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ABSTRACT 

Portfolio optimization is a major activity in business. It is intensively studied by researchers. 
Conventional portfolio optimization research made simplifying assumptions. For example, they 
assumed no constraint in how many assets one holds (cardinality constraint). They also assume 
no minimum and maximum holding sizes (holding size constraint). Once these assumptions are 
relaxed, conventional methods become inapplicable. New methods are demanded. Threshold 
Accepting is an established algorithm in the extended portfolio optimization problem.  
 
In this thesis, we take into consideration the cardinality and holding size constraints. We have 
developed five hill climbing algorithms, namely HC-S, HC-S-R, HC-C HC-C-R and Guided 
Local search (GLS), for the extended portfolio optimization problem.  

The new hill-climbing algorithms produced are first tested in standard portfolio optimization 

problem. In solving standard portfolio optimization problem, we retain Markowitz’s constraints 

that the investor has a fixed budget, and no short-selling is allowed. Results are compared 

(benchmarked) with the Threshold Accepting algorithm, a well-known algorithm for portfolio 

optimization, and quadratic programming (QP). 

The new algorithms are next applied to the extended portfolio optimization problem. First, we 

take into consideration the cardinality constraint. Then we take on the holding sizes constraint. 

Results suggest that the algorithms developed in this thesis also out-performed Threshold 

Accepting in the extended portfolio optimization. This establishes the usefulness of the five hill 

climbing algorithms developed in this thesis. 
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1.  INTRODUCTION 

1.1 Background 

The portfolio optimization problem is a problem concerning asset allocation and diversification 

for maximum return with minimum risk. The problem is to find the portfolio weights, i.e. how to 

distribute the initial wealth across the available assets, in order to meet the investor’s objectives 

and constraints as well as possible [11, 12, and 13]. 

Harry Markowitz [12, 13] in 1952 came up with a parametric optimization model for the 

problem of asset allocation and diversification for maximum return with minimum risk, which 

has become the foundation for Modern Portfolio Theory (MPT) or Markowitz theory or Mean-

Variance model. To apply the Markowitz model to practical problems using the 

standard/traditional methods like quadratic programming, strong assumptions and simplifications 

of the real market situations have to be made. Markowitz model considers what is termed as 

standard portfolio optimization. In the standard portfolio optimization problem, the constraints 

taken into account are budget and no-short selling. In reality however, portfolio optimization has 

realistic constraints to be incorporated, such as holding sizes, cardinality, transaction cost, 

portfolio size or additional requirements from investors and authorities. When these realistic 

constraints are added to portfolio optimization, the problem quickly becomes too complex to be 

solvable by standard optimization methods. When the assumptions and simplifications of the real 

market situations are relaxed and realistic constraints added, now we have an extended portfolio 

optimization problem. And here the Markowitz solution and the conventional methods like 

quadratic programming become inapplicable. Heuristic methods are usually used to deal with 

this extended portfolio optimization problem [5, 10, 11, 17, 19, 20, 21, 41, and 50]. The most 

established heuristic algorithm used in extended portfolio optimization problem being Threshold 

Accepting [5, 15, 17, 23, 58, 48, and 40]. 

The core of heuristic methods is an iterative principle that includes stochastic elements in 

generating new candidate solutions and in deciding whether these replace their predecessors, 

while still incorporating some mechanism that prefers and encourages improvements [57, 24].  In 
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portfolio optimization, when a realistic setting is considered technically, the search space is 

usually discontinuous and discreet with numerous local optima. 

1.2 The Objective 

The objective of the research is to produce more effective and more efficient heuristic algorithms 

for the extended portfolio optimization problem. 

In this research, heuristic methods are designed, investigated and then applied to portfolio 

optimization under some realistic constraints of the market. The produced algorithms are 

implemented in solving both the standard and the extended portfolio optimization problem. 

In this thesis, the constraints taken into account in extended portfolio optimization problems are 

first cardinality, and then cardinality and holding sizes (maximum holding size and minimum 

holding size). The problem is to find the portfolio weights, i.e. how to distribute the initial wealth 

across the available assets, in order to meet the investor’s objectives and constraints as well as 

possible. The significance of the research lies in efficient portfolio selection/optimization and 

also in efficient investment management [13]. 
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2.  LITERATURE REVIEW 

2.1 Introduction 

Portfolio optimization is about identifying the combination of financial assets that fits an 

investor’s needs and requirements the best [1, 2, 4, 6, and 7].  It is about finding a combination of 

assets that can offer ideal trade-off between expected profit and the risk associated with it [12, 

13]. This is because not all assets will show the same unexpected deviations between the 

expected and actual returns; while one asset increases in price another one might fall at the same 

time and vice versa. So in the long run, splitting one’s capital and holding both or more assets 

will offset some of the deviations and achieve actual returns closer to the expected return [2, 3, 9, 

11, and 13]. In order to find an optimal combination of financial securities, managing a financial 

portfolio includes determining fair prices for these securities, assessing the relationships between 

securities, estimating future profits of financial securities and the risk associated with it, also the 

analysis of investor’s attitude towards risk, expected return and consumption. Usually, to model 

portfolio optimization and portfolio management, the assumption that markets are frictionless 

has to be made. Although unrealistic, this has been long considered as the only way to model the 

frameworks [12, 13]. But these simplifying assumptions are no longer necessary and instead 

more complex scenario and settings can be investigated with heuristic type of optimization and 

search methods [5]. 

2.2 Area of Study 

The area of study is portfolio optimization by heuristic methods. The problem in portfolio 

optimization is often to reduce as much risk as possible, or to achieve the highest possible returns 

or both under constraints [1, 2, 4, 6, and 7]. Considering realistic situations/constraints of the 

market turns portfolio optimization into a too highly demanding optimization problem for 

standard methods. The focused area of the study is portfolio optimization by heuristic techniques. 

The purpose of the study is to tackle realistic portfolio optimization by making the Markowitz 

model more applicable in real situations and constraints of the market [11, 15]. 
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2.3 Modern Portfolio Theory (MPT) Or Markowitz Theory or 
Markowitz Model 

Harry Markowitz in [12,13] in 1952 came up with a parametric optimization model for the 

problem of asset allocation and diversification for maximum return with minimum risk, which 

has become the foundation for Modern Portfolio theory (MPT) or Markowitz theory or Mean-

Variance theory. Others came up with ways to implement the model like Capital Asset Pricing 

Model (CAPM) in [1] where the model was developed that shows that rational investors with 

homogenous expectations will hold a portfolio that somehow emulates the market with a safe or 

risk free asset.  Another way to implement the model is Arbitrage Pricing theory (APT) in [14]. 

In the mean variance framework, [12, 13], the selection problem can be split into two steps. 

From a universe of feasible portfolios, the majority can be classified as inefficient and should not 

be held by any investor for whom the usual assumptions of risk aversion apply. Risk plays an 

important role in modern finance, including risk management, capital asset pricing and portfolio 

optimization. Which of the remaining efficient portfolios ought to be picked, however, depends 

on the investor’s preferences. 

Markowitz’s standard portfolio optimization model is a mathematical framework for describing 

and assessing return and risk of a portfolio of assets, using returns, volatilities and correlations. 

Markowitz introduced what is known as the mean-variance principle, where future returns are 

regarded as random numbers and expected value (mean) of the returns E(r) and their variance 

(whose square root is called standard deviation/ risk) capture all the information about the 

expected outcome and the likelihood and range of deviations from it [12,13]. 

 

2.3.1 Objective Function 

In the standard Markowitz model below, the goal is to maximize the expected return, R, while 

diminishing incurred risk, , (measured as standard deviation/variance) [5].  

Given return (Rp) of a portfolio and variance (2
p) of portfolio, the equation to maximize is  
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Max  (.E(Rp)  – (1-).2
p)         (1) 

Subject to 

 Expected return: 

∑ = (ሺܴpܧ ௜௜ݓ Eሺܴ௜ሻ	        (2) 

 Portfolio return variance: 

2
p=∑ ∑ ௝௜	௝௜௝ݓ	௜ݓ ௜௝       (3) 

௜௝ ൌ 1  for i=j 

 ∑ ௜ݓ ൌ 1௜          (4) 
 0 ൑ ௜ݓ ൑  1         (5) 

 

Where the expected return of each asset is ܧሺܴ௜ሻ, each asset variance is ௜, and each asset weight 

is ݓ௜. 

From the equation (1) the trade-off between return (Rp) and risk (p) of portfolio is reflected. 

The efficient line/frontier is then identified by solving the above problem for different values of  

 [0, 1]: If =1 the model will search for the portfolio with highest possible return regardless of 

the variance. With =0, the minimum variance portfolio (MVP) will be identified. Higher values 

of   put more emphasis on portfolio’s expected return and less on its risk. [5]. Equation (4) and 

(5) are the constraints on the weights that they must not exceed certain bounds. 
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2.3.2 Asset Return 

Asset return is the payoff of financial security after investment in that security. From the 

Markowitz model, two moments, mean and variance, describe the asset returns and utility of a 

rational risk averse investor. The basis for decisions on investment is the trade-off between the 

higher return and higher variance. Returns are assumed be normally distributed. This assumption 

of symmetry does not capture extreme events and may apply mostly for small set of stocks [4, 6, 

and 7]. The equation (2) is the mathematical expression for the overall expected return from the 

assets in a portfolio. 

∑ = (ሺܴpܧ ௜௜ݓ Eሺܴ௜ሻ	        (2) 

 

2.3.3 Risk 

Risk explains a situation where the exact outcome is not known [7]. The value or measure of risk 

shows the magnitude of deviations from the expected value/outcome. This results in positive or 

negative news. Risk can be measured in several ways, the most popular being volatility which is 

the square root of variance [4]. Semi-variance measures only the negative deviations from the 

expected value. Another measure of risk is VAR (value at risk) which indicate the maximum loss 

within a given period of time with a given probability. VAR is due to findings and assumptions 

that investors put additional weight on losses. That is decisions are driven by loss aversion [5]. 

The equation (3) is the mathematical expression for the portfolio variance whose square root is 

called risk. 

2
p=∑ ∑ ௝௜	௝௜௝ݓ	௜ݓ ௜௝       (3) 
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2.3.4  Diversification 

One of the outcomes of mean-variance theory is that investors will want to hold as many 

different assets as possible. This is if there is no constraint on short selling and no transaction 

costs [5]. Markowitz showed that riskiness of a portfolio can be reduced by diversification [8, 9]. 

If the correlation between assets is lower, it means the diversification of assets is larger. The less 

the stocks are correlated the more risk can be eliminated and so can result in better investor’s 

utility. So portfolio investment is not only advantageous over a single stock investment but also 

the more different stocks the better. In reality, however, there are transaction costs and 

administration costs. It is more work to monitor a portfolio of a large number of different assets. 

In practice, deciding on the right weight for an asset is done together with deciding whether the 

asset should be included at all, as most of the risk diversification can be realized with a well-

chosen small set of assets [5].  

2.3.5 The efficient frontier 

For every level of return, there is one portfolio that has the lowest possible risk and for every 

level of risk there is a portfolio that offers the highest return. This combination when plotted on a 

graph of the curve/line is the efficient frontier. The curve is usually a convex one but may change 

depending on the constraints imposed on the investor. The portfolios of this combination of 

return, risk values, plotted on the efficient frontier make up the set of efficient portfolios [8, 9].  

2.3.6  Shortcomings of Markowitz model 

The Markowitz model is one period or static (independent of the actual length of time) and he 

had to make unrealistic assumptions, like there are no realistic constraints like cardinality, 

maximum holding size, minimum holding size, transaction costs, regulations and securities are 

perfectly divisible. To apply the Markowitz model to practical problems using the 

standard/traditional methods like quadratic programming, strong assumptions and simplifications 

of the real market situations, have to be made. In reality, however, portfolio optimization has 

realistic constraints to be incorporated as mentioned before. When these realistic constraints are 

added to portfolio optimization, the problem quickly becomes too complex to be solvable by 
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standard optimization methods. Here the Markowitz solution becomes inapplicable [5, 11, 17, 19, 

20, and 21]. 

We have stated that optimization has to consider the above realistic constraints to be realistic. 

This thesis will handle cardinality, maximum holding size, and minimum holding size 

incorporating them in the Markowitz model.  

In minimum holding size, assets either are above a certain lower bound, or they are not part of 

the portfolio at all. This is to prevent the assets with small weights from being included in the 

portfolio [18]. The reason behind this being to avoid the cost of administrating very small 

portions of assets and transaction costs [5]. 

Maximum holding size constraint is when there is a limit to the maximum proportion allowed to 

be held for each asset in a portfolio. The purpose of this, which can also be there because it is 

imposed by law, is to avoid excessive exposure to a specific asset in a portfolio [34]. 

The cardinality constraints limit a portfolio to have a specified integer number of assets. 

Cardinality constraints are there for monitoring or management reasons and in order to reduce 

management and transaction costs [35]. 

2.4 Approaches to Portfolio Selection Problem 

Some of the approaches to modelling the portfolio selection problem are the Mean-Variance 

approach and Scenario Generation approach. These will be elaborated below. 

2.4.1 The Mean-Variance Approach 

Optimization by mean-variance by Harry Markowitz [12, 13] is the most popular approach to the 

portfolio selection problem. In this structure, the investor faces a trade-off between the gain from 

his portfolio, described as the expected return, and the risk, measured by the variance of the 

portfolio returns. These first two moments, mean and variance, of the portfolio future return are 

taken to be sufficient to define a complete ordering of the investors’ utility functions. This strong 
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result is due to the simplistic hypothesis that the investors’ utility functions are quadratic and the 

distribution of returns is normal. 

The efficient portfolios of the mean-variance are defined as having the highest expected return 

for a given variance and the minimum variance for a given expected return [1, 12, and 13]. 

Efficient algorithms exist to compute the mean-variance portfolios.  

2.4.2 Scenario Generation Approach 

Another approach to the above optimization setting is the scenario analysis where uncertainty 

about future returns is modelled through a set of possible realizations called scenarios. A model, 

experts’ opinions, or past returns are used to generate scenarios of future outcomes.  

