
Tackling the Simple Supply Chain Model

Timothy Gosling and Edward Tsang, University of Essex, UK

Abstract— In the future a need will exist, if it does not
already, to automate supply chains as trading electronically
becomes increasingly important. Using the Simple Supply Chain
Model (SSCM) allows a supply chain situation to be captured
for experimentation. This paper describes efforts to evolve
strategies for tackling SSCM specified problems through the use
of a Strategy Framework (SSF) and Market Simulation System
(SMSS). While the SSF provides a basic strategy representation
system, the SMSS evolves strategies over multiple supply chain
simulations using Population Based Incremental Learning with
Guided Mutation. The paper further discuss some of the
techniques being used to analyse the resultant data.

I. INTRODUCTION

In the future a need will exist, if it does not already, to

automate supply chains as trading electronically becomes

increasingly important ([1], [2], [3]).

In order to automate a supply chain the strategies to be

used by each participant must be developed in some way.

While game theory and theories of equilibria are effective

tools for the analysis of different problems they are unable to

deal with the increased complexity and uncertainty inherent

in many real-life situations, including supply chains, and

as such solutions must be hand crafted using the available

domain knowledge. While this approach can prove effective

the resultant strategies may still need tuning, a process

complicated by uncertainty over parameter interaction and

the effects of unexpected situations. The use of Evolutionary

Computation (EC) provides a potential solution to this prob-

lem. If the supply chain environment can be captured and

a reasonable strategy representation provided, EC has the

potential to evolve robust strategies and/or parameter sets.

The Simple Supply Chain Model, outlined below, provides

one way of capturing a supply chain environment in such a

way that EC may be applied. This paper is concerned with

how a strategy framework and market simulation system have

been created to tackle SSCM defined problems and how the

resultant data may be analysed.

A. The Simple Supple Chain Model (SSCM)

The Simple Supply Chain Model (SSCM, [4]; [5])

provides a way to describe simple but non-trivial supply

chain situations in their entirety.

The problems described by the SSCM are important as

they bridge the gap between conventional economics and

more complex market simulations while retaining important

elements found in real dynamic and uncertain supply chain

situations. The SSCM was partially inspired by the Trading

Agent Competition ([6]).

The SSCM description takes the form of the information

known by each participant in the chain at the start of

a set time period, the types of goods available and the

communication mechanism being used. Participants may be

one of three types, customers, suppliers or middlemen. Cus-

tomers are aware of their own requirements to be fulfilled,

when this needs to be achieved, for how much and which

middleman they know capable of assisting them. Suppliers

know what products they can supply, what their value is,

how much they are able to supply and what middlemen

may be interested. Middlemen have knowledge of potential

customers and suppliers. All participants are restricted in the

number of outbound communications they can make. See

Figure 1.

Fig. 1. SSCM Overview

While the SSCM constrains the initial information known

by participants and how they communicate, it does not

restrict what they can do and how they should act.

B. SSCM Scenarios

Since the range of problems that can be represented by the

SSCM is large, in order to begin tackling it the first step is to

further restrict how the SSCM will be used, how participants

will act and what will be studied. We initially decide that

the strategy of the middleman is of most interest and so

the restrictions placed on the SSCM will direct attention

this way. We also decide to use a simple alternating offers

negotiation mechanism for communication.

Two restricting scenarios are detailed here.

1) Scenario One: Scenario one is comparatively simple

and places many restrictions on the SSCM. The strategy

of customers and suppliers is largely determined by the

scenario although there is some scope for when the customer

may communicate with the middleman initially and how the

supplier will go about bargaining for products. The idea is

to place the middleman between a satisfaction problem on

one side and an optimisation problem on the other.

Customers have a fixed requirement, know only of one

middleman and are required to initiate communication. They

should not expect any negotiation from the middleman and

will simply wait to see if the middleman can fulfill their

requirements.

Suppliers are only able to supply one product and only one

supplier exists for each. Suppliers know of no middlemen

initially and should not initiate negotiations. When dealing

with middleman negotiations a supplier will try to match the

required products as closely as possible but will not offer

alternatives. A supplier will continue to negotiate as long as

it is able to provide a subset of the requested products.

Middlemen know of all suppliers and no customers ini-

tially. Having received customer requirements the middleman

will negotiate with suppliers for those products before in-

forming the customer if it is able to fulfill their requirements.

