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Abstract 

FGP: A Genetic Programming Based Financial Forecasting Tool  

October, 2000 

Jin LI, University of Essex 

Computers-aided financial forecasting has been made possible following continuous increase in 
machine power at reduced price, increasingly easy access to financial information, and advances 
in artificial intelligence (AI) techniques. In this thesis, we present a genetic programming based 
machine-learning tool called FGP (Financial Genetic Programming). We apply FGP to financial 
forecasting. 

Two versions of FGP, namely, FGP-1 and FGP-2, have been designed and implemented to 
address two research goals that we set. FGP-1 is intended to improve prediction accuracy over 
the predictions given. FGP-2 is aimed at improving prediction precision.  

Predictions are available to users from different sources. We investigate whether FGP-1 has 
the capability of improving on them by combining them together. Based on the experiments 
presented in this thesis, we conclude that FGP-1 is capable of improving the given predictions in 
terms of prediction accuracy. This partly attributes the capability of FGP-1 of finding positive 
interactions between the predictions given.  

Improving prediction precision is highly demanded in financial forecasting. Our 
investigation is based on a set of specific prediction problems: to predict whether a required rate 
of return can be achieved within a user-specified period. In order to improve prediction precision, 
without affecting the overall prediction accuracy much, we invent a novel constrained fitness 
function, which is used by FGP-2. The effectiveness of FGP-2 is demonstrated and analysed in a 
variety of prediction tasks and data sets. The constrained fitness function provides the user with a 
handle to improve prediction precision at the price of missing opportunities. 

This thesis reports the utility of FGP applications to financial forecasting to a certain 
extent. As a tool, FGP aims to help users make the best use of information available to them. It 
may assist the user to make more reliable decisions that would otherwise not be achieved without 
it.  
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Chapter 1  

Introduction 

Over the past few decades, computers have played an increasingly important role in the financial 

markets. The earlier applications of computers mainly involved automating some routine tasks 

such as storing, retrieving, and transmitting information. Computers have also been used to 

automate the trading process itself by executing the trades and crossing orders electronically. 

Nowadays, perhaps the most interesting and promising aspect of using computers is to find a way 

of making financial decisions. 

The role of computers in assisting users to make financial decisions has been made 

possible following continuous increase in machine power at reduced price, increasingly easy 

access to financial information and advances in the artificial intelligence (AI) techniques.  

Information regarding financial markets has never been so easily collected.  Several years 

of historical data for stocks, commodities and foreign exchange rates are widely available in an 

electronic format. They can either be purchased readily from several information vendors at low 

cost or acquired via the Internet. An increasing amount of crucial and commercially valuable 

information is becoming available on the World Wide Web. For instance, Reuters 

(http://www.investools.com), Financial Times (http://www.ft.com), Bloomberg 

(http://www.bloomberg.com), CNN (http://www.cnnfn.com) and so on provide real-time news 

and quotations of stocks, bonds and currencies, etc. for free.  

At the same time, recent developments of AI techniques, in particular, machine learning 

algorithms have been creeping into the financial sector (Deboeck 1994; Economists 1993; 

Goonatilake & Treleaven 1995; Lederman & Klein 1995). Examples of these techniques are 
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decision-tree inductions (Quinlan 1986a; Quinlan 1993), neural networks (Rumelhart & 

McClelland 1986) and genetic algorithms (Holland 1975), and so on. 

In this thesis, the goal of this research is to employ AI techniques, more precisely, genetic 

programming (Koza 1992; Koza 1994), to build a machine learning tool for financial forecasting. 

The tool is to augment, rather than replace, human intelligence. The aim of the tool is to help 

users to make the best use of amount of information available to them. As a result, the tool may 

assist users to make more reliable decisions that would otherwise not be achieved without it. 

1.1 What Is Genetic Programming? 

Both genetic algorithms (GAs) (Holland 1975; Goldberg 1989) and genetic programming (GP) 

(Koza 1992; 1994) are machine learning approaches inspired by Darwin’s evolution theory 

(Darwin, 1859). GP differs from GA mainly in the representations used. In GP, the individual in 

a population is represented by a tree-like computer program, which dynamically varies both in 

size and shape. In contrast, the individual in GAs is a chromosome, which is traditionally 

represented by bit-string with fixed length (Holland 1975). Nevertheless, both paradigms share 

similar fundamentals. Thus in what follows in this thesis, the term GAs will be used to refer to 

both GAs and GP in general, whilst the term GA is used to specifically refer to the genetic 

algorithm approach, without genetic programming included, unless otherwise stated explicitly. 

GAs have been originally proposed as a general model of adaptive processes, but by far, 

this techniques have been largely applied to the domain of optimisation (Bäck et al. 1997). This 

is true for the financial forecasting application here. In fact, GAs are employed as learning and 

optimisation strategies in a large part of GA applications to finance.  

As optimisation strategies, GAs operate by iteratively evolving a population of individuals. 

On each iteration, all individuals are evaluated in terms of the fitness function. A new population 

is then generated by probabilistically selecting the most fit individuals from the current 
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population. Some members in the new population are carried forward from the last generation 

population intact via reproduction operation. The rest are generated by applying genetic 

operators: crossover or mutation. Such a process continues until sufficiently fit individuals are 

found. 

The mathematical foundation for GA is Holland’s Schema Theorem (Holland 1975). This 

theory is predicated on survival of the fittest. Individuals that exceed the mean fitness level of 

population are more likely to pass on their genes. The Schema Theorem was literally translated 

as Building Block Hypothesis for GP, where the equivalent to schemas is sub-programs or sub-

trees (Koza 1992). 

GP has been applied by Koza (1992; 1994) to a variety of fields, including optimal control, 

planning, discovery of game-playing strategies, symbolic regression, automatic programming, or 

evolving emergent behaviour. Since then Koza’s work has sparked a rapid growth of genetic 

programming, and resulted in a large quantities of research work about this subject. Applications 

of GP cover a variety of disciplines (for example, see, Angeline et al. 1999; Banzhaf et al. 1999; 

Koza 1996; 1997; 1998).  

Though GAs application to finance is still in its infancy, the amount of research work 

devoted into this area is increasing.  In Chapter 2, we will provide a survey on this topic (cf., 

Section 2.5). 

1.2 Why Use GAs? 

The purpose of forecasting is aimed at finding patterns. Forecasting in finance is extremely 

difficult and complicated due to many inherent interactive factors. The search space is enormous 

and highly complex (Fogler 1993; Dorsey & Mayer 1995). Indeed, a powerful and suitable 

search technique is needed.  

GAs (Holland 1975) are search techniques that are based loosely on simulated evolution. 
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Evolution is known to be a successful, robust method for adaptation within biological systems. 

The simulated evolutions, GAs have also been applied successfully to a variety of machine 

learning tasks and optimisation problems (Goldberg 1989; Davis 1991; Bäck, 1996). 

Nevertheless, the potential of GAs in application to finance has not been fully exploited. 

Besides, the choice of GAs is certainly due to their inherent strengths, as well as to some 

properties of financial forecasting problems. As learning and optimisation approaches, GAs have 

strengths which are listed below. 

• They can search spaces of patterns containing complex interacting parts, where the 

impact of each part on overall pattern fitness may be difficult to model (Mitchell 

1997). 

• They conduct a search from many points simultaneously and are therefore more likely 

to find better solutions. 

• Given enough data, GAs do not need any prior knowledge in order to find patterns. 

This makes them suited to solve problems without clear solutions. 

• GAs can generate the patterns that are comprehensive to users.    

• They are easily parallelized so that there is a potential to speed up any GA-based 

running systems if necessary. 

Unlike other optimising problems, problems in financial forecasting have the following 

properties. 

• Many financial forecasting problems are mathematically intractable and no clear 

solutions exist.  

• Many decision factors (or variables) are both discrete and correlated; thus, the better 

solutions are combinatorial. 
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• Any better solutions to forecasting problems are desirably comprehensible so that one 

is more likely to obtain some insights from them. 

• A slight improvement is worth a lot.   

Considering both the properties of financial forecasting problems per se and strengths that 

GAs have, we argue that GAs may be one of the most suitable approaches to attacking financial 

forecasting problems. 

1.3 Research Problem 

Employing AI techniques, more specifically, GAs could attack various financial problems. 

Potential topics range from financial forecasting, trade strategy optimisation, to portfolio 

management, artificial stock markets and other financial theory modelling (see more details of 

these applications in Chapter 2).  

We select a financial topic as our research target based on the principles as follows. 

1) People in both financial and non-financial spheres should easily understand the topic.  

2) The topic should also be addressed by other machine learning approaches, such as 

decision-tree induction, neural network and classifier system. Thus, the approach that we 

propose in this work can be evaluated and compared properly.   

3) The topic should not be merely of value to finance. Moreover, it should hold its 

generality for other disciplines, particularly those in computer science.     

Bearing these principles in mind, we are determined to select financial forecasting as the 

topic that we think is legitimate and appropriate. 

1.3.1 A Prediction Problem 

Having concentrated on the topic of financial forecasting, we are still faced with a diversity of 
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choices.  A further focus is necessary. 

Time series forecasting, whose goal is to forecast the value of the time series k steps into 

the future, is a good option. In fact, such a study has already been carried out in finance with a 

high degree of success. Resultant models include linear regression models like ARIMA (cf., Box 

& Jenkins 1976; Harvey 1993; Taylor 1986;) and non-linear regression models like ARCH 

model (Engle 1982) and GARCH (Bollerslev, 1986), etc.  

The time series forecasting problem that we tackle is formulated as one whose goal is to 

forecast the direction and magnitude of change of the time series k steps into the future. This is a 

special type of classification problem, which can be straightforward approached by many 

machine-learning algorithms.  

As a research strategy, it seems wise to start with the simple cases before we attempt the 

complex cases. Here, we set up a specific prediction problem, which we denote as r
nP , as 

follows. 

r
nP : We predict whether or not the price will increase a required r% (e.g. 

2%) or more within a user-defined period n (e.g., 21 days). 

Based on this prediction, each period can be classified into either a positive position, which 

means the price does increase r% within n time periods, or a negative position, which means the 

price does not increase r% within n time periods. In what follows, for convenience, an actual 

positive position sometimes is called an opportunity whilst a positive position predicted by our 

tool sometimes is called a signal. 

This is a typical two-classification prediction problem. In the field of machine learning, this 

prediction problem belongs to the category of concept learning; the approach that we take 

belongs to the category of supervised learning.  
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To address this problem, our genetic programming based tool needs to be fed with a finite 

set of samples of solved cases. The data for each case consists of a pattern of observations and 

the corresponding correct predefined class. The purpose of our tool is to find a general way of 

relating any pattern of observations to the corresponding correct class. Such a mapping, 

represented by decision rules, is expected to have predictability over new cases.   

In machine learning, the set of potential observations relevant to a particular problem are 

also referred to as features, as well as other names, including attributes, variables, tests and 

measurements (Weiss & Kulikowski 1991). In the GP world, a “feature” would more likely be 

referred to as an “input” and the predefined class would more likely be referred to as “output.” In 

this thesis, we also like to use the term indicator to denote a feature, or an input. 

 We hope that by confining our attention to this kind of prediction problem, the 

effectiveness and usefulness of the genetic programming based tool can be demonstrated. We 

also hope that the techniques developed in this tool could be of value for solving problems 

beyond the scope of financial forecasting domain. 

1.3.2 Assumptions of data 

Every machine learning method makes some assumptions regarding tasks, together with data that 

it manipulates. In the case of our research, these assumptions include the following: 

Assumption 1: The data set represents a supervised classification problem. Each case 

consists of a number of indicators, and a single, labelled class predefined 

based on the prediction problem chosen. In this thesis, we focus on binary 

classification. 

Assumption 2:  The data set has no missing values. 

Assumption 3:  Input indicators in the data set are limited to discrete or continuous 
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numeric values. In the case of discrete non-numerical data type, this 

involves assigning a distinct natural integer to represent each category.  

The tool we develop in this thesis is only applicable when all three assumptions are met for 

a problem at hand.  

1.4 Research Goals 

In this thesis, the goal of research is to design and implement a genetic programming based 

machine-learning tool. We use the financial forecasting domain to focus our research. More 

specifically, we apply genetic programming techniques to build a machine-learning tool for 

approaching classification problems relevant to financial forecasting. Ideally, the tool is capable 

of generating decision trees effectively.  

The crucial purposes of the tool we propose are: 

Goal_1:  To improve prediction accuracy 

Goal_2:  To achieve a low rate of failure  

Both goals are not only of value to researchers in academia, but also of great interest to users in 

investment.  

In machine learning, the objective of learning classifications form sample data is to classify 

and predict successfully about new data. As the most commonly used measure of success, 

prediction accuracy is usually a primary concern in almost all applications of learning. Much of 

the research in learning has tended to focus on improving prediction accuracy (Quinlan, 1996a). 

This is also true for financial forecasting here. Prediction accuracy may be even more important 

because any slight improvement in its accuracy may potentially translate significant profits. In 

this thesis, we are particularly interested in improving the accuracy of given predictions by 

combining them together.  In this work, prediction accuracy is also called the Rate of Correctness 
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(RC), which is defined as follows. 

RC =
sprediction ofnumber     total

  spredictioncorrect   ofnumber    
. 

Apart from prediction accuracy, the Rate of Failure (RF) is also one of the most 

important concerns, particularly in financial forecasting. The rate of failure is the fraction of 

positive positions predicted that are predicted incorrectly (A formal definition can be seen in 

Chapter 5). For instance, if a system has capabilities to achieve a low rate of failure, it implies 

that the system more likely generates correct signals (i.e. improve prediction precision). In 

another word, the reliability of prediction based on this system is improved. Obviously, such a 

system is much more attractive to the user.  We argue that a low rate of failure is one of the most 

desirable factors in financial forecasting. 

Note that Goal_2 is only significant in cases where a further improvement on prediction 

accuracy is either unavailable or very difficult. The reason is simple. For example, perfect 

prediction accuracy would make Goal_2 meaningless, as the rate of failure reaches the extreme, 

zero. However, in practice, given a machine learning approach (e.g. ID3, C4.5 (Quinlan 1986b; 

Quinlan, 1993)), higher prediction accuracy is difficult to achieve, even impossible in some 

cases, let alone the perfect prediction accuracy. In such cases, thus, the work aimed at Goal_2 

becomes relatively indispensable and even significant. In fact, recently, more and more efforts 

has been made in machine learning, which is referred to as cost-sensitive learning (Turney 1995; 

1997).          

The method used to investigate whether or not we have achieved the two goals addressed 

in this thesis is empirical evaluation and comparison. 

1.5 Approach and Design Goals 

We propose the development of a genetic programming based machine learning tool for financial 
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forecasting. The tool is analogous to existing decision rule induction (DRI) algorithms in 

machine learning. Examples of DRI algorithms include decision trees (Breiman et al. 1984; 

Quinlan 1993) and GAs based Classifier Systems (De Jong 1993). Underlying the tool are 

approaches based on the state-of-the-art genetic programming techniques. The tool should be 

able to generate genetic decision trees (GDTs) from data. 

In order to make the tool useful and attractive, we propose that the following design goals 

must be satisfied: 

• The tool must use a general purpose DRI algorithm, which is capable of processing data 

sets without any prior knowledge of the problem. 

• The tool should be able to allow users to channel their knowledge into the process of 

decision trees generation 

• The algorithm must achieve a level of predictive accuracy on a par with other DRI 

techniques when given the same data. 

• The generated GDTs should be comprehensible to users. 

• It should provide friendly interfaces for users to change selectable parameters 

conveniently and run the tool easily. 

In summary, the tool, in its general form, can be applied to any inductive machine learning 

problem: given a database of examples, the tool will return a general description applicable to 

examples both within and outside the database. 

1.6 Thesis Overview 

The work in this thesis is to develop a genetic programming based machine-learning tool that 

focuses on financial forecasting. We call our tool FGP, which stands for Financial Genetic 

Programming. FGP provides crucial techniques that are necessary for addressing financial 
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forecasting on a basis of genetic programming techniques. FGP attempts to achieve two goals: a) 

to improve the accuracy of given predictions and b) to improve the reliability of predictions by 

reducing the rate of failure. The usefulness and effectiveness of the tool are demonstrated 

through addressing mainly a series of prediction tasks, r
nP . In order to evaluate FGP, we compare 

results achieved by our approach with those by other available machine learning approaches. The 

applicability of FGP is investigated via extensive experiments. We have organised the content 

into three parts and a concluding chapter. 

Chapter 2 is the first part of this thesis with two separate sections. The first section deals 

with some fundamental financial issues relevant to our work. This serves two purposes. The first 

is to investigate whether or not our work stands on firm ground; the second is to derive some 

potential technical indicators from financial literature that are to be used as input to our tool. The 

second section presents a literature review on application of GAs to finance. This helps to 

understand the background of our work. 

We begin in Chapter 2 by discussing the concept of Efficient Market Hypothesis (EMH) 

and its three forms associated. We focus on debating on the weak form of EMH in finance by 

listing relevant publications. We discuss reasons why testing EMH is difficult endeavour. In 

terms of our survey, we conclude that patterns exist in financial markets. We argue that EMH is 

an economic model, an unrealistic benchmark that is unlikely to hold in practice. All contents 

above serve the first purpose. 

For the second purpose, we study previous technical analysis rule tests in finance literature. 

In the light of our study, we derive some technical indicators, which are needed as input to our 

tool.  

The second section in Charter 2 reviews the state-of-the-art GA applications to finance. We 

carry out our survey along two lines in terms of operation modes of GAs.  We review some 
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important work in finance that relies on the adapting mode of GAs. We also review a large 

quantity of existing financial applications of GAs by virtue of its optimising mode.  

Chapter 3 and Chapter 4 construct the second part of this thesis. In this part, we describe 

the framework of FGP and report our initial applications of FGP to some financial forecasting 

problems. All work reported in this part is aimed at achieving the first goal of using FGP, i.e. to 

improve prediction accuracy over base predictions available. We call this first version of our 

program FGP-1, in which prediction accuracy (i.e. RC) is mainly taken as the fitness function.  

In Chapter 3, we describe what basic components of genetic programming techniques are 

adopted in FGP, and what kinds of new component are added in FGP. Meanwhile, the underlying 

algorithms are given in detail, together with the description of major parameters used for running 

GP in FGP.  

Chapter 4 demonstrates the effectiveness of FGP-1 through several examples. Given a 

finite of base predictions available, FGP-1 can be used to improve prediction accuracy by 

combining them. Examples are categorised into two groups. In the first group, base predictions 

are ordinal expert forecasts; in the second group, base predictions comes from individual non-

adaptive technical analysis rules. We conduct comparison with C4.5 using the examples in the 

second group. Our experimental results show that FGP-1 is a useful tool. However, caution 

should be exercised particularly for the choice of GP parameters.  

The third part of this thesis consists of Chapter 5 and Chapter 6. In this part, we describe 

the procedure of developing a constrained fitness function and demonstrate the effectiveness of 

such a technique for achieving the second goal of FGP, i.e. to achieve a low rate of failure in 

order to improve reliability of predictions. We call the second version of our program FGP-2, in 

which a novel constrained fitness function is used.  

Chapter 5 describes our developing process toward the invention, a constrained fitness 
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function, which is specially developed for achieving a low rate of failure. Illustration is given by 

an example, together with analysis in detail. Moreover, FGP-2 is compared against three NNs 

and a linear classifier system reported in (Saad et al. 1998) with respect to the same prediction 

task over 10 individual American share prices available to us. Results show that FGP-2 beats the 

linear classifier and compares favourably against the three NNs. We review closely related work 

in machine learning, particularly in cost-sensitive learning. No similar technique is found. We 

conclude that FGP-2 with the constrained fitness function embedded is effective for achieving a 

lower rate of failure at the cost of missing more opportunities. 

The applicability and effectiveness of FGP-2 with the novel constrained fitness function is 

further investigated in Chapter 6. We test FGP-2 over a variety of data sets and prediction tasks 

r
nP  with different combinations between n and r. On the other hand, limitations of the 

constrained fitness function in FGP-2 are also pointed out. 

In Chapter 7, we conclude by summarising research work we have completed in this thesis, 

and presenting the contribution of our work. We also suggest future work that may improve our 

current research. 
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Chapter 2  

Technical Analysis Rules and GAs in Finance 

2.1 Introduction 

In chapter 1, we discussed the motivation behind our research and presented the research goals 

we want to achieve in this thesis. The overall objective is to build a genetic programming based 

tool for financial forecasting. In order to illustrate the usefulness and effectiveness of the tool for 

forecasting, we also defined a specific financial prediction problem for the tool to attack mainly 

in this thesis.  

This chapter is organised in two separate parts each with their own theme. The first part 

tries to investigate the some fundamental financial issues related to subjects of this research, 

including whether financial markets are efficient as described in Efficient Market Hypothesis 

(EMH) (Fama 1965; 1970; 1991; Malkiel 1992), whether technical analysis rules have merit to 

the predictability of markets. The purpose of the investigation is twofold: to make sure that 

research undertaken here stands on firm ground, and to derive some potential technical indicators 

from technical rules studied in financial literature as input that are necessary for evaluating our 

tool. The second part provides a review of GAs applications to finance, which help understand 

the position of our work. 

The first part consists of three sections. The first section tries to investigate a fundamental 

question as to whether financial markets are indeed what the efficient market hypothesis defines. 

To address this question, we start by describing the definition of EMH and its three forms. Then 

we briefly review debates in finance on the weak form of EMH: papers that support or oppose 
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this form are listed; two common approaches to testing the weak form, together with some 

empirical evidence contrary to EMH’s weak form are discussed and provided. Finally, according 

to our survey, we conclude that testing EMH is a very difficult endeavour and that EMH is an 

economic model, an unrealistic benchmark that is unlikely to hold in practice.   

The second section focuses on discussion of technical analysis. In particular, we review 

previous technical analysis rule tests in finance literature. We briefly describe the conception of 

technical analysis and present the state-of-the-art research studies regarding the predictability of 

technical analysis rules. We concentrate on three types of technical analysis rule, namely moving 

average rules, trading range break-out rules, and filter rules. We examine how these technical 

rules are used to generate buy and sell signals in financial studies, and then we list empirical 

results of testing these rules by academia in finance. 

The third section presents three types of technical analysis indicators. They are derived 

from corresponding technical analysis rules discussed in the preceding section. Given the lack of 

other data at our disposal, we intend to employ these derived technical indicators as input to our 

tool and carry out our tests. 

The second part of this chapter reviews the state-of-the-art applications of GAs in finance. 

The field is still young, though, recently, applying GAs techniques to finance has attracted much 

attention both from academics and practitioners (Deboeck, 1994; Goonatilake & Treleaven, 

1995; Banzhaf et al. 1998). The subjects in finance involved by GAs range from financial 

forecasting, trade strategy optimisation, and portfolio management, to artificial stock markets. 

2.2 Efficiency Markets Hypothesis  

Over the last half-century or so, both finance academics and practitioners have debated the 

concept of market efficiency fiercely. Some argued that the application of sophisticated 

computational methods to investment management or market forecasting has little value because 
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the market is inherently efficient. The objective of this research is to develop a tool based on the 

artificial intelligent techniques - Genetic Algorithms, for financial forecasting. If financial 

markets behave as the Efficient Market Hypothesis suggests, where the movements of the stock 

prices are random walks, then the research work that is being carried out in this thesis would be 

futile. Whatever tool we might build would be useless, because the possibility of using this tool 

to improve prediction would be approximately null. According to EMH, there should be no 

existing patterns concerning market future movements. Of necessity, in this section we need to 

address this question and present a brief financial literature review on this topic.  