A straightforward approach is to use empirical distributions computed from past returns as 

equally likely scenarios. Observations of returns over overlapping periods of a certain length are 

considered as the possible outcomes, or scenarios, of the future returns and a probability S is 

assigned to each of them [17]. 

2.5 Heuristic Portfolio Optimization Techniques 

2.5.1 Portfolio Optimization Problem 

Optimization problem is about finding the values for decision variables that meet the objectives 

the best without violating the constraints. Optimization problems might have multiple solutions 

depending on the objective function. Some of these solutions might be local optima. A solution 

is global optimum if it yields the best overall value for the objective function. If the solution 

space is too complex, it is often difficult to determine whether an identified solution is a local or 

global optimum. Finding an efficient portfolio in the Markowitz model, equation (1) in section 

2.3.1 is an optimization problem. The objective is to maximize equation (1) under the constraints 

that the asset weights must not exceed certain bounds (equations (4) and (5) in section 2.3.1) [5]. 
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Although the Markowitz model is a well defined optimization problem, there exists no general 

solution for the optimization problem, because of the non-negativity constraint on the asset 

weight. Though the Markowitz model cannot be solved analytically, numerical methods exists by 

which the model can be solved for a given set of parameters [5, 11]. The capacity of these 

traditional/standard methods, rely on strong assumptions and simplifications which do not reflect 

the real market situations [1, 14]. Examples of real market situations are the existence of 

regulations and/or trading restrictions, transaction costs and other fees. For reliable results that 

reflect the effects of the real market situations, alternative optimization techniques that are 

capable of dealing with these real market situations have to be employed. These are heuristic 

optimization techniques [5]. 

2.5.2 Characteristics of Heuristic Optimization Techniques 

The core of heuristic methods is an iterative principle that includes stochastic elements in 

generating new candidate solutions and/or in deciding whether these replace their predecessors – 

while still incorporating some mechanism that prefers and encourages improvements [11, 15, 59, 

and 57]. They seek to converge to the optimum in the course of the iterated search. They are 

flexible and not so restricted to certain forms of constraints. Heuristic techniques solve 

optimization problem by repeatedly generating new solutions and testing them. Therefore 

heuristic techniques address problems with a well defined objective function and model [11]. 

The following is an explanation on heuristic techniques. 

2.5.2.1 Initial Solution  

The choice of an initial solution for heuristics for the portfolio selection problem is randomly 

generated, or a solution constructed by a means of simple heuristic procedure [11, 15, 59, 57]. 

The requirement to this starting solution is for it to conform to the constraints to ensure 

feasibility of the initial portfolio. A separate mechanism can be used to ensure the feasibility [40]. 

In this thesis, the initial solution was a set of randomly generated integers to conform to the 

constraint of no short selling, that is no negative values, and they were all scaled to 1 (100%) to 

conform to the constraint of budget (100% of capital is to be invested in the portfolio). 
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2.5.2.2  Iterative Improvement 

Improving from the initial solution to the required global optimal solution is achieved iteratively 

[11, 15, and 40]. Iterative improvement can be considered as the simplest neighbourhood search, 

as it performs a path in the search space by moving from one solution to a neighbouring one 

according to the already set neighbourhood tuning parameters or a certain mechanism. This 

neighbourhood search can be named best improvement, if the neighbour chosen is the best 

among the feasible neighbours, or just first improvement, if the chosen neighbour is the first 

solution found during the neighbourhood search that is better than the current one [34, 11]. A 

more complex strategy can also be used for iterative improvement, example, [39] a greedy search 

is used to refine solutions found by an ant colony algorithm. 

2.5.2.3 Stopping Criteria 

The stopping criterion of the heuristic algorithms is usually a fixed number of steps or if the 

quality of the solution does not improve after a given or specified number of iteration or both [15, 

40]. 

2.5.2.4 Computation resources and stochastic solutions  

The local search methods usually get candidate new solution by randomly trying out one 

candidate solution after another, using the objective function. It ignores the information that the 

derivatives of the objective function provide. This makes them less efficient than the gradient 

based methods as they require more computing time. But in recent years this has become less of 

a concern due higher speed of computers. Computational resources can also be measured using 

the number of objective function evaluation [40].  

Also running the same technique twice normally results in different solutions. A number of runs 

are required to run a program, which is from a different starting point, for a convergence of a 

solution or to reach approximate global optimum [23, 40]. 
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2.5.3 Some Portfolio Heuristic Optimization Techniques 

2.5.3.1 Simulated Annealing 

Simulated annealing [45] is a type of local search algorithm that accepts all new points that are 

superior to the current solution according to the objective function, but also, with a certain 

probability, accept inferior points. By accepting inferior points, the algorithm avoids being 

trapped in local minima, and is able to explore more widely for better solutions. The probability 

of accepting an inferior point decreases over time, following a cooling schedule on the 

“temperature”. When the temperature falls to 0, SA behaves exactly like hill climbing. SA has 

been applied for portfolio selection [20, 21], and with constraints and trading restrictions in [19]. 

Definition:  f (x) is the objective function value due to solution x. 

 

Pseudo code for Simulated Annealing [45] 

Generate initial solution xc, 
 Initialize maximum number of rounds/steps, Rmax and  
Temperature, Temp. 
for r = 1: Rmax do 
while stopping criteria not met do 

Compute xn   (neighbour to current solution xc) 
Compute Difference Diff= f (xn) − f (xc) and generate u (uniform random variable) 

 if (Diff< 0) or (e−Diff/Temp > u) then    
xc = xn 

 end while 
Reduce Temp 

end for 

 

2.5.3.2 Threshold Accepting 

Threshold Accepting [22] can be seen as a variation of simulated annealing, except that there is 

no introduction of temperature. Instead of accepting inferior new points with a certain probability, 

it accepts only the points that fall below a fixed threshold. TA was originally proposed by [22] as 

a deterministic and faster variant of the original Simulated Annealing algorithm.  
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As Threshold Accepting avoids the probabilistic acceptance calculations of simulated annealing, 

it may locate an optimal value faster than the actual simulated annealing technique. 

In Threshold Accepting algorithm, the best solution obtained depends on some parameters such 

as the initial threshold value, the threshold decreasing rate and the number of permutations. The 

initial threshold and threshold decreasing rate are fixed such that a number of iterations can be 

carried before the algorithm stops. 

In [15, 17, 23, 58, 40, and 48], Threshold Accepting is applied for constrained portfolio 

optimization. Different utility functions can be optimized because of the flexibility of the TA 

algorithm implemented for portfolio selection. These include transaction costs, multiple-currency 

portfolios, cash-flow control, depreciation and losses and income taxes. 

Definition:  f (x) is the objective function value due to solution x. 

 

Pseudo code for Threshold Accepting [48]  

Initialize number-of-Rounds, nRounds and number-of-steps, nSteps 
Compute threshold sequence τr 
Randomly generate current solution xc in the search space X 
for r = 1: nRounds do 
for i = 1: nSteps do 
Generate xn  neighbour to (xc)  
compute Difference D = f (xn) − f (xc)    
 if D < τr then  

xc = xn 
end for 
end for 
  xsoln = xc 

 

In this thesis, Threshold Accepting is used as a benchmark algorithm to the proposed hill 

climbing algorithms in solving the standard Markowitz model. 



21 

 

2.5.3.3 Evolutionary algorithms (EA) 

These are population based heuristics from the inspiring Darwin’s theory of natural evolution 

and selection. At each iteration, these search techniques change and manipulate a set of solutions 

combining the best solutions of the current set to generate the solutions of the next set, while 

saving the best solution found during all iterations [34].  

There has been a trend of hybrid heuristics of evolutionary algorithm and local search to get the 

benefits of both, so often EA-based heuristics are enhanced by hybridizing EAs with local search 

strategies and/or advanced constructive procedures, for example in [50]. The name memetic 

algorithm (MA) is used to describe strategies where local search runs are executed to improve 

the quality of the solutions constructed by the EA [39].  Examples are [38] the local search 

procedure that is used for enhancing the performance of standard differential evolution (DE) 

algorithm. In [10], the paper evaluates the hybridization of a multi-objective evolutionary 

algorithm and a quadratic programming (QP) local search on multiple instances of the 

constrained and unconstrained portfolio selection problem, using a problem specific 

representation. The memetic algorithm proves to be a two-edged approach, on one hand, it 

improves the convergence rate for some problem instances. While on other hand of problem 

instances, the local search causes a neutral search space and eventually premature convergence. 

The paper investigates this behaviour, offers some explanation and also outlines a possible 

remedy. 

 

Evolutionary methods also include all the various forms of genetic algorithms and genetic 

programming. One successful evolutionary method is Differential evolution [51]. The method is 

easy to implement and has few parameters to tune when applied [52]. Also the parameters are 

more or less standard in that the values produce good result to different set of problems [53].  

Among the Evolutionary methods that have been successfully used for portfolio optimization are 

described in [16, 29, and 41]. Also, in [32], evolutionary strategy was applied to tackle portfolio 

optimization. The strategy employs k-means cluster analysis to eliminate the cardinality 

constraint and thereby simplify the mathematical model and the evolutionary optimization 
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process. The strategy also employs refined weight standardization algorithms to tackle the 

bounding constraints and class constraints. Authors in [36] apply Multi-objective evolutionary 

algorithm (MOEA) on the constrained portfolio selection problem based on the Markowitz 

mean-variance model, and suggest a new hybrid encoding of the portfolio selection that proves 

to be more efficient than a standard encoding. They showed that the suggested hybrid encoding 

is able to solve the portfolio optimization problem more efficiently than the standard encoding 

based on a single real-valued vector of decision variables. 

Basic Structure for EA [5] 

  Generate P random solutions x1…xp 
repeat 
 for each parent individual i=1…P 
  Generate offspring x`i by randomly modifying the “parent” xi 
  Evaluate new solution x`i 
 end 
 Rank parents and offspring 
 Select the best P of these solutions for new parent population 
until halting criteria met  
 
 

2.5.3.4 Ant Colony Optimization 

The unique behaviour of ants inspired this population-based heuristic known as Ant colony 

optimization (ACO). Solutions are generated component by component, following a probabilistic 

procedure that biases the choice of the next solution component on the basis of the quality of the 

previous constructed solutions. Successful application of ACO in a portfolio selection problem 

modelled with the cardinality constraint is in [43, 34]. 

2.5.3.5 Particle Swarm 

Particle swarm optimization approach is the nature-inspired search algorithm that is useful when 

solving continuous optimization problems. It is for both discreet and continuous problems. 
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Its application to the portfolio selection problem has been demonstrated by [44], in which results 

show that it is only when dealing with problem instances that demand portfolios with a low risk 

of investment, that the particle swarm optimization model gives better solutions than genetic 

algorithms, Tabu search and simulated annealing [34]. 

 

2.5.3.6 Spin Glass 

Spin glass optimization is a distributed technique inspired by the interactions in spin glasses in 

nature. Spin glasses are the lattices of spins where each spin is only a part of the entire solution 

[37].  

This technique was applied to the Markowitz standard portfolio model. Although the algorithm is 

computationally intensive, it was found to be superior to SA (Simulated Annealing) regarding 

accuracy. However, experiments showed that the use of local search significantly increased the 

speed of the technique at the cost of decreased accuracy. The algorithm aimed at achieving 

global optimization by parallel local search [37]. 

2.6 Some of the Realistic Constrained Portfolio Optimization 
Problems 

Here the optimization problem can be of Single objective, Multi-objective or Dynamic [49].  A 

major difference between single-objective optimization and multi-objective optimization is that 

in the single-objective optimization we obtain a single solution and in the multi-objective 

optimization we have a number of non-dominated solutions (Pareto Front) [54]. For example, 

Single objective portfolio optimization is when you intend to either maximize return or minimize 

risk. In multi-objective portfolio optimization, risk and return are simultaneously considered. 



24 

 

2.7 Summary of Some of the Related Heuristic Techniques 

The heuristics for the portfolio selection problem are mostly either trajectory based strategies, 

such as simulated annealing [45], Threshold accepting [48], and Tabu search [46], and  

population-based heuristics, such as evolutionary algorithms where there are methods like 

genetic algorithms and differential evolution algorithm, particle swarm and ant colony 

optimization. So the development of heuristics has mainly been in using two principles, as local 

search and as population-based search. The population-based search consists of maintaining a 

pool of good solutions and combining them so as to produce better solutions. Examples are the 

genetic algorithms. In local search methods, an intensive exploration of the solution space is 

performed by moving at each step from the current solution to another feasible solution in its 

neighbourhood as explained below. Some of the famous local search methods are simulated 

annealing, originally proposed by [45], and Tabu search [46]. Each of these heuristics have their 

own principles for implementation, [47] attempt to give guidelines for adaptation of all local 

search and population based search methods. 

 

2.7.1 Local Search 

Local search is the basis of many heuristic search methods for solving computationally hard 

combinatorial problems. Local search starts a search with a randomly or heuristically generated 

candidate solution of a given problem instance. It then iteratively improves this solution to a 

neighbour solution usually by means of minor modification according to the objective function. 

Neighbour solutions are a set of candidate solutions. When all neighbouring solutions are no 

better than current candidate solution, the local search stops. This means local search can get 

stuck in a local optimum, although it usually finds good solutions very fast. This situation, where 

no direct improvement is possible can be handled in many ways, which has led to many 

variations of local search methods [55, 56, and 58]. Randomization in generating new, 

neighbouring, solutions is used by many stochastic local search methods to overcome stagnation 

with unsatisfactory solutions [55, 56]. 
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Below is the general pseudo code for Local Search [58].  f(x) is the objective function value due 

to solution x. 

