Press.

Binmore, K., Piccione, M., & Samuelson, L. (1998). Evolutionary stability in alternating-offer

bargaining games. Journal of Economic Theory. 80, 257-291.

Baluja, S. (1994). Population Based Incremental Learning – A Method for Integrating Genetic

Search Based Function Optimisation and Competitive Learning. Tech. Rep. No. CMU-CS-94-

163. Pittsburgh, PA: Carnegie Mellon University.

Crowley, P.H. (1996). Evolving cooperation: strategies as hierarchies of rules. BioSystems.

37, 67-80.

Faratin, P., Sierra, C., & Jennings, N.R. (2000). Using similarity criteria to make negotiation

trade-offs. Proc. 4th Int. Conf. on Multi-Agent Systems (ICMAS-2000), Boston, USA. 119-

126.

Fatima, S.S., Wooldridge M., & Jennings, N.R. (2001) Optimal Negotiation Strategies for

Agents with Incomplete Information. Proc. 8th Int. Workshop on Agent Theories,

Architectures and Languages (ATAL). Seattle USA. 53-68.

Fatima, S.S., Wooldridge, M., & Jennings, N.R. (2003). Comparing Equilibria for Game-

Theoretic and Evolutionary Bargaining Models. AAMAS 2003, Workshop on Agent-

Mediated Electronic Commerce V.

Fatima, S.S., Wooldridge M., & Jennings, N.R. (2005). Bargaining with Incomplete

Information. Annals of Mathematics and Artificial Intelligence. To appear.

Fatima S.S., Wooldrige M., & Jennings N.R. (2005b). A Comparative Study of Game

Theoretic and Evolutionary Model Of Bargaining for Software Agents. Artificial Intelligence

Review 23 (2).

In J-P. Rennard (Eds.), Handbook of research on nature inspired computing for economics
and management, Chapter 18, 2006 (to appear)

Fogel, D.B. (1993). Evolving behaviors in the iterated prisoner's dilemma. Evolutionary

Computation, 1(1), 77-97.

Gosling, T. (2003). The Simple Supply Chain Model and Evolutionary Computation.

Proceedings of the Congress on Evolutionary Computation 2003 (CEC2003).

Gosling, T & Tsang E. (2003b). Technical Report 1: The Simple Supply Chain Model

(SSCM). Technical Report CSM-392, Department of Computer Science, University of Essex.

Gosling, T (2003c). Technical Report 3: The Scenario One Strategies. Technical Report

CSM-394, Department of Computer Science, University of Essex.

Gosling, T., Jin, N., & Tsang, E. (2004). Population Based Incremental Learning Versus

Genetic Algorithms: Iterated Prisoners Dilemma. Technical Report CSM-401, Department of

Computer Science, University of Essex.

Gosling, T., Jin, N., & Tsang, E. (2005). Population Based Incremental Learning with Guided

Mutation Versus Genetic Algorithms: Iterated Prisoners Dilemma. Proceedings of the

Congress on Evolutionary Computation 2005 (CEC2005).

He, M., Jennings, N.R., & Leung, H. (2003). On Agent-Mediated Electronic Commerce. IEEE

Trans on Knowledge and Data Engineering. 15(4), 985-1003.

Inza, I., Merino, M., Larra~naga, P., Quiroga, J., Sierra, B., & Girala, M. (1999). Feature

Subset Selection by Population-Based Incremental Learning. A case study in the survival of

cirrhotic patients treated with TIPS. Technical Report no. EHU-KZAA-IK-1/99, University of

the Basque Country, Spain.

Jang, D., Whigham, P.A., & Dick, G. (2004). On evolving fixed pattern strategies for Iterated

Prisoner's Dilemma. CRPIT '26: Proceedings of the 27th conference on Australasian computer

science, 241-247.

In J-P. Rennard (Eds.), Handbook of research on nature inspired computing for economics
and management, Chapter 18, 2006 (to appear)

Jin, N., & Tsang, E. (2005). Co-evolutionary Strategies for an Alternating-Offer Bargaining

Problem. CIG2005.

Kraines, D., & Kraines, V. (1993). Learning to Cooperate with Pavlov – an adaptive strategy

for the Iterated Prisoner’s Dilemma with Noise. Theory and Decision 35, 107-150.

Kreps, D. (1990). Game Theory and Economic Modelling, Oxford University Press. 123-128.

Linster, B. (1992). Evolutionary Stability in the Repeated Prisoners' Dilemma Played by Two-

State Moore Machines, Southern Economic Journal. 880-903.

Nowak, M.A., & Sigmund, K. (1992). Tit-For-Tat in a Heterogeneous Population. Nature,

vol. 355, no. 6357,pp 250-253.

Nowak, M.A., & Sigmund, K. (1993). A Strategy of Win-Stay, Lose-Shift That Outperforms

Tit-For-Tat in the Prisoner’s Dilemma Game, Nature, vol. 364, no. 6432, pp 56-58.

Matos, N., Sierra, C., & Jennings, N.R. (1998). Determining Successful Negotiation

Strategies: An Evolutionary Approach. Proceedings of the 3rd International Conference on

Multi-Agent Systems (ICMAS-98).

Mitchell, M. (1998). An Introduction To Genetic Algorithms. MIT Press.

Muthoo, A. (1999). Bargaining Theory with Applications. Cambridge University Press.

Myerson, R. (1991). Game Theory: Analysis of Conflict. Cambridge, MA: Havard University

Press. 399-403.

Rubinstein, A. (1982). Perfect Equilibrium in a Bargaining Game. Econometric. Vol 50.(1),

97-110.

Rubinstein, A. (1985). A Bargaining Model with Incomplete Information About Time

Preferences. Econometric. Vol. 53(5), 1151-1172.

In J-P. Rennard (Eds.), Handbook of research on nature inspired computing for economics
and management, Chapter 18, 2006 (to appear)

Sandholm, T. (1999). Distributed Rational Decision Making. In: Weiss, G. (ed.): Multiagent

Systems A Modern Approach to Distributed Artificial Intelligence. MIT press. 201-

Sandholm, T, & Vulkan, N. (2002). Bargaining with Deadlines. Early version in Proceedings

of the National Conference on Artificial Intelligence (AAAI). pp. 44-51. 1999.

Sebag, M., & Ducoulombier, A. (1998). Extending population-based incremental learning to

continuous search spaces. Proceedings of the 5th Conference on Parallel Problems Solving

from Nature. 418-427.

Sukthankar, R., Baluja, S., & Hancock, J. (1998). Multiple Adaptive Agents for Tactical

Driving, Applied Intelligence.

Walsh, W.E. (2001). Market Protocols for Decentralized Supply Chain Formation. Doctoral

Thesis submitted to the University Of Michigan.

Wellman, M.P., Greenwald, A., Stone, P. & Wurman, P.R. (2000). The 2001 Trading Agent

Competition. Fourteenth Conference on Innovative Applications of Artificial Intelligence.