2.2.1 Definition and Three Forms 

The origins of EMH can be traced back at least as far as the theoretical contribution of Bachelier 

(1900) and the empirical research of Cowls (1933). In conventional economics, markets are 

assumed to be efficient if all available information is reflected in current market prices (Fama 

1965; 1970; 1991). Recently, Malkiel (1992) offered the following more explicit definition:  

A capital market is said to be efficient if it fully and correctly reflects all 

relevant information in determining security prices. Formally, the market is said 

to be efficient with respect to some information set Φ, if security prices would be 

unaffected by revealing that information to all participants. Moreover, efficiency 

with respect to an information set, Φ implies that it is impossible to make 

economic profits by trading on the basis of Φ. 

Note that Malkiel’s third sentence suggests a practical way to judge the efficiency of a market, by 

measuring the profits that can be made by trading on different information sets.  

Notionally, Foster (1986) provided the EMH definition with an expression as follows. 
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f (Ri,t , Rj,t … | Φ −
M
t 1 ) = f (Ri,t , Rj,t … | Φ −

M
t 1 , Φ −

a
t 1  )                    

where   f (·  ) =  a probability distribution function 

 Ri.t     = the return on security i in period t 

Φ −
M
t 1   =  the information set used by the Market at t-1 

Φ −
a
t 1   =  the specific information item Available placed in the public domain at t-1 

Note that market efficiency is defined with respect to an information item (termed Φa ). 

One cannot address the question, "Is the market efficient?" without specifying Φ −
a
t 1 .  Depending 

on the information set, there are three forms of the EMH: 

1. Weak form of EMH: The information set includes only the history of prices or returns 

themselves.  

If a market would be described as having this property, abnormal profits cannot be acquired 

from analysis of historical stock prices or volume, that is to say, one is probably wasting one’s 

time analysing charts of past price and/or trading volume movements, i.e. technical analysis is 

useless.  

2. Semi-strong form of EMH: The information set includes all information known to all 

market participants (publicly available information).  

If a market would be described as having this property, abnormal profits cannot be acquired 

from analysis of public information. In such situation, one may be wasting one’s time analysing 

annual reports or developing trading rules based on macro-economic data that is readily 

available.    

3. Strong form of EMH: The information set includes all information known to any market 

participant (private information).  

This form asserts that abnormal profits cannot be acquired from analysis of public and 
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private information, and even inside traders cannot make abnormal profits. 

The weak form efficient market hypothesis is the focus of our review in the next section. It 

is this weak form of efficiency that is associated with the term 'Random Walk Hypothesis' 

(Cootner 1964; Campbell et al. 1997). 'Random walk' is usually employed in the financial 

literature to characterize a price series, where all subsequent price changes represent random 

departures from previous prices. The random walk hypothesis states that investment returns are 

serially independent, and that their probability distributions are constant. Random walk 

constitutes a basis under the weak form efficient market hypothesis.  

2.2.2 Is Market Efficiency Testable? 

Debates between opponents and proponents of EMH are so fierce that it is impossible to provide 

a complete survey of the vast literature here. Thus, our reviews focus on empirical literature, in 

particular, those relating to the weak form of EMH. Readers who are interested in debates on the 

semi-strong form or/and the strong form of EMH should be referred to the textbook (Levy 1996). 

A large number of empirical studies have tested the weak form of the EMH; some are 

summarized in Table 2.1. In general, early research provides strong evidence in favour of 

markets being weak form efficient. In contrast, recent papers have uncovered many anomalies, 

which are events or patterns that may offer investors a chance to earn abnormal return 

(researchers were so convinced that EMH is true that they felt any contrary evidence must be an 

anomaly). Those anomalies directly contradict what the weak form of EMH describes and could 

not be interpreted by EMH. Such facts demonstrate that the weak form of EMH is questionable 

and may not hold in realistic markets. 
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To illustrate how those anomalies are observed in finance research work, in the following 

two subsections, we give two detailed examples reported in recent finance studies. The two 

examples are generated based on two primary methods of testing the validity of the weak form of 

EMH (Levy 1996). They both cannot be explained in terms of the weak form of EMH.  

2.2.2.1 Two Illustrative Anomalies  

2.2.2.1.1 The first anomaly 

The first empirical illustration is about the examination of autocorrelations 1 of security returns. 

                                                 
1 Autocorrelations or serial correlations examine the extent to which past changes can be correlated current changes, 
if they are highly correlated (positive or negative), past changes can be used to predict future changes. Please see 
Appendix A: Tests of stationarity or randomness based on autocorrelation coefficient. 

AUHORS YEAR ASSETS 
STUDIED 

WEAK FORM 
EFFICIENT? 

COMMENTS 

Bachelier 1900 French 
securities 

Yes 
Tried to test if the French government 

securities options and futures market was 
efficient 

Roberts 1959 U.S. Stock Yes Stock prices resemble random patterns 

Osborne 1959 U.S. Stock Yes 
Stock prices similar to random movement 
of physical particles in water (Brownian 

motion) 

Granger, 
Morgenstern 1963 U.S. Stock Yes 

Employed spectral analysis (a powerful 
statistical tool that identifies patterns), but 

still found no patterns 

Fama 1965 U.S. Stock Yes 
Examined serial correlations and other 

statistical tools to check for patterns, and 
found no significant patterns 

Fama, Blume 1966 U.S. Stock Yes 
Examined technical trading rules and 

found no abnormal profits 

Solnik 1973 Stocks in 9 
countries 

Yes Used serial correlations and found no 
profitable investment strategies 

Merton 1980 U.S. Stock No Changes in variance are somewhat 
predictable from past data 

French 1980 U.S. Stock No Identified a week-end effect 
Keim 1983 U.S. Stock No Identified a January effect 

Gultekin 1983 International 
markets 

No Identified seasonal patterns 

Jaffe, 
Westerfield 1984 

International 
markets No Identified seasonal patterns 

Lehmann 1990 U.S. Stock No Reversal effects 

Table 2.1: Summary of Evidence Related to the Weak Form of EMH (source: Table 12.1 at page 426 in 
(Levy 1996). 
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Under the random walk hypothesis, autocorrelation coefficients at any orders should be zero 

(Gujarati, 1995). If a series of finance data does not obey this law, then the random walk 

hypothesis is untrue. In this case, an anomaly to the weak form of EMH is found. 

 This empirical method of testing random walk model is used broadly in finance 

community. Before the early 1970s, quite a few research studies gave test results that supported 

random walk (see e.g., Kenddall 1953; Fama 1965; Granger 1972). Since then, however, there 

have been more studies that provide evidence of departures from the random walk theory (see 

e.g., Gibbons & Hess 1981; Keim 1983; Patell & Wolfson 1984; Fama & French, 1988). Detailed 

below is an empirical study completed by Campbell, J.Y. with his colleagues: Lo, A.W. and 

Sample Period 
Sample 

Size Mean SD ρ 1 ρ 2 ρ 3 ρ 4 Q5 

A. Daily Returns 
CRSP Value-Weighted Index 

62:07:03-94:12:30 8179 0.041 0.824 17.6 -0.7 0.1 -0.8 263.3 
62-07:03-78:10:27 4090 0.028 0.738 27.8 1.2 4.6 3.3 329.4 
78-10:30-94:12:30 4089 0.054 0.901 10.8 -2.2 -2.9 -3.5 69.5 

CRSP Equal-Weighted Index 
62:07:03-94:12:30 8179 0.07 0.8 35.0 9.3 8.5 9.9 1,301.9 
62-07:03-78:10:27 4090 0.063 0.8 43.1 13.0 15.3 15.2 1,062.2 
78-10:30-94:12:30 4089 0.078 0.8 26.2 4.9 2.0 4.9 348.9 

B. Weekly Returns 
CRSP Value-Weighted Index 

62:07:10-94:12:27 1695 0.196 2.093 1.5 -2.5 3.5 -0.7 8.8 
62:07:10-78:10:03 848 0.144 1.994 5.6 -3.7 5.8 1.6 9 
78:10:10-94:12:27 847 0.248 2.188 -2 -1.5 1.6 -3.3 5.3 

CRSP Equal-Weighted Index 
62:07:10-94:12:27 1695 0.339 2.321 20.3 6.1 9.1 4.8 94.3 
62:07:10-78:10:03 848 0.324 2.46 21.8 7.5 11.9 6.1 60.4 
78:10:10-94:12:27 847 0.354 2.174 18.4 4.3 5.5 2.2 33.7 

C. Monthly Returns 
CRSP Value-Weighted Index 

62:07:31-94:12:30 390 0.861 4.336 4.3 -5.3 -1.3 -0.4 6.8 
62:07:31-78:09:29 195 0.646 4.219 6.4 -3.8 7.3 6.2 3.9 
78:10:31-94:12:30 195 1.076 4.45 1.3 -6.3 -8.3 -7.7 7.5 

CRSP Equal-Weighted Index 
62:07:31-94:12:30 390 1.077 5.749 17.1 -3.4 -3.3 -1.6 12.8 
62:07:31-78:09:29 195 1.049 6.148 18.4 -2.5 4.4 2.4 7.5 
78:10:31-94:12:30 195 1.105 5.336 15 -1.6 -12 -7.4 8.9 

Table 2.2: Autocorrelation in daily, weekly, and monthly stock index returns (Source: table 2.4 at 
page 67 in Campbell et al. (1997)). 
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MacKinlay, A.C. (1997).  

The study applies the method of testing on daily, weekly and monthly value- and equal-

weighted CRSP2 stock return indices. The sample ranges from July 3, 1962 to December 30, 

1994. Table 2.2 reports the means, standard deviations, autocorrelation coefficients (in percent) 

and Box-Pierce Q-Statistics (cf., Gujarati 1995) for the overall period and sub-periods. 

The panel A in Table 2.2 reports that the daily value-weighted CRSP index and the daily 

equal-weighted CRSP index have first-order autocorrelation coefficients ρ1 of 17.6% and 35.0% 

respectively. Both values are much higher than the standard error of 1.11% ( 1 / N , N = 8179) 

for ρ1. This implies that autocorrelations of 17.5% and 35.0% are clearly statistically significant 

at all the conventional significant levels (e.g., α = 0.05 or 0.001). Moreover, the Box-Pierce Q-

Statistics (cf., Gujarati 1995) with five autocorrelations (Q5) have values of 263.3 and 1301.9 

respectively. They are also significant at all the conventional significance levels. Based on the 

results above, one has to reject that stock returns follow a process of random walk here. 

The weekly and monthly return autocorrelations reported in panels B and C respectively, 

exhibit patterns similar to those of the daily autocorrelations: positive and statistically significant 

at the first lag over the entire sample and for all sub-samples, with tighter and sometimes 

negative higher-order autocorrelations.  

The returns in indices studied here do have patterns that do not obey the random walk 

hypothesis. Certainly, this is an anomaly to the weak form of EMH, which could not be 

explained by the theory of EMH. 

2.2.2.1.2 The second anomaly 

The second illustrative example concerns the investigation into whether abnormal return could be 

                                                 
2 CRSP stands for Center for Research in Security Prices, which is an organization that supplies security data widely 
used by academic investment researchers. 
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obtained by designed trading strategies. In terms of the weak form of EMH, it is impossible to 

gain any abnormal returns if trading strategies are purely derived based on past information of 

prices. If some deliberately designed trading strategies are able to obtain abnormal returns, then 

anomalies occur. This provides an alternative means to test the validity of the weak form of 

EMH. Quite a lot of work has been done in finance using this method (Sharpe et al. 1995; Levy, 

1996).  

The designed strategies illustrated here are called momentum and contrarian strategies. 

They suggest trading behaviour purely based on past information. They simply examine the 

returns on stocks over a time period that just ended in order to identify candidates for purchase 

and sale. 

Momentum and contrarian strategies are described in detail below. 

Consider ranking a group of stocks based in the size of their returns over some time period 

that has just ended. Momentum investors seek to purchase those stocks that have recently risen 

significantly in price. They believe that those stocks will continue to rise due to an upward shift 

in their demand curves. Conversely, those stocks that have recently fallen significantly in price 

are sold on the belief that their demand curves have shifted downward.  Investors who call 

themselves contrarians do just the opposite of what momentum investors are doing in the market. 

In order to test both strategies, researchers have designed the procedure as follow: 

1) Rank those stocks that have been listed on ether the New York Stock Exchange (NYSE) 

or American Stock Exchange (AMEX) based on their returns over a just-ending time 

period (e.g., end of month time period). 

2) Form the "loser" portfolio which comprise x% (e.g., x=10, 50) of those stocks that have 

the lowest average return and "winner" portfolio which comprise x% those stocks that 

have the highest average return. 
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3) Determine the returns on the winner and loser portfolios over a just-starting subsequent 

time period (e.g., beginning of month time period). 

4) Repeat the analysis all over again, starting with step 1, but moving forward one time 

period. Stop after exhausting the data tested. 

5) Determine the abnormal returns on the winner portfolio by subtracting the returns on a 

benchmark portfolio having a comparable level of risk (more details can be found at 

Chapter 22 in Sharpe et al. (1995)); calculate the average of abnormal returns. Similarly, 

calculate the average of abnormal returns on the loser portfolio. 

If stocks are priced efficiently, then their past price behaviour is useless in terms of its 

predictive value. Neither momentum nor contrarian strategies should "work" in that winner 

portfolios should have same performance as loser portfolios. Both portfolios should have average 

abnormal returns of approximately zero. Even more important, the difference in their returns 

should be approximately zero.     

Table 2.3 summarizes test results reported in financial studies with respect to six different 

time periods. In general, the contrarian strategy works well for both very short (a week or month) 

and very long (three or five years) time periods. Surprisingly, for intermediate periods such as six 

months and one year, an exact opposite strategy, i.e. momentum, seems to have merit.  Note that 

the differences of both portfolio returns are statistically significantly different from zero, which 

empirically contradicts EMH’s weak form. This further demonstrates that patterns do exist in 

stock prices.  
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2.2.2.2 A Difficult Task 

In the two proceeding sub-sections, we have discussed two typical kinds of anomalies 

reported in financial studies with respect to the weak-form of EMH. Those anomalies are events 

that are not anticipated and that offers investors chances to earn abnormal profits. Nevertheless, 

whether those anomalies are exploitable for investors to make abnormal profits in realistic 

markets is still questionable. Therefore, testing whether or not markets are efficient is 

inconclusive.  

Annualized Abnormal Returns 
 Length of Portfolio Formation and Test 

Periods 
Winner 

Portfolio 
Loser 

Portfolio 
Winner Return 

Less Loser Return 

A 
Weekly, 1962-1986: 

Top 50% and bottom 50% of NYSE and 
AMEX stocks 

-24.9% 89.8% -114.7% 

B 
Monthly. 1929-1982: 

Top 10% and bottom 10% of all NYSE and 
AMEX Stocks 

-11.6% 12.1% -23.7% 

C 
Semiannually, 1962-1989: 

Top 10% and bottom 10% of all NYSE and 
AMEX stocks 

8.7% -3.5% 12.2% 

D 
Annually, 1929-1982: 

Top 10% and bottom 10% of all NYSE and 
AMEX stocks. 

5% -6.1% 11.1% 

E 
Three years, 1926-1982: 

Top 35 and bottom 35 NYSE stocks -1.7% 6.5% -8.2% 

F 
Five years, 1926-1982: 

Top 50 and bottom 50 YSE stocks -2.4% 7.2% -9.6% 

Table 2.3: Returns from momentum and contrarian Strategies (Source: Table 23.1 at pages 847 
in the textbook (Sharpe et al. 1995)).  

A: Lehmann, B.N. (Feb. 1990). Fad, martingales, and market efficiency.  Quarterly Journal of 
Economics, 05, no.1. p16. 

B: Jegadeesh, N. (1990). Evidence of predictable behaviour of security returns. The Journal of 
Finance, 45, no.3. 881-898. 

C: Jegadeesh, N. & Titman, S. (March 1993). Returns to buying winners and selling losers: 
Implications for Stock Market Efficiency. Journal of Finance, 48, No.1. pp79.  

D: Jegadeesh, N. (1990), Evidence of predictable behaviour of security returns. Journal of 
Finance, 45, no.3. 881-898. 

E: Werner, F.M., Bondt, D. & Thaler, R. (July 1985). Does the stock market overreact? Journal 
of Finance, 40, no. 3. pp799. 

F: Werner, F.M., Bondt, D. & Thaler, R. (July 1987). Further evidence on investor overreaction 
and stock market seasonality. Journal of Finance, 42, no. 3, pp561. 
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There are a number of serious difficulties in interpreting testing results. First, when testing 

any forms of EMH, one must assume an equilibrium model in order to define abnormal security 

returns. Thus, empirical anomalies, rejections of market efficiency are attributed to either a truly 

market inefficiency or an incorrect equilibrium model assumed.  This joint hypothesis problem 

means that market efficiency as such can never be rejected because the fault cannot be located.  

In finance, in order to calculate abnormal returns, researchers normally use two major 

traditional equilibrium models, which are the Capital Asset Pricing Model (CAPM) (Sharpe 

1964) and an alternative model of asset pricing, know as Arbitrage Pricing Theory (APT) (Ross 

1976). Both models were built on many assumptions that may not be satisfied in actual markets. 

For example, two models assume that all investors have the same expectations about mean, 

variances and covariances of security returns; all investors have a common time horizon (a single 

period) for investment decision making, etc. These assumptions certainly are untrue in the real 

world.  Such a fact makes any calculated abnormal returns (either positive or negative) based on 

these models questionable. 

Second, EMH was built with many assumptions. EMH bypassed many empirical problems 

by concentrating on an extreme set of conditions when discussing Φa
t  (Fama 1970): 

a)  The information item is equally and instantaneously available to all market participants. 

b)  Analysis of the information item is costless. 

c) All participants agree on the implications of that information item for the current price and 

the distribution of future prices of each security (the so-called homogeneous expectations 

assumption).  

Given these assumptions, there was the unambiguous prediction that when Φa
t  is placed in the 

public domain, the capital market reaction will be instantaneous and unbiased. Once these 

assumptions are relaxed, even defining Φa
t  or "the public domain" becomes a difficult task.  In 
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reality, the actual markets are characterised by non-instantaneous availability of information to 

all participants, positive information analysis cost, and the existence of heterogeneous 

expectations across market participants. These assumptions under EMH do not exist in real 

capital markets. 

 Third, even in theory, as Grossman and Stiglitz (1980) pointed out, abnormal returns will 

exist if there are costs of gathering and processing information. These returns are necessary to 

compensate investors for their information-gathering and information-processing expenses. They 

are no longer abnormal when these expenses are properly accounted for. 

With these facts, there is now considerable consensus that testing the validity of EMH is 

very difficult endeavour. We argue that perfect market efficiency is an unrealistic benchmark that 

is unlikely to hold in practice, even in theory. 

2.2.3 Remarks on EHM 

One has to be impressed with the substantial evidence suggesting that stock prices display a 

remarkable degree of inefficiency. Like any other economic model, the efficient markets model 

is an abstraction of reality. Perfect efficiency is an unrealistic benchmark that is unlikely to hold 

in practice. On the other hand, one has to admit some aspects of market efficiency to some 

extent. For example, information contained in past prices or any publicly available fundamental 

information is quickly assimilated into market prices. Prices adjust well to reflect some important 

information; if some degree of mispricing exists, it does not persist for long.  

In terms of the above views, a notion of relative efficiency has been proposed by Campbell 

and his colleges (Campbell 1997). The efficiency of one market is measured against another, e.g., 

the New York Stock Exchange vs. the Paris Bourse, future markets vs. spot markets, or auction 

vs. dealer markets. Such a conception may be more useful than the all-or-nothing view taken by 

much of the traditional market-efficiency literature. For instance, one may assert this market is 
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more efficient than other markets by means of measuring autocorrelation coefficient or 

calculating abnormal returns acquired by some trading strategies.   

With respect to our review concerning EMH, in particular, the weak form of EMH, there 

are several points in summary in relation to our research. First, the evidence reviewed indicates 

that future prices are, in fact, somewhat predictable, which does not obey the weak form of EMH. 

Second, since patterns do exist, the work of developing a tool to find those potential patterns is 

not futile. Our research work stands on firm ground. Third, the tool we developed is not supposed 

to replace human experts, but, rather, to assist them to understand the law in financial markets. 

Finally, we should emphasis that it is not our primary concern whether the tool could lead to 

abnormal returns. We are more concerned with what kind of techniques or means that the tool is 

able to provide, in order to improve a) the accuracy of the given predictions and b) reliability of 

predictions for reducing investment risks.  

2.3 Technical Analysis 

In Section 2.2, we have investigated whether EMH, in particular, the weak form of EMH, is to 

hold in reality. Substantial evidence indicates that future returns are predictable to some extent on 

a basis of historical returns. Technical analysis is one of the methods that attempt to exploit 

potential rules or patterns in markets for the purpose of investment management. 

2.3.1 What Is Technical Analysis? 

Technical analysis is an approach to seeking some rules or patterns in order to extrapolate future 

price movement. It makes predictions purely based on historical data, such as price series, trading 

volume, and other market statistics. In their textbook on technical analysis, Edward and Magee 

defined technical analysis as (Edwards & Magee, 1992; p4): 

The study of the action of the market itself as opposed to the study of the 
goods in which the market deals. Technical analysis is the science of 
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recording, usually in graphic form, the actual history of trading (price 
changes, volume of transactions, etc.) in a certain stock or in "the averages" 
and then deducing from that pictured history the probable future trend.  

Technical analysis is premised on the belief that financial prices are determined by 

investors' attitudes. Technical analysts assume that human nature is fairly static; that is, when 

current investors face situations similar to those faced by investors in the past, they behave in a 

similar fashion. Therefore, to find historical price patterns and relationships with other variables 

is believed to give clues as to how the market will behave in the future. Such view is well 

expressed in (Pring 1991, p2-3) as follows: 

The technical approach to investment is essentially a reflection of the idea 
that prices move in trends which are determined by the changing attitudes 
of investors toward a variety of economic, monetary, political and 
psychological forces…-Since the technical approach is based on the theory 
that the price is a reflection of mass psychology (“the crowd”) action, it 
attempts to forecast future price movements on the assumption that crowd 
psychology moves between panic, fear, and pessimism on the one hand and 
confidence, excessive optimism, and greed on the other. 

Technical analysis originated with the work of Charles Dow in the late 1800s, and is now 

widely used by practitioners as input mainly for trading decisions. For example, Taylor & Allen 

(1992) surveyed chief foreign exchange dealers in London, and found that at least 90% of 

respondents employed technical analysis in forming their expectations. The reliance on technical 

analysis was pronounced for short prediction, while more attention was put on fundamental 

analysis for longer prediction (Frankel & Froot 1990).  

2.3.2 Predictability of Technical Analysis 

Despite its popularity, traditionally, technical analysis has been the “black sheep”, regarded by 

academics with a mixture of suspicion and contempt. Technical analysis has never enjoyed the 

same degree of acceptance as that others have received, such as fundamental analysis or 

quantitative analysis. This attitude is partly due to the fact that its proponents have never made 

serious attempts to test the predictions of various technical rules employed (Neely et al. 1997). 
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Recently, however, technical analysis has been enjoying a renaissance both with 

practitioners and academics. For example, on Wall Street, many major brokerage firms publish 

technical commentary on the market and individual securities, and many of the newsletters 

published by various “experts" are based on technical analysis (Brock et al. 1992). More 

importantly, study on technical analysis has attracted many attentions and interests of researchers 

in academics. Such studies include Allen and Karjalainen (1999), Blume, Easley and O'Hara 

(1994), Brock, Lakonishok and LeBaron (1992), Brown and Jennings (1989), Gencay (1996), 

Goldberg and Schulmeister (1988), Hudson et al. (1996), LeBaron (1998), Kho (1996), Levich & 

Thomas (1993), Lukac, Brorsen and Irwin (1988), Neely, Weller and Dittmar (1997), Neftci 

(1991), Pau (1991), Raj and Thurston (1996), Silber (1994), Taylor (1994), Taylor and Allen 

(1992), Treynor and Ferguson (1985), etc. They argued that technical analysis might have merit 

in relation to the predictability of financial markets. 