 

Procedure Local-Search () 

  Initialise number-of-steps, nSteps 
  Randomly generate current solution xc from the search space X 
for i = 1 : nSteps do 
  Generate xn which is neighbour to (xc)   
compute Diff = f (xn) − f (xc)   if Diff < 0 then  

xc = xn 
end for 

xsol = xc 

 

2.7.2 Hill Climbing 

One technique that belongs to the class of local search methods is Hill Climbing. It is an 

algorithm that requires two functions, which is evaluation function or objective function and 

adjacency function or neighbourhood function. From a random focal point in the search space 

Hill-Climbing uses the adjacency function to get the next solution which is to be evaluated by the 

evaluation function to determine if it is a better solution [57, 24]. Another strategy used to 

overcome local minima that is used by many local search methods is the acceptance of a 

candidate solution that does not improve objective function. For maximization problem, a 

solution that does not maximize the objective function is also accepted as a new candidate 

solution, likewise for the minimization problem, a solution that does not minimize the objective 

function may be accepted as a new candidate solution [57]. 
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2.7.3 Guided Local Search 

Guided Local Search (GLS) [55, 57] is a meta-heuristic search method that uses penalties to help 

local search algorithms escape local minima or plateaus. Guided Local search sits on top of a 

local search algorithm hence called a meta- heuristic. It works by building up penalties during a 

search [55, 57]. The solution features are defined to distinguish between problems with different 

characteristics. For a given problem, a set of features for candidate solution need to be defined. 

Some of these features, the poor characteristics, are selected and penalized when a local search is 

trapped in local optima. Each feature, i, is associated with a penalty pi. The objective function is 

augmented by the accumulated penalties. The local search searches the solution space using the 

augmented objective function [55, 57]. 

Below is the pseudo code of GLS [55, 57] applied in finding the optimum portfolio of n number 

of assets. 

In the pseudo code below, p is the problem, g is the objective function, h is the augmented 

objective function,   is a parameter, Ii is the indicator function of feature i, ci is the cost of 

feature i, M is the number of features, pi is the penalty of feature i,.  

 

Procedure Guided Local Search (p, g, λ , [I1, . . . , IM], [c1, . . . ,cM], M) 

begin 
k=0;  
s0 is randomly generate initial solution (p); 
% set all penalties to 0 % 
for i=1:M do 

pi =0; 
% define the augmented objective function % 

h=g+ *∑ pi *Ii; 
while StoppingCriterion do 
begin 

sk+1 =Hill-climbing method(sk,h); 
% compute the utility of features % 

for i=1: M do 
utili =Ii(sk+1) ∗ci/(1+ pi); 
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% penalize features with maximum utility % 
for each i such that utili is maximum do 

pi = pi+1; 
k=k+1; 

end 
s∗ is best solution found with respect to objective function g; 

return s∗; 
end 

 

In this thesis the method Guided local search (GLS) is applied as a meta-heuristic in one of the 

proposed algorithms (HC-C-R). 

One of the major advantages of heuristic methods over the traditional deterministic methods is 

that the randomness allows the escaping of the local optima, which is an important issue in many 

financial optimization problems [11]. That is, their solution is global optimal or at least near 

global optimal. 

Other advantages of optimization heuristics include the fact that constraints are easily integrated 

and the algorithm works even if the objective function is changed [11]. 

 The disadvantages include requiring extensive parameter tuning, and compared to other standard 

techniques like integer solver 0r QP (Quadratic Programming) solver, more work has to be put 

into designing the heuristics algorithms [18]. 

 

2.8 Constrained Portfolio Optimization 

Practical optimization problems, like portfolio optimization, are expected to include constraints. 

There are equality and inequality constraints. There are methods to handle constrained 

optimization problem. The algorithm must seek to accomplish two principal outcomes, to satisfy 

all constraints and for it to be optimal, with feasibility being more important than optimality. So 

the optimal solution must be feasible. There are indirect methods and direct methods. Indirect 
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methods include exterior penalty function (EPF) [61], and the Augmented Lagrange multiplier 

method [61]. Direct methods include expansion of functions, sequential linear programming 

(SLP), and sequential quadratic problem [61]. 

In tackling the Markowitz model under some of the realistic constraints of the market, like 

cardinality and holding sizes constraints, the goal is to maximize the expected return while 

diminishing incurred risk, measured as standard deviation/ variance, [5] under the realistic 

constraints; cardinality and holding sizes constraints. In the maximization problem below, the 

cardinality and holding sizes constraints are defined. 

 

 

Given return (Rp) of a portfolio and variance (2
p) of portfolio, the equation to maximize is  

Maximize  (.E(Rp) – (1-).2
p)        (1) 

Subject to: 

 Expected return: 

∑ = (ሺܴpܧ ሺܴ௜ሻܧ௜ݓ
௄
௜ୀଵ        (2) 

 Portfolio return variance: 

2
p=∑ ∑ ௝௜	௝௜௝ݓ	௜ݓ ௜௝ ݂ݎ݋	݈݈ܽ	݅, ݆ ൌ 1,2, … ,  (3)   ܭ

௜௝ ൌ 1  for i=j 

 Basic Constraints: 

∑ ௜ݓ ൌ 1௄
௜ୀଵ          (4) 

0 ൑ ௜ݓ ൑  1         (5) 

 Cardinality Constraints: 
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∑ ܼ௜
ே
௜ୀଵ ൑ ܼ  where  ܭ ൌ ൜

௜ݓ	݂݅						1 ൐ 0	
௜ݓ	݂݅				,0 ൌ 0	      (6) 

 Holding sizes Constraints: 

௜ߝ   	൑ ௜ݓ 	൑ ,	௜ߜ ݅ ൌ 1,2, … ,  ܭ

  0 ൑ ௜ߝ ൏ ௜ߜ ൑ 1        (7) 

 

Where the expected return of each asset is ܧሺܴ௜ሻ, each asset’s variance is ௜, and each asset’s 

weight is ݓ௜. 

From the equation (1) the trade-off between return (Rp) and variance (2
p) of portfolio is 

reflected. Standard deviation (Risk) is obtained as the square root of Variance. The efficient 

line/frontier is then identified by solving the above equation (1) for different values of   [0, 1]: 

If =1 the model will search for the portfolio with highest possible return regardless of the 

variance. With =0, the minimum variance portfolio (MVP) will be identified. Higher values of  

 put more emphasis on portfolio’s expected return and less on its risk. [5]. 

K in equation (6) is the Cardinality constraint in which the investor decides to invest in K or less 

number of assets, out of N assets. 

  in equation (7) are minimum and maximum holding sizes respectively of weight of	௜ߜ ௜ andߝ

assets. 

 

 

2.8.1 Budget and Return Constraints 

The most important constraints are budget and return constraints since they characterize the main 

part of the portfolio problem [34]. The return constraint is when the investor requires a certain 

level of profit from his investment with minimum risk [1]. The budget constraint is when the 
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investor has to invest all the money/capital in the portfolio. However return constraints can only 

be satisfied for a historical portfolio [5]. The unconstrained Markowitz model includes these 

constraints which are also used to define the solution’s feasibility. The equation (4) is the 

mathematical expression for the budget constraint. 

∑ ௜ݓ ൌ 1௄
௜ୀଵ          (4) 

   

2.8.2 No Short Selling 

With the constraint that short selling is not allowed, asset weights must be positive numbers. 

This is part of the original Markowitz model. But this is sometimes not realistic, as short-selling 

happens and it is known to be a common practice with the investors. The relaxation of the 

constraint in the model, to analytically allow short selling, was first introduced in [42]. The 

equation (5) above is the mathematical expression for the no short selling constraint. 

0 ൑ ௜ݓ ൑  1         (5) 

 

2.8.3 Cardinality Constraints 

The cardinality constraints limit a portfolio to have a specified integer number of assets [35]. 

Cardinality constraints are there for monitoring and management reasons and in order to reduce 

management and transaction costs. The first to tackle cardinality constraint in portfolio 

optimization problem by heuristics were the authors of [35]. The equation (6) is the 

mathematical expression for the cardinality constraint. 

∑ ܼ௜
ே
௜ୀଵ ൑ ܼ  where  ܭ ൌ ൜

௜ݓ	݂݅						1 ൐ 0	
௜ݓ	݂݅				,0 ൌ 0	      (6) 
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2.8.4 Minimum Holding Size or Buy-In Threshold 

Here assets either are above a certain lower bound, or they are not part of the portfolio at all. 

This is to prevent the assets with small weights from being included in the portfolio [18]. The 

reason behind it being to avoid the cost of administrating very small portions of assets and 

transaction cost [5]. The equation (7) above is the mathematical expression for the minimum and 

maximum holding size constraints. If only minimum holding size is considered, the equation for 

the constraint reads as follows. 

 	

௜ݓ 	൒ ,௜ߝ ݅ ൌ 1,2, … ,  ܭ

     0 ൑ ௜ߝ ൏ 1      (7a) 

 

2.8.5 Maximum Holding Size or Ceiling Constraint 

This is when there is a limit to the maximum proportion allowed to be held for each asset in a 

portfolio. The purpose of this, which can also be there because it is imposed by law, is to avoid 

excessive exposure to a specific asset in a portfolio [34]. The equation (7) above is the 

mathematical expression for the minimum and maximum holding sizes constraints. If only 

maximum holding size is considered, the equation (7) is reduced to following equation. 

 

 

௜ݓ 	൑ ,	௜ߜ ݅ ൌ 1,2,… ,  ܭ

     0 ൏ ௜ߜ ൑ 1      (7b) 
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2.8.6 Some Other Constraints 

2.8.6.1 Transaction Costs 

Transaction costs refer to the amount to be paid in order to buy assets. The assets have fixed 

transaction costs, proportional transaction cost or both [5]. It has been shown that if transaction 

costs are ignored, this results in an inefficient portfolio [63]. It also leads to a non-diversified 

portfolio since the transaction costs are not included in the original Markowitz model [64]. 

Including transaction costs makes the problem non-convex, so cannot be solved by convex 

optimization methods. Instead other techniques like relaxation methods and heuristics have to be 

applied [65]. In [5], it is shown that the higher the transaction cost the lower the performance of a 

portfolio, and also the lower the cardinality (total integer number of assets) of the portfolio, 

especially for small investors. 

 

2.8.6.2 Class Constraints 

In class constraints, the assets are categorized in classes or sets with common characteristics so 

that the investors are able to limit the proportion of each class in the portfolio. This is for easy 

class management and diversification [34]. Optimization is then based on selected the best 

representative of each class. 

2.9 Handling Constraints 

Many approaches exist for handling constraints in heuristic optimization, e.g. see [56, 60]. For 

all the iterative techniques above, the simplest approach used to handle constraints is to “throw 

away” infeasible new solutions. If a neighbour violates a constraint, a new neighbour is picked. 

The approach is efficient for a model with few constraints.  

Information of the constraints can be directly used to create a new solution from a previous 

solution. This approach can be applied in budget constraint where a new solution is created by 
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increasing some weights in the portfolio and decreasing others such that the weight change is 

zero. 

Another approach is to introduce a mechanism that corrects violations, effectively repairing a 

solution. One mechanism for budget constraint could be scaling the weights such that they all 

sum to one. 

Depending on the problem, one of the many approaches is used. Also different approaches are 

often used to tackle different constraints in the same problem [40], as is the case in this thesis. 

 

2.10  Discussion on Other Works in Portfolio Optimization 

Here we look at some of the other published work that requires more analysis. Some of the areas 

of analysis, or research are on multi-objective optimization, incorporating of constraints and the 

dealing with real world return data used and their discrepancies.  

The portfolio optimization problem may be formulated in many ways depending on the choice of 

the objective functions, the description of the decision variables, and the constraints underlying 

the specific situation. The expected return and variance of return are traditionally the main 

objectives considered as in the Markowitz portfolio model [12, 13]. However, there are 

additional objective functions which can be incorporated: dividend, number of securities in a 

portfolio, amount of short selling, excess return over a benchmark random variable, liquidity [26]. 

While in the bank portfolio management, the additional objectives such as expected default rate, 

the prime rate, processing cost, can be incorporated [27]. As a real example, the multi-objective 

portfolio selection problem can include the following objectives to be minimized: deviations 

from asset allocation percentages, number of securities in portfolio, turnover (i.e. minimize costs 

of adjustment), maximum investment proportion weight, amount of short selling.  The following 

objectives are to be maximized: portfolio return, dividend, growth in sales, liquidity, excess 

portfolio return over that of a benchmark [28]. 
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In dealing with the investors’ wish to hold a small number of diversified assets in the portfolio, 

cardinality constraint, the authors of [71] proposed a hybrid local search algorithm which 

combines the principles of Simulated Annealing and Evolutionary strategies. The approach was 

efficient in tackling the cardinality constraint in portfolio selection [71]. 

In showing the benefit of using intraday return instead of daily return, variance was used as a 

measure of risk [30, 31]. 

In Harry Markowitz’s work [12, 13] returns of financial assets are represented by their mean, 

while risk is represented by variance. Using the first two moments only is not sufficient since the 

returns do not follow a Gaussian normal distribution [69]. Investors with non-increasing absolute 

risk aversion do like positive skewness as it indicates that extreme deviations from the mean tend 

to be on the plus side.  Such investors dislike high kurtosis which indicates that extreme events 

have a high probability on either side [69]. Also, stylized market facts show that higher order 

moments do matter as empirical data is skewed and more importantly, exhibit excess kurtosis 

and fat tails [69].   

An extension of the Markowitz model by incorporating the optimization of higher–order 

moments is considered in [69, 67]. The inclusion of higher order moments has been proposed as 

one possible augmentation to the model in order to make it more applicable to real situation [66, 

69]. In [68] shows that the applicability of the model can be broadened by relaxing one of its 

major assumptions, that is the rate of returns is normal.  

As one of the cases for portfolio constraints handling, as a pre-requirement, an investor may wish 

some specific assets to be included in the portfolio, in proportion that is fixed or to be determined. 

Assets which must be in the portfolio can be accommodated in constrained formulation [35]. 

 [62] Investigated portfolio optimization problem with real-life market constraints of transaction 

costs and integer constraints at the same time. The two objectives are of very difference scales. 

Their approach was promising in tackling the disparately scaled objectives [62]. 

The use of heuristic methods in estimation and modelling econometric appears to be limited 

compared to other fields of sciences where they have become more standard [70]. The authors in 



35 

 

[70] give an introduction to the heuristic optimization methods and also present some examples 

for which heuristic optimization techniques work efficiently. 