2) Scenario Two: Scenario two relaxes restrictions on use

of the SSCM and the behavior of agents in order to make

the problem more interesting. The middleman is now able to

negotiate for alternative product sets with the customer and

may have to choose between multiple suppliers on the other

side.

Customers are happy to accept variation in requirements

within certain bounds, to this end they will provide an initial

requirement but may be willing to agree to a different but

similar allocation. They still only know of one middleman

and are responsible for initiating communication.

Suppliers act as in Scenario One but multiple suppliers

may exist for each product.

Middlemen are largely as in Scenario One but now have

the option of trying to find alternative product sets for Cus-

tomers. Middlemen may have the option to select between

different suppliers for one product or to make use of all

suppliers as required.

II. THE SSCM STRATEGY FRAMEWORK (SSF)

The SSCM Strategy Framework (SSF) provides a concep-

tual framework through which middleman strategies may be

developed to tackle different SSCM Scenarios. The SSF is

based on two ideas. Firstly customer requirements provide

the motivation for all middleman actions. Secondly, that

communication should be minimised.

The SSF consists of a customer requirement grouping

mechanism, a control logic for processing the groups and a

series of specific behaviour adjusting decision points within

that logic. The decision points allow for the variation and

evolution of middleman behaviour while the basic framework

and its control logic should result in reasonably sensible mid-

dleman operation. Grouping together customer requirements

allows them to be dealt with as an amalgamation and so

reduce the communication burden on all parties.

The SSF handles communication between market partici-

pants via a simple alternating offers negotiation mechanism.

In this way messages are restricted to either a product set

to be negotiated over and a price, or an accept/reject of

a previous offer. This common mechanism is simple but

flexible enough to allow a range of operations including

customer and supplier side negotiations and product supplier

discovery. In this context a customer requirement is the latest

product set suggested by the customer.

The customer requirement group mechanism makes use of

three group types: Basic, Pre-Negotiation and Failure. These

are shown in context in Figure 2. The following sections

describe these groups in more detail.

Fig. 2. SSF Groups

A. SSF Basic Groups

The SSF specifies that customer requirements are handled

in groups. This mechanism is intended to minimise the

communication burden on all participants by removing the

need to fulfill each requirement separately.

A Basic Group is the primary manifestation of this idea

and consists of its collected customer requirements, associ-

ated supplier negotiations and the set of products obtained

so far.

A Basic Group goes through up to seven phases in

attempting to fulfill customer requirements.

In the first, Inactive, phase the group collects new customer

requirements according to some requirement similarity crite-

ria.

An Inactive group will become Activated at which point it

attempts to obtain any existing unneeded products held by the

middleman that would help fulfill its customer requirements.

The group then becomes Active.

An Active group attempts to fulfill its requirements

through negotiation with the suppliers. If a problem arises

with a requirement the group may enter a Waiting state. Once

negotiations succeed or fail the group enter Successful or

Unsuccessful Completion.

A Waiting group attempts to bring all supplier negotiations

into a safe state to drop a customer requirement without

obtaining then unneeded goods. Successful or not a group

will then become Active.

A group that enters Successful completion informs each

customer of its success in fulfilling its requirement before re-

turning any spare resources for general use. An Unsuccessful

group simply tries to close any outstanding negotiations with

minimum loss. After completion all groups are considered to

be Finished and may be removed.

B. SSF Pre-Negotiation Group

While the Basic Groups handle supplier side negotiation

the Pre-Negotiation group (or groups, depending on imple-

mentation) handle initial customer side negotiation.

Before a customer requirement is assigned to a Basic

Group it must be both likely to be profitable and proba-

bly feasible. The Pre-Negotiation group accepts customer

requirements that are likely to be profitable but are unlikely

to be feasible. The group then attempts to negotiate with the

customer to find an acceptable feasible requirement that can

then be passed on to a Basic Group for fulfillment.

To negotiate with a customer the Pre-Negotiation group

presents a series of profitable, feasible alternatives. If the

customer responds with the same set or a similar profitable

and feasible set, attempts to fulfill the requirement can begin.

C. SSF Failure Group

The SSF Failure group is a simple catch all group for

all negotiations (customer or supplier) that should be failed.

As such unprofitable customer requirements end up here

along with any requirements later dropped by a Basic or

Pre-Negotiation group. The groups sole function is to, as

rapidly as possible, inform each negotiation partner that the

middleman rejects the most recent offer.