We should point out that it is not the purpose in this thesis to provide theoretical or 

empirical justification for the use of technical analysis. Our purpose is to show how genetic 

programming techniques can be employed to improve financial forecasting, given available 

predictors as input.  

In order to predict future price movements, we must adopt some input as predictors to feed 

the tool. Potential predictors may be the explicit predictions given by experts; financial 

fundamental factors such as price-earning ratios, price-to-book value ratios, dividends, etc; and 

technical analysis factors such as filter rules, moving average rules and trading range break-out 

rules (all three types of technical rules will be detailed in the next section). Due to lack of data 

concerning fundamental factors, these will not be considered as input to the tool, whereas 

technical analysis factors or explicit predictions given by experts are available for us to handle. 

Our objective is to show that GP can add value to predictors or expert predictions that are input 

to it. 
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2.3.3 Technical Analysis Rule Tests in Finance 

Technical analysis rule tests have been carried out by academics in finance for decades. Such 

interest coincided with and probably was motivated by the development of the random walk 

hypothesis and the subsequent formulation of the theory of EMH. 

The tested forms of technical analysis vary according to the way in which historical prices 

are used. There are so many relevant technical trading rules used among practitioners and 

academics that it is unrealistic to list them all. In what follows, we only focus on three types of 

technical analysis rules that have been studied in finance literature. They are filter rules, moving 

average rules and trading range break-out rules. More important, we will derive technical rule 

indicators, as input to our tool, from these rules (see Section 2.4).    

2.3.3.1 Filter Rules 

Filter rules originated in the work of Sidney S. Alexander (Alexander 1961; 1964). Filter rule are 

mechanical trading rules, which attempt to apply more sophisticated criteria to identify 

movements in stock prices. An x% filter rule (e.g., x = 5) is defined as follows: 

If the daily closing price of a particular security moves up at least x%, buy 
and hold the security until its price moves down at least x% from a 
subsequent high, at which time simultaneously sell and go short. The short 
position is maintained until the daily closing price rises at least x% above a 
subsequent low at which time one covers and buys. Moves less than x% in 
either direction are ignored (Alexander 1961). 

Underlying this filter technique is the belief that stock prices have tendencies to move further 

following an x% of rise or fall. 

Alexander (1961) tested filter rules ranging in size from x=5 to x=50 on Dow Jones and 

Standard & Poor’s stock indices. In general, filters of all different sizes yielded substantial profits 

compared with the buy-and-hold strategy. In his later work (Alexander 1964), Alexander took 

account of the bias pointed out by Mandelbrot (1963) and reworked his earlier results. This time, 
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the profitability of the filter rules was reduced.  

Fama (1965) and Fama & Blume (1966) reported a more detailed empirical analysis of 

filter rules. Filter rules were applied to series of daily closing prices for each of the individual 

securities of the Dow-Jones Industrials Average (DJIA) ranging from January, 1956 to 

September, 1962 with the 1200 to 1700 cases. After taking account of trading costs and 

dividends, results show that the filter rule technique only surpassed the buy-and-hold policy for 

two securities among 30 securities.   

Sweeney (1988) selected a subset of stocks that looked most promising reported in Fama & 

Blume (1966). He followed these stocks from 1970 through 1982 and found statistically 

significant excess return over a buy-and-hold policy. The return remained positive for transaction 

costs obtainable by floor-traders. It is worth noting that Sweeney (1988) considered only long 

equity position and avoided short positions that had performed poorly in the study of Fama & 

Blume (1966). 

2.3.3.2 Moving Average Rules 

The study of moving average rules goes back at least to Donchian (1957), as well as Alexander 

(1961).  Moving average rules are a kind of popular technical analysis rules which trigger 

indisputable buy and sell signals following a regulation below. 

Buy, if a short-period (1 or 2 days, say) moving average rises above a long-
period (50 or 200 days, say) moving average by a band (e.g., 0, 1%); sell, if 
a short-period moving average falls below a long-period moving average by 
a band (Brock et al. 1992). 

The idea behind moving average rules is to smooth out an otherwise volatile series in order to 

detect major downturns and upturns of the market. When the short-period moving average 

penetrates the long-period moving average, a trend is considered to be initiated. 

Alexander (1964) tested moving average rules over the S & P Industrials from 1928-1961 
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and reported that all rules except one exceeded the buy-and-hold strategy (before commissions).   

  

Brock, Lakonishok, and LeBaron (1992) extensively tested numerous moving averages 

rules on daily closing of DJIA from 1897 to 1986 with a total of 25,000 trading days. Without 

losing generality, testing results of two specific moving average rules are illustrated in Table 2.4. 

One moving average rule is referred to as a variable-length strategy, by which each day can be 

classified into either a buy day or a sell day. The other is referred to as a fix-length strategy, by 

which each day can possibly be classified into a holding day within a fix period (e.g., 10 trading 

days), in addition to a buy day or a sell day. The later strategy greatly reduces the frequency of 

changing position from buying to selling, or selling to buying. Nevertheless, both strategies show 

similar results. For one of variable length moving average rules, the annualised average return on 

buy days was 10.4% and on sell days was –5.8%, resulting in a significant difference of 16.2%. 

One of fix-length moving average rules performed similarly, with 13.3% on buy days, -5.6% on 

sell day, and 16.9% difference.  

The above empirical results severely contradict market efficiency. According to the weak 

form of EMH, the average return during buy days should be approximately the same as that 

during sell days. That is, the difference in their returns should be approximately zero. The 

contrary facts imply that moving average rules have merit to predictability to future price 

Annualised Average Return (%) 
Strategies type 

Buy Signal Sell Signal Buy return less sell 
return 

A: Moving average tests:    
Variable Length 10.4 -5.8 16.2 

Fixed Length 13.3 -4.6 17.9 
    

B: Trading range break-out tests: 11.3 -5.6 16.9 
Table 2.4: Returns from moving average and trading range break-out strategies.  
Source: Adapted from Brock et al. (1992). Based on one-day short and 200-day long periods during 
1897 to 1986 with no band (0) over DJIA; annualized assuming that there are 253 trading days in 
one year and 25 ten-day trading periods in a year (fixed-length is 10 days). 
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movements. 

Moving average rules can vary according to different sizes chosen for the short period and 

the long period, as well as the size of band selected. Many other modifications are discussed in 

Schulmeister (1987), Sweeney (1986), and Taylor (1992). In Brock et al. (1992), we notice an 

interesting finding that moving average rules with a band of 1% usually outperforms the 

corresponding rule without a band (i.e. band is 0, which is usually used in practitioners and 

studied in academics) with respect to the buy-sell difference. This implies that a band (it is also 

called as a threshold) is an indispensable element in a moving average rule, which has its impact 

on performances of moving average rules.  

2.3.3.3 Trading Range Break-Out Rules  

The study of trading range break-out rules was completed by Brock et al. (1992), Goldberg & 

Schulmeister (1988), and Raj & Thurston (1996). This kind of rule intends to mimic both the 

resistance level and the support level. Both levels are usually observed by technical analysts in 

order to identify potential changing points of market trends.  

The resistance level is defined as the local maximum. Rationally, investors are willing to 

sell at the peak. This selling pressure results in resistance to a price rise above the previous peak. 

However, as soon as the price rises above the peak, it has broken through the resistance area. 

This break-out is considered to be a buy signal. Conversely, a sell signal is sent out when the 

price penetrates the support level, which is defined as the local minimum. The idea is that future 

price should have difficulties penetrating the support level because investors are willing to buy at 

the minimum price. If the price falls below this level, the price is expected to drift downward 

further. Concisely, a trading range break-out rule is described as follows: 

Buy, if the price rises above a local maximum by a band (e.g., 0, 1%); sell, 
if the price penetrates below a local minimum by a band (a local maximums 
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and minimums are computed over the preceding numbers of trading days, 
e.g., 10, 50 or 200 trading days). 

Like moving average rules, varieties of trading range break-out rules were tested by Brock, 

Lakonishok, and LeBaron (1992). Testing results of one of them are listed in the last row of 

Table 2.4. This trading range break-out rule is similar to the fix-length moving average strategy. 

Here the high and low prices over the past 200 trading days are accounted as local maximums 

and local minimums. The annualised average return on buy days was 11.3% and on sell days was 

–5.6%, resulting in a significant difference of 16.9%. Again, among six studied rules in Brock et 

al. (1992), rules with a band (e.g. 1%) exceeds corresponding one without a band in terms of the 

buy-sell difference. Results here are consistent with findings associated with moving average 

rules aforementioned. 

Goldberg & Schulmeister (1988) applied such rules (rules were called the point-and-figure 

rules in their study), together with filter rules and moving average rules, in the stock market 

during the 1970s and 1980s. They examined all rules on both hourly data and daily data. They 

found that stock price movements do possess systematic price rules and that past prices do 

contain information relevant for predicting future price movements. One interesting result of the 

study is that all of the technical rules examined are considerably more profitable with hourly data 

than they are with daily data.  

Raj & Thurston (1996) tested both moving average rules and trading range break-out rules 

on the Hang Seng Futures Index, traded at the Hong Kong Futures Exchange. They found that 

moving average rules studied do not produce significant excess returns, but four out of six 

trading range break-out rules result in significant positive returns for the buy signal. 

2.4 Deriving Indicators from Technical Analysis Rules 

In Section 2.3, we discussed three types of technical analysis rules: namely, filter rules, moving 
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average rules, and trading range break-out rules. They have been reported to have merit to 

predictability of future price movements. In the light of these findings, in this section, we would 

like to derive some corresponding types of indicators from these technical analysis rules. The 

indicators generated are treated as predicators of future price movements. 

As described in Chapter 1, the prediction problem we mainly attack in the thesis is to 

predict whether a share price will rise by at least r% within a defined period, n, where r>0. 

Obviously, predictors related to upturns of the prices are of interest to us. Any buy signals 

triggered by technical analysis rules are believed to be such predictors, whereas sell signals are 

assumed as predictors of downturns of price trend. Therefore, indicators should be derived in 

terms of the regulations of technical rules for generating buy signals.  

Three types of indicators corresponding to three types of technical trading rules are defined 

as follows, given a time series of prices {Pt}. 

1) Filter indicator: IFilter_L = 
 L)min(1,

 L)min(1,t

P

 P-P
, where Pmin(1, L) = Min (Pt-1, Pt-2, … , Pt-L). 

2) Moving average indicator: IMV_L = 
 L)(t,

 L)(t,t
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MV-P
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3) Trading range break-out indicators: ITBR_L = 
 L)max(1,

 L)max(1,t

P

 P-P
, where Pmax(1, L) = Max (Pt-1, 

Pt-2, … , Pt-L). 

Here, several issues need to be pointed out. First, each indicator is associated with a 

window size, L, which is required to calculate a minimum for a filter indicator, a maximum for a 

trading range break-out indicator, or an averaged level for a moving average indicator. L could be 

assigned a small size (e.g., 5 or 12 time periods) as a short indicator, a middle size (e.g., 22 time 

periods) as a middle indicator, or a large size (e.g., 50 or 63 time periods) as a long indicator.  

Second, each indicator alone only means a ratio depending on the current price and 
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previous L number of prices. This reflects the extent of price changing within a selected L time 

period. Notably, only when it is associated with a threshold by means of comparison (e.g. >, < or 

=), can it exactly function like its corresponding technical rules. This composite is referred to as a 

selector. For example, a selector like “ITBR_50 > 0.01”, represents a trading range break-out rule 

with a band of 1%, and a window size of 50 trading time periods. It implies that buy if current 

price penetrates the maximum price of previous 50 trading time periods by at least 1%.  

Similarly, we can define a filter indicator IFilter_L and a moving average indicator IMV_L 

respectively. 

Third, note that three types of indicators are derived based on law for generating buy 

signals. They may be suited to predict upturns of market. In order to predict downturns of market 

(which is not the target on which we make efforts in this thesis, though), indicators should be 

modified according to the regulations for generating sell signals. Moving average indicators 

remain because the same IMV_L, together with a negative threshold and a “<” comparison is able 

to constitute a selector corresponding a moving average rule for sell. In contrast, both IFilter_L and 

ITBR_L need to be changed as follows: IFilter_L = 
 L)max(1,

 L)max(1,t

P

 P-P
and ITBR_L= 

 L)min(1,

 L)min(1,t

P

 P-P
 

respectively. Similarly, a selector can be constituted with one indicator, one threshold, and one 

comparison. Each selector corresponds to a filter rule or a trading range break-out rule, especially 

for sell. 

Finally, the indicators we derive will be employed as crucial building blocks to generate 

genetic decision trees. The choice of these is also supported by the analysis of Neftci (1991), who 

showed that many patterns or trend used in obtaining market signals are almost always related to 

some sequences of local minima and/or local maxima. 
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2.5 GAs in Finance             

Applications of GAs lie in a broad spectrum of real-life problem domains. Broadly, current 

existing applications may be classified into three domains: engineering-oriented applications, 

computer science-oriented applications, and science-oriented applications (Banzhaf et al. 1998).  

Engineering-oriented applications include, for instance, online control of real robots (e.g., 

Howley 1996; Nordin & Banzhaf 1997), design of electrical circuits (e.g., Koza et al. 1997; Koza 

& Bennett III 1999), and mobile manipulators (Anderson et al. 1992; McDonnell et al. 1992), etc. 

Computer science-oriented applications involve, for instance, computer animation (e.g., Gritz & 

Hahn 1997), natural language processing (e.g., Park & Song 1997; Rose 1997), evolving neural 

networks (e.g., Kitano 1990; Yao 1993), etc. Science-oriented applications, for instance, include 

biochemistry or medical data mining (e.g., Koza & Andre 1996; Raymer et al. 1996; Bojarczuk 

et al., 1999), image processing (e.g., Daida et al 1996; Poli & Cagnoni 1997) and applications to 

finance, which are the theme of this thesis.  

GAs application to finance is discussed in this section as the second part of this chapter. 

Applications of GAs to finance have spread over a diversity of financial subjects, including 

financial forecasting, trade strategy optimisation, portfolio management, theoretical modelling, 

and artificial stock markets simulating, etc. Despite the varieties of subjects applicable, the way 

that they employ GAs mainly relies on two traditional GAs’ modes of operation. One mode of 

operation is based on GAs’ ability of learning and adapting to the endogenous context of their 

environments (Holland 1975; 1992). Another mode of operation is based on GAs’ ability of 

searching and optimising for better solutions (Davis 1991; Goldberg 1989; Yao et al. 1997). The 

former mode is referred to as adapting mode; the latter is referred to as optimising mode.  

Our review of applications of GAs to finance is carried out along the two lines associated 

with the two modes. 
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2.5.1 Applications in an Adapting Mode 

In the adapting mode, traditionally, each population element, or individual in GAs merely 

represents a single classification rule. It needs to cooperate closely with other individuals in order 

to perform well in a frequently varying environment. The selected group of individuals 

constitutes a solution to the problem solved. In GAs domain, this mode is often closely related to 

the Michigan approach (Brooker et al. 1989; Holland 1986). It emphasises on co-ordination of 

each individuals to solve problems whose characteristics are not known in advance with respect 

to a changing or ill-defined world. 

The adapting mode of GAs is usually employed for simulating financial markets or 

theoretical modelling in order to understand some basic laws underlying in real markets.    

The artificial “Sante Fe Stock Market” is a research project at the Santa Fe Institute in 

American, an interdisciplinary centre for the study of complex systems. A team of researchers, 

including a finance professor (Arthur, W.B.), an economist (Lebaron, B.), a trader (Tayler, P.), a 

computer scientist (Holland, J.H.) and a physicist (Palmer, R.) built an artificial stock market to 

study the emergent price dynamics by means of genetic algorithms (Arthur 1992; Palmer et al. 

1994; Taylor 1995).  

In the “Sante Fe Stock Market”, investors are represented by agents, each of which holds 

typical 60 rules in the form of condition-action. The condition part consists of a mixture of short-

term and long-term information with respect to fundamental factors and technical analysis 

factors; the action part consists of either buy or sell. Based on these rules, agents attempt to 

forecast the movement of prices and making trading decisions. These rules themselves are 

evolving and developing by adapting to the changing market over time. At intervals, new rules 

are devised by means of the genetic algorithm approach with reproduction, crossover and 

mutation. The aggregate behaviour of the agents creates the price series. At the same time, 
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market situations based on the price series determine the behaviour of each agent. Because they 

both create and exploit the price series, the agents are essentially co-evolving, even though they 

do not interact directly with one another.  

Their results show that the artificial market is able to qualitatively replicate many puzzling 

empirical features of financial time series, including volume/volatility persistence, and time 

series evidence showing the profitability of trend-following strategies. Moreover, in their model, 

phenomena such as bubbles, crashes, and market moods that are common in real markets can 

emerge. This demonstrates its advantage over most traditional theoretical models of the markets 

in that markets dynamics can be observed in the process of simulating. 

The “Santa Fe Stock Market” is just one of many attempts currently underway to move 

forward our understanding of the financial markets based on this approach of genetic algorithms. 

Izumi and Okatsu (1996) develop an exchange market with artificial adaptive agents, called 

AGEDASI TOF (A GEnetic-algorithmic Double Auction market SImulation in TOkyo Foreign 

exchange market). Like the “Sante Fe Stock Market,” GEDASI TOF acts as a test bed to study 

the foreign exchange bubble between 1989 and 1991. According to their study, the bubble starts 

by support of fundamental factors, grows by bandwagon expectations, stops by coincidence of all 

agents’ expectations and collapses by regressive expectations. Unlike the “Sante Fe Stock 

Market,” AGEDASI TOF is also effective for quantitative analysis, in addition to qualitative 

analysis that both models have. When the model is used to predict exchange rate for different 

time periods, it outperforms a random walk model and a linear regression model. 

  Arifovic (1994) investigates a simulated competition market among firms for a single 

good. The firms make production and sales decisions by means of a genetic algorithm. The 

algorithm converges to a rational expectation equilibrium for several parameters values, and 

replicated experimental findings better than the other learning algorithms. Going further, 
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Arifovic (1996) study an overlapping generations model for exchange rates. Agents’ decision-

making regarding consumption and savings is again encoded via a binary string for GA 

manipulation. Arifovic finds that the exchange rate does not settle down to any of the known 

equilibriums in the model, but continues to bounce around. Chen & Yeh (1996) extend this work 

with genetic programming and show that the market behaviour observed can be explained as well 

without endowing firms with any prior market-related information. 

Examples of similar work are Chen & Duffy (1996), Chen & Kuo (1999), de la Maza & 

Yuret (1995), Lettau (1997), Marengo & Tordjman (1995), Margarita (1992), Marimon et al. 

(1990), Nolan et al. (1999), Routledge (1994), Rust et al. (1994), and Vriend (1994), etc. These 

studies together form a growing area of evolutionary finance, which combines ideas from 

evolution and learning in order to understand empirical puzzles in financial markets. GA plays an 

essential role with its inherent mechanisms of learning and adapting to continual changing 

environments, and of the survival of the fittest in a group of individuals. Evolutionary finance 

provides new and very different approaches to traditional economic modelling and therefore, 

reveals very different perspectives on traditional theoretical thinking (LeBaron et al. 1999; 

LeBaron, 2000). 

2.5.2 Applications in an Optimising Mode 

In the optimising mode, each individual in GAs represents a set of rules, which works 

independently. The best individual on training data is often used as a solution to the problem at 

hand. In GAs domain, this mode is often closely related to the Pittsburgh approach (De Jong et 

al. 1993; Janikow 1993; Smith 1980, 1983). It emphasises on its global search capability with the 

similar principle of search that many general-purpose direct-search algorithms also have, such as 

gradient search or local exchange like hill-climbing, simulated annealing.  

The optimising mode of GAs is often employed for trade strategies finding, financial 
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forecasting, and portfolio selecting. Occasionally, as an effective search engine, it is used to 

attempt some economic modelling tasks as well. The following reviews are represented and 

discussed separately according to the above four financial subjects. 

2.5.2.1 Trade Strategies Finding 

Bauer (1994) pioneers the application of GAs to finding market timing strategies. Market timing 

strategy is represented by a rule with a predefined format encoded into a fixed length binary 

string. It aims at maximising profits from well-timed movements into and out of various asset 

classes such as common stocks, treasury bills, and corporate bonds. The trading signals are based 

on economic variables such as inflation, industrial production rate, unemployment rate, and 

consumer price index, etc. 

For his predefined rule, Bauer designed a kind of primitive predicate as an element. The 

primitive predicate consists of an economic variable, a comparison operator (e.g., “>”, 

a threshold or critical value.  The predefined rule can only hold a maximum of three primitive 

predicates through logical combinations. Though the designed primitive predicate is in a good 

shape, the overall rule generated based on it is limited as the number of primitive predicates is 

fixed. Consequently, Bauer’s system could not find potential better timing strategies that were 

represented beyond the fixed rule form given. Nevertheless, the idea of using primitive predicates 

sheds ample light on following research work, such as Mahfoud & Mani (1996), Pictet et al. 

(1995), Oussaidene et al. (1997), and our work here (see Figure 3.6 at p78).      

An interesting aspect in Bauer (1994) is to introduce a novel method, which is referred as 

“knowledge based hedge”. He constructed “hedge portfolio” by going long based on good rules 

and going short on bad rules. The results showed some promise, although the returns were rather 

volatile over the three-year test period. 

The application of genetic programming to finding trading strategies can be traced to 
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Karjalainen (1994), which was later on summarised and published in Allen & Karjalainen (1995) 

and Allen & Karjalainen (1999). In the work, genetic programming is used to infer technical 

trading rules from the past price. The algorithms were applied to S&P 500. The rules found by 

genetic programming lead to statistically significant excess returns above the buy-and-hold 

strategy in the out-of-sample test period of 1970-89. 

Two distinguishing aspects of the work are 1) the representation of trading rule as the 

individual in genetic programming and 2) rigorous statistics tests, i.e. bootstrapping simulation.  

The individual, a tree-like structure, consists of several building blocks which belong to 

either the real-valued block or the boolean-valued block. Real-valued blocks correspond to 

transformations of past price as well as constants by means of arithmetic functions (+,−, ∗, ÷) and 

functions that return local extrema of prices (“maximum” and “minimum”). Boolean-valued 

blocks correspond to transformations of real-valued blocks as well as constants by means of 

logical functions (“if-then”, “if-then-else”, “and”, “or”, “not”) and comparison functions (“>”, 

“<”). The root node of each rule is restricted to a boolean function, the value of which specifies 

the trading rule signals, either “buy” or “sell”. With all the functions mentioned above as 

elements for building blocks, the trading rules generated can be much more diverse than those in 

Bauer (1994) represented by a fixed-length string. Therefore, better solutions are more likely to 

be found. On the other hand, the fact that Karjalainen (1994) allows genetic programming to 

construct real-valued blocks, which correspond to pre-selected economic variables or technical 

indicators in Bauer (1994), means GP explores a larger searching space, which may make genetic 

programming more difficult to search and cost much time. 

Bootstrapping is one of the statistic methodologies adopted in finance. Bootstrapping 

simulation is used to judge whether the observed performance of a trading rule is likely to have 

been generated under a given model for the data-generating process. (cf., Brock et al. 1992; 

Levich & Thomas 1993).  Using this methodology by comparison with benchmark models of a 
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random walk, an autoregressive model, and a GARCH-AR model, Karjalainen (1994) finds none 

of these models of stock returns can explain the findings derived from trading rules found by 

genetic programming. 

Similarly, Neely, Weller & Ditmar (1997) follow Karjalainen (1994) and apply the genetic 

programming methodology to foreign exchange markets in order to infer technical trading rules 

as well. Six foreign exchange rates are adopted, including Dollar/Deutsche mark, Dollar/Yen, 

Dollar/Pound, Dollar/Swiss franc, Deutsche mark/Yen, and Pound/Swiss franc. Like Karjalainen 

(1994), from their empirical results, they find strong evidence of economically significant out-of-

sample excess returns to those rules for each of six exchange rates over the period of 1981-95.  