 This thesis combines both return and risk in a single objective, thus portfolio optimization is 

dealt with as a single objective optimization problem. We also observe cardinality, maximum 

holding sizes and minimum holding sizes constraints. 
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3.  DESIGN OF THE ALGORITHMS 

 

The following are the algorithms that are proposed and their notations: 

HC-S: Hill Climbing-Simple 

HC-C: Hill Climbing-Complete 

HC-S-R: HC-S with reducing ThP 

HC-C-R: HC-C with reducing ThP 

GLS: Guided Local search [55, 57] sitting on top of HC-C-R 

 

HC-S is a basic hill-climbing algorithm. In each step, it attempts to improve the solution by 

changing the relative weight of a single asset. In contrast, HC-C explores the possibility of 

changing the relative weight of every asset in each step, hence the name “complete”. 

 

ThP stands for Threshold Percentage. It refers to the size of a step in the proposed hill climbing 

methods. In HC-S and HC-C, ThP is fixed (to 0.5%). HC-S-R and HC-C-R improve HC-S and 

HC-C, respectively.  R denotes the case where ThP is reduced after a set of iterations. In HC-S-R 

and HC-C-R, ThP is reduced from 5% to 0.5% during the course of hill-climbing. That has the 

effect of refining the step-size in the search.  

 

3.1 Representation of Solution 

In our approach, a solution is represented by a vector of numbers [yi, …, yn]. The element in 

position i represents the relative weight of the capital invested in stock i. The vector of numbers 

[yi, …, yn] are normalized to make sure that the weights in all the assets add up to 1.  
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The percentage/weight to be invested in stock i is xi, where:  

 

xi = yi/∑ ௜ݕ
௡
௜ୀଵ  

   

One advantage of using this representation is that the vector, y, may take any number without 

violation of budget constraint that the weights add up to 100%. 

 

3.2 Objective Function 

 

Below is the extended Markowitz model tackled in this thesis (the standard Markowitz model 

plus the cardinality and holding sizes constraints) [Section 2.9]. Here the goal is to maximize the 

expected return while diminishing incurred risk (measured as standard deviation/ variance) [5].  

Given return (Rp) of a portfolio and variance (2
p) of portfolio, the equation to maximize is  

Maximize  (.E(Rp)  – (1-).2
p)        (1) 

Subject to: 

 Expected return: 

∑ = (ሺܴpܧ ሺܴ௜ሻܧ௜ݓ
௄
௜ୀଵ        (2) 

 Portfolio return variance: 

2
p=∑ ∑ ௝௜	௝௜௝ݓ	௜ݓ ௜௝ ݂ݎ݋	݈݈ܽ	݅, ݆ ൌ 1,2, … ,  (3)   ܭ

௜௝ ൌ 1  for i=j 

 Basic Constraints: 

∑ ௜ݓ ൌ 1௄
௜ୀଵ          (4) 
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0 ൑ ௜ݓ ൑  1         (5) 

 

 Cardinality Constraints: 

∑ ܼ௜
ே
௜ୀଵ ൑ ܼ  where  ܭ ൌ ൜

௜ݓ	݂݅						1 ൐ 0	
௜ݓ	݂݅				,0 ൌ 0	      (6) 

   

 Holding sizes Constraints: 
௜ߝ   	൑ ௜ݓ 	൑ ,	௜ߜ ݅ ൌ 1,2, … ,  ܭ

  0 ൑ ௜ߝ ൏ ௜ߜ ൑ 1        (7) 

 

Where the expected return of each asset is ܧሺܴ௜ሻ, each asset’s variance is ௜, and each asset’s 

weight is ݓ௜. 

From the equation (1) the trade-off between return (Rp) and variance (2
p) of portfolio is 

reflected. Standard deviation (Risk) is obtained as the square root of Variance. The efficient 

line/frontier is then identified by solving the above equation (1) for different values of   [0, 1]: 

If =1 the model will search for the portfolio with highest possible return regardless of the 

variance. With =0, the minimum variance portfolio (MVP) will be identified. Higher values of  

 put more emphasis on portfolio’s expected return and less on its risk. [5]. 

K in equation (6) is the Cardinality constraint in which the investor decides to invest in K or less 

assets, out of N assets. 

  in equation (7) are minimum and maximum holding sizes respectively of weight of	௜ߜ ௜ andߝ

assets. 
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3.3 Design of HC-S 

 

In this contribution, the hill-climbing algorithm is denoted as HC-S. Here HC stands for Hill 

Climbing, S stands for Simple search of neighbourhood, according to the neighbourhood 

functions defined below.  

 

3.3.1 Neighbourhood Function for the Hill Climbing Algorithm HC-S 

Following, HC-S algorithm is proposed for portfolio optimization.  

 

The current solution has two neighbours or possible candidate solutions. Elements of vector y in 

the range of 0 to 100 are randomly generated. The number of elements of y is equal to the 

number of asset/stocks (as explained in Section 3.1).  The randomly picked position in y is 

denoted as pos. ThP is a small percentage, which we refer to as threshold percentage, by which 

elements of y will be varied to get the next neighbour. 

The neighbourhood definition is to pick just one position (pos) in the current solution, y, at 

random. After picking the random position in the current solution, one neighbour is obtained by 

adding ThP to that position and another is obtained by subtracting ThP on the same position. 

This gives two neighbours (two possible candidate solutions) to be compared with the current 

solution, at random. The first better candidate solution (neighbour) to be picked is taken to be the 

current solution out of the possible candidate solutions. If no better solution is found, another 

position, pos, in y is picked at random. The procedure is repeated for positions picked at random 

for a preset number of iterations, or until local maximum.  

Given mean returns of all stocks in column vector denoted as retasset, given assets’ co-

variances/deviations matrix, denoted as dev, and given  as the level of risk aversion; below is 

the procedure for HC-S. 
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Pseudo Code for HC-S 

Procedure HC-S (ThP, , retasset, dev) 

Randomly generate initial 
current solution y 

Begin 
Repeat 

Pick random position, (pos), in current 
solution y 
 
        yplus = y    
    
        yminus = y   
     
        yplus(pos) =  yplus(pos)*(1 + ThP) 

 
 yminus(pos) = yminus(pos)*(1 - 
ThP) 

 
y = move_to_neighbour (y, yplus, 
yminus, , retasset, dev)   

 
At this point call function for 
Cardinality constraint, if applicable, 
(after every pre-set number of 
iterations).  

 
Until stopping criterion 
 

 
End 
 

 
 
 
 
 
 
 
% Generate yplus from current solution % 
 
% Generate yminus from current 
solution % 
 
% Get a neighbour of current solution % 
 
% Get second neighbour of current 
solution % 
 
% Pick a better neighbour solution % 
 
 
 
 
 
 
% Stopping criterion was; no neighbour is 
better than current solution or preset 
maximum number of iterations reached% 
 

Fig1. Hill climbing procedure of HC-S 
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Pseudo Code for a function for searching for better neighbouring solution 

Function Move_to_neighbour (y, yplus, yminus, , retasset, dev) 

Begin 
 x௜=y୧/ ∑ y୧

୬
୧ୀଵ   

     
xplusi = yplus୧/∑ yplus௜

௡
௜ୀଵ   

         
xminusi = yminus୧/∑ yminus୧

୬
୧ୀଵ   

 
 
 xvalue = objectvalue (x, , retasset, dev)  
  
 
 xplusvalue = objectvalue (xplus, , retasset, dev)
    
 
  xminusvalue = objectvalue (xminus, , retasset, 
dev)   
 
 
if  xplusvalue >xvalue  then y=yplus   
 
end if 
 
if  xminusvalue>xvalue then y=yminus  
end if 
return y 

End 
 

 
% Find weights, x, of all the assets n 
in portfolio% 
% Find weights, xplus, of all the 
assets n in portfolio% 
% Find weights, xminus, of all the 
assets n in portfolio% 
 
% Calculate objective value of 
portfolio x and denote as xvalue. % 
 
% Calculate objective value of 
portfolio xplus and denote as 
xplusvalue. % 
 
%Calculate objective value of 
portfolio xminus and denote as 
xminusvalue. % 
 
% Return yplus if it is better than 
y. % 
 
 
 
% Return yminus if it is better than 
y. % 
 

Fig 2. Function to search for better neighbouring solution 

 

The function below measures the quality of a portfolio. The function calculates the 

objective/objective value from equation (1) in section 3 above. The mean returns and co-

variances of all assets/stocks are initially calculated from the daily prices in the main program. 

They are used to calculate the expected return and risk of a portfolio. The return and risk of a 

portfolio calculated are used to measure the quality of a portfolio. 
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Pseudo Code for calculating Objective function value 

Function Objectvalue (x, , retasset, dev)  
Begin 

 retport=scalar/dot product(retasset, x) 
   
  risk = x*dev*x’     
 
 fitvalue = * retport – (1 - )*risk   
          
return fitvalue 

End 

 
 
% Calculate effective expected return of 
portfolio. % 
% Calculate effective risk/variance of 
portfolio. % 
 
%Calculate objective/objective value 
according to equation (1) in section 3 above. % 

 

Fig3. Function to calculate objective/fitness value 

 

 

3.4 Design of HC-C 

 

3.4.1 Neighbourhood Function for HC-C 

Following, HC-C algorithm is proposed for portfolio optimization.  

 

The sequence of all the positions of the elements of initial random solution y is randomized (so 

that the elements are not sequentially picked). If first position in the random sequence gives no 

better solution, next position is picked and so on. This is in contrast with HC-S, where only one 

position is examined in each hill-climbing step. Thus, HC-C searches a larger space. This will 
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potentially help it to find better solutions. The cost of doing so is increased computation over 

HC-S. For the same amount of computation time, HC-S will be able to restart more times than 

HC-C. 

The randomly picked position in y is denoted as pos. ThP is a small percentage, which we refer 

to as threshold percentage, by which elements of y will be varied to get the next neighbour. 

The neighbourhood definition is to pick one position (pos) in the current solution. After picking 

the random position in the current solution, one neighbour is obtained by adding ThP to that 

position and another is obtained by subtracting ThP to the same position. This gives two 

neighbours (two possible candidate solutions) at a time to be compared with the current solution, 

at random order. The first better candidate solution (neighbour) to be picked becomes the current 

solution out of the possible candidate solutions. On getting a better solution, the sequence of the 

positions of the elements of y is again randomized.  The overall procedure is repeated for a 

number of iterations, or until local maximum.  

Given mean returns of all stocks in column vector denoted as retasset, given assets’  co-

variances/deviations matrix, denoted as dev, and given  as the level of risk aversion; below is 

the procedure for HC- C. 
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Pseudo Code for HC-C 

Procedure HC-C (ThP, , retasset, dev) 

Randomly generate initial current solution y 
Begin 

Repeat 
 

pick random position, (pos), in current 
solution y 

 
yplus = y 
 

          yminus = y   
      

yplus(pos) =  yplus(pos)*(1 + ThP) 
  

yminus(pos) = yminus(pos)*(1 - ThP)  
         

 
yb4=y 
 

y = move_to_neighbour (y, yplus, 
yminus, , retasset, dev)   
  

Randomly change the sequence of 
the positions     

              
                while y=yb4 do   

  
 
yplus = y   

  
yminus = y   

    
yplus(pos) =  yplus(pos)*(1 + ThP)      
       

yminus(pos) = yminus(pos)*(1 - ThP) 
 

 
 
 
 
 
 
% Generate yplus from current 
solution. % 
 
% Generate yminus from current 
solution. % 
 
% Get a neighbour of current solution. % 
 
% Get second neighbour of current 
solution. % 
% keep record of current solution y. % 
 
% Pick a better neighbour solution. % 
 
 
% Provides randomness. % 
 
 
% Looks for better solution in the random 
sequence. (pos) is any position. % 
 
% Generate yplus from current 
solution % 
 
% Generate yminus from current 
solution. % 
 
% Get a neighbour of current solution. % 
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        if  (all positions in the sequence 
have been checked for better solution)  then  
break while loop  

end if 
  

            end  while 
 
At this point call function for Cardinality 
constraint, if applicable, after every pre-set 
number of iterations. 
 

Until halting criterion is met 
 

 
End 
 

% Get second neighbour of current 
solution. % 
 
 
 
 
 
 
 
 
 
 
 
% Halting criterion was; no neighbour is 
better than current solution or maximum 
number of iteration is reached. 

Fig 4. Hill climbing procedure of HC- C 

 

The function y = Move_to_neighbour (y, yplus, yminus, , retasset, dev) is similar to that used in 

HC-S above. 

The function fitvalue = Objectvalue(x, , retasset, dev) is similar to that used in HC-S above. 

 

 

3.5 Design of HC-S-R 

3.5.1 Neighbourhood Function for the Hill Climbing Algorithm HC-S-R 

HC-S-R is like HC-S, except that the ThP is reduced over time. In other words, it searches the 

neighbourhood with finer and finer steps.  Following, HC-S-R algorithm is proposed for 

portfolio optimization.  
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Elements of vector y are randomly generated. The number of elements of y is equal to number of 

asset/stocks.  The randomly picked position in y is denoted as pos. ThP is a small percentage, 

which we refer to as threshold percentage, by which elements of y will be varied to get the next 

neighbour. 

Similar to HC-S, the neighbourhood definition of HC-S-R is to pick just one position (pos) in the 

current solution, y, at random. After picking the random position in the current solution, one 

neighbour is obtained by adding ThP to that position and another is obtained by subtracting ThP 

on the same position. This gives two neighbours (two possible candidate solutions) to be 

compared with the current solution, at random. The first better candidate solution (neighbour) to 

be picked is taken to be the current solution out of the possible candidate solutions. If no better 

solution is found, another position, pos, in y is picked at random. The procedure is repeated for 

positions picked at random for a preset number of iterations, or until local maximum.  

  In HC-S-R ThP is reduced over time. That is after a preset number of iterations or on reaching 

local maximum, ThP is repeatedly reduced to be half the previous value until it reaches the 

preset minimum ThP value, denoted as minThP. 