D. SSF Groups and Communication Priority

Each group in the middleman is essentially operated in

parallel, each generating any required outbound messages.

On each iteration however only one of these messages

will be sent, the result of which may affect subsequent

message generation. To this end a communication priority

system must be put in place to select the sent message. This

mechanism constitutes one of the decision elements of the

control logic discussed below.

E. SSF Control Logic

While the SSF Groups provide the primary framework

for handling customer requirements, they also require a

control logic to determine their operation. The SSF control

logic includes a number of decision points that affect agent

behaviour. These decision points require further specification

but allow a middleman’s strategy to be evolved or otherwise

adjusted. The following algorithms are used by an SSF based

middleman to control its use of groups.

An SSF strategy works over a number of iterations, each

iteration sending at most one outbound communication to

another market participant. This process looks as shown in

Algorithm 1.

Algorithm 1 SSF Top Level Iteration

1: while NOT Market Stop Condition Occured do

2: Process All Inbound Messages

3: Process Failure Group, record possible message

4: Process Pre-Negotiation Group, record possible mes-

sage

5: Process All Basic Groups, record possible message

6: Select And Send One Message (if any)

7: end while

The length of the market is specified by the SSCM. Many

SSF iterations may occur per SSCM time unit, the timing

being applied externally.

The Failure Group process simply selects the highest pri-

ority negotiation to report a reject message to and generates

this message for consideration.

If a message is selected and sent this must be reported

back to the source group. For the Failure Group this means

a negotiation can be safely discarded. For the Pre-Negotiation

group this means the attempted alternative needs to be

removed from the set of possible alternatives for a customers

requirement. For Basic Groups various effects are possible

including removal of successful customer requirements and

attaching newly initiated negotiations.

Since all SSF Groups consist of negotiations it is important

to process all inbound messages before proceeding (Algo-

rithm 2). Part of this process is to assign new customer

negotiations (requirements) to a relevant group for handling.

Algorithm 2 Process All Inbound Messages

1: for all New Messages, msg do

2: if New Customer Negotiation (msg) then

3: if Profitable (msg) then

4: if Feasible (msg) then

5: Assign To Or Create Basic Group (msg)

6: else

7: Assign To Pre-Negotiation Group (msg)

8: end if

9: else

10: Assign To Failure Group (msg)

11: end if

12: else

13: Process Message In Relation To Associated Group

(msg)

14: end if

15: end for

Assignment of customer requirements to a basic group

must be dealt with via some similarity mechanism to group

requirements together. If no suitable inactive group is found

a new basic group is formed.

Message processing in relation to an ongoing negotiation

in a group may mean handling new product sets, prices

or accept/reject messages. A Group’s response to these

messages may vary and some effects may be delayed until

the group processing stage.

For the Pre-Negotiation group a new message will be a

customer response to a suggested alternative. If the customer

has agreed the new requirement is then assigned to a Basic

Group.

For Basic Groups negotiation messages will be from

suppliers. This may include alternative product sets being of-

fered, new prices or accept/reject responses. A Basic Group’s

response may be passive, simply waiting for the next active

group phase to supply a response or more active, removing

requirements that are no longer viable because a product is

unavailable.

Pre-Negotiation Group Processing (Algorithm 3)is im-

portant for the successful fulfilment of otherwise unviable

customer requirements.

Algorithm 3 Process Pre-Negotiation Group

1: for all For Each Customer Requirement (req) do

2: if NOT Waiting For Response (req) then

3: if Profitable (req) then

4: Prune Available Alternative (req)

5: if NOT Has Alternative (req) then

6: Assign To Failure Group (req)

7: end if

8: else

9: Assign To Failure Group (req)

10: end if

11: end if

12: end for

13: if Any Non-Waiting Requirements then

14: req = Highest Priority Non-Waiting Requirement

15: alt = Best Requirement Alternative (req)

16: Generate Message For Alternative (alt, req)

17: end if

Basic Group processing is complicated both by the number

of groups but also the number of different states the groups

may be in.

While there is a chance of dropping unprofitable re-

quirements the Waiting state attempts to get all relevant

negotiation into a safe state (one in which a response is

not being waited for), it does this by preventing the group

from sending any messages. If negotiations urgently require

a response the state will exit and allow negotiations to

continue.