Oussaidene, Chopard, Pictet & Tomassini (1997) have completed similar work on foreign 

exchange market as well. The most distinctive perspective of the work is that genetic 

programming is implemented and run through a parallel computer system. Given huge historical 

data, their method shows its advantage over others, as the system is more likely to generate 

trading rules faster. 

Some hybrid systems, which rely on GAs, together with other AI techniques, have also 

been examined. Edmonds & Kershaw (1994) combine GP with Fuzzy Logic to generate so-called 

Fuzzy production trading rules. Promising results are found based on several major price indices, 

such as S&P 500, NIKKEI, FTSE.  Margarita (1991) connects a genetic algorithm to neural 

networks. Genetic algorithms aim at searching the weights of a recurrent network for trading of 

the FIAT shares in the Milan Stock Exchange. 

2.5.2.2 Financial Forecasting 

Mahfoud & Mani (1996) develop a genetic algorithm based system for predicting the future 

performances of individual stocks. As they claim, the system, in its general form, can be applied 

to any inductive machine-learning problem or classification.  They apply the system to predict 
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directions of the relative returns for more than 1,600 individual stocks. The system is fed with 15 

attributes or indicators representing technical as well as fundamental information about each 

stock. They report promising results. Moreover, they compare GAs with Neural Networks (NNs) 

and find that the GAs outperform the NNs on the chosen tasks. They attribute the performance to 

the fact that GAs abstain from making predictions 27% of the time, while NNs make predictions 

in nearly all cases. As a result, they argue that a trade-off exits between the number of predictions 

made and overall prediction accuracy. Though this trade-off is claimed to be a future research 

topic, they do not give any clue on how to develop a mechanism of adjusting the trade-off and 

where this mechanism could possibly be embedded into a GA system. In Chapter 5, we shall 

present a means of adjusting the trade-off between the number of predictions made and the 

prediction precision, rather than overall prediction accuracy.  

White (1998) designs a Genetic Adaptive Neural Networks (GANN) where GAs combine 

with NNs. He concludes that GANN is able to approximate, to a high degree of accuracy, the 

complex, non-linear option-pricing function, which is used to produce the simulated option 

prices.     

Chen & Lu (1999) employ a genetic algorithm to determine the number of input variables 

and the number of hidden layers in order to evolve better NNs for forecasting foreign exchange 

rates of the Dollar/Deutsche mark. After comparing with NNs that are generated based on back-

propagation with pre-specified architectures, they find that the best model is the NN evolved by 

GAs among 16 NN models generated in different designs.  

2.5.2.3 Portfolio Selecting 

Rabatin (1998) uses a GA to develop an adaptive portfolio trading system. The system generates 

trading decisions based on its four parts that simultaneously define the portfolio performance: 

market timing, price risk, portfolio allocation, and portfolio risk. GAs are employed to approach 
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tasks associated with each part. He tested his GA based system to form foreign exchange 

portfolio. According to his results, the system is able to develop profitable behaviour under the 

condition of realistic transaction costs. 

Vacca (1997) uses a GA to address a common realistic problem faced by any investors who 

want to hedge their portfolio. The problem is to find a trade-off strategy between the extremes of 

minimizing risk by frequent re-balancing and minimizing cost by limiting the number of trades. 

GAs are employed to find portfolio hedge parameters, which determine trading decision. The 

trading strategy found via his method provides a robust hedging scheme. 

2.5.2.4 Economic modelling  

Koza (1995a) applied GP to economic modelling. The modelling focuses on a non-linear 

econometric exchange equation P=MV/Q, which relates the money supply M, Price level P, gross 

national product Q, and the velocity of money V of an economy. Genetic programming was used 

to discover the above exchange equation from actual observed data. 

A large part of work on economic modelling with GP in the optimising mode has been 

conducted by Professor Chen and his colleagues. GP is applied in connection with efficient 

market hypothesis (Chen & Yeh 1996b; Chen & Yeh 1996c), financial volatility in share prices 

(Chen & Yeh 1997a), option pricing (Chen & Lee 1997; Chen et al. 1998), and an overlapping 

generations model related to dynamics of the inflation rate (Chen & Yeh 1997b), etc. 

These studies show that GAs can also be applied to economic modelling in the optimising 

mode. 
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Chapter 3  

GP and Its Use in Financial Forecasting 

3.1 Introduction 

In Chapter 2, we reviewed some fundamental financial issues relevant to our research. We 

established that our research stands on firm ground and it is not futile. Furthermore, we discussed 

some popular technical analysis rules that have been heavily studied in financial literature. Based 

on their interpretations for predicting market future movement, we derive corresponding 

technical indicators. These indicators shall be treated as predictors that will be fed to our tool as 

input variables for financial forecasting.  

In this chapter, we focus on technical issues around FGP, a financial forecasting tool based 

on genetic programming. We begin with some background knowledge with regard to genetic 

programming techniques. We present basic components in a canonical genetic programming, as 

well as some advanced techniques in relation to our research. We then present algorithms of FGP 

using pseudo-codes and describe what mechanisms are incorporated in FGP, in particular, some 

distinct components we designed especially in FGP for financial forecasting. Finally, we 

summarise this chapter.  

3.2 Literature 

Genetic algorithms (GAs) (Holland 1975) comprise a class of search, adaptation, and 

optimisation techniques based on the principles of natural selection. This places them in the class 

of algorithms called evolutionary computation or evolutionary algorithms. Other members in 

evolutionary computation include evolution strategies (ESs) (Rechenberg 1973; Schwefel 1981) 
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and evolutionary programming (EP) (Fogel et al. 1966). Genetic programming (Koza 1992) is a 

variant of genetic algorithms that evolves tree representations instead of strings. 

Despite the differences of data structures, these paradigms share a common conception - a 

population is used to search a space of possible representations. A population of objects compete 

with each other to perform the task under consideration in search of better solutions. In biological 

term, the population of possible solutions can be modified in two major ways. 

1. Mutation, an asexual reproduction operator, resulting in a minor change in an 

individual’s representation. 

2. Crossover, a sexual reproduction operator, resulting in possible new representations by 

mixing the genetic material composing elements of the population.   

The field of evolutionary computation has been widely studied since the 1960s. Recent 

years, in particular, have witnessed a remarkable and steady (still exponential) increase in the 

number of publications (see, e.g., the bibliography of Alander (1994), including 3000 GA 

references, and a web page: http://www.cs.bham.ac.uk/~wbl/biblio/ maintained by Bill Langdon, 

including 1500 GP references), and conferences in this field. For recent reviews of the state-of-

the-art evolutionary computation, the reader is referred to Bäck (1996); Bäck, Hammel & 

Schwefel (1997); and Yao (1999).  

3.2.1 Genetic Algorithms 

Genetic Algorithms (GAs), were introduced by Holland (1962 and 1975), subsequently studied 

by De Jong (1975), Goldberg (1989), and others such as Davis (1991), Koza (1992) and Mitchell 

(1996). Initially, GAs were proposed as a general model of adaptive processes, but by far, the 

largest application of the technique lies in the optimisation domain (Bäck et al.  1997). In the 

financial domain, however, both the adapting mode and the optimising mode are used to a certain 

extent (see Section 2.5 in Chapter 2). 
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1. Create randomly the initial population P(i);  set i = 0.   
2. Repeat 

a) Evaluate the fitness of each individual in P(i) using fitness function. 
b) Select parents from P(i) using selection strategies. 
c) Generate a new generation P(i+1) using genetic operators (e.g. reproduction, 

crossover, mutation). 
 
 3. Until i < N or the time is up; where N  is maximum generation set by users. 

The standard genetic algorithm proceeds as follows. It operates by iteratively evolving a 

population of individuals. Each individual is represented by a finite string of symbols 

(traditionally, binary codes), known as the chromosome, encoding a candidate solution to the 

problem at hand. An initial population of individuals is generated at random or heuristically. 

Then, on each iteration, referred to as generation, all individuals are evaluated in terms of one 

pre-specified quality criterion, known as the fitness function. A new population is then generated 

by probabilistically selecting individuals from the current population (this selection strategy is 

called fitness-proportionate selection). Some members in the new population are carried forward 

from members in the last generation population (parents) intact via reproduction operation. The 

rest are generated by applying genetic operators: crossover or mutation. Such a process continues 

until sufficiently fit individuals are generated. In practice, the GA process is terminated when 

either a maximum generation or a maximum running time, both of which are predefined by the 

user, are satisfied. Its algorithm is summarised in Figure 3.1. 

Figure 3.1: A simple genetic algorithm. 

The main mathematical foundation for GA is Holland’s Schema Theorem (Holland 1975). 

This theory is predicated on survival of the “schemas”. Individuals that exceed the mean fitness 

level of population are more likely to pass on their genes (a detailed description of the schema 

theorem is given in Appendix A). It was further advocated by Goldberg with Building Block 

Hypothesis (Goldberg 1989). The Building Block Hypothesis is typically informally stated that a 
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GA works by combining short, low-order, and above average fitness schemata (building blocks) 

to form higher-order ones from generation to generation until it converges to an optimum or 

near-optimum solutions. 

The usefulness of the schema theorem and the building block hypothesis has been argued in 

academia (see, e.g., Altenerg 1995; Beyer 1997; Fogel & Ghozeil 1998; Grefenstette & Baker 

1989; Grefenstette 1992). Such a topic is beyond the scope of this thesis. Interested readers are 

referred to Salomon (1998). The schema theorem is a widely accepted description of the way that 

GAs search. Moreover, it has been extended to a theory for GP by defining a concept of schema 

for parse trees. We refer the reader to O’Reilly (1995), Rosca (1997) and Poli & Langdon (1998).   

3.2.2 Canonical Genetic Programming 

Genetic Programming (GP), as a machine learning approach, was first clearly defined by Koza 

(1992). In this work, GP evolved a solution in the form of a Lisp program by way of a similar 

procedure as GAs. It extends the concepts of the fixed-length representation in GAs with the tree-

structured, variable length, and dynamic representation. Such a representation is interpreted as a 

program. The structure of a program was constructed with a combination of function (arity > 0) 

and terminals (0-arity function), where the arity of a function is the number of inputs to or 

arguments of that function. In order to apply GP to a problem, the following setup was required 

by the user. 

1. Define the set of functions, F = {f1, f2, .., fn}, with arity > 0. Each function in F takes a 

specified number of arguments, defined as a1, a2,…, an. 

2. Define the set of terminals, T = {t1, t2, .., tn} of 0-arity functions (e.g. variable) or 

constants (e.g. real number, integer).  

3. Define the fitness measure used to evaluate how well each program performs the 

designated task. 
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4. Define some parameters for controlling the run, such as population size M, the maximum 

initial depth (depth of program tree), the maximum program depth allowed during the 

evolving process, and some pre-specified probabilities of genetic operations such 

reproduction, crossover, mutation, etc. 

5. Define the method for designating the result and the criterion for terminating a run. 

GP uses an overall approach to creating and evolving tree-based programs similar to GA's 

and other evolutionary approaches. The following three steps summarise the search procedure 

used with GP algorithm. 

1. Create an initial population of programs, typically randomly generated as compositions of 

the functions and terminals sets. 

2. WHILE termination criterion not reached DO 

(a) Execute each program in the population and assign it a fitness value using the fitness 

measure. 

(b) Create a new population of programs by applying the following operations. Each 

operation is applied to program(s) selected from the population with a probability 

based on fitness. 

• Reproduction: Copy the selected program into the new population. 

• Crossover: Create a new offspring program from the new population by 

recombining randomly chosen parts of two-selected program. 

• Mutation: Create one new offspring program for the new population by randomly 

mutating a randomly chosen part of the selected programs.   

3. Designate the individual program that is identified by result designating method as the 

result of the run of genetic programming. The result represents a candidate solution to the 
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problem. 

Some major techniques involved in the above three steps with a canonical GP are described in 

greater details below. 

Creating the initial GP population  

The initialisation of a tree structure is fairly straightforward. It starts by selecting a function, fi, 

randomly from the set F. For each of fi arguments, this process is repeated where either a random 

function or a terminal is to be selected to fill each argument position. If a terminal is selected the 

generation process is terminated for this branch of function. If a function is selected the 

generation process is recursively applied to each argument of this function. For example, given 

the function set F = {AND, OR, NOT} and terminal set T = {A, B, C, D}, several programs that 

could be generated for the initial population are shown in Figure 3.2. Theoretically, the tree can 

be built rather large. In practice, a parameter, called the maximum initial tree depth, is specified 

to limit the depth of the initial tree programs, thereby the size of programs. 

Koza (1992) defines two different ways of initialising tree structures, the “full” method and 

the “grow” method. For a tree generated by the full method, the length along any path form the 

root to a leaf is the same no matter which path is taken, that is, the tree is of full depth along any 

path. Trees generated by the grow method need not satisfy this constraint. For example, in Figure 

3.2, both (c) and (d) are generated using the full method with a maximum depth of three, whilst 

both (a) and (b) are initialised with the grow method. 
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Figure 3.2: Initial GP programs a, b, c, and d, generated based on F = {AND, OR, NOT} and T = {A, B, C, 
D}. 

Based on the full method and grow method, ramped-half-and-half technique are introduced 

(Koza 1992). It is intended to enhance population diversity of structure from the outset. In trees 

the technique is like this. Suppose the maximum depth of tree parameter is 5, the population is 

divided equally among individuals to be initialised with tree having depths 2, 3, 4, and 5. For 

each depth group, half of the trees are initialised with the full method and half with the grow 

method.  

Genetic operators 

The traditional GP operators are analogous to those used in GAs, but have been adapted to work 

with trees. Each operator must ensure that the resultant offspring do not exceed the maximum 

depth of program specified by the user. Reproduction and crossover are considered to be the 

main genetic operations, whereas mutation is viewed as secondary and used sparingly (Koza, 

1992).  

Reproduction selects a program based on fitness, and copies this program identically to the 
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Parent 1:  A AND ((C AND B) OR D) Parent 2: (NOT C) OR ((C AND B) OR 

Child 2:  (C AND B) OR ((A AND C) OR NOT B)) 
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next generation.  

Crossover selects two parent programs based on fitness, and generates two offspring by 

swapping sub-trees between two parent programs. The crossover point within each parent is 

randomly selected, using a normal distribution. An example crossover is shown in Figure 3.3. 

Figure 3.3: An example of sub-trees crossover. 

 

The common form of mutation is sub-tree mutation. Mutation operates on only one 

individual tree. A node within the tree is randomly selected and the sub-tree below this node is 

deleted. A new randomly generated sub-tree replaces the deleted one.  

Selection strategy 

The selection method is used to select individual program(s) for genetic operators, namely, 

reproduction, crossover, and mutation. The selection is based on the fitness of each program in 

relation to other members in entire population. 

One of the most common selection methods is roulette wheel selection in which the 

NOT 
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probability of a program being selected is proportional to its fitness value. An alternative 

common selection method is tournament selection. This selection is not based on competition 

within the entire population but in a subset of the population. A number of individuals, called the 

tournament size, are selected randomly and they compete each other. The best one is to be 

selected. Tournament selection has recently become a mainstream method for selection (Banzhaf 

et al. 1998). Popularity of this selection method is partly due to its adjustable selection pressure, 

which is increased or decreased by simply increasing or decreasing the tournament size (Miller & 

Goldberg 1995).    

Termination criterion for GP 

A GP run is terminated when a specified maximum number of generations have been reached or 

perfect fitness is achieved.   

Result designation   

Koza (1992) uses a best-so-far individual as the result of a run of genetic programming. The 

best-so-far individual is the best individual that ever appeared in any generation of the 

population. 

Sufficiency and closure 

Koza (1992) states that two requirements may be necessary before GP could be applied to a 

specific problem. The concept of sufficiency states that the functions and terminals (in 

combination) must be capable of expressing a solution to the problem. The concept of closure 

states that “each function in the function set be able to accept, as its arguments, any value and 

data type that may possibly be returned by any function in the function set and any value and 

data type that may possibly be assumed by any terminal in the terminal set” (see, Koza 1992; 

p81). Briefly speaking, closure is a condition that all the arguments for functions, and values 
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returned from functions, must be of the same data type. Thus, closure allows unrestricted 

composition of the available functions and terminals in the program trees.  

As a requirement, closure is easily satisfied when merely one type of function is involved 

for generating program trees (for example, either boolean or mathematical functions are merely 

adopted). However, if program solutions need to be represented with a combination of different 

function types (e.g., boolean functions {AND, OR, NOT} and mathematical functions {+, −, ×, 

÷}), to satisfy closure is not possible. To correct this deficiency, several syntactic constraint 

techniques have been developed. These techniques eliminate the closure constraint necessary for 

traditional GP, and hence improve GP on its expressive capability. A concise discussion on this 

issue is given in the following section. 

3.2.3 Advanced Genetic Programming   

The publication of the book (Koza, 1992) is a milestone in the field of genetic programming. 

Koza’s studies provide a basis for further development of GP. Substantial work, since then, has 

been conducted in numerous aspects for improving traditional GP techniques.   

Two aspects attract a considerable number of GP researchers. One is to develop syntactic 

constraint techniques by means of grammar or typing mechanism. This aims at improving tree 

representation by relaxing the closure condition in traditional GP. The other is to provide a 

modularisation mechanism by means of encapsulating useful components in overall program 

trees. This intends to adapt GP representations particularly for solving large and more complex 

problems. Note that both syntactic constraint techniques and modularisation mechanism intend to 

enhance the expressive power of evolvable programs.  

3.2.3.1 Syntactic Constraints 

As discussed earlier, closure condition is not held if the adopted function set consists of members 
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belonging to different types. This problem was noted by Koza (1992), where he proposed an 

informal syntactic constraint approach to attacking the difficulty. The proposed method made it 

possible to construct valid programs without abiding by the closure condition. Several examples 

were given to illustrate how the method worked and where the program structure had to be 

constrained (see Chapter 19 in Koza 1992).  

 In one example, which addresses the Fourier series problem, Koza defined three syntactic 

constraints as follows: 

• The root of the tree must be the special function, &, which was stated as the ordinary 

arithmetic addition function with two arguments. 

• The functions allowed immediately below an & must be a xsin, xcos, or & function. 

• The functions allowed below an xsin or xcos function is either an arithmetic function (+, 

−, ×, %) or a random, real-valued, constant.   

Using English to describe these constraints worked adequately for the Fourier series problem. 

However, this method appeared to be an ad hoc approach that would need to be modified for 

each new problem. In addition, the way of stating constraints using an English explanation may 

not be in a proper declarative manner. One of the better methods to provide a formal 

specification of syntactic constraints is to use grammar. 

Syntactic constraints using grammar  

Grammar is a set of rules used to specify the syntax of a language. The class of context-free 

grammar is the most popular, as they are simple and yet widely applicable to many problems 

(Chomsky 1956). Backus Normal Form (BNF) (Backus 1959) is one of the forms used to 

represent context-free grammar. The grammar for generating program trees of GDTs in FGP 

system is specified in BNF. Some other GP work using context-free grammar to deal with 

syntactic constraints is briefly discussed as follows. 
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A more general way of representing syntactic constraint was presented by Gruau (1996). 

The syntactic constraints are represented by context-free grammar. By virtue of the rewriting 

rules provided in the grammar, a valid GP tree can be generated recursively by starting from 

rewriting the axiom of the grammar. Following is an example of such context-free grammar for 

generating a boolean expression in Disjunctive Normal Form (DNF). 

Figure 3.4: An example of context-free grammar. 

In this example, <axiom>, <DNF>, <term>, <literal> and <letter> are all non-terminals that 

must be rewritten recursively, whereas three logic operators (or, and, not) and four terminal 

letters (A, B, C, D) are terminals that do not need to be rewritten. Various programs can be 

generated in accordance with this grammar; “or (and A B) D” and “or (and C D) (not A)” are two 

instances. The grammar we adopt for generating GDTs is similar to this, but it strictly complies 

with BNF. 

Whigham (1996) also employs context-free grammar in a genetic programming system. 

The context-free grammar is represented by a four-tuple (N, Σ, P, S), where N is the alphabet of 

nonterminal symbols, Σ is the alphabet of terminal symbols, P is the set of productions and S is 

the designated start symbol. The productions are of the form x →  y, where x is a member of N 

and y is any composition of symbols from {Σ  ∪ N }.  

<axiom> :: = <DNF> 
<DNF> :: = or (<term>) (<DNF>) | <term> 
<term> :: = and (<literal>) (<term>) | <literal> 
<literal> :: = <letter> | not (<letter>) 
<letter> :: = A | B | C | D 
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To illustrate the declarative nature of this grammar, Koza’s syntactic constraints previously 

described in the England language could be represented by the grammar Gsyn-con . 

Based on context-free grammar, Whigham investigated the language declarative bias. 

According to his study, the language bias can be easily defined via this context-free grammar. An 

explicit language bias provided by context-free grammar has the following advantages over the 

standard genetic programming framework. It can provide an unambiguous statement of the arity, 

typing constraints, and overall structure of the components that would describe the solution. 

Moreover, the form of the initial population of programs may be explicitly biased, reflecting the 

belief of the user that certain components of the language are more likely to be important. 

Whigham’s assertion regarding the language bias is convincing. We take this point when 

we develop FGP system in this thesis. Context-free grammar is adopted for constructing program 

trees, GDTs (genetic decision trees in FGP). The grammar reflects the belief of structures of 

potential patterns that would have predictability to future market movement. Rather than using 

Whigham’s four-tuple representation, the grammar we take is represented in BNF. 

Strong typed genetic programming (STGP) 

The issue of syntactic constraints has also been investigated by Montana (1995), who proposes a 

generalization of Koza’s constrained syntactic structures, called strong typed genetic 

programming (STGP). STGP eliminates the closure constraint and hence allows the user to 

define functions which take any data types as arguments and return values of any data type.  This 

is achieved by specifying the required argument types for each function and the return type of 

Gsyn-con = {S, N = {A, T }, Σ = { &, xsin, xcos, +, −, *, %, �}, 

       P = {S →   & A A 
           A →   & A A | xsin T T | xcos T T  
     T  →   + T T  | T T  | T T  | T T  | �  
    } 
                }  
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each function and terminal. 

The advantage of using type constraints is arguably to be able to reduce the size of search 

space, and make resultant programs easier to understand.  Due to type constraints, the number of 

possible programs that may be formed is reduced compared with without type constraints. 

Consequently, the likelihood of discovering a program solution with some time and a reduced 

space is increased. For example, Haynes et al. (1995) demonstrated that STGP outperformed 

standard GP for the problem of evolving cooperation strategies in a predator-prey environment. 

They attributed the improved performance to the reduced search space, which resulted from the 

typed system. They also showed that programs generated by STGP tend to be easier to 

understand. 

Nevertheless, this typing mechanism has its weaknesses. It only enforces a simple level of 

relationship between one function or argument and another function or argument. Compared to 

context-free grammar technique, typing alone cannot represent structural constraints beyond that 

simple level of relationship (Whigham 1996).  

Structure-preserving operations 

No matter what kind of syntactic constraint techniques one uses, the way of creating an initial 

population and performing genetic operators should be adapted accordingly. The initial 

population of random individual must be created in accordance with the syntactic rules given in 

constraints. Structure-preserving crossover and mutation must be adopted to ensure that offspring 

generated conform to the syntactic constraints.  

Structure-preserving crossover is usually achieved with the following steps: 

1. To select a crossover point, referred to as Pc1, randomly in the first parent. 

2. To select a crossover point that has the same type as that of Pc1, from the second parent.  

3. To perform a normal crossover operation on parent 1 and parent 2. 
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Structure-preserving mutation is similar. A mutation point is randomly selected in an 

individual program. The sub-tree below the mutation point is replaced by a generated sub-tree, 

whose type must be identical to that of the deleted sub-tree. 

3.2.3.2 Modularisation in Genetic programming 

The standard GP paradigm has no explicit mechanisms for creating modules and reusing them. 