Given mean returns of all stocks in column vector denoted as retasset, given assets’ co-

variances/deviations matrix, denoted as dev, and given  as the level of risk aversion; below is 

the procedure for HC- S-R. 
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Pseudo Code for HC-S-R 

Procedure HC-S-R (ThP, minThP, , retasset, dev) 

Randomly generate initial current 
solution y 
  
set minThP 

Begin 
Do while ThP>minThP 
 
Repeat 
 

Pick random position, pos, in current 
solution y 
 

yplus = y    
    
   yminus = y    
    

yplus(pos) =  yplus(pos)*(1 + ThP)  
 
 yminus(pos) = yminus(pos)*(1 - ThP) 
 
 

y = move_to_neighbour (y, yplus, yminus, , 
retasset, dev)   

 
At this point call function for Cardinality 
constraint, if applicable, (after every pre-set 
number of iterations).  

 
Until stopping criterion 
 

ThP=ThP/2 
 

End while 

 
 
 
 
 
 
 
 
 
% Generate yplus from current 
solution % 
 
% Generate yminus from current 
solution % 
% Get a neighbour of current 
solution % 
 
% Get second neighbour of current 
solution % 
 
% Pick a better neighbour solution % 
 
 
 
 
% Stopping criterion was: no 
neighbour is better than current 
solution or preset maximum number of 
iterations reached% 
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End 
 

Fig5 Hill climbing procedure of HC-S-R 

 

The function Move_to_neighbour (y, yplus, yminus, , retasset, dev) is the same as that used in 

HC-S above. 

The function Objectvalue (x, , retasset, dev) is the same as that used in HC-S above. 

3.6 Design of HC-C-R 

3.6.1 Neighbourhood Function for the Hill Climbing Algorithm HC-C-R 

HC-C-R is like HC-C, except that the ThP is reduced over time. In other words, it searches the 

neighbourhood with finer and finer steps. Following, HC-C-R algorithm is proposed for portfolio 

optimization.  

 

Elements of vector y are randomly generated. The number of elements of y is equal to number of 

asset/stocks.  The randomly picked position in y is denoted as pos. ThP is a small percentage, 

which we refer to as threshold percentage, by which elements of y will be varied to get the next 

neighbour. 

 

Similar to HC-C, the sequence of all the positions of the elements of initial random solution y is 

randomized (so that the elements are not sequentially picked). If first position in the random 

sequence gives no better solution, next position is picked and so on. This is in contrast with HC-

S, where only one position is examined in each hill-climbing step. Thus, HC-C searches a larger 

space. This will potentially help it to find better solutions. The cost of doing so is increased 
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computation over HC-S. For the same amount of computation time, HC-S will be able to restart 

more times than HC-C. 

The randomly picked position in y is denoted as pos. ThP is a small percentage, which we refer 

to as threshold percentage, by which elements of y will be varied to get the next neighbour. 

The neighbourhood definition is to pick one position (pos) in the current solution. After picking 

the random position in the current solution, one neighbour is obtained by adding ThP to that 

position and another is obtained by subtracting ThP to the same position. This gives two 

neighbours (two possible candidate solutions) at a time to be compared with the current solution, 

at random order. The first better candidate solution (neighbour) to be picked becomes the current 

solution out of the possible candidate solutions. On getting a better solution, the sequence of the 

positions of the elements of y is again randomized.  The overall procedure is repeated for a 

number of iterations, or until local maximum. In HC-C-R ThP is reduced over time. That is after 

a preset number of iterations or on reaching local maximum, ThP is repeatedly reduced to be half 

the previous value until it reaches the preset minimum ThP value, denoted as minThP. 

 

 Given mean returns of all stocks in column vector denoted as retasset, given assets’  co-

variances/deviations matrix, denoted as dev, and given  as the level of risk aversion; below is 

the procedure for HC- C-R. 

Pseudo Code for HC-C-R 

Procedure HC-C-R (ThP, minThP, , retasset, dev) 

     Randomly generate initial current 
solution y 
Begin 

Do While ThP>minThP 
Repeat 
 

pick random position, pos, in 
current solution y 
 
yplus = y 

 
 
 
 
 
 
 
 
% Generate yplus from current 
solution % 
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          yminus = y  
     
  

yplus(pos) =  yplus(pos)*(1 + ThP) 
  

yminus(pos) = yminus(pos)*(1 - 
ThP)           

yb4=y 
 

y = move_to_neighbour (y, yplus, 
yminus, , retasset, dev)   
  

Randomly change the sequence 
of the positions   
  

              
                while y=yb4 do   

  
 
yplus = y  

    
 yminus = y  

 
yplus(pos) =  yplus(pos)*(1 + ThP)   
             

yminus(pos) = yminus(pos)*(1 - ThP) 
 

        if  (all positions in the sequence 
have been checked for better solution)  
then  break while loop  

end if 
  

            end  while 
 
At this point call function for Cardinality 
constraint, if applicable, after every pre-set 
number of iterations. 
 

Until halting criterion is met 
 

ThP=ThP/2 
End While 
End 

 
% Generate yminus from current 
solution % 
 
% Get neighbour of current solution. % 
 
% Get second neighbour of current 
solution. % 
% keep record of current solution y % 
 
% Pick a better neighbour solution. % 
 
 
% Provides randomness. % 
 
 
% Looks for better solution in the random 
sequence. (pos) is any position. % 
 
% Generate yplus from current 
solution % 
 
% Generate yminus from current 
solution % 
 
% Get neighbour of current solution. % 
 
% Get second neighbour of current 
solution. % 
 
 
 
 
 
 
 
 
 
 
 
 
% Halting criterion was no neighbour is 
better than current solution or maximum 
number of iteration is reached. 
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Fig6. Hill climbing procedure of HC-C-R 

The function Move_to_neighbour (y, yplus, yminus, , retasset, dev) is the same as that used in 

HC-S above. 

The function Objectvalue (x, , retasset, dev) is the same as that used in HC-S above. 

 

3.7 Application of GLS 

 Below is the pseudo code of GLS [55, 57] applied in finding the optimum portfolio of n assets; 

showing GLS application using HC-C-R. 

 

 

 

 

Pseudo Code of GLS 

Procedure GuidedLocalSeach (p, g, λ, [I1, . . . , IM], [c1, . . . ,cM], M) 
begin 

k=0;  
s0 is randomly generate initial solution (p); 
% set all penalties to 0 % 
for i=1: M do 

pi =0; 
% define the augmented objective function % 
h=g+ *∑ pi *Ii; 

while StoppingCriterion do 
begin 

sk+1 =Hill-climbing method HC-C-R (sk,h);   %the method HC-C-R is 
described above 
 
% compute the utility of features % 

for i=1: M do 
utili =Ii(sk+1) ∗ci/(1+ pi); 
/% penalize features with maximum utility % 

for each i such that utili is maximum do 
pi = pi+1; 
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k=k+1; 
end 

s∗ is best solution found with respect to objective function g; 
return s∗; 

end 

Fig7 Procedure of GLS 

Where p is the problem, g is the objective function, h is the augmented objective function,   is a 

parameter, Ii is the indicator function of feature i, ci is the cost of feature i, M is the number of 

features, pi is the penalty of feature i,. 

 

 

 

3.8 Design of a Function for Handling Cardinality Constraint 

 

Following, a function for handling cardinality constraint in portfolio optimization problem is 

proposed.  

Given a cardinality constraint, K, the function below takes a number-of-assets given by (K + 1) 

assets. Out of all the (K+1) assets, after a set number of iterations, one asset with minimum 

weight is replaced by a new asset from the stock market pool/list. Therefore the best K number 

of assets will finally remain when at the end of the searching process an asset with minimum 

weight out of all assets will be removed. The weights of the remaining K assets are then scaled to 

1 to keep the budget constraint. To further reduce the administration cost, the assets with trivial 

weight can be removed before scaling to one: example, by rounding up all the values of the 

weight of the assets to say five decimal places, the ones resulting in zero weight can be removed 

from the investment list. 

Below, y is vector of K+1 integer assets, Number-of-assets is therefore length(y) and x 

represents vector of asset weights. 
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Pseudo Code for the Function for Handling Cardinality Constraint 

Function CardinalityConstraint (y, return-data, total-returndata, asset-position, new-asset)  

Begin 
∑/௜ݕ=௜ݔ ௜ݕ

௡
௜ୀଵ   

     
minweight=min (x) 
   

for i=1: number-of-assets 
 
 If  x (i)=minweight   
   
return-data (i) = total-returndata (new-asset) 
 
 
 
x (i)=rand() 
 
asset-position (i) = new-asset 
 
new-asset = new-asset+1 
         end if 
end for 
return  [y, asset-position, return-data, new-
asset] 
 
end 

 
% Find weights, x, of all the assets n in 
portfolio. 
% Find the most minimum weight, in 
all the assets in portfolio. 
 
 
%  If asset has the minimum weight 
then 
 
% Replace the asset y(i) in return-data 
i.e in portfolio (by taking a new-asset 
from total- returndata i.e. stock list). 
 
% Initialize random weight for new-
asset y (i). 
% Keep record of positions of new-
assets as they are in the stock market 
list. 
% Access the next asset from stock 
market list and make it new-asset. 
 
% Outputs of the function. 

Fig8. Function for Cardinality Constraints 

 

3.9 Design of a Function for Handling Holding Size Constraints 

 

Following, a function for handling maximum and minimum holding size constraints in portfolio 

optimization problem is proposed.  
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Here the weights of all assets are to be adjusted so that each asset conforms to maximum and 

minimum holding size constraints.  Maximum Holding size constraint reduce exposure of the 

capital to one asset. Minimum holding size avoids unnecessary administration costs of assets 

with negligible weight budget wise. 

The function/procedure below iteratively takes a minimal portion, e, off the weight of assets with 

weight above the maximum holding size and adds it on assets with weights below the minimum 

holding size. If there are no assets below minimum holding size then e is added on asset with 

weight below maximum holding size which will result in best solution compared to all assets 

with weight below maximum holding size. During this process the weight of the asset must not 

exceed maximum holding size when e is added to it. 

In this thesis, cardinality constraint was first incorporated. When cardinality constraint was met 

then minimum and maximum holding size were incorporated. 

 

 

Pseudo Code for the Function for Handling Holding Size Constraints 

Function holdingsizesConstraint (y, xmax, xmin) 

Begin 
Number-of-asset = length 

(y) 
  
∑/௜ݕ=௜ݔ ௜ݕ

௡
௜ୀଵ   

    
 
For iter =1: number-of-steps do 
 
For i =1: number-of-assets do 
 
  set e 
   

If x (i) > xmax 
 
x (i) = x (i) - e     
 

 
% Find size of vector y (that is the number of 
assets in portfolio). 
% Find weights, x, of all the assets n in 
portfolio. 
 
 
 
 
 
 
% Set portion of weight to decrease or 
increase to asset weight (e.g 0.5)%. 
% If asset is exceeding maximum limit. 
 
% sell/decrease some of shares of the asset 
exceeding maximum limit. 
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x (j) = x (j)+e     
    

else if  x (i) < xmin 
   

x (i) = x (i)+e     
   

x (k) = x (k) - e     
  

end if 
End For 
End For 
return x 
end 

% buy/increase shares of the best performing 
asset. 
% If asset is below minimum limit. 
 
% buy/increase more shares of the asset 
below minimum limit. 
% sell/decrease shares of the worst 
performing asset. 

 

Fig9. Function for Holding Size Constraints 
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4.  BENCHMARKING THE  ALGORITHMS ON THE 

MARKOWITZ MODEL 

 

The algorithms are applied on a benchmark problem of solving standard Markowitz model as 

described in equations (1), (2), (3) under basic constraints (4) and (5). This problem has exact 

solution by standard methods. The standard method used for comparison is Quadratic 

Programming. Then the results from the five algorithms proposed are compared with the results 

by Threshold Accepting. This is a well established heuristic algorithm in portfolio optimization. 

The effectiveness, efficiency and reliability of the algorithms are further analyzed. 

The assets and their return data used for applications in the algorithms are from DAX stock 

exchange. The data used were daily returns over 1001 days. 

 

4.1 Efficient Frontier 

The standard Markowitz model [Section 2.3.1], equations (1) to (5), was used to find an 

optimum portfolio of 230 assets.  

Below is the efficient frontier obtained by tackling the Markowitz model using HC-S. It was 

applied on 230 assets portfolio. The 230 assets are from DAX stock exchange. The data used 

were daily returns over 1001 days. 
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Fig10. Efficient Frontier of 230 assets portfolio using HC-S 

 

 

4.2 Benchmarking HC-S and HC-C with Quadratic Programming 
method 

 
Here HC-S and HC-C are benchmarked on the Markowitz model (section 4.1 above). They are 

tested on 10 assets portfolio. The results are compared with Quadratic Programming (QP), which 

is a standard method. 

The following are the algorithms. 

HC-S: Hill Climbing-Simple (Section 3.3)  

HC-C: Hill Climbing-Complete (Section 3.4) 

Below are experimental results on benchmarking HC-S and HC-C with QP. They are the 

percentage values in a table and corresponding bar charts of the weights of 10 assets portfolio. 

They were obtained by finding minimum variance portfolio (Markowitz model with =0 in 

expression (1) above) by quadratic programming method and by the hill-climbing algorithms 
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HC-S and HC-C. Quadratic programming (QP) produces exact solution so results by HC-S and 

HC-C are compaired with its results to see how accurate methods they are.The values show the 

relative weights (of total bugdet) to be invested in each asset . The results (weights) by 

algorithms HC-S and HC-C are from the best solution after 100 runs. 

Table 1. Experimental results on benchmarking HC-C and HC-S with Quadratic Programming 

   

algorithm Weight in each asset 

Quadratic 

progamming 

0.0053    0.0802    0.1150    0.3191    0.1622    0.0599    0.0419    0.0067    

0.0356  0.1741 

 

HC-S 

0.0053    0.0801    0.1150    0.3193    0.1620    0.0601    0.0419    0.0067    

0.0357  0.1739 

 

HC-C 

0.0053    0.0802    0.1150    0.3192    0.1622    0.0599    0.0419    0.0067    

0.0356  0.1740   

 

 

Fig11. HC-C (red) and Quadratic Programming (blue) 
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Fig12. Comparison of HC-S (red) with Quadratic Programming (blue) 

 

It is observed from the results (in table and bar chart form) that solutions obtained by HC-C and 

HC-S do not differ much from the exact solution  by quadratic programming (QP). 