F. SSF Decision Points

While the SSF grouping mechanism and control logic

provide a framework for SSCM Middleman Strategies, it

Algorithm 4 Process All Basic Groups

1: for all Basic Groups (bg) do

2: if Inactive (bg) then

3: Process Inactive Group (bg)

4: else if Activated (bg) then

5: Process Activated Group (bg)

6: else if Active (bg) then

7: Process Active Group (bg)

8: else if Waiting (bg) then

9: Process Waiting Group (bg)

10: else if Completion (bg) then

11: Process Completion Group (bg)

12: else if Finished (bg) then

13: Remove Group (bg)

14: end if

15: end for

Algorithm 5 Process Inactive Group (bg)

1: for all Requirements (req) do

2: if NOT Profitable (req) OR NOT Feasible (req) then

3: Assign To Failure Group (req)

4: end if

5: if Should Become Activated then

6: Group State Set To Activated

7: else if Should Become Finished (if empty) then

8: Group State Set To Finished

9: end if

10: end for

Algorithm 6 Process Activated Group (bg)

1: Determine Amalgamated Requirement

2: Obtain Free Resources

3: Group State Set To Active

Algorithm 7 Process Active Group (bg)

1: for all Requirements (req) do

2: if NOT Profitable (req) AND NOT Obtained Items

For (req) then

3: if Negotiations Safe (req) then

4: Assign To Failure Group (req)

5: else if Safe To Wait then

6: Set Group To Waiting State

7: end if

8: end if

9: end for

10: if NOT Waiting then

11: if Should Enter Completion then

12: Group State Set To Completion

13: else

14: if Waiting Supplier Negotiation then

15: supneg = Highest Priority Supplier Negotiation

16: Generate Message For Supplier Negotiation

(supneg)

17: end if

18: end if

19: end if

Algorithm 8 Process Waiting Group (bg)

1: for all Requirements (req) do

2: if NOT Profitable (req) AND NOT Obtained Items

For (req) AND Negotiations Safe (req) then

3: Assign To Failure Group (req)

4: end if

5: end for

6: if NOT Safe To Wait then

7: Group State Set To Active

8: end if

Algorithm 9 Process Completion Group (bg)

1: if Supplier Negotiations Outstanding then

2: if Can Accept Supplier Negotiations then

3: supneg = Highest Priority Supplier Negotiation

4: Generate Accept Message For Supplier Negotiation

(supneg)

5: else

6: for all Outstanding Supplier Negotiation (supneg)

do

7: Assign To Failure Group (supneg)

8: end for

9: end if

10: else

11: if Any Customer Requirements then

12: for all Customer Requirements (req) do

13: if NOT Can Fulfill Requirement (req) then

14: Assign To Failure Group (req)

15: end if

16: end for

17: if Any Customer Requirements then

18: req = Select Highest Priority Fulfillable Require-

ment

19: Generate Accept Message (req)

20: else

21: Group State Set To Finished

22: end if

23: else

24: Group State Set To Finished

25: end if

26: end if

also leaves several decision mechanisms to be defined by any

implementation. By parameterising the mechanisms chosen,

evolution of Middleman strategies can be performed. The set

of implementation decisions is shown below:

The SSF implementation specific mechanisms

• Customer requirement likely profitability

• Customer requirement viability (does the middleman

believe the requirements can be met)

• Generating viable alternatives to a customer requirement

• Determining similarity of customer requirements so that

they may be grouped together

• Viable alternatives prioritisation

• Customer requirement prioritisation

• When a basic group should become active

• When a basic group should enter completion

• Supplier selection

• Supplier negotiation offer and counter-offer generation

• Outbound messages prioritisation

We ultimately aim to evolve SSF base middleman strate-

gies. With the SSF now defined we next discuss the system

used to accomplish this.

III. THE SSCM MARKET SIMULATION SYSTEM (SMSS)

The SSCM Market Simulation System (SMSS) allows for

the evolution of SSF based middleman strategies through the

use of Population Based Incremental Learning with guided

mutation (PBIL+GM). The core of the SMSS is a feedback

loop that instantiates middleman strategies within a supply

chain simulation, evaluates them and then provides positive

and negative reinforcement for the next round of middleman

instantiations. The supply chains being tackled are defined

in terms of the SSCM with the appropriate information

being relayed to the various participants at the beginning

of the market. The PBIL distribution and market results are

recorded at each stage for further analysis. See Figure 3.