According to the Building Block Hypothesis, programs with shorter effective length have better 

chances of survival compared with programs with larger effective length. All modularisation 

techniques are arguably assumed to be able to encapsulate those effective shorter programs. Such 

encapsulated shorter programs become subroutines and can be called repeatedly from the main 

program or form other subroutines. Various modularisation techniques have been proposed, 

including Automatic Defined Functions (ADFs) (Koza 1994), Automatically Defined Macros 

(ADMs) (Spector 1996), and Module Acquisition (MA) (Angeline & Pollack 1992). 

Automatic Defined Functions 

ADFs are the most thoroughly evaluated method. It is the subject studied in Koza’s second GP 

book (Koza 1994). The individual program with ADFs consists of two parts or branches: 

1. The result-producing branch, from which the fitness of overall program is calculated; and 

2. The function-defining branch, which contains definitions of one or more ADF. 

Each ADF is a complete subroutine, requiring a definition of the arguments, functions, and 

terminals from which it is composed. The main program body (i.e. the result-producing branch) 

is allowed to call any ADF with arguments defined from the terminals and function set. For 

further knowledge about ADFs, the reader is referred to Koza (1994). 

The use of ADFs has been empirically shown to be effective in numerous applications and 

domains (see, e.g., Koza 1994; 1994a; Handley 1994; Kinnear Jr., 1994a). Nonetheless, a major 
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weakness of the ADF approach has also been found in that the structure of the overall program 

has to be specified by the user beforehand. Defining the structure involves selecting the number 

of function-defining braches in the overall program and the number of arguments (if any) 

possessed by each function–defining branch, etc. Once these parameters are specified, each 

program in the population has the same structure. Therefore, GP has no ability to explore more 

potential structures. In order to overcome this limitation, Koza (1995b) designed six architecture-

altering operations by which program structures can be changed during GP runs. Although initial 

results have demonstrated that the approach is promising (Koza 1995b; 1995c), significant results 

using those operations have not yet been reported.  

In a testing version of FGP, we adopted ADFs. In our numerous experiments, however, we 

did not find any improvement compared against the one without adopting the ADF approach. 

Thus, we shall not discuss such a version further in this thesis. 

 Automatically Defined Macros 

Spector (1996) has proposed a variant of ADFs called Automatically Defined Macros (ADMs). A 

common macro transformation is substitution, where frequent code fragments in program are 

replaced by macros. Spector shows how substitution macros can be evolved simultaneously with 

the main program in a way similar to the ADF method. The evolved macros can be treated as 

special control structures, producing, for example, specific forms of iteration or conditional 

execution.  

 The ADMs approach was evaluated on the obstacle-avoiding robot problem and the 

lawnmower problem. While the AFMs method demonstrated its advantage for the obstacle-

avoiding robot problem over the ADFs method, it did not perform better for the lawnmower 

problem based on his experiments.   

Module Acquisition 
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Module Acquisition (MA), proposed by Angeline and Pollack (1992), is another approach to 

modularising code for reuse. Module acquisition acts on individuals. A subtree that is chopped 

from the chosen individual is defined as a module. This operation is called compression. This 

creates a new function, with arguments based on the branches that have been cut. The created 

module or function is put into a library of modules from where it can be referenced by other 

individuals in the population. Expansion is another operation, which takes a module and 

substitutes it back into a program which is using the module. Module acquisition provides the 

desirable feature of allowing useful blocks of a program to be held and used by many different 

programs at the same time. However, in one comparative study (Kinnear Jr. 1994), the use of 

MA does not show any obvious advantage for the problems tested. 

3.3 Algorithms in FGP 

In this thesis, we introduce FGP (Financial Genetic Programming), a GP that we develop 

especially for financial forecasting. Some background knowledge on genetic programming 

related to FGP has been discussed in the preceding section. This section describes techniques 

adopted in FGP and some distinct components provided in FGP.  

An overview of FGP algorithms shall be presented in Section 3.3.1 with pseudo-codes, 

together with some major parameters that is required for running FGP. 

Designing a genetic programming system for financial forecasting involves a number of 

issues. Two essential issues are the representation and evaluation of program trees. The 

performance of genetic programming depends crucially on the choice of representation and the 

choice of fitness function (Mitchell 1997). In the case of financial forecasting, program trees 

represent potential predictive patterns that are possibly of value to the user. The effective 

representation would be advantageous for finding promising predictive patterns. The fitness 

function defines the criterion to assess how well the found patterns perform. From a viewpoint of 
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the user, a fitness function provides him/her with a way to communicate their intention to the 

process of GP. That is to say, modification of the fitness function can results in desirable patterns 

or rules, which may meet the preferences of the user. On the other hand, from the search point of 

view, an appropriate fitness function may change the landscape of GP search space, and therefore 

may direct GP to explore some promising space more thoroughly. Details in FGP related to these 

two issues are discussed in Section 3.3.2 and Section 3.3.4 respectively. 

Section 3.3.4 briefly describes a hill-climbing method for adapting numeric constants 

contained in GDTs. The reason of using this method in FGP is also given. 

As required in a tool, some useful interfaces and some facilities are provided in FGP 

system. Detailed implementations are explained in the final section.    

3.3.1 Overview of FGP 

FGP builds on the framework of the standard genetic programming. It adopts major components 

that a standard genetic programming normally possesses. For example, for creating the initial 

population, it takes the approach of ramped-half-and-half. Genetic operators provided in FGP 

include reproduction, crossover, and mutation.  Two selection strategies, namely, roulette wheel, 

and tournament, are supplied in FGP. Termination criteria given by FGP are the maximum 

number of generations or the maximum time that FGP is allowed to execute. The termination 

criterion of perfect fitness having been achieved is not supplied in FGP, partly because FGP is 

mainly used for financial forecasting, and it is hard to find perfect matching rules even over 

training data. FGP uses the best-so-far rule as the result of an individual run. 
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Figure 3.5: The pseudo-code of FGP algorithms. 

The overview of FGP algorithm is presented by the pseudo-code in Figure 3.5. The 

overall procedure in FGP is similar to that of a canonical genetic programming. It is not 

necessary to reiterate the procedure here. Some major parameters required for running FGP are 

listed in Table 3.1. The listed parameters are changeable by the user. Values shown in the 

brackets in the table are usually taken in our experiments. 

Table 3.1: Some major parameter required for running FGP (values shown in brackets are default values that are 
usually taken in our experiments). 

Variables Abbr. Type Specification 

PopulationSize M Integer 
The number of individuals in one population (500 -
2000) 

GenerationSize Gen Integer The maximum of number of generation (30 -100) 
RunTimeAllowed (Minutes) RTA Integer The running time FGP is allowed to execute 
ProbablityCrossover Pc Real The probability of crossover  (90 - 95%) 

ProbablityReproduction Pr Real 
The probability of reproduction (5 - 10%, which is 
determined by the formula (1- Pc)) 

ProbablityMutation Pm Real The probability of mutation (0.1 - 1%) 
ProbablityOptimization Po Real The probability of Optimisation  (0.1 - 1%) 

InitialMaxTreeDepth IMD Integer 
The maximum depth of tree for initially generated 
individuals (2 - 6) 

SelectionStrategyFlag SSF Boolean 
IF (SSF= TURE) THEN roulette wheel selection 
strategy is chosen ELSE tournament selection 
strategy is chosen (SSF=FALSE) 

MaximumTreeDepth MTD Integer 
The maximum depth of GP tree which is allowed to 
exist (17) 

Procedure FGP (  ) 
Begin 
Partition whole data into training data and testing data;   
       /*  While training data is employed to train FGP to find the best-so-far-rule; the test data is used      
             to determine  the performance of predictability of the best-so-far-rule */ 

Pop ß InitializePopulation (Pop); /* randomly create a population of decision trees. */ 
Evaluation (Pop);                             /* calculate fitness of  each individual in Pop  */ 
Repeat 

Pop ß Reproduction (Pop) + Crossover (Pop);    /*new population is created after genetic 
operators of reproduction which reproduces M*Pr individuals and crossover which creates M*(1-Pr) individuals. 
In our case Pr=0.1, M is population size */  

Pop ß Mutation (Pop);                         /*apply mutation to population */ 
Evaluation (Pop); 

Until (TerminationCondition( ))             /* determine if the termination condition is fired */ 
Apply the best-so-far rule to the test data; 
End 
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3.3.2 Grammar-Based Representation 

As presented in Section 1.5, several design goals have been set up for developing FGP. We hope 

that FGP should allow users to channel their knowledge into the process of decision tree 

generation. Moreover, the GDTs generated by FGP should be comprehensive to users. Both 

design goals are closely related to the issue of tree representation. 

In order to achieve the first design goal, there should be some mechanisms that allow 

users to feed into the tree structures some features and variables that they may think are useful. 

As with DRI (Decision Rule Induction) methods such as ID3, C4.5, usually a feature or input 

variable (its type may be ordinal, discrete or continuous) is associated with a value, also called a 

threshold, by means of a relation operator (e.g., >, <, =). This constructs a decision primitive. The 

return value of a primitive is boolean, i.e. True or False. Multiple primitives combine one 

another by means of conjunction or disjunction to form various predicates required in an overall 

tree (this is also can be treated as a set of rules). With this idea in mind, syntactic constraints are 

required to provide the mechanism of creating the primitive form. In FGP, we call this primitive 

a selector (e.g. “variable_1 > 2.3”, please refer to formal definition in Figure 3.6). 

Many machine learning algorithms produce production rules as outputs. Such algorithms 

include AQ14 (Mozetic, 1985), ID3 and C4.5 (Quinlan 1986a; 1993), GABIL (De Jong et al. 

1993), etc. Production rule representations are easy to understand. Therefore, in order to achieve 

the second design goal, it would be a better choice to make GDTs have similar forms as 

production rules.  

To do that, we force the root node of every GDT representation to be an “if-then-else” 

node which requires three branches: namely, “condition” branch, “then” branch, and “else” 

branch (theoretically, the root node could also be a decision category; e.g., a positive position or 

a negative position, so that the whole production rule is a single prediction node). A condition 
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branch consists either of a single selector or multiple selectors. Multiple selectors interact with 

each other by means of one of logic operations {“and”, “or” or “not”}. When the “then” branch 

 branch is constructed, a single decision category could be selected. Then the branch 

expanding is halted. Alternatively, another “if-then-else” node could be chosen as the root for the 

branch so that the branch expanding continues. This recursively building process may lead to as 

much complicated trees as required. In practice, a parameter called the maximum initial tree 

depth is employed to limit the tree expanding. 

In terms of the principle described above for constructing a valid GDT that is of interest 

to us, syntactic constraints are required.  We prefer to use the Backus Normal Form (BNF) 

(Backus 1959) to present context-free grammar for specifying these syntactic constraints. Figure 

3.6 shows the BNF grammar that FGP uses for building a GDT. 

The symbols in pointed brackets are the non-terminals, whereas the symbols in quotation 

marks are the terminal nodes. The rule of S ::= <start symbol> defines the starting node of 

derivation tree.  A BNF-rule like  <non-terminal symbol> :: = derivation_1 | derivation_2 |   …   |  

derivation_n, defines the all possible derivations (or subtrees) for this non-terminal symbol. 

Decision is an integer, representing a class. Since we allow FGP to deal with two-class 

classification mainly or three-class classification occasionally (see Section 4.2.3.1), the value of 

S:: = <GDT> 
<GDT> ::= “If-then-else” <Condition> < GDT > < GDT > | <Decision>; 
 
<Condition> ::= <Condition> "And" <Condition>  |   
            <Condition> "Or" <Condition>   |    
                        "Not"     <Condition>   |    
                         <Selector>; 
<Decision> ::= “Decision category 1” |  “Decision category 2” | …| “Decision category m”; 
 
<Selector> ::= <Variable>  <RelationOperation>  <Threshold> ; 
 <Variable> ::= “Variable_1” | “Variable_2” | … | “Variable_n”; 
 <RelationOperation> ::=   ">"   |   "<"   |  "=" . 
 <Threshold> ::= “Real Number”; 

Figure 3.6: The BNF grammar that FGP uses for constructing GDTs (where variables are input features 
based on the choices of the user). 
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If-then-else 

Positive 
If-then-else > 

Var_1 16.5 

Positive Negative 

m is given of 2 or 3. A simplistic example tree built using the above BNF grammar, is 

illuminated in Figure 3.7. 

Figure 3.7: A simplistic GDT derived based on the FGP BNF grammar.  

 

In this GDT, there are two “if-then-else” nodes, two selectors embedded with two different 

input variables, and three decision leaf nodes, with a decision of either positive or negative. Each 

path from the root of this GDT to a leaf decision node gives one production rule. The left-hand 

side of the rule contains all conditions that are interactions of all selectors involved by the path, 

and the right-hand side specifies a decision category at the leaf.  Therefore, three individual 

production rules can be generated as follows. 

• Rule_1: if (Selector 1= True) then Positive, 

• Rule_2: if (Selector_1= False AND Selector_2 = True) then Negative,  

• Rule_3: if (Selector_1= False AND Selector_2 = False) then Positive; 

where  selector_1 = (Var_1 > 16.5),  Selector_2 = (Var_2 < 6.6).  

The overall ruleset represented by this GDT is (Rule_1, Rule_2, Rule_3) with order. It is worth 

noting that selectors and their interaction structures are important for the success of a GDT.  

< 

Var_
2 

6.6 

Selector_2 
Selector_1 
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 With the above grammar-based presentation, FGP allows users to input variables that 

they think are relevant to the problem to be solved. More importantly, FGP makes selectors by 

means of selecting a variable and finding an appropriate threshold (see Section 3.3.3). 

Furthermore, FGP combines selectors into a tree. The interaction structures of these selectors, in 

fact, become the left-hand sides of a set of production rules with order.   

3.3.3 A Hill-Climbing Method Embedded   

As mentioned in the preceding section, a selector is an important element, which contributes a lot 

to success of the overall tree. A selector with a proper threshold would be advantageous. FGP 

BNF grammar shown in Figure 3.6 is able to make a selector to be created as required, including 

an input variable, a relation operation, and a random threshold. However, the grammar provides 

no means of finding an appropriate value for the threshold. 

Canonical genetic programming also suffers difficulty in discovering proper numeric 

constants for the terminal nodes in trees. This is partly because existing genetic operations, such 

as crossover or mutation, affect only the structure of the trees, not the composition of the nodes. 

The numeric constants in nodes thus cannot benefit from them. 

An early simple approach to facilitating the creation of constants is to use the ephemeral 

random constant, ℜ, proposed by Koza (1992). In creating an initial population, each time the 

ephemeral random constant is selected as a terminal, it is replaced by a randomly generated 

number within some specified range. Thus, many different numeric constants are available. This 

method is not sufficient as no further action of changing the numeric constants is taken beyond 

the generation 0.  

Recently, an improved method called numeric mutation has been proposed by Evett & 

Gernandez (1998). Numeric mutation replaces all of the numeric constants with new ones in the 

individual. The new numeric constants are chosen at random from a uniform distribution within a 
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specific selection range, which is defined as the old value of that constant plus or minus a 

temperature factor. The temperature factor is calculated based on the fitness of the best 

individual of the current generation. The purpose of using the temperature factor is to control the 

extent of changing the constant. When the best individual of a population is a relatively poor 

solution, a larger selection range is applied so that a great potential for change in the numeric 

constants of the individual is allowed. In contrast, over successive generations, as the best of 

generation tends to improve, the temperature factor decreases. A smaller selection range is 

applied so that a smaller change is permitted. This method has been tested in several symbolic 

regression problems. Statistically significant improvements over traditional GP have been found. 

Inspired by the above studies on discovering useful numeric constants in GP trees, we take 

a simple hill-climbing method specifically for finding appropriate thresholds of all selectors 

contained in a GDT.  

The method starts with taking a means of using the ephemeral random constant. All 

thresholds required in selectors for each GDT are initially assigned the same symbol ℜ at the 

generation 0. Then, in each selector, ℜ is to be replaced by a random value that is chosen 

randomly from a uniform distribution within a specific range. The range is determined by the 

minimum and maximum of the input variable in the selector.   

Over successive generations, a portion of individuals is selected based on the selection 

strategy. Aimed at finding suitable thresholds in all selectors contained in each individual chosen, 

we carry out a process called threshold optimisation using a hill-climbing search technique. First, 

threshold optimisation needs to enumerate all selectors in the GDT that is to be optimised. We 

locate these selectors by conducting a depth-first search procedure. Second, with all other nodes 

fixed, a hill-climbing search technique is applied to the threshold. This is aimed to find a possible 

better value that may results in an enhanced GDT with a better fitness. This is repeated for all the 

remaining selectors in the GDT. 
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According to the experiments we have done, the hill-climbing method that we use is useful, 

in that it is capable of augmenting fitness values to majorities of individuals to which it is 

applied. This is partly because selectors play an important role in GDTs. Meanwhile, an 

appropriate threshold is of importance for a selector to be effective. 

3.3.4 Fitness Function 

As mentioned early, the fitness function is one of the most important factors that affect the 

performance of a GP system. It imposes its influence by way of the selection strategy, and the 

result designation method. Whilst GP evolves at each generation, GP must select which members 

of the population should be subject to genetic operators such as reproduction, crossover, and 

mutation. This task is completed by a selection strategy, which aims to choose individuals based 

on values, calculated from a fitness function. At the end of a GP run, the fitness values are used 

to choose the best individual from the population as the result. In essence, the goal of the fitness 

function is to guide GP to seek better individuals that contain proper interaction structures with 

suitable contents incorporated. 

 The choice of the compositions for constituting a fitness function depends on what kind 

of the problem one needs to solve. It is common that the fitness function is specified by a single 

objective function with merely one criterion. Examples of this kind of the fitness function include 

the number of hits for solving the even-n-parity problems (Koza 1992); the sum of squared 

differences between actual output and the output generated by the GP tree based on training data 

(Banzhaf et al. 1998) for approaching the symbolic regression problems; and the number of 

correctly classified examples in a classification task, etc.  

In the case of the applications of financial forecasting addressed in this thesis, intuitively, 

prediction accuracy is considered as the fitness function. More specifically, a fitness function 
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called the Rate of Correctness (RC = 
sprediction ofnumber     total

  spredictioncorrect   ofnumber    
) is taken in some applications that 

will be presented in Chapter 4. 

Although a fitness function with one criterion is sufficient in some cases, it may not be 

suited to solving problems in other cases, where multiple criteria may need to be considered. It is 

also common that the fitness function is defined with multiple objective functions. Many multi-

objective optimisation problems need such a fitness function. In the case of financial forecasting, 

higher prediction accuracy is always desirable. However, it may not be available. Thus, while 

maintaining a reasonable level of prediction accuracy, to achieve a low rate of failure or to 

reduce missing investment opportunities may also be desired. It is often difficult to make trade-

offs between these conflicting objectives.           

Classical methods to deal with multi-objective optimisation problems are to aggregate the 

multiple objectives into a single, parameterised objective function. The weighted method is one 

of representatives. This method converts multi-objective problems to a single objective problem 

by forming a linear combination of the objectives.   

In order to achieve the second research goal, Goal 2 (see Section 1.4), which is to obtain a 

low rate of failure, we adopt the weighted method to generate the fitness function. The fitness 

function consists of several weighted factors. However, it is still not sufficient and effective to 

attain Goal 2. Eventually, a novel constraint is put into the fitness function (we call such a fitness 

function the constrained fitness function). The constraint is able to change the landscape of the 

search space which may allow the discovery of a solution that would otherwise have been 

overlooked. The effectiveness of the constrained fitness function is demonstrated in our 

numerous experiments, which shall be presented in Chapter 5 in depth.     
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3.3.5 Implementation as a Tool 

The kernel of FGP algorithms is implemented using Borland C++. In order to promote the FGP 

algorithms into a practical tool which can help us with the research, we build numerous useful 

interfaces around the kernel of FGP. Considering spreadsheets like Microsoft Excel are popularly 

used by investors, we build all interfaces on top of the spreadsheet. Interfaces are associated with 

corresponding Macros programmed using Visual Basic Application (VBA) for Excel.  

Interfaces that we build have three parts. This first part is related to pre-processing data and 

building up running environments for the tool. This includes creating relevant indicators; setting 

up running environments as to which directory is used to store necessary files. All experimental 

data are placed in one spreadsheet. Each column represents either an input variable (an indicator 

in our case) or a predefined class. Each row represents one of sample cases.    

The second part is used for setting up FGP running parameters. For example, parameters 

required for running a canonical GP system have to be specified, including the population size, 

the maximum generation allowed to run, the probability of crossover and mutation, the selection 

strategy, and others. Moreover, some parameters especially required by FGP also have to be 

given. These include which kind of the fitness function to be chosen, the weights to be assigned 

if the novel constrained fitness function is selected, and the probability of applying threshold 

optimisation using the hill-climbing method, etc.  

The third part focuses on post-processing results. For example, after the GDT is generated, 

interfaces provided allow the user to apply the GDT to any unseen data and generate 

corresponding predictions. Other important interfaces are also supplied, including calculating 

performances of the GDT according to some specified criteria, obtaining some statistics for a 

resultant GDT and displaying the GDT. 

All experiments reported in this thesis were carried out by using this FGP tool. So far, it is 
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reliable and friendly from our experiences.  

3.4 Summary 

In this chapter, we have described major components that a canonical genetic programming 

normally has, including the ramped-half-and-half approach for generating the initial population; 

genetic operators: reproduction, crossover and mutation; two selection strategies: roulette wheel 

and tournament; and the criteria for terminating a GP run. Furthermore, we discussed two 

advanced GP techniques: syntactic constraint techniques and modularisation mechanisms, both 

of which are intended to enhance the expressive power of evolvable programs in GP. 

      FGP builds on the framework of a canonical genetic programming. By taking ideas in the 

advanced GP techniques presented in this chapter, it introduces some distinctive components, 

including  

• Grammar-based representation. 

Sparked by the syntactic constraint techniques, we take specific grammar (cf. the BNF 

grammar in Figure 3.6) to generate GDTs that we think are appropriate for solving financial 

forecasting problems in this thesis. Using this grammar, selectors associated with input variables 

are formed as primitives. GDTs eventually are created by the combining these selectors in the 

form of either conjunction or disjunction. GDTs generated can be treated as a set of production 

rules which are comprehensible to the user. This is a desirable factor in the case of financial 

forecasting, as the user almost always prefer to know the insight of decisions. 

• The hill-climbing method for adjusting real number terminals in selectors. 

A canonical genetic programming seldom makes the effort to search for proper numeric 

constants for the terminal nodes in trees. However, in the GDTs we build, the numeric constants 

which exist in selectors are important thresholds, which may affect the performa nces of the 
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GDTs to some extent. The hill-climbing method is especially employed to adapt the values of 

these thresholds to the problems to be solved. Our empirical results show that the performances 

of the majority of the GDTs to which this method is applied are improved. 

• A novel constrained fitness function. 

A novel constrained fitness function is developed especially in FGP for financial forecasting. 

This novel constrained fitness function shall be elaborated in Chapter 5 and discussed further in 

Chapter 6.  

Around FGP algorithms are interfaces and facilities that allow the user to manipulate data 

(e.g., training data, test data), change parameters (e.g., population size, crossover rate, mutation 

rate, etc.), and assess the performances of a resultant GDT easily. 

In the chapters to follow, we shall employ FGP to attack financial prediction problems. 

We would like to see whether FGP is of help to the user. Studies of the effectiveness of FGP 

shall be conducted in the light of two goals set up in this research: 1) to improve the accuracy of 

given predictions; and 2) to improve predictive reliability by reducing the rate of failure.  
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Chapter 4  

Financial Forecasting Using FGP-1 

4.1 Introduction 

In the preceding chapter, we presented the framework of FGP and its algorithms. We now turn 

our attention to showing how FGP can be employed to approach financial forecasting.   