Variance/risk was calculated from the weights obtained by the methods QP, HC-S and HC-C. 

The three methods attained the same low portfolio risk of 6.9751e-005. Attaining the same value 

of risk as QP depicts that the algorithms HC-S and HC-C attain very accurate solutions. 

The bar charts shows the results of the algorithms HC-C and HC-S in comparison to QP. In the 

two figures, the blue bars are that of Quadratic Programming (QP) and the red ones are of HC-S 

and HC-C respectively. 

The similar height bars of HC-C compared to QP and those of HC-S compared to QP also depict 

that the algorithms HC-S and HC-C give very accurate solutions. 
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4.3 Benchmarking the Algorithms using Threshold Accepting 

4.3.1 Experimental Results  

HC-S, HC-C, HC-S-R, HC-C-R and GLS are benchmarked on the Markowitz model, equation 

(1) in section 4. They are tested on 100 assets portfolio. The results are compared with Threshold 

Accepting, which is a well established Hill Climbing algorithm in portfolio selection and 

optimization. 

 

The following are the algorithms that are evaluated; 

HC-S: Hill Climbing-Simple [section 3.3] 

HC-C: Hill Climbing-Complete [section 3.4] 

HC-S-R: HC-S with reducing ThP [section 3.5] 

HC-C-R: HC-C with reducing ThP [section 3.6] 

GLS: Guided Local search [section 3.7 & 3.6] 

 

The following are the explanations of notations of the algorithms used in presenting results; 

HC-C (9e+5) is HC-C with 9e+5 iterations 

HC-C-R (0.1, 0.01, 9e+5) is HC-C-R with starting ThP = 0.1, half ThP every 9e+5 iterations, 

until ThP is below 0.01. The above number of iterations was given on every ThP but the program 

was to stop on reaching a local optimum. 

HC-S (9e+6) is HC-S with 9e+5 iterations. 

HC-S-R (0.1, 0.01, 9e+5) is HC-S-R with starting ThP = 0.1, half ThP every 9e+5 iterations, 

until ThP is below 0.01. The above number of iterations was given on every ThP but the program 

was to stop on reaching a local optimum. 

GLS (700): Guided Local search with 700 iterations sitting on HC-C-R (0.1, 0.01, 500) 

Below is a table with experimental results on the portfolio optimization on 100 stocks from DAX 

stock exchange; taken after 100 runs. The results show the values of objective function, number 
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of functional evaluations required to reach final objective value, and average time in seconds for 

one run to converge to local maximum (final solution). The Best Final Objective value is the 

highest objective function value obtained in all 100 runs. Final objective values obtained in each 

run were recorded and so below is the Mean, STD and Worst of Final objective values in all the 

100 runs. The Mean and STD of Number of functional evaluations to reach final objective value, 

of the 100 runs, are also given. 

 

Table 2 Experimental results on Portfolio optimization on 100 stocks, after 100 runs. 

Algorithm  GLS (700) 

(on HC-C-

R (0.1, 

0.01, 500)) 

 HC-C-

R (0.1, 

0.01, 

9e+5) 

HC-S-R 

(0.1, 

0.01, 

9e+5) 

HC-C 

(9e+5) 

HC-S 

(9e+5) 

Threshold 

Accepting 

(9e+5) 

Best Final 

Objective 

value 

  

0.000596 

 

0.000596

 

0.000596

 

0.000596

 

0.000596 

 

0.000588 

Final 

objective 

value 

Mean 

 

STD 

 

Worst 

0.000596  

 

1.4e-10 

 

0.000596 

0.000595 

 

3.32e-6 

 

0.000572

0.000594 

 

7.32e-6 

 

0.000572

0.000595 

 

2.47e-6 

 

0.000572

0.000594 

 

6.46e-6 

 

0.000559 

0.000563 

 

3.46e-5 

 

7.2563e-5 

No. of 

Functional 

evaluation

s to final 

objective 

value 

 

Mean 

 

STD 

 

2.1e+5  

  

2.8e+3 

 

3.2e+4  

 

943 

 

3.2e+4  

 

850 

 

3.0e+5 

 

7400 

 

2.7e+5 

 

6800 

 

3.0e+5  

 

1770 

 

Average 

time for 1 

 43.37 28.05 10.84 100 

 

39.0 704.7 



62 

 

run (in 

sec) 

STD =Standard Deviation 

4.3.2 Statements on the Results above 

4.3.2.1 HC-S is better than T.A 

HC-S managed to attain higher best final objective value (0.000596) than Threshold Accepting 

(0.000588). The best final objective values are higher and similar in GLS, HC-C-R, HC-S-R, 

HC-C and HC-S showing that the five methods are more robust than Threshold Accepting as 

they better escape local optima.  

To understand the significance of the difference in final objective value we look at the best final 

objective value of HC-S which is 0.000596. This translates to a return of 0.14% and a risk of 

1.34% one day after investment, of the 100 stocks considered. The best final objective value of 

Threshold Accepting, 0.000588, translates to a return of 0.13% and a risk of 1.54% one day after 

investment. The following days could include compounded interest on the original capital. From 

the return and risk figures, it is observed that you incur more risk but expect less return when you 

use the Threshold Accepting rather than HC-S to find an optimal portfolio.  

The mean of final objective value of HC-S is higher (0.000594) than that of Threshold Accepting 

(0.000563). The worst final objective of HC-S is a lot better (0.000559) than that of Threshold 

Accepting (7.2563e-5). The STD of mean of final objective value of HC-S (6.46e-6) is 10 times 

less that of Threshold Accepting (3.46e-5). 

The number of functional evaluations for HC-S was 2.7e5 while that of Threshold Accepting 

was 3.0e5. HC-S was faster as it required less number of functional evaluations. The STD of the 

number of functional evaluations of HC-S (6800) is more than that of Threshold Accepting 

(1770). Considering the time in seconds for one run to converge to best final objective value, 

Threshold Accepting (704.7), required more time than HC-S (39.0). This shows that it is far 

more expensive (time wise) to compute neighbourhood function of Threshold Accepting than 

that of HC-S. 
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A t-test was performed on final objective values and on the number of functional evaluations to 

final objective of the 100 runs. Both outcomes displayed a rejection of the null hypothesis at the 

5% (default value) significance level. The t-test was performed using Mat-lab (R2010a). 

Furthermore, to use Threshold Accepting, one has to first calculate and sort threshold sequences 

according to a certain problem. These are the sequences by which poor solutions will be accepted 

to avoid being trapped in a local optimum. The process makes Threshold Accepting quite 

cumbersome.  

 

4.3.2.2 HC-C is better than HC-S 

 
The best final objective values are high and similar in both HC-C and HC-S. This shows that 

both methods are good at escaping local optimum and locating high quality solutions given 

enough number of runs (in this case 100 runs). 

However, the mean of final objective value of HC-C is higher (0.000595) than that of HC-S 

(0.000594). The worst final objective of value of HC-C is a lot better (0.000572) than that of 

HC-C (0.000559). The STD of mean of final objective value of HC-S (6.46e-6) is more than 

twice that of HC-C (2.47e-6). This shows that HC-C is more accurate and reliable than HC-S. 

The mean of the number of functional evaluations for HC-S was 2.7e5 while that of HC-C was 

3.0e5. So HC-S was faster as it required less number of functional evaluations. The STD of the 

number of functional evaluations of HC-S (6800) is less than that of HC-C (7400). This again 

shows that HC-S is reliably faster than HC-C. Of all the five proposed algorithms, HC-C has the 

highest mean of the number of functional evaluations followed by HC-S indicating that they are 

the least efficient of all the five algorithms. 

Considering the time in seconds for one run to converge to best final objective value, HC-C (100) 

required far more time than HC-S (39). 
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4.3.2.3 “R” is better than No “R” 

 
The effect of “R” in HC-C-R is seen in speed to reach final objective value. This means 

repeatedly reducing ThP (instead of fixing ThP) made the algorithms more efficient. The mean 

of number of functional evaluations in HC-C-R is 3.2e4 while for HC-C is 3.0e5. Similarly the 

mean of number of functional evaluations for HC-S-R is 3.2e4 while that of HC-S is 2.7e5. 

Average time to converge to final objective value for HC-C-R was 28.05 seconds while that of 

HC-C was 1000 seconds. Again, average time to converge to final objective value for HC-S-R 

was 10.84 while that of HC-S was 65.  

Of all the above algorithms, HC-S-R and HC-C-R required less number of functional evaluations 

to final objective as the Mean and STD of Number of Functional evaluations to final objective of 

HC-S-R (3.2e4, 850) and HC-C-R (3.2e4, 943) were the least of all. The time elapsed for HC-S-

R to finish the 1 run was the smallest, making it the fastest of all the algorithms. So HC-S-R is 

more efficient than HC-S and HC-C-R is more efficient than HC-C. 

The mean of final objective value of HC-C-R (0.000595) is the same as that of HC-C (0.000595), 

and the mean of final objective value of HC-S-R (0.000594) is the same as that of HC-S 

(0.000594). This indicates that HC-C-R and HC-C are similar in effectiveness to find better 

solution, and also HC-S-R and HC-S are similar in effectiveness to find better solution. 

  

4.3.2.4 GLS is better than No GLS 

 
By adding penalties every time there was a local optimum, GLS managed to attain the best final 

objective value in all 100 runs. The mean of the final objective value is the same as  the value of 

best final objective value, that is 0.000596, and the STD of the mean of the final objective value 

is exceedingly small (1.3997e-10). The worst final objective value was also the same as the best 
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final objective value (0.000596). This demonstrates that GLS on HC-C-R was better in reliability 

to find best final objective value than HC-C-R as HC-C-R attained lower mean of final objective 

value (0.000595) and the worst final objective value was a lot lower than that of GLS. 

The overall results demonstrate that GLS (sitting on HC-C-R) manages to find better solutions 

(higher mean of the final objective value) than the other four algorithms. 

From the results above it is further noted that GLS (sitting on HC-C-R) was better than HC-S 

and HC-C, in both mean of the final objective value (effectiveness in finding better solution) and 

mean of number of functional evaluations (efficiency in finding better solution). 

 

4.3.3 Conclusion on the Results Above 

GLS and four novel hill-climbing algorithms, HC-C, HC-S, HC-S-R and HC-C-R have been 

described and implemented in portfolio optimization problem. They were tested on the 

Markowitz model; in finding weights for 100 stocks in portfolio optimization, where a budget 

constraint is imposed and no short-selling is permitted. Results demonstrate that HC-S manages 

to find significantly better solutions than Threshold Accepting, an established algorithm for 

portfolio optimization. Results also show that HC-C manages to find better solutions than HC-S. 

The overall results demonstrate that GLS sitting on HC-C-R manages to find better solutions 

than all the four algorithms. The small standard deviations observed show that GLS, HC-C, HC-

S, HC-S-R and HC-C-R find solutions more robust than Threshold Accepting with GLS able to 

find best final objective value in all 100 runs. Also the technique of reducing ThP made HC-C-R 

and HC-S-R more efficient than HC-C and HC-S. 

Following, the results of the experiments above on benchmarking the algorithms with T.A are 

summarized in a table below. 

 

 



66 

 

 

Table 3 Summary on benchmarking the algorithms with T.A 

Algorithm Effectiveness Efficiency 

 

T.A [22] 

 

Well established algorithm in 

portfolio optimization [5, 15, 17, 

23, 58, and 48]. 

 

 

HC-S [section 3.3] 

 

More effective in finding better 

solution than T.A <refer to 

Section 4.3.2.1> 

More efficient and quite 

faster time wise than T.A 

<refer to Section 4.3.2.1> 

 

HC-C [section 3.4] 

 

More effective in finding better 

solution than HC-S <refer to 

Section 4.3.2.2> 

A bit less efficient than HC-

S 

<refer to Section 4.3.2.2> 

 

 

HC-S-R [section 3.5] 

 

Similar with HC-S in 

effectiveness to find better 

solution. <refer to Section 

4.3.2.3> 

More efficient than HC-S 

<refer to Section 4.3.2.3> 

 

 

HC-C-R [section 3.6] 

 

Similar with HC-C in 

effectiveness to find better 

solution.  <refer to Section 

4.3.2.3> 

More efficient than HC-C 

<refer to Section 4.3.2.3> 

 

 

GLS [55](sitting on HC-C-

R) [section 3.7& 3.6] 

More reliable in finding better 

solution than HC-S,  HC-C, 

HC-S-R, HC-C-R<refer to 

Section 4.3.2.4> 

More efficient than HC-S, 

HC-C. <refer to Section 

4.3.2.4> 
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5. HANDLING CARDINALITY CONSTRAINTS 

In this extended portfolio optimization problem, the Markowitz model is implemented together 

with Cardinality constraint. GLS, HC-C, HC-S, HC-S-R and HC-C-R are implemented in a 

portfolio optimization problem with cardinality constraint.  

In these experiments, the problem was to get 10 best stocks out of 233 stocks in DAX and then 

find optimal weights for the 10 stocks chosen that would suffice the Markowitz model. In the 

Markowitz model, budget constraint is imposed and no short-selling is permitted (basic 

constraints).  

The following are the algorithms that are evaluated; 

HC-S: Hill Climbing-Simple [section 3.3] 

HC-C: Hill Climbing-Complete [section 3.4] 

HC-S-R: HC-S with reducing ThP [section 3.5] 

HC-C-R: HC-C with reducing ThP [section 3.6] 

GLS: Guided Local search [section 3.7& 3.6] 

 

5.1 Experimental Results 

Cardinality constraint implemented in these experiments is to choose best 10 assets out of 233 

assets of the DAX stock exchange. Cardinality of 10 stocks was chosen based on investigation in 

literature review where most investors wanted 20 assets/stocks or less that would suffice/meet 

the Markowitz model to avoid high administration cost. In these experiments, Cardinality of 10 

stocks was chosen because of pre-information from returns data and the trial experiments on the 

data of the 233 DAX stocks. Initially 20 stocks were chosen only to find that in all trial times the 

total number of stocks given any weight of capital was 10 or less. This means other stocks were 

assigned zero weight due to their poor past performances. 
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ThP is the Threshold Percentage by which the original random value is reduced or increased 

during the searching for optimal solution. R denotes the case where ThP is reduced after a set of 

iterations, (in this case ThP is reduced from 5% t0 0.5%). If fixed ThP is 0.5%. 