Fig. 3. SMSS feedback loop

The complete SMSS comprises a number of components

to provide a high degree of flexibility to the market simula-

tion, the process of evolution and the experiments being run.

A basic break down of these components is as follows:

• Agent loader, to load and run all agents in the system.

• Experiment controller (Experimenter), to configure and

run experiments.

• Evolution controller (Evolver), houses the PBIL distri-

bution and runs specific experiments.

• Generator, to create SSCM representations solved in

each market.

• Timer, to provide timing services to the markets being

run.

• Customers, Suppliers and Middlemen, represent that

market participants.

• Optionally, an independent Java Messaging Service

(JMS) server to allow distribution operation.

The SMSS is implemented in Java and designed to work

both on a single local machine or across multiple machines

via the JMS Server. This is illustrated in Figure 4.

Fig. 4. SMSS component interaction

While the Loader initially loads and configures the SMSS

components the Experimenter is responsible for the remain-

der of SMSS operation.

Once the Experimenter has confirmed all required com-

ponents are present it will begin performing a series of

specified experiments. Specific experiments are carried out

by request to the Evolver. The Evolver carries out an ex-

periment by repeatedly configuring the market participants

(Customers, Suppliers and Middlemen), requesting a new

SSCM configuration from the Generator and then starting the

market Timer. Each participant returns results to the Evolver

when the market ends. This information is used to update

the Evolvers PBIL distribution and recorded for future use.

Multiple markets may be run for each reinforcement on the

PBIL to increase certainty about how participants performed.

When the experiment is complete the Evolver informs the

Experimenter which may then request a new experiment or

cause the system to exit.

The range of potential experiment configuration is quite

extensive with, for example, each participant parameter spec-

ified directly, subject to evolutionary forces or drawn from

previous PBIL distributions.

Supplier and Customer implementation is simple and

follows the rules laid out by Scenario One and Two. A single

Customer agent may, however, represent many Customer

market participants. Middleman strategies are constrained by

the SSF and (usually) parameterised via the Evolvers PBIL

distribution.

In making use of the SSF for the evolution of middleman

strategies the various elements outlined in the SSF descrip-

tion must be defined. This is done so here:

SMSS, SSF implementation specifics

1) Requirement Profitability - Based on estimated product

cost determined from past transactions or an arbitrary

guess price if insufficient information.

2) Requirement Viability - Based on past failure to obtain

the required products. A threshold number of failures

is used beyond which a product is considered unob-

tainable.

3) Alternatives Generation - Problem specific. For a TAC

like situation all viable start-time, duration pairs of the

same duration or less than the original requirement are

generated.

4) Requirement Similarity - Each Basic Group handles a

certain window of requirement fulfill by time. If groups

overlap the least full group is assigned.

5) Alternatives Prioritisation - Based on uclidean distance

using duration and start-time. Closest start time wins

tie-breaks.

6) Requirement Prioritisation - Based on likely profitabil-

ity.

7) Basic Group Activation - Specified by a minimum

amount of time being needed to negotiation before the

earliest requirement in the group must have a response.

8) Basic Group Completion - Specified by a minimum

time required to send completion messages before the

earliest requirement needs a response.

9) Supplier Selection - Random, even distribution.

10) Supplier Negotiation (offer and counter-offer) - See

below.

11) Outbound messages prioritisation - New, Accept, On-

going Reject. Tie-breaks on soonest to timeout and

value.

A. Supplier negotiation, offer and counter-offer generation

In attempting to fulfill their requirements, an SMSS

Middleman Basic Group negotiates for each product type

separately in order to more easily estimate product values.

Offers and counter-offers are made based on the boulware

and conceeder tactic specified by Matos ([7]). This mech-

anism uses a single parameter to affect how a negotiator

adjusts its price over time. Two further parameters multiply

the current product value estimate in order to determine the

upper and lower price bounds.

Both the middleman and supplier negotiation mechanisms

are based on the same principle.

B. Evolution in the SMSS

The SMSS makes use of Population Based Incremental

Learning with Guided Mutation (PBIL+GM, [8], [9]) for

evolving Middleman strategies.

PBIL combines a traditional evolutionary approach with

that of reinforcement learning, replacing a population of

solutions with a probability distribution. The probability

distribution maintains the chance of each possible value for

each variable occurring.

Possible middleman strategies can be generated proba-

bilistically using the distribution. These strategies are then

tested in the market. Good strategies are used to increase

the probability of their variables values occurring in future

while bad strategies may be used to reduce the chance of

their variable values reoccurring.