In this chapter, we shall present our initial applications of FGP. The primary purpose of the 

use of FGP is to see whether it is capable of improving financial forecasting over base 

predictions available with respect to prediction accuracy. In what follows, we would like to call 

FGP for this purpose FGP-1. Such applications are motivated by the two facts: 1) given a set of 

base predictions, there are sometimes opportunities to improve on them by combining them and 

2) even a slight improvement in finance prediction could be worth a lot (Colin 1994; Leinweber 

& Arnott 1995).  

Base predictions are available to users from different sources. For example, ordinal 

forecasts concerning market trends are provided in newspapers by a finite number of experts 

regularly (Fan et al. 1996); a number of predictions for buying or selling in stock markets can 

also be generated by different technical trading rules in terms of their regulations respectively. 

Meanwhile, base predictions can also come from a similar source. For example, independent 

base classifiers are generated over a number of partitioned instance space (Chan & Stolfo 1996); 

based rules are obtained from independent trails of the GA over the same instance space (Mehta 

& Bhattacharyya 1999); multiple individuals in a population evolved in evolutionary learning 

can also be treated to be able to produce base predictions as well (Yao and Liu 1998). The 
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question is how to make use of them in order to achieve better predictions. 

The studies in this chapter are to examine whether and how FGP-1 can be used to generate 

more accurate prediction than the best individual base prediction available. Two cases of base 

predictions are investigated here. The first one (Case A) is that base predictions are ordinal 

forecasts given (Tsang & Li 1998). The second case (Case B) is that base predictions come from 

a number of non-adaptive technical analysis rules in their normal usages (Li & Tsang 1999a). 

The conception of non-adaptive technical analysis rules in their normal usages shall be explained 

later on (see, Section 4.3.2). Prediction problems involved are the weekly movements in the 

Hong Kong stock market and some research prediction problems of r
nP with different choices of 

n and r.  

Given a finite number of base predictions for a prediction problem, FGP-1 shall be applied 

to generate genetic decision trees (GDTs) either by merely combining them in the case A, or by 

combining them with adapting in case B. For both exercises to be of value, the hope is that 

GDTs should generate better prediction than the best of available base predictions in terms of 

prediction accuracy. 

In order to show that FGP-1 is a useful tool under the above two different cases, two sets 

of experiments are conducted. One set of experiments serves the study of case A, where the base 

predictions are ordinal forecasts given; another set of experiments serves the study of case B, 

where the base predictions come from a number of technical analysis rules in their normal 

usages. Applications of FGP-1 for both case A and case B are described in Section 4.2 and 

Section 4.3 respectively. Moreover, for case B, we compare FGP-1 against both the random walk 

model and C4.5 (Quinlan, 1993). We shall show comparative results. For each case, we illustrate 

via two examples. Our depiction follows a similar organization: 

• Introduction 
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• The specific representation used 

• Two illustrative examples  

Finally, in Section 4.4, we shall discuss what we have achieved by using FGP-1 and 

summarise our work reported in this chapter. According to our empirical results, we conclude 

that FGP is a useful tool for improving financial forecasting with respect to prediction accuracy, 

though caution should be exercised.    

4.2 Combining Ordinal Forecasts 

4.2.1 Introduction 

Ordinal data could be useful in financial forecasting, as Fan et al. (1996) quite rightly pointed 

out. For example, forecast by experts may predict that a market is “bullish”, “bearish” or 

“sluggish”. A company’s books may show “deficit” or “surplus”. A share’s price today may 

”, “fallen” or “remained unchanged” from yesterday’s. The question is how to use 

such data. 

Let Y be a series, gathered at regular intervals of time (such as daily stock market closing 

data or weekly closing price). Let Yt denote the value of Y at time t. Forecasting at time t with a 

horizon h means predicting the value of Yt+h based on some information set It of other 

explanatory variables available at time t. The conditional mean 

Ft,h  = E[Yt+h | It] 

represents the best forecast of the most likely Yt+h value (Granger 1992). In terms of properties of 

value Y, forecast could be classified into point forecast, where Yt is a real value, or ordinal 

forecast, where Yt is an interval estimate. In terms of the property of It, forecast could be 

classified into time-series forecast, where It consists of nothing but Yt−i where i ≥ 0, or combining 

forecast, where It only includes a finite direct forecast results of individual forecasts {E1, t, E2, 
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t,…, EN, t}, where N is the number of sources; Ei, t denotes the prediction of source ei at time t. 

In the past two decades, point forecast on time series has played an important role in 

financial forecasting research. This includes the popular linear model ARIMA (Box & Jenkins 

1970) and recently heavily studied non-linear models ARCH (Engle 1982) and GARCH 

(Bollerslev 1986). Nevertheless, there has been growing interest in combining forecasts; for 

example, see (Wall & Correia 1989; Lobo 1991; MacDonald & Marsh 1994) for combining 

point forecasts and (Fan et al. 1996; Cesa et al. 1997) for combining ordinal forecasts. The 

consensus of the literature is that mean forecast (combining point forecast) may outperform most 

time series models on average and combined ordinal forecast may outperform individual 

forecasts on average. The methodologies adopted in these researches are mainly statistical 

methods and operation research methods. AI techniques are seldom used. Although artificial 

neural networks have already been used to approach forecast combining (Donaldson & Kamstra 

1996; Harrald & Kamstra 1997). The full potential of genetic algorithms (Holland 1975; 

Goldberg 1989; Davis 1991) has yet to be realized.  

We follow the study of Fan and his colleagues and focus on combining ordinal forecasts.  

We demonstrate the potential of FGP-1 in combining and improving base predictions in two 

different data sets:  

(i) a small data set involving the Hong Kong Heng Seng Index as reported by Fan and his 

colleagues (Fan et al. 1996); and 

(ii) a larger data set involving S&P 500 index from 2 April 1963 to 25 January 1974 (2,700 

trading days). 

4.2.2 The specific representation 

The problem of combining ordinal forecast can be formally described as follows. Let {P1, P2, …, 

Pm} be a set of discrete forecasting categories, where m is the number of forecasting categories. 
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At any time t, given N predictions {E1,t, E2,t,…, EN,t} where prediction Ei,t can only take on one 

discrete value from the set {P1, P2, …, Pm}, the goal in combining ordinal forecast is to produce 

a forecast of the same type: 

Ef, t =  f (E1, t , E2, t …, EN, t)   where  Ef, t ∈ { P1, P2, …, Pm }.   
 (4.1) 

For this exercise to be of value over a range of discrete time in the future T, the average accuracy 

of Ef, t for t ∈ T should be better than that of the best of {E1 ,t, E2 ,t,…, EN, ,t }.  

        S:= <GDT>; 
        < GDT > :=  "If-then-else"  <Condition>  < GDT >  < GDT > | <Decision>; 
        <Condition> := <Condition> "And" <Condition> | <Condition> "Or" <Condition> |  "Not"  
                    <Condition> | <Selector>;  
         
        <Decision>:= "Pj" ;  
        < Selector > := "Ei, t" <RelationOperation>  "Pj " 
        <RelationOperation>:= ">" | "<" | "="; 

Figure 4.1: The BNF grammar that FGP uses for combining ordinal forecast (where, 1≤  i ≤ N; 1≤  j, k ≤  m). 

 

To construct GDTs, we need to take the FGP grammar (cf., the BNF grammar in Figure 

3.6, p78) with a little variant. In the case of the Hong Kong stock market, the set of possible 

decisions is {bullish, bearish, sluggish, uncertain}. In the case of the S&P 500 index data, the set 

of decisions is {buy, not-buy}. Note that the set of forecast categories {P1, P2, …, Pm } is treated 

as an ordered list when “<” and “>” are applied. The specific syntax used in FGP-1 for 

combining ordinal forecasts can be precisely described by using the grammar, as shown in 

Figure 4.1.  

A simple example tree is illuminated in Figure 4.2. 
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The rule in Figure 4.2 means that if E1 ,t at time t (E1, t) is P2, then this rule predicts P2  as well; 

else the prediction depends on the E2, t. If E2, t is greater than P1 (This means E2, t must be P2 or P3 

if available) then this rule generates P2 prediction, otherwise it predicts P1.  

4.2.3 Two Illustrative Examples 

4.2.3.1 Application of FGP-1 to the Hong Kong Stock Market 

FGP-1 was first applied to a particular prediction problem in the Hong Kong Stock Market. The 

data set given in the appendix of Fan et al. (1996) includes 103 data cases, each of which 

consists of nine expert predictions for the following week plus the actual market state. 

Predictions by each of the 9 experts fall into four categories. Fan et al. (1996) labelled the four 

categories as: 

1. bullish, which is defined as the index rises by over 1.3% in the next week; 

2. bearish, which means the index falls by over 1.3% in the next week; 

3. sluggish, which means the index is neither bullish nor bearish; or 

4. uncertain, which means the expert refuses to make a prediction. 

 

The period under study was from 25 May 1991 to 16 October 1993. The Hong Kong stock 

       If-then-else ((E1, t = P2);  (P2);  (If-then-else (E2, t > P1);  (P2); (P1))) 
  

     If-then-else 
 
 

          =            P2           If-then-else 
 

 E1, t         P2               >          P2        P1 
 

                         E2, t        P1           

Figure 4.2: A simple rule and its corresponding tree structure. 
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market prediction can be formalized as a combining forecast problem as defined in the previous 

section 4.2.2: 

At time t, given 9 predictions {E1,t ,…, E9,t} supplied by 9 experts {e1,…, e9}  

respectively, the prediction Ei, t can only takes on one category value in the set {1, 2, 3, 4}, i.e. 

Ei, t ∈ {1, 2, 3, 4}. The goal here is to combine the predictions by the experts to generate more 

accurate predictions. In other words, we want to produce a function f such that:                                      

  Ef, t     =   f (E1, t , …, E9, t)            where  Ef, t ∈ {1, 2, 3}.    (4.2) 

The hope is that the average accuracy of Ef, t outperforms that of all of {E1, t , …, E9, t}.  

We partitioned the data given in Fan et al. (1996) into two mutually exclusive subsets: 

training data set (in-sample data set) and test data set (out-sample data set). We ran our FGP on 

the training data set. Each run generated one best-so-far prediction rule, which was then applied 

to the test data set in order to measure its performance.  

Fan et al. (1996) used the “leave-one-out cross-validation strategy” to assess the 

forecasting accuracy. This means that in order to generate a forecasting for time t, all but the 

experts’ predictions at time t were used to generate a combined prediction. Predictions generated 

in this way were evaluated. For simplicity without lost of generality, we used “3-fold cross-

validation” to estimate the performance of FGP-1: we partitioned the data set into three mutually 

exclusive subsets (the folds): 

D1: 34 data cases from 25 May 1991 to 11 January 92;  

D2: 35 data cases from 18 January 1992 to 5 December 1992;    

D3: 34 data cases from 12 December 1992 to 16 October 1993 

 

Each of these data sets was used as the test data set once, whilst the remaining two sets were 

employed as the training data set.  The mean forecasting accuracy was the overall number of 

correct forecasts divided by number of cases in the whole data set (Kohavi 1995).  For each of 
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D1, D2, D3, we ran FGP-1 10 times, so a total of 30 runs were completed in our experiments.   

Major running parameters in our experiments are depicted in Table 4.1. The fitness 

function is the Rate of Correctness (RC), the proportion of correct predictions out of all 

predictions.  The FGP-1 forecast accuracy is presented in Table 4.2. 

Objective Find GDTs which have the higher accurate prediction for the 
movement of Stock in next week. 

Input terminals (forecasts of 9 experts) E 1, t,  E 2, t , E 3, t , E 4, t , E 5, t , E 6, t , E 7, t , E 8, t , E 9, t . 

Prediction terminals 0, 1, 2.    Where 0 means "Bullish"; 1 means “Bearish"; 
2 means Sluggish”. 

Function set If-then-else, And, Or, Not, >, <, =. 

Data 

D1: 34 data cases from 25 May 1991 to 11 January 92; 
D2: 35 data cases from 18 January 1992 to 5 December 1992; 
D3: 34 data cases from 12 December 1992 to 16 October 1993; 
Using 3-fold cross-validation to estimate FGP-1 forecasting 
performance. 

Fitness function RC (Rate of Correctness) = 
sprediction ofnumber     total

  predctionscorrect   ofnumber    
 

Crossover rate 0.9 
Mutation rate 0.01 
Parameters M (Population size) = 1000; G (Maximum generation) = 40. 

Termination criterion Maximum number of G of generation has been reached or FGP-1 
programme has run for more than 2 hours. 

Selection strategy Tournament Selection, size = 4. 
Max depth of individual program 17 
Max depth of initial individual 
program 

3 

Run times (hours) 1-2 
Hardware and operating system Pentium PC 200MHz running Windows 95 with 64M RAM 
Software Borland C++ (version 4.5) 

Table 4.1: Tableau for experiments on Hong Kong stock data. 

Runs 
Number of correct 

 forecasts or accuracy  
tested on D1 

Number of correct 
 forecasts or accuracy  

tested on D2 

Number of correct 
forecasts or accuracy  

tested on D3 
1 20 14 15 
2 19 16 16 
3 21 16 14 
4 22 16 15 
5 21 17 17 
6 21 16 16 
7 23 15 14 
8 22 17 14 
9 20 16 17 
10 18 15 16 

Mean 20.7 15.8 15.4 

Accuracy(RC) 0.6088    0.4514 0.4529 
Mean Accuracy 0.5039 

Table 4.2: The 30 FGP-1 run performances and the mean forecast accuracy. 
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Table 4.3 compares the FGP-1 result with the best expert result and the results of two 

methods discussed in (Fan et al. 1996). The mean accuracy of FGP method (50.39%) is slightly 

higher than the accuracy of the Multinomial Logic Method (50.16%) reported in (Fan et al. 

1996). This in turn out-performs Linear Programming Method (45.63%) and the best individual 

expert (which is expert 7, at 43.69%). It is encouraging to see that MNL, LP and FGP-1 can all 

improve the accuracy of the best expert’s forecast.  

However, caution should be exercised when interpreting empirical results (Markowitz & 

Xu 1994; Hooker 1995), particularly in this example, which only involves relatively small data 

cases. Therefore, one should not generalize the results without further experimentation. 

4.2.3.2 Application of FGP-1 to the S&P 500 Index 

Encouraged by FGP-1’s promising forecasting performance on the Heng Seng Index, we tested 

FGP-1 on the S&P-500 daily closing index. Available to us were data from 2 April 1963 to 25 

January 1974 (2700 data cases). Our goal is to see whether FGP-1 could improve forecasting 

accuracy on textbook-type predictions.  

Six technical rules (three different types, see Section 2.3) are treated as 6 experts {e1, 

e2,…, e6}. They are used to approach the following prediction problem at any given day, which 

is denoted by 4
63P  (a general form of this type of prediction was introduced in Section 1.3.1). 

4
63P : whether the index will increase at least 4% within 63 trading days (3 months). 

Each of the six rules will make either a "buy" or "not-buy" prediction every day {E1,t, …, E6,t}, 

where Ei,t ∈ {0, 1; where “0” means “not-buy” and “1” means “buy”}. The six technical rules we 

used were as follows: 

Methodologies Expert 7 Multinomial logic 
(MNL) 

Linear programming 
(LP) 

Genetic programming 
(FGP-1) 

Accuracy (RC) 0.4369 0.5016 0.4563 0.5039 

  Table 4.3:  Accuracy of four "forecasts combining" methods in cross-validation. 
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• Type A: moving average rules: 

       Given a price time series {P(t), t ≥ 0},  simple moving average is defined as: 

SMV(L, t) = )(  
1 1

0
∑
−

=
−

L

i
itP

L
, where L is the length of moving average,  L≥1. This rule is 

defined as “Buy if today’s price is greater than the average price of previous L periods”. 

       Rule 1 (SMV_12):  "If today’s index price P(t) is greater than the SMV(12, t), then buy; 

else do not buy." 

       Rule 2 (SMV_50):  "If today’s index price P(t) is greater than the SMV(50, t), then buy;       

else do not buy." 

• Type B: trading range break-out rules: 

Given a period of length L, this rule is defined as "Buy if today’s price P(t) is greater than 

the maximum of the previous L periods." 

       Rule 3 (TRB_5):   "If today index price P(t) is greater than Max(P(t-1), P(t-2),…,P(t-5)),     

then buy; otherwise not buy."  

Rule 4 (TRB_50): "If today index price P(t) is greater than Max(P(t-1), P(t-2),…,P(t-50)),     

then buy; otherwise not buy."  

• Type C: filter rules: 

       This rule is defined as "Buy when the price rises y percent above its past local low."       

       In this case, the two filter rules are defined as follows: 

       Rule 5 (Filter_5):   "If today index price P(t) rises 1%  greater than Min(P(t-1), P(t-2),…, 

                           P(t-5)),  then buy; otherwise not buy."    

       Rule 6 (Filter_10):  "If today index price P(t) rises 1% greater than Min(P(t-1), P(t2),…, 

                            P(t-10)), then buy; otherwise not buy."    
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In this study, each of six technical rules is assumed to be one expert, whereas the “buy” 

-buy” signals generated by each technical rule are viewed as ordinal forecasts. Here, we 

are only concerned about whether FGP-1 is capable of making predictions with higher accuracy 

by combining ordinal forecasts generated from these technical rules. Therefore, the quality of the 

individual technical rule is not crucial to our study. 

The FGP-1 algorithm is the same as that in the first example. In addition to the rate of 

correctness (RC), we added two factors to the fitness function: the rate of missing chance 

(RMC) and the rate of failure (RF). RMC and RF are defined as follows (identical definitions 

shall be given in Chapter 5): 

 

RMC = #  of  erroneous not - buy signals 

#  of actual buy opportunities
 (4.3) 

RF  = #  of  erroneous buy signals 

# of  buy signals 
 (4.4) 

 

Weights were given to RC, RMC and RF (see Table 4.4). By adjusting these weights, we can 

reflect the preference of investors. For example, a conservative investor may want to avoid 

failure and consequently put more weight on RF.  

Objective Find GDTs that have the higher accurate prediction for 4
63P . 

Input terminals (signals of 6 Rules) E  SMV_12, t,  E SMV_50, t , E TRB_5, t , E TRB_50, t  , E Filter_5, t , E Filter_10, t . 
Prediction terminals  0, 1.    Where 1—"Buy" Class, 0— "not-buy" Class. 

Data 
Total data cases:                2700  (01/04/1963  -- 25/01/1974) 
The training data cases:    1800  (02/04/1963  -- 02/07/1970) 
The testing data cases:       900   ( 06/07/1970  -- 25/01/1974) 

Fitness function Fitness Function = w1*RC - w2*RMC - w3*RF  
Where in this case, w1 = 1, w2 = 0.2, w3 = 0.3. 

Parameters  M=1200 (Population size); G = 40 (Max generation). 

Table 4.4: Tableau for experiments on S&P 500. 
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We ran FGP-1 10 times. Major parameters that differ from those in the pervious 

experiments are listed in Table 4.4. For each run, a GDT evolved on the training data was 

applied to the test data. The results of GDTs and six individual rules on the test data were 

recorded in Table 4.5.  Among the six technical rules, the SMV_50 rule was the best individual 

rule for this set of data.  It achieved an accuracy of 51.89%.  In contrast, GDTs achieved an 

average accuracy of 54.20%, hence out-performed the rule SMV_50 by 2.31%.  Even the poorest 

GDT (GDT 10) achieved an accuracy of 53.00%, which was still better than that of the SMV_50 

rule. So although we only generated 10 decision trees, the results were conclusive: FGP-1 was 

able to produce better forecasting consistently by combining individual base forecasts. 

However, it is worth noting that caution should be exercised for choosing running 

parameters of FGP-1, in particular, the fitness function adopted. Here, the fitness function we 

used was a weighted linear function with three criteria involved, rather than RC adopted in the 

preceding application. The reason is that the results by using RC as the fitness function are not 

good as results presented here. In our experiments, we also found that some improper weights did 

Individual technical rule performance FGP-1 rule performances 

Rules Prediction Accuracy 
(RC) 

FGP-1 Rules Prediction Accuracy 
(RC) 

SMV_12 0.4956 GDT 1 0.5400 
SMV_50 0.5189 GDT 2 0.5389 
TRB_5 0.4733 GDT 3 0.5400 
TRB_50 0.4756 GDT 4 0.5522 
Filter_5 0.4944 GDT 5 0.5444 
Filter_10 0.4889 GDT 6 0.5367 

  GDT 7 0.5389 
  GDT 8 0.5356 
  GDT 9 0.5433 
  GDT 10 0.5300 

Highest 0.5189 Highest 0.5444 
Lowest 0.4733 Lowest 0.5300 
Mean 0.4911 Mean 0.5420 
STD 0.0165 STD 0.0056 

Table 4.5: Performance comparisons between individual technical rules and 
10 GDTs (STD means the standard deviation). 
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lead to bad results.  

4.3 Combining and Adapting Technical Analysis Rules 

4.3.1 Introduction 

As has been discussed in Chapter 2 (see, Section 2.3.2 and Section 2.3.3), technical analysis has 

been enjoying a renaissance both in practitioners and in academics. Technical analysis rules have 

been argued to have merit to predictability of movements of future market prices. 

There are two general approaches in technical analysis: one involves qualitative techniques 

and the other quantitative techniques (Goldberg & Schulmeister 1988). The qualitative 

techniques rely on the interpretation of the form of geometric patterns in the series, such as 

double bottoms, head-and-shoulders, and support and resistance levels; whilst the quantitative 

techniques try to create indicators for market timing such as moving average (MV), relative 

strength indicators (RSI), etc. Notably, both techniques can be characterised by appropriate 

sequences of local minima and/or maxima (Neftci 1991). 

Quantitative technical rules are often used to generate “buy” or “sell” signals based on each 

rule interpretation. One may want to use technical rules to answer questions such as "is today a 

good time to buy if I want to achieve a return of 4% or more within the next 63 trading days?" 

and "is today the right time to sell if I want to avoid a loss of 5% or more within the next 10 

days?" However, the way that technical rules are commonly used may not be adequate to answer 

these questions. How to use them and adapt them to these specific prediction problems to lead a 

better solution is a non-trivial task.  

In fact, any answer to the above questions could be one of the solutions to a class of 

problems r
nP . In this study, we ask FGP-1 to address such problems. Our purpose is to examine 

whether FGP-1 is a useful tool if we are faced with some available technical analysis rules, 
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together with some knowledge of using them in their normal ways. In particular, we shall 

examine whether FGP-1 can help to improve predictive accuracy over non-adaptive individual 

technical rules available (non-adaptive technical analysis rules will be explained later on), with 

respect to prediction problems r
nP .  

We choose two examples of the prediction problem r
nP  using the same Dow Jones 

Industrial Average (DJIA) index data. One is a short-term prediction 2.2
21P . The other is a middle-

term prediction 4
64P . With the two instances of prediction problems, we would like to see whether 

FGP-1 could achieve consistent results. 

Furthermore, in order to evaluate FGP-1, we compare FGP-1 against the random walk 

model and C4.5, a well-known machine learning classifier system. We shall see whether GDTs 

generated by FGP-1 have any superiority over random decisions and rulesets generated by C4.5 

in terms of prediction accuracy. 

4.3.2 The Specific Representation 

Involved in this study are also six similar technical analysis rules, which were used in the second 

example in Section 4.2 (see p96). However, the way of using these rules are different. The 

difference lies in what kind of data information is used as input to FGP-1. In the preceding 

application (see Section 4.2.3.2), the ordinal forecasts: “buy” or “not-buy” were used that are 

generated based on the interpretation of each technical rule. In comparison, here, indicators are 

to be used to feed FGP-1. Six indicators are derived from corresponding technical rules. They 

are defined as follows: 

(1) IMV_12 (t) = Pt – MV(t, 12), which is related to SMV_12. 

(2) IMV_50 (t) = Pt – MV(t, 50), which is related to SMV_50. 

(3) ITRB_5 (t) = Pt – Pmax (1, 5), which is related to TRB_5 

(4) ITRB_50 (t) = Pt – Pmax (1, 50), which is related to TRB_50. 
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(5) IFilter_5 (t) = Pt – Pmin (1, 5), which is related to Filter_5. 