Near to maximum number of For-Loop iterations provided by MatlabR2010a was given but the 

programs were to stop on reaching local optimum, (2.14e9 iterations were given). 

 

Below is the table showing the experimental results. The results show the values of objective 

function (equation (1), section 3.2), number of functional evaluations required to reach final 

objective value, and average time in seconds for one run to converge to local maximum (final 

solution). The Best Final Objective value is the highest objective function value obtained in all 

20 runs. Final objective values obtained in each run were recorded and so below is the Mean, 

STD and Worst of Final objective values in all the 20 runs. The Mean and STD of Number of 

functional evaluations to reach final objective value, of the 20 runs, are given. The table also 

gives the Return and Risk of Best Portfolio and Worst portfolio found by each algorithm in the 

20 runs. 
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Table 4 Experimental results on Portfolio optimization of 10 stocks portfolio out of 233 stocks 

Algorithm  GLS 

(on H-C-C-

R) 

 HC-C-R  HC-S-R  HC-C 

 

HC-S 

 

Best Final 

objective value 

(in 20 runs) 

  

6.9616e-4 

 

 

6.9616e-4 

 

 

6.9616e-4 

 

 

6.9616e-4 

 

 

6.9616e-4 

 

 

Final Objective 

value 

 

Mean 

STD 

 

6.9616e-4 

2.9730e-12 

 

6.9616e-4 

1.3324e-11 

 

6.9616e-4 

2.2207e-12 

 

6.9616e-4 

1.2008e-11 

 

6.9616e-4 

6.4143e-9 

Worst Final 

objective value 

(in 20 runs) 

  

6.9616e-4 

 

6.9616e-4 

 

 

6.9614e-4 

 

6.9616e-4 

 

6.9613e-4 

 

Number of 

Functional 

evaluations to 

final objective 

value 

 

Mean 

 

STD 

 

1.4574e+6 

 

3.6027e+4 

 

7.1553e+5 

 

8.8413e+3 

 

2.8025e+5 

 

4.0192e+3 

 

6.0164e+6 

 

9.1186e+4 

 

 

1.9102e+6 

 

2.1702e+4 

 

Best Portfolio  

(in the 20 runs) 

Return 

 

Risk 

0.0017 

 

0.0168 

 

0.0017 

 

0.0168 

0.0017 

 

0.0168 

0.0017 

 

0.0168 

0.0017 

 

0.0168 

Worst portfolio 

(in the 20 runs) 

Return 

 Risk 

0.0017 

0.0168 

0.0017 

0.0168 

0.0017 

0.0168 

0.0017 

0.0168 

0.0017 

0.0168 

 

STD =Standard Deviation 
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5.2 Statements on the Experimental Results 

5.2.1 Best Final Objective Value 

 All five algorithms attained the same high best objective value of 6.9616e-4. This best objective 

value translates to best portfolio of return 0.17% and risk of 1.68% as shown above in the row 

for return and risk of best portfolio. 

 

5.2.2 Final Objective Value 

Again all algorithms attained the same high mean final objective value of 6.9616e-4 which is the 

same as the best objective value. The STD of the mean final objective value in all the five 

algorithms is very low (between 2.2207e-12 for HC-S-R and 6.4143e-9 for HC-S). This high 

Mean of final objective value (which is equivalent to best objective value) and very low STD 

give a very strong indication of the high accuracy and high reliability of the algorithms in dealing 

with cardinality constrained portfolio optimization problem. 

 

5.2.3 Worst Final Objective Value  

The worst Final Objective values in GLS and HC-C-R and HC-C are the same as the best final 

objective values (6.9616e-4). This worst Final Objective value translates to worst portfolio of 

return 0.17% and risk of 1.68% as shown above in the row for return and risk of worst portfolio.  

The worst Final objective values in HC-S-R (6.9614e-4) and HC-S (6.9613e-4) are almost 

similar to the best final objective value and result in the same value of return of 0.17%, and risk 

of 1.68%. This again shows that the algorithms are accurate and reliable with GLS, HC-C-R and 
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HC-C a little superior to HC-S-R and HC-S in attaining better solution. It is worth noting that all 

algorithms attained the same high level of return and risk in all 20 runs, indicating the reliability 

and accuracy of the algorithms in cardinality constrained portfolio optimization problem. 

5.2.4 Number of Functional Evaluations to Final Objective Value 

The Mean of the number of Functional evaluations to final objective value of HC-C-R 

(7.1553e+5) is less than that of HC-C (6.0164e+6), and that of HC-S-R (2.8025e+5) is less than 

that of HC-S (1.9102e+6). This shows that the technique of reducing ThP (after a set number of 

iterations or on reaching local optimum) as the searching continues helped reduce the number of 

Functional evaluations to final objective value ten times. So this technique increased the speed of 

the algorithm without affecting the quality of the final solution (Final Objective values). HC-C 

(6.0164e+6) has the highest mean of the number of functional evaluations followed by HC-S 

(1.9102e+6) indicating that it is the least efficient of the five algorithms above and HC-S 

(1.9102e+6)  is more efficient than HC-C (6.0164e+6). GLS (1.4574e+6) is more efficient than 

HC-S (1.9102e+6) and HC-C (6.0164e+6). HC-S-R (2.8025e+5) is the most efficient of the 

algorithms. 

The Mean of the number of Functional evaluations to final objective value and its STD show that 

HC-C-R is more efficient than HC-C and HC-S-R is more efficient than HC-S. 

5.3 Conclusion on the Experimental Results 

GLS and four novel hill-climbing algorithms, HC-C, HC-S, HC-S-R and HC-C-R have been 

implemented in a portfolio optimization problem with cardinality constraint. The problem was to 

pick 10 best assets/stocks out of 233 stocks in the DAX stock market that would suffice/meet the 

Markowitz model. In the Markowitz model, budget constraint is imposed and no short-selling is 

permitted. In this extended portfolio optimization problem, the Markowitz model is implemented 

together with cardinality constraint. 

Results demonstrate that all five algorithms attained the same high best objective value. The 

similar Worst Final Objective values in all the five algorithms, the similar means of final 
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objective values and the small standard deviations (STD) observed in the mean of final objective 

values show that GLS, HC-C, HC-S, HC-S-R and HC-C-R are reliable in finding accurate 

solutions.  

All algorithms attained the same high level of return and risk in all 20 runs, indicating the 

reliability and accuracy of the five algorithms in cardinality constrained portfolio optimization 

problem.  

The technique of reducing ThP made HC-C-R and HC-S-R more efficient than HC-C and HC-S. 

Following, the results of the experiments above in the portfolio optimization problem with 

cardinality constraint are summarized below. 

Table 5 Summary of the algorithms on handling cardinality constraint 

Algorithm Effectiveness Efficiency 

 

HC-S(Section 3.3) 

Very effective and very reliable in 

finding better solution <refer to 

Section 5.2.1,  Section 5.2.2, 

Section 5.2.3 > 

 

More efficient than HC-C 

 

<refer to Section 5.2.4> 

 

HC-C 

(Section 3.4) 

Very effective and more reliable 

than HC-S in finding better 

solution <refer to Section 5.2.1, 

Section 5.2.2, Section 5.2.3 > 

 

Very efficient 

<refer to Section 5.2.4> 

 

HC-S-R 

(Section 3.5) 

 

similar to HC-S in effectiveness in 

finding better solution <refer to 

Section 5.2.1,  Section 5.2.2,  

Section 5.2.3 > 

 

Most efficient,   

(More efficient than HC-S) 

 

<refer to Section 5.2.4> 

 

HC-C-R 

(Section 3.6) 

similar to HC-C and HC-S-R in  

effectiveness in finding better 

solution <refer to Section 5.2.1, 

 

More efficient than HC-C 

<refer to Section 5.2.4> 
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Section 5.2.2, Section 5.2.3 > 

 

GLS  

(sitting on HC-C-R) 

(Section 3.7 & 3.6) 

Very effective and reliable in 

effectiveness in  finding better 

solution  

<refer to Section 5.2.1,  Section 

5.2.2,  Section 5.2.3 > 

 

More efficient than HC-S and HC-C

 

<refer to Section 5.2.4> 

6. HANDLING HOLDING SIZES AND 

CARDINALITY CONSTRAINTS 

 

GLS, HC-C, HC-S, HC-S-R and HC-C-R are implemented in a portfolio optimization problem 

with Holding sizes and Cardinality constraints. The problem is to pick 20 best assets/stocks or 

less out of 233 stocks in the DAX stock market that would sufficiently meet the Markowitz 

model. All the chosen 20 assets must hold not more than 30% of the capital and not less than 1% 

of the capital. In the Markowitz model, budget constraint is imposed and no short-selling is 

permitted. 

 

 

6.1 Experimental Results  

Cardinality constraint in these experiments is to choose the best 20 assets or less out of 233 

assets of the DAX stock exchange. Cardinality of 20 stocks or less was chosen based on 

investigation in literature review. Investors preferred 20 assets/stocks or less that would 

sufficiently meet the Markowitz model to avoid high administration cost.   

Holding sizes constraint in these experiments is to have all the chosen 20 assets hold not more 

than 30% of the capital and not less than 1% of the capital. 
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It is to be noted that holding size constraint was implemented after cardinality constraint was 

implemented. Procedure or function for holding sizes was called when the algorithms had come 

to an end of searching for the best solution. So the function or subroutine for implementing the 

holding size constraint is a heuristic independent of the algorithms. The function or subroutine 

implementing holding size works on the finished results or the final output of any the algorithms 

above. In so saying it can be also used to enforce holding size constraint in a portfolio that has 

exact solution under the standard Markowitz model. The function or subroutine just requires 

optimal weight distribution of capital and maximum and minimum holding sizes of capital in 

asset weights. The function removes all stocks assigned zero weight, that is high risk and very 

minimal return stocks, before enforcing holding size constraints in the portfolio. 

The following are the algorithms that are evaluated; 

HC-S: Hill Climbing-Simple [section 3.3] 

HC-C: Hill Climbing-Complete [section 3.4] 

HC-S-R: HC-S with reducing ThP [section 3.5] 

HC-C-R: HC-C with reducing ThP [section 3.6] 

GLS: Guided Local search [section 3.7 & 3.6] 

 

ThP is the Threshold Percentage by which the original random value is reduced or increased 

during the searching for optimal solution. R denotes the case where ThP is reduced after a pre-

set number of iterations, (in this case ThP is from 5% t0 0.5%). If fixed ThP is 0.5%. 

Near to maximum number of For-Loop iterations provided by MatlabR2010a was given but the 

programs were to stop on reaching local optimum, (2.14e9 iterations were given). 

 

Below is the table showing the experimental results. The results show the values of objective 

function (equation (1), section 3.2), number of functional evaluations required to reach final 

objective value, and average time in seconds for one run to converge to local maximum or the 

final solution. The Best Final Objective value is the highest objective function value obtained in 

all 20 runs. Final objective values obtained in each run were recorded and so below is the Mean, 
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and STD of Final objective values in all the 20 runs. The Worst Final Objective value is the 

lowest objective function value obtained in all 20 runs. The Mean and STD of Number of 

functional evaluations to reach final objective value, of the 20 runs, are given. The table also 

gives the return and risk of best portfolio and worst portfolio found by each algorithm in the 20 

runs. 

 

Table 6 Experimental results on Portfolio optimization of 20 stocks portfolio out of 233 stocks, 

after 20 runs. 

Algorithm  GLS  (on 

HC-C-R) 

 HC-C-R  HC-S-R  HC-C 

 

HC-S 

 

Best Final 

Objective value 

(in the 20 runs) 

  

6.1382e-4 

 

6.1321e-4 

 

5.9075e-4 

 

6.1316e-4 

 

5.8072e-4  

 

 

Final Objective 

value. 

 

Mean 

STD 

 

 5.9054e-4 

1.0386e-5 

  

5.8190e-4 

 1.1774e-5 

 

5.6764e-4 

7.6004e-6 

 

5.8192e-4 

1.2851e-5 

 

5.6714e-4 

8.9096e-6 

Worst Final 

Objective value 

(in the 20 runs) 

  

5.7310e-4 

 

5.5929e-4 

 

5.5411e-4 

 

 

5.6163e-4 

 

5.5463e-4 

No. of 

Functional 

evaluations to 

final objective 

value 

 

Mean 

 

STD 

 

2.7612e+6 

 

5.8657e+4 

 

1.2462e+6 

 

1.4491e+4 

  

4.4061e+05 

 

 8.1226e+3 

 

1.0493e+7 

 

1.8735e+5 

 

2.9344e+6 

 

5.1404e+4 

Best Portfolio 

(in the 20 runs) 

Return 

Risk 

 0.0014 

  0.0127 

    0.0014 

   0.0128 

    0.0014 

    0.0132 

0.0014 

0.0130 

0.0013 

0.0120 

Worst portfolio 

(in the 20 runs) 

Return 

 Risk 

 0.0013 

 0.0121 

    0.0013 

    0.0126 

    0.0013 

    0.0130 

0.0013 

0.0125 

0.0013 

0.0129 
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STD =Standard Deviation 

 

 

 

 

 

6.2 Statements on the Experimental Results 

6.2.1 Best Final Objective Value 

GLS attained the highest best final objective value of 6.1382e-4. This best objective value 

translates to best portfolio of return 0.14% and risk of 1.27% as shown above in the row for 

return and risk of best portfolio. HC-S has the lowest best objective value of 5.8072e-4, which 

translates to return of 0.13% and risk of 1.2% as seen in the row of Best Portfolio. It is noted that 

all algorithms attained the same return of 0.14% except for HC-S which has lower return of 0.13% 

but also a lower risk level of 1.2%. This indicates that the algorithms above are reliably accurate.  