Mutation can be used with PBIL to add additional vari-

ability to the solutions generated and so promote greater

exploration of the search space. The SMSS makes use of

both a traditional mutation operator and guided mutation.

The traditional mutation operator may, with low proba-

bility, adjust a strategies variables to some random (evenly

distributed) value.

Guided mutation will, with low probability, adjust a strate-

gies variables towards those of the last best strategies found.

This mechanism was found to increase the effectiveness of

PBIL when generating strategies for the more simple Iterated

Prisoners Dilemma problem ([9]).

The PBIL implementation used by the SMSS allows

named variables to be defined in terms of four main proper-

ties. The first is whether the variable should be considered

to operate over a continuous range or if it is symbolic (used

for integer values). The second is the number of blocks or

divisions. For a continuous variable this defines the number

of divisions used to specify probability across the range. For

symbolic variables this is the number of discrete points to be

used. Finally the upper and lower range must be specified.

When generating values, symbolic cells simply choose

from amongst the set of discrete points probabilistically.

For continuous variables a particular division is chosen

probabilistically then a value is chosen at random (even

distribution) from within the range this represents.

Symbolic and continuous variables respond slightly dif-

ferently to reinforcement. For symbolic cells a positively

reinforced value will cause that values probability to be

raised by some amount and all other value probabilities to

be lowered. For continuous variables the same effect occurs

in relation to the division from which a value derived. In

addition the boundaries of the division contract towards the

reinforcement causing value, so helping to focus a search in

this area.

Negative reinforcement works the same way for both

symbolic and continuous cells with the causing discrete point

or division losing a certain amount of probability that is

distributed back to all other elements.

C. SMSS Parameters

The SMSS is highly configurable, most of this control

being available via the Experimenter component. Further

control is provided by the Generator configuration that allows

variation in the SSCM problems presented to the market

participants.

On the Experimenter side the number of experiments and

the Generator configurations to use are important parameters,

along with how participant variables are instantiated (Static,

current evolving PBIL distribution or previous PBIL distri-

bution), control of middleman evaluation and the level of

reinforcement and mutation to be used.

The SSCM Generator allows the number and wealth of

Customers to be specified along with the availability and cost

of products at Suppliers. Further, market length, communi-

cation restrictions and control over the range of customer

requirements is provided for.

While the above parameters are all specified as part of the

experiment being run, Middlemen within a market receive

parameters for their SSF based strategies from the PBIL

component of the Evovler. These parameters directly affect

the behaviour of the Middlemen in the market and are shown

in Table I below.

Parameter Use

Group Activation Time How soon before the earliest require-
ment of an inactive group needs a re-
sponse should the group be activated

Group Active Proportion What proportion (beyond 50%) of the
time after group activation is used for
negotiation instead of completion

Supplier Timeout How long the middleman will wait for
a response from the supplier

Unavailable Threshold The threshold for a product at a given
time from a particular supplier being
deemed unavailable

Alternative Tries How many customer requirement alter-
natives will be tried

For products

Guess Price The base price the middleman uses to
estimate product value

Product Window How many of the most recent transac-
tions should be used to estimate

For each Product

Upper Value Multiplier Multiple of a products estimated value a
middleman is willing to pay maximum

Lower Value Multiplier Multiple of a products estimated value
a middleman is willing to pay minimum

Tactic value Control variable for the negotiation tac-
tic

TABLE I

SSF MIDDLEMAN PARAMETERS

IV. SMSS RESULTS AND ANALYSIS

As mentioned previously the main output of the SMSS

is a series of PBIL distributions and information about the

results of each market and any resultant learning.

Analysing this information is itself a challenge. At a

minimum level we need to answer the following questions.

• Has anything (useful) been learnt?

• Does the system converge towards similar solutions for

a given environment?

Answering the first of these questions is relatively straight

forward. The entropy level of the PBIL distribution is

recorded over the course of an experiment, as the distribution

converges so the entropy drops. This shows learning, of some

sort, is taking place. Further the mean and median profits for

middlemen over the course of the experiments are recorded,

ideally these increase and become consistent over time if the

system is learning something useful.

Answering the second question is more tricky. To do

this the final PBIL distribution from multiple experiments

maybe examined for their similarity. To do this a number of

measures are used.

The first of these measures determines the total, mean

and median sum of differences between the probabilities of

each value for each variable controlled by the distribution.