(6) IFilter_63 (t) = Pt – Pmin (1, 63), which is related to Filter_63. 

 

Where Pt is the current price; Pmin (1, L) = Min (Pt-1, Pt-2, … , Pt-L); Pmax (1, L) = Max (Pt-1, Pt-2, … , 

Pt-L); MV(t, L) = ∑
−

=
−

1

0

1 L

i
itP

L
. 

As discussed in Chapter 2 (see Section 2.4), “buy” signals generated from trading rules 

imply potential price rising in the future. Therefore, a series of “buy” signals are presumably 

treaded as predictive solutions to problem r
nP . Each technical rule has its own interpretation for 

generating these signals. Interpretation is based on the past prices, as well as an important item, 

i.e. a threshold.  

The threshold is necessary to trigger signals for each rule. For example, a value of “0” is 

normally used for moving average rules and trade range break-out rules (e.g., SMV_12, 

SMV_50, TRB_5, and TRB_50 in Section 4.2.3.2), whilst a value of “1%” is normally used for 

Filter rules (e.g., Filter_5 and Filter_63). If six technical rules trigger signals with the 

corresponding thresholds mentioned above, the way of using them is said to be in their normal 

usages, which are usually employed by practitioners for market timing and usually studied in 

finance literature (Brock et al. 1992). Nevertheless, in our cases, these rules in their normal 

usages are considered to be non-adaptive rules in the sense that they may not be suited to solve a 

specific prediction task r
nP  with a fixed n and r. We argue that a technical rule with a suitable 

value of threshold might be more helpful.  

However, choices of these thresholds are numerous. It may be difficult to adjust thresholds 

in order to adapt them for a specific task r
nP  at hand. We expect FGP-1 might help in this regard. 

By using the hill-climbing method, FGP-1 helps to find proper thresholds for these individual 

technical rules. Moreover, by using the FGP grammar, FGP-1 can generate GDTs which can 
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combine these individual technical rules together. The hope is that the generated GDTs might 

make predictions with higher accuracy that could not be achieved by any of the individual 

technical rules in their normal usages. 

In this study, we ask FGP-1 to identify investment opportunities where a return of r% or 

more can be achieved within the next n period times. Recommendation in this application is 

either positive (which suggests that a return of r% or more can be achieved within the next n 

period times) or negative (otherwise). 

The specific grammar for constructing GDTs in this application is described in  Figure 4.3. 

 

Figure 4.4 shows an example of a simple GDT built by using the above grammar. A useful 

GDT in the real world might be a lot more sophisticated than this. 

This GDT is assumed to makes predictions daily. It suggests that if today’s price is 18.45 

or more below the average price of the last 50 trading days, then a return of r% within n days 

S ::= < GDT >; 
<GDT> ::=  "If-then-else"  <Condition>  <GDT>  <GDT> | < Recommendation >; 

 
<Condition> ::= <Condition> "And" <Condition>  |  <Condition> "Or" <Condition>  |"Not" <Condition>  | 

<Selector>; 
<Recommendation> ::= "Positive" | "Negative"; 
<Selector> ::= <Indicator> <RelationOperation> <Threshold>; 
 
<RelationOperation> ::=   ">"   |   "<"   |  "=" ; 
<Indicator> ::= "IMV_12(t)" | "IMV_50(t)" | "IFilter_5(t)" | "IFilter_63(t)" | "ITRB_5 (t)" | "ITRB_50 (t)"; 
<Threshold>::= “Real Number”; 

 Figure 4.3: The BNF grammar that FGP-1 uses for constructing GDTs. 

 
(IF  (MV_50(t)  <  -18.45) THEN Positive 
ELSE (IF  ((TRB_5 (t)  >  -19.48) AND (Filter_63 (t) < 36.24)) 

THEN Negative 
ELSE Positive)) 

 

Figure 4.4:  A (simplistic) GDT for decision making. 
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might be achievable if one invest today (we call today a positive position). Otherwise, decision 

depends on the values of TRB_5(t) and Filter_63(t). If today’s price is no more than 19.48 above 

the maximum price of the previous 5 trading days or today’s price is more than 36.24 above the 

minimum price in the last 63 trading days, then today is also an alternative good opportunity to 

make a “buy” decision.  

This rule, in fact, makes a decision based on combination of the decisions from three 

individual technical rules: i.e. a moving average rule with window size of 50, a trade range 

break-out rule with a window size of 5, and a filter rule with a window size of 63. Notably, the 

threshold of each rule takes a value, which is not identical to the value adopted in their normal 

usages. These values are called adaptive thresholds in the sense that they are discovered based 

on historical data in favour of solving the prediction task at hand. 

The search space for GDTs is enormous. Apart from looking for proper elements (these 

elements include indicators, relational operators as well as thresholds) in order to constitute 

positive selectors, meanwhile one has to search for positive combinations of those selectors. The 

hope is that FGP-1 can effectively explore this search space.   

4.3.3 Two Illustrative Examples 

4.3.3.1 Experimental Data 

The data we chose are the closing prices of the Dow Jones Industrial Average (DJIA) Index from 

7 April 1969 to 5 May 1980, which includes 2,800 data cases. We took the index data from 7 

April 1969 to 11 October 1976  (1,900 cases) as the training data, and took the index data from 

12 October 1976 to 5 May 1980 (900 data cases) as the test data. The whole data series can be 

visualised in Figure 4.5.  



 104

The whole training data and test data contain roughly 50% of positive positions. More 

precisely, we define (ftr,, fte) to denote percentages of actual number of positive positions of total 

number of positions for a training data set and a test data set respectively.  

 

 

Although both predictions, 4
64P  and 2.2

21P  are investigated based on the same data, due to 

different n and r chosen, a pair of values, (ftr,, fte) is different. For 4
64P ,  (ftr,, fte) is (52.84%, 

49.22%); for 2.2
21P , (ftr,, fte) is (52.47%, 47.11%). By asking FGP-1 to attack both 4

64P  and 2.2
21P , 

we may examine the robustness of the tool with respect to the length of prediction period.   
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Figure 4.5: Experimental DJIA index Data. 

ftr =  100% 
data  trainingof #

data  trainingin postitions postitive actaul of #
X   (4.5) 

fte = 100% 
data test of #

data test in postitions postitive actaul of #
X    (4.6) 
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4.3.3.2 Performance Criteria 

In this study, the aim of using FGP-1 is to improve prediction accuracy. RC remains a principle 

performance criterion. As the application here lies in finance, performance criterion related to 

investment return would be interesting and desirable for the purpose of reference. Therefore, we 

develop an investment performance criterion, i.e. average annualised rate of return (AARR) 

based on following hypothetical trading behaviour: 

 
Hypothetical Trading Behaviour: We assume that when a positive position is 
predicted by a GDT, one unit of money was invested in a portfolio reflecting the 
current closing price. If the closing price does rise by r% or more at day t within 
the next n trading days, then we sell the portfolio at the closing price of day t.  If 
not, we sell the portfolio on the nth day, regardless of the price.   

 

Given a positive position predicted, for example, the ith positive position, for simplicity, we ignore 

transaction cost, and annualise its return by the following formula:  

      ARRi =  253 0

0t

P P

P

t
*

−              (4.7) 

Where P0 is the buy price, Pt is the sell price, t is the number of days in markets, 253 is the number of total 
trading days in one calendar year. 

 

Given a GDT that generates N+ number of positive positions over the period examined, its 

average ARR is:                            

 AARR = 
1

1N
ARRii

N

+

+

=∑ .                       (4.8) 

It should be emphasised here that RC should be the main criterion for evaluating the performance 

of rules generated because it is what FGP-1 is asked to maximize. AARR should only be used for 

reference.  

4.3.3.3 Experimental Results on 2.2
21P  

In this section, we shall report our experimental results of FGP-1 on 2.2
21P . First, we shall 
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examine whether FGP-1 is useful for improving forecasting. We present the mean performances 

of GDTs in comparison with those of the non-adaptive six individual technical rules. Then we 

evaluate those GDTs by comparison with random decisions and the rulesets generated by C4.5. 

In our experiments, we ran FGP-1 10 times. The termination condition was set to 2 hours 

on a Pentium PC (200 MHz) or 30 generation, whichever reached first. The main parameters of 

the experiments are displayed in Table 4.6. For each run, a GDT generated, based on the training 

data, was applied to the test data. The results of the 10 GDTs on the test data are recorded in 

Table 4.7. Six technical rules were also applied to the test data based on their interpretations in 

their normal usages respectively. Results of each individual trading rules are listed in Table 4.7 

as well.  

Objective Find GDTs which have the higher accurate prediction for the 2.2
21P  

Input terminals (forecasts of 9 experts) MV_12 (t), MV_50 (t), TRB_5 (t), TRB_50 (t), Filter_5 (t), 
Filter_63(t), and real number as thresholds. 

Prediction terminals {0, 1}, with 1 representing "Positive"; 0 representing "Negative" 
Function set If-then-else, And, Or, Not, >, <, =. 

Data 
Total data cases:             2800  (07/04/1969 to 05/05/1980) 
The training data cases:  1900  (07/04/1969 to 11/10/1976) 
The test data cases:          900   (12/10/1976 to 05/05/1980) 

Fitness function RC (Rate of Correctness) = 
sprediction ofnumber     total

  predctionscorrect   ofnumber    
 

Crossover rate 0.9 
Mutation rate 0.01 
Parameters M (Population size) =1200; G (Maximum generation) = 30. 

Termination criterion Maximum number of G of generation has been reached or FGP-1 
programme has run for more than 2 hours. 

Selection strategy Tournament Selection, Size = 4 
Max depth of individual program 17 
Max depth of initial individual 
program 

3 

Run times (hours) 1-2  
Hardware and operating system Pentium PC 200MHz running Windows 95 with 64M RAM 
Software Borland C++ (version 4.5) 

Table 4.6: Tableau for the experiments on 2.2
21P . 
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Experimental results are promising. The average RC of 10 GDTs is 54.78% in contrast to 

49.65%, the average RC of six technical rules. Any one of 10 GDTs outperforms any one of six 

individual technical rules in terms of RC. Notably, even the poorest GDT (GDT-6), which 

achieves a RC of 54.00%, is better than the best individual technical trading rule TRB_50, which 

achieves a RC of 51.11%. As a result, any GDT generated achieves better performance than any 

trading rule with respect to AARR. Better performances of GDTs are partly due to their ability to 

recognise more actual positive positions. Among a total of 424 actual positive positions over the 

test period, GDTs correctly identify a mean of 52.59% (223/424×100%) of them, in comparison 

with a mean of 39.74% (168.5/424×100%), by six technical rules in their normal usages. Based 

on these empirical results, we argue that FGP-1 is a useful tool, which is capable of achieving 

better performance as opposed to each of the six individual technical rules in their normal usages.  

 In order to assess the quality of GDTs generated by FGP-1, we compare its results with 

those of random decisions and the rulesets generated by C4.5, both of which are reported in 

RC AARR TP FP TN FN RC AARR TP FP TN FN
SMV_12 0.4978 0.3137 213 241 235 211 GDT-1 0.5544 0.4501 209 186 290 215
SMV_50 0.5089 0.3247 177 195 281 247 GDT-2 0.5467 0.4356 230 214 262 194
TRB_5 0.4978 0.2652 99 127 349 325 GDT-3 0.5567 0.4775 189 164 312 235

TRB_50 0.5111 0.0189 22 38 438 402 GDT-4 0.5444 0.4513 260 246 230 164
Filter_5 0.4967 0.3244 176 205 271 248 GDT-5 0.5444 0.4329 237 223 253 187
Filter_63 0.4667 0.3350 324 380 96 100 GDT-6 0.5400 0.4740 197 187 289 227

GDT-7 0.5533 0.4767 210 188 288 214
GDT-8 0.5478 0.4735 268 251 225 156
GDT-9 0.5500 0.4653 230 211 265 194
GDT-10 0.5400 0.4699 200 190 286 224

Highest 0.5111 0.3350 324.0 380.0 438.0 402.0 Highest 0.5567 0.4775 268.0 251.0 312.0 235.0

Lowest 0.4667 0.0189 22.0 38.0 96.0 100.0 Lowest 0.5400 0.4329 189.0 164.0 225.0 156.0
Mean 0.4965 0.2637 168.5 197.7 278.3 255.5 Mean 0.5478 0.4607 223.0 206.0 270.0 201.0

STD 0.0159 0.1224 102.5 114.6 114.6 102.5 STD 0.0058 0.0170 26.7 28.1 28.1 26.7

Performance on Test DataTechnical 
Rules

Performance on Test DataFGP-1 
Rules

 
Table 4.7: Technical rule performances and FGP-1 rules performances on test data (900 daily cases: from 12/10/1976 

to 05/05/1980) for 2.2
21P ,  

where  TP (True Positive): the number of positive positions correctly predicted;  
FP (False Positive): the number of negative positions incorrectly predicted as positive;  
TN (True Negative): the number of negative positions correctly predicted;  
FN (False Negative): the number of positive positions incorrectly predicted as negative. 
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Table 4.8. 

Comparison with random decisions is motivated with the weak form of EMH, which was 

discussed in Chapter 2. According to weak form of EMH, stock prices follow a random walk 

behaviour and therefore no trading rules could out-perform random decisions. However, our 

empirical results contradict the random theory. For GDTs, the mean RC and AARR are 54.78% 

and 46.07% respectively. They are much higher than the mean RC (49.53%) and AARR 

(36.84%) achieved by the 10 random decisions. In fact, even the poorest results of 10 GDTs 

(54.00% and 43.29% for RC and AARR respectively) are better than the best results of the 10 

random runs in terms of RC and AARR (53.67%, 42.35% respectively). Results here are 

consistent with our results achieved in the past over S&P 500 data (Tsang et al. 1998), which 

shows that FGP–1 is capable of out-performing random decisions in terms of RC and AARR. 

Rulesets
RC AARR TP FP TN FN  -c RC AARR TP FP TN FN

Random-1 0.5044 0.3548 224 246 230 200 100 0.5511 0.4608 122 102 374 302
Random-2 0.4822 0.3575 206 248 228 218 75 0.5467 0.4492 126 110 366 298
Random-3 0.5000 0.3551 213 239 237 211 50 0.5467 0.4422 134 118 358 290
Random-4 0.5089 0.4051 220 238 238 204 25 0.5489 0.4746 125 107 369 299
Random-5 0.4644 0.3336 191 249 227 233 10 0.5289 0.4093 159 159 317 265
Random-6 0.5367 0.3968 232 225 251 192 5 0.5211 0.4022 154 161 315 270
Random-7 0.4978 0.3794 222 250 226 202 1 0.4944 0.3736 246 277 199 178
Random-8 0.4667 0.3254 205 261 215 219
Random-9 0.4867 0.3524 211 249 227 213
Random-10 0.5056 0.4235 220 241 235 204

Highest 0.5367 0.4235 232.0 261.0 251.0 233.0 Highest 0.5511 0.4746 246.0 277.0 374.0 302.0
Lowest 0.4644 0.3254 191.0 225.0 215.0 192.0 Lowest 0.4944 0.3736 122.0 102.0 199.0 178.0
Mean 0.4953 0.3684 214.4 244.6 231.4 209.6 Mean 0.5340 0.4303 152.3 147.7 328.3 271.7
STD 0.0214 0.0318 11.7 9.6 9.6 11.7 STD 0.0208 0.0361 43.8 62.0 62.0 43.8

 Performance on Test DataRandom 
Decision

C4.5 Performance on Test data 

 

Table 4.8: Performances of random decisions and rulesets generated by C4.5 for 2.2
21P .  

C4.5 is one of the most commonly used decision tree learning classifier systems, which 

was developed by Quinlan (1986, 1993). Both FGP-1 and C4.5 take the same type of input and 

generate decision trees, which C4.5 converts to rulesets that is more easily understood by people. 

We fed C4.5 with the same six technical rule indicators that we adopted for FGP-1. We ran C4.5 

system on the same training data and applied the generated rulesets to the same test data. There 
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follows an example of a single rule generated by C4.5: 

  If (PMV_50 > -33.075) And (PMV_50 <= -28.0292) And 
(TRB_50 <= -69.15 And (Filter_5 > -0.26) 

Then Positive Position 

 

A parameter that significantly affects the performance of the rulesets generated by C4.5 is 

the “certainty factor” (run with -c CF), which ranges from 0 to 100.   The certainty factor is used 

to control pruning, details of which will not be elaborated here. The value -c 25 represents default 

pruning in C4.5. Small values usually lead to small rulesets, whereas large values imply less 

pruning and therefore large rulesets. In Table 4.8 under the row of "Rulesets" are -c options with 

seven different CF values and their performances of the corresponding rulesets generated. Mean 

results for RC and AARR are 53.40% and 43.03%, each of which is lower than the 

corresponding mean result of GDTs, but higher than the mean results of random runs 

respectively.  

   

To determine whether the difference between the means of two methods is statistically 

significant, we use one tailed unpaired t-test with α = 0.05, and with df = (15 = 10+7−2). The 

critical value obtained from the t-test table is 1.753.  If an observed t-value exceeds this critical 

value, we can conclude that there is a significant difference between the means of the two 

considered methods. In Table 3 are the test results for both comparisons of FGP-1 versus C4.5 

and C4.5 versus random runs. t-values for comparing FGP-1 against C4.5 are 2.013 and 2.341 

 Groups FGP-1 Vs C4.5 C4.5 Vs Random Runs 

Criteria For RC For AARR For RC For AARR 

t values 2.013* 2.341* 3.700* 3.738* 

p values 0.0312 0.0167 0.0011 0.0009 

df (degrees of freedom) 15 15 15 15 

Table 4.9: t-statistics for comparing the mean performances of two groups for 2.2
21P  (FGP-1 versus 

C4.5 and C4.5 versus Random Runs). * indicates the statistically significant difference between the 
means results of the two considered methods with (α = 0.05). 
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(both of which are greater than 1.753) for RC and AARR respectively. These suggest that the 

mean results of FGP-1 are at least better than those of C4.5 in terms of both RC and AARR at the 

conventional statistical significant level (α = 0.05). Meanwhile, t-values for comparing C4.5 

against the random runs demonstrate that C4.5 also outperforms random runs at the conventional 

statistical significant level (α = 0.05).  

It is encouraging that both GDTs and the rulesets seem to grasp plausible hidden patterns in 

financial data as to achieve better performances that cannot explained by random decisions. More 

important is that FGP-1 outperforms C4.5 statistically significantly in this case. Poor 

performance of C4.5 may contribute to its overfitting problem. On the training data, the results of 

rulesets are much better than results of GDTs in terms of RC (both results are not shown here). 

This means rulesets are too overfitting on the training data to be as good as GDTs on the test 

data. 

4.3.3.4 Experimental Results on 4
63P  

In order to study the robustness of FGP-1 for improving prediction accuracy, we would like to 

investigate whether FGP-1 can achieve consistent results if it is given a similar prediction 

problem r
nP  but with different n and r. More specifically, we choose 4

63P  for FGP-1 to attack. 

Similarly, we shall report both results of GDTs and the six individual technical rules in order to 

examine whether FGP-1 still achieves better performances than any one of six technical rules in 

their normal usages. We shall show results of C4.5 and random decisions as well in order to 

observe whether the situation observed in the preceding task retains for the similar but slightly 

varied prediction problem, 4
63P . 
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In this set of experiments, parameters for running FGP-1 are similar to those adopted in the 

preceding experiments on 2.2
21P . However, we ran FGP-1 20 times rather than 10 times. 20 GDTs 

were generated. Table 4.10 displays performances of both 20 GDTs and the six individual 

technical rules in their normal usages over the test data. 

For 4
63P , FGP-1 illustrates its consistent capability of achieving better performances in 

terms of RC and AARR. Mean RC and AARR of GDTs are 57.97% and 27.79%, which are 

better than RC and AARR of any individual rule respectively. Even the poorest GDT (GDT_18, 

which has a RC of 53.00% and an AARR of 23.82%) is superior to  the best rule (Filter_5, which 

has a RC of 52.67% and an AARR of 23.03%). These consistent results further demonstrate that 

FGP-1 is a useful tool. It can generate GDTs that are more accurate by combining individual 

technical rules, as well as adapting thresholds to the specific problem at hand. 

RC AARR TP FP TN FN RC AARR TP FP TN FN
SMV_12 0.5144 0.2068 230 224 233 213 GDT-1 0.6022 0.2756 228 143 314 215
SMV_50 0.4256 0.1694 149 223 234 294 GDT-2 0.6200 0.3171 238 137 320 205
TRB_5 0.4944 0.1818 107 119 338 336 GDT-3 0.6067 0.2880 272 183 274 171

TRB_50 0.4744 -0.0534 15 45 412 428 GDT-4 0.5800 0.3655 136 71 386 307
Filter_5 0.5267 0.2303 199 182 275 244 GDT-5 0.6022 0.2823 276 191 266 167
Filter_63 0.5056 0.2277 351 353 104 92 GDT-6 0.5511 0.2976 162 123 334 281

GDT-7 0.6133 0.3052 251 156 301 192
GDT-8 0.5789 0.2716 243 179 278 200
GDT-9 0.6067 0.2875 269 180 277 174

GDT-10 0.6244 0.2593 223 118 339 220
GDT-11 0.5678 0.2588 266 212 245 177

GDT-12 0.5611 0.2685 193 145 312 250
GDT-13 0.6056 0.2966 249 161 296 194
GDT-14 0.5478 0.2543 196 160 297 247
GDT-15 0.5600 0.2582 264 217 240 179
GDT-16 0.6056 0.2918 259 171 286 184
GDT-17 0.5367 0.2357 234 208 249 209
GDT-18 0.5300 0.2382 234 214 243 209
GDT-19 0.5367 0.2418 216 190 267 227
GDT-20 0.5578 0.2634 200 155 302 243

Highest 0.5267 0.2303 351.0 353.0 412.0 428.0 Highest 0.6244 0.3655 276.0 217.0 386.0 307.0

Lowest 0.4256 -0.0534 15.0 45.0 104.0 92.0 Lowest 0.5300 0.2357 136.0 71.0 240.0 167.0
Mean 0.4902 0.1604 175.2 191.0 266.0 267.8 Mean 0.5797 0.2779 230.5 165.7 291.3 212.6

STD 0.0363 0.1075 114.4 104.8 104.8 114.4 STD 0.0307 0.0306 37.6 36.9 36.9 37.6

Performance on Test Data Performance on Training dataTechnial 
Rules

FGP-1 
Rules

 
Table 4.10: Technical rule performances and FGP-1 rules performances on test data from 12/10/1976 to 

05/05/1980) for 4
63P . 
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Performances of both random decisions and the rulesets generated by C4.5 are reported in 

Table 4.11. The mean RC of 20 GDTs (i.e. 57.97%) is better than the mean RC of 7 rulesests (i.e. 

50.37%), and the mean RC of 20 random decisions (49.81%). A similar fact exists, for AARR, 

though as a reference criterion. It worth noting that the poorest GDT (GDT_18, RC = 53.00%) is 

better than the best rulesets (the one generated under -c 25, RC = 52.11%) and the best random 

decision (Random_11, RC = 52.33%). 

Results of the statistical one-tailed unpaired t-test for both groups (FGP-1 Vs C4.5 and 

C4.5 Vs Random Runs) are presented in Table 4.12 under criteria of RC and AARR respectively. 