 

6.2.2 Mean of Final Objective Value 

GLS attained the highest mean of final objective value of 5.9054e-4. The STD of the final 

objective value in all the five algorithms is low (between 1.1774e-5 for HC-C-R and 7.6004e-6 

for HC-S-R). The similar high means and low STDs of the algorithms (GLS, HC-C-R, HC-C, 

HC-S-R) give a strong indication of the high accuracy and high reliability of the algorithms in 

dealing with cardinality constraint and holding sizes constraints in portfolio optimization. The 

mean of HC-C-R (5.8190e-4) is similar to that of HC-C (5.8192e-4). This shows that HC-C is 

similar to HC-C-R in effectiveness to find better solution. The mean of final objective value of 

HC-S-R (5.6764e-4) is similar to that of HC-S (5.6714e-4). This shows that HC-S-R is similar to 

HC-S in effectiveness to find better solution. 
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6.2.3 Worst Final Objective Value 

GLS also has the highest worst objective value (5.7310e-4) in 20 runs. This translates to a return 

of 0.13% and a risk of 1.21% as seen above in the row for worst portfolio. It is observed that 

‘GLS on HC-C-R’ is consistently better than ‘HC-C-R with no GLS’ in best objective values, 

mean of final objective values and worst objective values.  

HC-S-R at 5.5411e-4 has the lowest worst objective value attained in 20 runs. This translates to a 

return of 0.13% and a risk of 1.29% as seen in the row for worst portfolio. The worst objective 

value of HC-S (5.5463e-4) is a bit higher than that of HC-S-R (5.5411e-4). The return of the 

worst portfolio of HC-S-R (0.13%) is the same as that of HC-S (0.13%). The risk of the worst 

portfolio of HC-S-R (1.29%) is lower than that of HC-S (1.30%). From the row for worst 

portfolio, it is observed that the small difference in Worst Final Objective values of all the 

algorithms resulted only in the difference in the risks. All algorithms attained the same return. 

It is noted that in best objective values, mean of final objective values and worst objective values 

HC-C is consistently better than HC-S and GLS has the best performance of the above 

algorithms. 

 

6.2.4 Number of Functional evaluations to final objective 

HC-S-R (4.4061e+05) has the lowest Mean of the number of Functional evaluations to final 

objective value of all the five proposed algorithms. This indicates that it is the most efficient of 

the algorithms.  HC-C (1.0493e+7) has the highest mean of the number of functional evaluations 

followed by HC-S (2.9344e+6), so HC-S is more efficient compared to HC-C. 
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The Mean of the number of Functional evaluations to final objective value of HC-C-R 

(1.2462e+6) is less compared to HC-C (1.0493e+7) and that of HC-S-R (4.4061e+05) is less 

compared to HC-S (2.9344e+6). This shows that the technique of reducing ThP (after a set 

number of iterations or on reaching local optimum) as the search continues helped reduce the 

number of Functional evaluations to final objective value ten times. This technique made HC-C-

R and HC-S-R more efficient than HC-C and HC-S. 

it is noted that HC-C-R (1.4491e+4) has far lower STD than HC-C (1.8735e+5). Likewise HC-S-

R (8.1226e+3) has far lower STD than HC-S (5.1404e+4). 

The Mean of the number of Functional evaluations to final objective value and its STD show that 

HC-C-R is more efficient than HC-C and HC-S-R is more efficient than HC-S.  

 

6.3 Conclusion on the Experimental Results 

 
Four novel hill-climbing algorithms, HC-C, HC-S, HC-S-R, HC-C-R, and GLS have been 

implemented in a portfolio optimization problem with cardinality constraint and holding sizes 

constraints. The problem was to pick 20 best assets/stocks or less out of 233 stocks in the DAX 

stock market that would suffice/meet the Markowitz model and then have all the chosen 20 

assets hold not more than 30% of the capital and not less than 1% of the capital. In the 

Markowitz model, budget constraint is imposed and no short-selling is permitted.  

Results demonstrate that all five algorithms attained high best objective values and high mean of 

final objective values. In best objective values, mean of final objective values and worst 

objective values HC-C is consistently better than HC-S, GLS on HC-C-R is consistently better 

than HC-C-R with no GLS. Also the technique of reducing ThP made HC-C-R and HC-S-R 

more efficient and faster than HC-C and HC-S. 

Following, the results of the experiments above in the portfolio optimization problem with 

cardinality constraint and holding sizes constraints are summarized in the table below. 
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Table 7: Summary of the algorithms on handling cardinality and holding sizes constraints 

Algorithm Effectiveness Efficiency 

 

HC-S [Section 3.3] 

 

 

Effective     

<refer to Section 6.2.2> 

 

more efficient compared to HC-

C <refer to Section 6.2.4> 

 

HC-C [Section 3.4] 

 

 

More effective in finding better 

solution than HC-S 

 <refer to Section 6.2.3> 

 

less efficient than algorithms  

HC-S, HC-S-R, HC-C-R, GLS 

<refer to Section 6.2.4> 

 

HC-S-R [Section 3.5] 

 

Similar with HC-S in 

effectiveness in finding better 

solution.  

<refer to Section 6.2.2> 

 

More efficient than HC-S, HC-

C, HC-C-R, GLS  

<refer to Section 6.2.4> 

 

 

HC-C-R [Section 3.6] 

 

Similar with HC-C in 

effectiveness in  finding better 

solution  

<refer to Section 6.2.2> 

More efficient than HC-C  

<refer to Section 6.2.4> 
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GLS (sitting on HC-C-

R) [Sections 3.6 & 3.7] 

 

More reliable in finding better 

solution than HC-S, HC-C, HC-

S-R, HC-C-R. <refer to Section 

6.2.1, Section 6.2.2, Section 

6.2.3> 

More efficient than HC-S, HC-

C. <refer to Section 6.2.4> 

 

 

 

 

 

 

 

 

 

7.  CONCLUSION 

7.1 Summary of the Work Done and Discussions 

 
Five Hill Climbing algorithms, HC-S, HC-S-R, HC-C, HC-C-R and GLS [55, 57], have been 

produced. They were used to tackle the portfolio optimization problem, the standard Markowitz 

model, where a budget constraint is imposed and no short-selling is permitted [5]. They have 

been demonstrated to be more effective and efficient than Threshold Accepting [5], an 

established algorithm for portfolio optimization. Five Hill Climbing algorithms find solutions 

with significantly higher objective value and require less computing time.  

HC-S is more effective in finding better solution than T.A because it has two neighbours to the 

current solution, the two candidate solutions, to consider instead of one at any iteration. HC-S is 

faster than T.A because it does not take in worse candidate solutions to be the current solution. 

Also it is cheaper to compute neighbourhood function of HC-S that that of T.A. T.A. has 

threshold sequence for allowing worse solutions to be the current solution to avoid being trapped 

in local optima. HC-C is more effective in finding better solution than HC-S because at any 
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iteration it searches the whole neighbourhood completely, until a better candidate solution is 

found. 

 The threshold reduction scheme “R” in HC-S-R and HC-C-R improves the efficiency of the Hill 

Climbing algorithms HC-S and HC-C. HC-S-R and HC-C-R produce similar results to HC-S and 

HC-C respectively, but with fewer functional evaluations and less time as experimental results 

show in Section 4.3.2.3 

By adding penalties every time there was a local optimum, GLS managed to attain better 

solutions than all the other algorithms. So GLS improves the reliability of the above algorithms. 

The overall results demonstrate that GLS sitting on HC-C-R manages to find the best solutions 

more reliably.  

The five algorithms above were also implemented in extended portfolio optimization problem: in 

implementing the Markowitz model together with cardinality constraint. The results demonstrate 

that all five algorithms are reliably accurate in tackling portfolio optimization problem with 

cardinality constraint. This is because results demonstrate that all five algorithms attained the 

same high best objective value. Also the similar Worst Final Objective values in all the five 

algorithms, the similar means of final objective values and the very small standard deviations 

(STD) observed in the mean of final objective values show that GLS, HC-C, HC-S, HC-S-R and 

HC-C-R are reliable in finding accurate solutions. All five algorithms attained the same high 

level of return and risk in all 20 runs. 

The five algorithms above were also implemented in extended portfolio optimization problem: in 

implementing the Markowitz model with both cardinality and holding sizes constraints. Results 

demonstrate that all five algorithms attained high best objective values and high mean of final 

objective values. In best objective values, mean of final objective values and worst objective 

values, HC-C is consistently better than HC-S and GLS on HC-C-R is consistently better than 

HC-C-R with no GLS. Also the technique of reducing ThP made HC-C-R and HC-S-R more 

efficient and faster than HC-C and HC-S. 
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To conclude, I have proposed a series of algorithms and demonstrated their effectiveness, 

efficiency and reliability for the extended portfolio optimization problem.  

The following are the produced algorithms; 

HC-S: Hill Climbing-Simple [section 3.3] 

HC-C: Hill Climbing-Complete [section 3.4] 

HC-S-R: HC-S with reducing ThP [section 3.5] 

HC-C-R: HC-C with reducing ThP [section 3.6] 

GLS: Guided Local search [section 3.7 & 3.6] 

 

Below is the table to summarize the results on the five proposed algorithms (in comparison with 

T.A). 

Table 8 Summary on the proposed algorithms (in comparison with T.A) 

Algorithm Effectiveness Efficiency 

 

T.A [22] 

 

This is the well-established 

algorithm in portfolio 

optimization [5, 15, 17, 23, 58, 

and 48]. 

 

 

 

HC-S [section 3.3] 

 

More effective in finding better 

solution than T.A < refer to 

section 4.3.2.1> 

More efficient and faster 

time wise than T.A 

< refer to section 4.3.2.1> 

 

HC-C [section 3.4] 

 

More effective in finding better 

solution than HC-S < refer to 

section 4.3.2.2, Section 5.2.1, 

Section 5.2.2, Section 5.2.3  and 

section 6.2.3>  

(a bit) less efficient than 

HC-S  < refer to section 

4.3.2.2, Section 5.2.4, 

Section 6.2.4> 

 

HC-S-R [section 3.5] 

Similar with HC-S in 

effectiveness to find better 

More efficient than HC-S 

 < refer to section 4.3.2.3, 
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 solution  

< refer to Section 4.3.2.3, 

Section 5.2.1, Section 5.2.2, 

Section 5.2.3, Section 6.2.2> 

Section 5.2.4, Section 

6.2.4> 

 

HC-C-R [section 3.6] 

 

Similar with HC-C in 

effectiveness to find better 

solution < refer to Section 

4.3.2.3, Section 5.2.1, Section 

5.2.2, Section 5.2.3  section 

6.2.2> 

More efficient than HC-C 

< refer to section 4.3.2.3, 

Section 5.2.4, Section 

6.2.4> 

 

GLS [55, 57] (sitting on HC-C-

R) 

[section 3.7 & 3.6] 

More reliable in finding better 

solution than HC-S,  HC-C, 

HC-S-R, HC-C-R < refer to 

section 4.3.2.4, Section 5.2.1, 

Section 5.2.2, Section 5.2.3, 

section 6.2.1, section 6.2.2,  

section 6.2.3>  

More efficient than HC-S,  

HC-C 

< refer to section 4.3.2.4> 

 

 

 

7.2 Summary of the Contributions 

 
The contributions of this PhD research are summarized as follows. 

Five algorithms (HC-S, HC-C, HC-S-R, HC-C-R and GLS [55, 57] (sitting on HC-C-R)) have 

been produced for the extended portfolio optimization problem. They are superior to the well 

established algorithm in portfolio optimization known as Threshold Accepting (T.A). 

The following are the produced algorithms; 
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HC-S: Hill Climbing-Simple [section 3.3] 

HC-C: Hill Climbing-Complete [section 3.4] 

HC-S-R: HC-S with reducing ThP [section 3.5] 

HC-C-R: HC-C with reducing ThP [section 3.6] 

GLS: Guided Local search [section 3.7 & 3.6] 

 

HC-S is more effective in finding better solution than T.A. HC-S is also more efficient than T.A. 

 HC-C is more effective in finding better solution than HC-S. It is a bit less efficient than HC-S.  

HC-S-R is similar with HC-S in effectiveness to find better solution. HC-S-R is more efficient 

than HC-S.  

HC-C-R is similar with HC-C in effectiveness to find better solution. HC-C-R is more efficient 

than HC-C. 

GLS (sitting on HC-C-R) is more reliable in finding better solution than HC-S, HC-C, HC-S-R, 

HC-C-R. So it is the most reliable algorithm in finding better solution of the five algorithms 

produced. It is also more efficient than HC-S and HC-C. 

The algorithms produced attained promising results for portfolio optimization, according to the 

particular model they were applied to. They are also quite easy to understand and to implement. 

So I would argue that these algorithms also have a wider application than portfolio optimization.  

For instance, in other research areas, like science. 

Therefore from all my work I have learnt that optimization by heuristics is a wide field now. One 

needs to research well to find an appropriate method for a particular problem. I also learnt that in 

coming up with better algorithms than the present or well-established ones, I had to study and 

understand the well-established algorithms first, and know their weaknesses and their strengths. 

Below is the table to summarize the above algorithms and contributions of this PhD research. 

Table 9 Summary of the algorithms and their contributions 



85 

 

Algorithm Effectiveness Efficiency 

 

HC-S [section 3.3] 

More effective in finding better 

solution than T.A 

More efficient time wise 

than T.A 

 

HC-C [section 3.4]  

More effective in finding better 

solution than HC-S  

 

(a bit) less efficient than 

HC-S  

 

HC-S-R [section 3.5] 

Similar with HC-S in 

effectiveness to find better 

solution. 

 

More efficient than HC-S 

 

 

HC-C-R [section 3.6] 

Similar with HC-C in 

effectiveness to find better 

solution.  

 

More efficient than HC-C 

 

 

GLS [55, 57] (sitting on HC-C-

R) 

[section 3.7 & 3.6] 

More reliable in finding better 

solution than HC-S,  HC-C, 

HC-S-R, HC-C-R 

More efficient than HC-S, 

HC-C 

 

 

7.3 Future work 

In future more realistic, non-linear constraints like transaction costs will be incorporated.  

Also the five hill climbing algorithms produced will be combined with evolutionary algorithms 

like genetic algorithms, to give hybrid algorithms for portfolio optimization and other 

applications. 
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