For integer value variables of a set range this is relatively

straight forward matter of direct discrete point, probability

comparison. For continuous variables it is more complex.

The range is broken down according to the combined divi-

sional boundaries in use by each variable. This combined

boundary set has probability assigned to its divisions from

each variable proportional to the amount of a covering

division (one combined division is at most the same size

as an original variable division). Having determined the

probabilities for a combined divisions from each variable the

same comparison mechanism used for symbolic variables can

be applied.

This mechanism is useful for obtaining an idea of the raw

difference between PBIL distributions but does not provide

a way of determining the nature of this difference.

To better obtain an idea how the differences in a PBIL

distribution occur we make use of two further measures. The

first of these is the mean point of the probability, or how far

through the variables range half the probability occurs. This

gives an indication of where in the range the probability is

distributed. The second is to measure the deviation from this

mean point. The differences in the means and deviations can

then be examined to help understand how two variables may

deviate.

While both of the above methods help understand how

similar variables and whole PBIL distributions are, further

work is being undertake to improve techniques to make

similarity judgements less subjective.

More complex questions can be asked of the experiments

and the resultant PBIL distributions. Amongst these are:

• Do cycles occur within an experiment?

• How do PBIL distributions react to environments other

than the ones they formed in?

• How do strategies from different distributions perform

in their home environment against invaders?

• What are the limits of adaptation in relation to harsh

environments?

• Can these limits be extended by using PBIL distribu-

tions from similar but less harsh environments?

The first of these may be tackled by examination of both

the market data and the PBIL distributions over time, the aim

being to discover cycles of behavior related to the learning

taking place.

The remainder can be tackled by the configuration of

experiments that define a starting PBIL distribution or allow

the definition of a sub-set of middleman agents from a

different (fixed or not) PBIL distribution.

Efforts in all these areas are ongoing.

A. Current Experiments

At present experiments are being conducted under Sce-

nario Two settings to test the limits of adaptability and

determine how final PBIL distributions cluster for the same,

similar and different environments.

V. CONCLUSIONS

The SSCM provides a way to capture simple, non-trivial

supply chains allowing evolutionary experiments to be

carried out.

The SSF provides a way to tackle a subset of SSCM

problems by restricting the way in which the SSCM is used

and placing some constraints on the behavior of supply

chain participants.

The SMSS provides an effective tool for the evolution

of SSF based middlemen strategies using PBIL+GM over

many SSCM defined problems.

The data generated by the SMSS needs to be analysed and

some mechanisms for approaching this have been presented.

Experimentation using the SMSS is ongoing and techniques

for further analysis are being developed.

ACKNOWLEDGMENT

This work has been partially sponsored by British

Telecommunication PLC as part of an EPSRC studentship.

REFERENCES

[1] M. He, N. Jennings, and H. Leung, “On agent-mediated electronic
commerce,” 2003.

[2] T. Sandholm, Distributed Rational Decision Making. 201-258, 1999,
p. MIT press.

[3] W. Walsh, “Market protocols for decentralized supply chain formation,”
Ph.D. dissertation, University Of Michigan, 2001.

[4] T. Gosling, “The simple supply chain model and evolutionary compu-
tation,” in Congress on Evolutionary Computation 2003 (CEC2003),
2003.

[5] T. Gosling and E. Tsang, “Technical report 1: The simple supply chain
model (sscm),” Department of Computer Science, University of Essex,
Tech. Rep. CSM-392, 2003.

[6] M. Wellman, A. Greenwald, P. Stone, and P. Wurman, “The 2001
trading agent competition,” in Fourteenth Conference on Innovative

Applications of Artificial Intelligence, 2000.
[7] N. Matos, C. Sierra, and N. Jennings, “Determining successful ne-

gotiation strategies: An evolutionary approach,” in 3rd International

Conference on Multi-Agent Systems (ICMAS-98), 1998.
[8] S. Baluja, “Population based incremental learning - a method for

integrating genetic search based function optimisation and competitive
learning,” Pittsburgh, PA: Carnegie Mellon University, Tech. Rep.
CMU-CS-94-163, 1994.

[9] T. Gosling, N. Jin, and E. Tsang, “Population based incremental learning
with guided mutation versus genetic algorithms: Iterated prisoners
dilemma,” in Congress on Evolutionary Computation 2005 (CEC2005),
2005.