Again, in terms of both RC and AARR, results of GDTs generated by FGP-1 are statistically 

significantly better than those of the rulesets generated by C4.5 (the critical value for this t-test 

with (α = 0.05) and df = (25 = 20+7−2) is 1.708). FGP-1 beats C4.5 in this case. However, in this 

Rulesets
RC AARR TP FP TN FN  -C RC AARR TP FP TN FN

Random-1 0.4911 0.2487 202 217 240 241 100 0.5044 0.2058 118 121 336 325
Random-2 0.5133 0.2262 227 222 235 216 75 0.5011 0.1794 124 130 327 319
Random-3 0.5022 0.2205 225 230 227 218 50 0.5078 0.2047 115 115 342 328
Random-4 0.5044 0.2282 218 221 236 225 25 0.5211 0.2205 128 116 341 315
Random-5 0.4800 0.2415 208 233 224 235 10 0.5033 0.2298 223 227 230 220
Random-6 0.5089 0.2509 234 233 224 209 5 0.4700 0.1565 118 152 305 325
Random-7 0.4811 0.2446 220 244 213 223 1 0.5178 0.2586 205 196 261 238
Random-8 0.4933 0.2447 220 233 224 223
Random-9 0.4700 0.1976 214 248 209 229
Random-10 0.4944 0.2348 200 212 245 243
Random-11 0.5233 0.2206 295 281 176 148
Random-12 0.4811 0.1956 205 229 228 238
Random-13 0.4689 0.2044 223 258 199 220
Random-14 0.5011 0.2614 215 221 236 228
Random-15 0.5022 0.2295 219 224 233 224
Random-16 0.4833 0.2161 210 232 225 233
Random-17 0.5211 0.2325 227 215 242 216
Random-18 0.5156 0.2347 233 226 231 210
Random-19 0.5111 0.2054 230 227 230 213
Random-20 0.5144 0.2481 236 230 227 207

Highest 0.5233 0.2614 295.0 281.0 245.0 243.0 Highest 0.5211 0.2586 223.0 227.0 342.0 328.0
Lowest 0.4689 0.1956 200.0 212.0 176.0 148.0 Lowest 0.4700 0.1565 115.0 115.0 230.0 220.0
Mean 0.4981 0.2293 223.1 231.8 225.2 220.0 Mean 0.5037 0.2079 147.3 151.0 306.0 295.7
STD 0.0165 0.0186 19.9 16.0 16.0 19.9 STD 0.0166 0.0333 46.1 44.1 44.1 46.1

 Performance on Test Data C4.5 Performance on Test Data Random 
Decision

 

Table 4.11: Performances of random decisions and rulesets generated by C4.5 for 4
63P . 
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case, under RC, results of C4.5 are not statistically significantly better than results of random 

runs because t value for RC (i.e. 0.7696) is less than 1.708, though they are under AARR. 

4.4 Summary and Conclusion 

This chapter has presented the applications of FGP-1 to financial prediction problems. The aim 

of using FGP-1 is to improve prediction accuracy over base predictions given. More specifically, 

two instances of base predictions have been studied here. One is that base predictions consist of 

ordinal forecasts from experts considered. The other is that base predictions come from non-

adaptive technical analysis rules considered to be in their normal usages. 

In the first part of this chapter (Section 4.2), we have studied the effectiveness of FGP-1 

for improving forecasting if we are faced with only ordinal forecasts. We presented FGP-1 

system for combining discrete forecasts in order to produce more accurate forecasting. FGP-1 

has been tested on two sets of data: it was used to combine weekly expert predictions on the 

Hong Kong Heng Seng Index. It was also used to combine the forecasts generated by the six 

trading rules. In both cases, results generated by FGP-1 are conclusive and consistent in the 

sense that the GDTs generated by FGP-1 outperform the best base prediction given. We 

conclude that FGP-1 is a useful tool. It is capable of generate more accurate predictions by 

combining only individual ordinal forecasts available. However, caution should be exercised for 

the choices of parameters in the fitness function. Improper settings of weights could possibly 

lead to bad results. 

Groups FGP-1 Vs C4.5 C4.5 Vs Random Runs 

Criteria For RC For AARR For RC For AARR 
t values 6.2585* 5.0943* 0.7697 2.1147* 

p values 0.000001 0.000015 0.2244 0.0223 

df (degrees of freedom) 25 25 25 25 

Table 4.12: t-statistics for comparing the mean performances of two groups for 4
63P  (FGP-1 

versus C4.5 and C4.5 versus Random Runs). * indicates the statistically significant difference 
between the means results of the two considered methods with (α = 0.05). 
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Ordinal forecasting is a common practice in numerous situations. Apart from instances 

studied in finance, examples of ordinal forecasts include the outcome of a football match (win, 

tie, lose) and the weather (sunny, cloudy, rainy), and future state of the economy (boom, 

recession). The issue of combining forecasts has many practical applications. While 

methodologies adopted to approach this issue are mainly statistical methods and operation 

research methods, AI forecasting techniques, more specifically, the genetic programming based 

method presented here provides an alternative avenue.    

In the second part of this chapter (Section 4.3), we have investigated the effectiveness of 

FGP-1 for improving forecasting if only individual non-adaptive technical rules are given. First, 

we derive the six indicators from the six technical rules respectively. Second, we use the FGP 

grammar to form an essential element, called a selector. One selector has the form [Indicator 

relation threshold], where the relation belongs to the set {=, <, >} and the threshold is a real 

number. The threshold in each selector could possibly be adjusted during evolving. Moreover, 

FGP-1 looks for the interactive combination structures between those selectors. The way of 

selector combination is either conjunction or disjunction. By doing so, FGP-1 is capable of 

evolving GDTs that are capable of achieving better prediction accuracy. 

We tested FGP-1 over two similar prediction problems: 2.2
21P  (whether a 2.2% price 

increase or more is achievable within 21 days) and 4
63P  (whether a 4% price increase or more is 

achievable within 63 days). Experimental results show that GDTs generated by FGP-1 have 

higher predictive accuracy over any individual non-adaptive technical rules available. GDTs are 

compared against random decisions and the rulesets generated by C4.5 as well. Empirical 

comparative results demonstrate that FGP-1 beat random runs and C4.5 statistically in terms of 

RC and AARR. Results are consistent and conclusive for both 2.2
21P  and 4

63P . 

Based on the experiments presented in this chapter, we conclude that FGP-1 is capable of 
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improving prediction accuracy over individual forecasts, as well as non-adaptive individual 

technical rules with respect to the prediction tasks we address. The successful story here is partly 

attributed to FGP-1’s search capability. FGP-1 helps us to search in the space of GDTs, which 

represent interactions between base predictions. Without FGP-1 or other comparable tools, it is 

difficult to search the space of GDTs. FGP-1 is a useful tool which may help the user to make 

better predictions over the best of the base predictions available. However, we do not wish to 

give the false impression that FGP-1 may succeed in every case if base predictions are given. 

Our position is: if the promising patterns of combining base predictions exist, FGP-1 stands a 

chance of finding them. 



 116

Chapter 5  

Achieving a Low Rate of Failure Using FGP-2 

5.1 Introduction 

In the preceding chapter, we have shown that FGP-1 can be used to make financial predictions. 

FGP-1 aims to achieve the first research goal, i.e. to improve the accuracy of given predictions. 

We have demonstrated the effectiveness of FGP-1 through several examples. Given a finite of 

base predictions available, by combining them, FGP-1 can generate GDTs which is capable of 

making predictions of higher accuracy. Examples are categorised into two groups. In the first 

group, base predictions are ordinal forecasts; in the second group, base predictions come from 

individual non-adaptive technical analysis rules. We conducted comparison with C4.5 with 

respect to the examples in the second group. We conclude that FGP-1 is a useful tool that is 

capable of improving prediction accuracy over the given base predictions in our experiments. 

However, in financial prediction, prediction accuracy is not the sole issue that concerns. 

For example, apart from prediction accuracy (or the Rate of Correctness (RC)), one may be more 

concerned with grasping every possible opportunity by reducing the Rate of Missing Chances 

(RMC), or with making each forecasting more reliable by reducing the Rate of Failure (RF), etc 

(formal definitions of RC, RMC, RF can be found in Section 5.2.1). In this thesis, we investigate 

methods to achieve a low rate of failure. A failure means a positive position predicted by the 

system turns out to be wrong.  Another reason for us to focus on achieving a low rate of failure is 

that higher prediction accuracy is not available or even impossible in some cases of financial 

forecasting. Therefore, it would be of great value to reduce RF while an overall prediction 
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accuracy is not affected much.  

In this chapter, we shall describe our developing process toward the invention, a 

constrained fitness function. We call the second version of our FGP system with the constrained 

fitness function FGP-2. FGP-2 is intended to achieve the second research goal, i.e. to achieve a 

low RF. Illustration is given by an example using the Dow Jones Industrial Average (DJIA) 

closing index, together with analysis in detail. Moreover, FGP-2 is compared against three NNs 

and a linear classifier system reported in (Saad et al. 1998) with respect to the same prediction 

task over several individual American share prices. Results show that FGP-2 beats the linear 

classifier and compares favourably against the three NNs.  

We review closely related work in machine learning, particularly in cost-sensitive learning. 

No similar technique is found. We conclude that the constrained fitness function is effective for 

achieving low rate of failure according to our experimental results. 

5.2 Preliminary Issues 

Before presenting the developing procedure toward a constrained fitness function, in this section, 

we need to describe some preliminary issues related. Three formal definitions of RC, RMC, and 

RF criteria used to assess performances of GDTs, are given, as well as two complementary 

criteria concerning investment performances. The DJIA data that we use in the illustrative 

example are visualised; major parameters for running FGP-2 are also displayed. 

5.2.1 Performance Criteria  

As represented in Chapter 1 (Section 1.4), FGP is designed to mainly tackle the prediction 

problems, r
nP . The generated GDTs are used to predict whether or not the price will rise a 

required r% (e.g. r=2.2) or more within a user-specified period n (e.g., 21 days).   
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r
nP  is a two-class classification problem. Each period can be classified into either a 

positive position or a negative position. For simplicity, a positive position predicted by the GDT 

is sometimes called a signal, while an actual positive position is sometimes called an opportunity. 

For each GDT, we define the rate of correctness (RC), the rate of missing chance (RMC), and 

the rate of failure (RF) as its prediction performance criteria. The formula for each criterion is 

given through a contingency table (see Table 5.1) as follows. 

Note that RMC is related to a traditional terminology, i.e. Recall = TP/ O+, which is 

identical to (1-RMC); whereas RF is related to another terminology, i.e. Precision = TP/ N+, 

which is identical to (1-RF) (cf., Manning & Schutze 1999). FGP-2 is to be instructed to use the 

above three criteria to form the fitness function (details will be discussed in Section 5.3). 

Therefore, any GDT generated should be assessed in terms of these criteria. However, an 

investor might like to know the expected investment performances if that GDT were used for 

making investment. Thus, for reference, we define two investment performance criteria: i.e. the 

average annualised rate of return (AARR), and the rate of positive return (RPR).  

AARR has already been used as a reference performance criterion for FGP-1 (see its 

definition of equation 4.8, p105), whereas RPR has not been used before. RPR refers to the ratio 

of the number of signals, which turn out to achieve positive returns, to the total number of 

positive positions predicted, where a specific GDT is invoked for a finite period:   

# of True Negative Positions 
 (Normal) [TN] 

# of False Positive Positions  
 (False Alarm) [FP] 

Actual # of  negative 
positions (O-) = TN+FP 

# of False Negative Positions 
(Miss) [FN] 

# of True Positive Positions  
 (Hit) [TP]  

Actual # of  positive 
positions (O+) = FN+TP 

# of negative positions 
predicted (N-) = TN+FN 

 # of positive positions 
predicted (N+) = FP+TP   

Number of Cases 

 

RC = TP TN

O O

+
++ −

= TP TN
N N

+
++ −

; RMC = FN
O+

; RF  = FP

N +
; 

 
Table 5.1: A contingency table for the two-class classification, where a specific prediction rule is invoked. 
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  RPR= 
1

I i
N +

+N
i=∑ 1     where I i = 

1

0

        if   ARRi >  0

               otherwise





; 0 < i ≤ N+ ,    

where N+ is the number of positive positions generated by the GDT, and ARRi is an annualised 

rate of return for the ith signal, which has also been specified in equation 4.7 (see page 105)               

We emphasis again that AARR and RPR should only be treated as references with respect 

to investment because both are not involved in the fitness function. The goal for modifying the 

fitness function is to achieve a lower RF. We shall describe an emerging overall picture 

concerning performances on four criteria: RC, RMC, AARR, and RPR as the RF is reduced. 

5.2.2 Experimental Data  

Except for those 10 individual American stock data in Section 6, all results reported in this study 

are based on DJIA closing index data. The data include a total of 3035 trading days from 

07/04/1969 to 09/04/1981. Figure 4 displays the price series. We took the data from 07/04/1969 

to 11/10/1976 (1,900 trading days) as training data (or in-sample data) to generate GDTs, and 

tested them on the data (or out-of-sample data) from 12/10/1976 to 09/04/1981 (1135 trading 

days).  

The prediction problem r
nP  that we study on the DJIA data is 2.2

21P  (i.e. r = 2.2% and n = 

21).  Thus, the (ftr, fte) (see Equation 4.5 and 4.6, p104) for 2.2
21P  based on the DJIA data is 

(52.47%, 47.11%), which means both the training date and the test data contain roughly 50% of 

positive positions. For an in-depth analysis, we purposefully partition the whole test period into 

three mutually exclusive periods with different characteristics, i.e. a down-trend period from 

12/10/1976 to 12/04/78 (378 trading days), a side-way-trend period from 13/04/1978 to 

27/03/1980 (496 trading days) and a up-trend period from 28/03/1980 to 09/04/81 (261 trading 

days).  
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5.2.3 Parameters for Running FGP 

All the experiments presented in this chapter were carried out on a Pentium PC (200MHz) using 

a population size of 1,200. The termination condition was 30 generations or maximum of 2 hours 

running, whichever reached. For each independent run, when it terminated we chose a best-so-far 

GDT in terms of the fitness value over the training data. Then, we applied it to the test data for 

prediction. All results reported in the study are performances over the test data. Major parameters 

are displayed in Table 5.2.  
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Figure 5.1: Experimental DJIA index data form 07/04/1969 to 09/04/1980 (3035 trading days), including 1900 
trading days as training data (07/04/1969 to 11/10/1976) and 1135 trading days as test data (12/10/1976 to 
09/04/1981), where (ftr, fte) = (52.47%, 47.11%). 
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 The above parameter setting was applied to the experiments described in next section for 

running both FGP-1 and FGP-2. For the experiments on the 10 American stock data in Section 6, 

the parameter setting retains except for the termination condition, which was set to be maximal 

50 generations. 

5.3 Toward A Constrained Fitness Function 

5.3.1 A Linear Fitness Function  

In our earlier work, the fitness function mainly used in FGP-1 is RC. Though RC is suited to 

search for GDTs that are able to outperform random runs and individual technical analysis rules 

in terms of RC, it does not allow us to focus on finding GDTs that are capable of achieving a 

lower RF. Thus we examined a linear fitness function3 as follows.   

 

f(1) = w_rc * RC - w_rmc* RMC - w_rf * RF.      Where 0≤ w_rc, w_rmc, and w_rf ≤ 1  (5.1) 

                                                 
3 If we take w_rc=1,  w_rmc=0, and w_rf= 0, then f(1) = RC. RC is only an instance of f(1) , so  f(1)  has a more 
generalised form.  

Objective To find GDTs that can achieve the low RF for 2.2
21P  

Input terminals (six technical 
Indicators and real values)  

I MV_12, t, I MV_50, t , I TRB_5, t , I TRB_50, t  , I Filter_5, t , I Filter_63, t  (see 
definitions in section 4.3.2., p. 100) and Real values as 
thresholds. 

Prediction terminals  {0, 1}: 1 representing "Positive"; 0 representing "Negative". 
Non-terminals If-then-else, And, Or, Not,  >, <, =. 
Crossover rate 0.9. 
Mutation rate 0.01. 
Population size 1,200. 
Maximum number of generations 30. 

Termination criterion The maximum number of generations has been run or FGP-2 has 
run for more than 2 hours.  

Selection strategy Tournament selection, Size = 4. 
Max depth of an GDT  17. 
Max depth of an initial GDT  4. 
Maximum run times allowed (hours) 2.  
Hardware and operating system Pentium PC 200MHz running Windows 95 with 64M RAM. 
Software Borland C++ (version 4.5). 

Table 5.2: Tableau for parameters of FGP-2 experiments. 
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It involves three performance values, i.e. RC, RMC and RF, each of which is assigned a different 

weight: w_rc, w_rmc, or w_rf respectively. Obviously, the goodness of a GDT is no longer 

assessed only by its RC, but by a synthetical value, which is the weighted sum of its three 

performance rates. By adjusting the three weights, we may attempt to place more emphasis on 

one performance than on the others.  

 In order to achieve a low RF, for example, one may try the following: 

1. To assign w_rc a higher value (e.g. w_rc=1) to highly award the GDT that has a good 

RC performance;  

2. To set w_rf  a higher value to heavily penalise the GDT that has a poor RF performance; 

and 

3. To assign w_rmc a smaller value or even zero to slightly penalise GDT that has poor 

performance of RMC or even not to penalise it at all.  

Thus, it might be possible that f(1) with appropriate weights might work and lead FGP to find the 

GDTs with lower RFs. However, our substantial trials showed that it did not work as we 

expected. To a certain extent, f(1) does allow us to reduce RF. However, it has two drawbacks: 1) 

A GDT’s performance is very sensitive to the sizes of the three weights and 2) results are 

unconsistent. We illustrate problems by one of our series of preliminary experiments in which we 

used the following three weights: 

                    w_rc = 1;    w_rmc = 0   and   w_rf = α         0 <α ≤ 1                

 First, to determine a suitable size of α , the process of trial and error is needed. Two 

extreme phenomena occurred. A slightly bigger α  (e.g. 0.8) almost always resulted in such a 

GDT that did achieve a lower RF performance, even zero over training period, but triggered no 

signals (positive positions predicted) over the test period. That is to say, a heavier penalty on RF 

almost always results in a more conservative GDT in the sense that it seldom generates signals. 
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We refer to this extreme as the “over-strictness” problem. In contrast, a slightly smaller α  

usually resulted in such a GDT that it did not show any improvement on RF compared to that by 

using RC as the fitness function. We refer to this opposite extreme as the “no-effect” problem.  

 Second, even though a plausible α  seems to be found (e.g. α = 0.62), it is too sensitive to 

make FGP able to generate effective GDTs reliably. For example, among 10 runs, only two runs 

generated a GDT each, which predicted a few correct positive positions on the test period, while 

other 8 runs demonstrated two similar problems, i.e. either “over-strictness” or “no-effect”.  

It was clear that the fitness function f(1) was not able to guide FGP effectively to search for 

good solutions in terms of the performance of RF. We need to provide a mechanism in the fitness 

function that is able to lead FGP to effectively seek for better solutions. In the following 

subsection, we shall demonstrate that a constraint is capable of taking this role. 

5.3.2 A Novel Constrained Fitness Function  

To resolve the above undesirable predicaments of the linear fitness function f(1), we 

introduce a constraint to f(1), which is the expected range of ratio of the number of positive 

positions predicted to the total number of training data cases. We denote the constraint with R, 

which consists of two elements represented by percentage, given by 

The range of the constraint R is determined by Cmin , the minimum and Cmax, the maximum. 

Since ranges of Rs chosen are mutually exclusive in all our experiments, we would like to 

introduce a comparison notion for constraints. A constraint R is said to be tighter than another R’  

R = [Cmin, Cmax]      

  where  Cmin= %100
N

P

tr

min
× , Cmax= %100

N

P

tr

max
× ,  and 0≤ Cmin ≤  Cmax ≤ 100%; 

   Nt r is the total number of training data cases,  
   Pmin is the minimum number of positive position predictions required, and 
   Pmax is the maximum number of positive position predictions required. 
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(R < R’) if and only if 0 < Cmin < Cmax ≤ C’min < C’max. 

We still take a similar formula of the fitness function as f(1) , i.e. 

f(2) = w_rc’ * RC - w_rmc* RMC - w_rf * RF  where 0 ≤  w_rmc, and w_rf ≤ 1   (5.2) 

The fitness value is still a composite value which takes all three performances into account with 

corresponding weights. However, w_rc’, the weight for RC, does not take a constant like w_rc in 

f(1). It could also possibly take the value of zero on conditions of the size of C+ and the constraint 

R.  w_rc’ is defined by 

w_rc’  = 


 ∈

otherwise                            0

][ C if         _ maxmin,+ CCRrcw
   where 0≤ w_rc ≤ 1  (5.3) 

Note that C+ is the percentage of the number of positive positions predicted by a GDT 

based on training data to the total number of training data cases, given by 

 C+ = %100
Ntr

×
+N

,  where N+ is the number of positive positions predicted by the GDT. 

The range of R is specified with setting up two elements: Cmin and Cmax by the user for each 

run. 

With the constraint R embedded in the fitness function, only GDTs that can satisfy the 

constraint are awarded to a great extent. In contrast, those GDTs, which cannot satisfy the 

constraint, are heavily penalised by being assigned negative fitness values, and consequently 

would be extinct during evolution. We use f(2) to denote the constrained fitness function. Notably, 

f(2) has a more generalised form compared to f(1).  f(1) can be treated as a specific case of  f(2), 

where R is taken as [0%, 100%], which makes w_rc’ equal to w_rc because any GDT satisfies 

the constraint.  

We call the FGP system using the constrained fitness function f(2) FGP-2. Note that before 
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running FGP-2, four parameters need to be set in f(2), i.e. the constraint R and the three weights: 

w_rc, w_rmc, and w_rf. Efficacy of the constraint fitness function in FGP-2 is first demonstrated 

in the following experiment by comparison with FGP-1. 

5.3.2 Baseline Performance 

In this experiment, we took R = [35%, 50%], w_rc = w_rf = 1 and w_rmc = 0 for f(2). Such 

parameter choices emphasised equal importance on RC and RF, whilst fully ignoring RMC. 

Moreover, in each run, FGP-2 was guided to generate a best GDT, which has to be capable of 

invoking C+ between [35%, 50%]. Note that C+ satisfies the constraint R over the training data. 

However, over the test data, the percentage of the number of positive positions predicted by the 

GDT to the total number of test data cases might not lie in [35%, 50%].  

We run FGP-2 10 times. The best GDT found in each run is kept. Performances of 10 

GDTs with respect to the means of three prediction performances: RF, RMC, and RC; of two 

investment performances: AARR and RPR; and of four elements in the contingency table: TP, 

FP, TN and FN, are shown in Table 5.3 respectively. Note that the number of signals generated 

by a GDT is identical to the sum of TP and FP.  

Unlike the consequences of using f(1), first, a GDT’s performance is not sensitive to the 

sizes of the three weights. For other weight combinations, such as (w_rc = 1, w_rf = 0.7, 0.8 or 

0.9 and w_rmc  = 0) or (w_rc = 0.7, 0.8 or 0.9; w_rf = 1 and w_rmc = 0), experimental results are 

broadly similar. Secondly, the 10 GDTs generated have nearly equivalent performances in terms 

of RF and RC. Thus, results are consistent. It appears that the two major weaknesses of the 

fitness function f(1) are overcome through embedding the constraint into it.  

To see whether RF is reduced, we compare these results against those by running FGP-1 in 

which only RC is used to measure the fitness (results are listed in Table 5.4). Results show that 

by using f(2), the mean RF is reduced by nearly 3.5% from 43.51% to 40.06%. Consequently, the 
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mean AARR dramatically increases from 55.07% to 63.38% and the mean RPR rises from 

65.86% to 69.95%. It is not surprising that the mean RMC gets worse from 46.77% to 65.74%, as 

RMC is ignored in the fitness function by being assigned a “zero” weight. On the other hand, the 

constraint R [35%, 50%] favours such a GDT that tends to generate a fewer signals 4 , and 

therefore results in missing more chances. Nevertheless, the mean RC only slightly decreases 

from 54.19% to 53.72%. The reason is that RC is still factored to be maximised in the fitness 

function f(2).  

To determine whether the differences in the results are statistically significant, we use a 

                                                 
4 The mean percentage of positive positions predicted over the test data produced by FGP-2 is 29.86%, which is 
much smaller compared to 49.16% produced by FGP-1. 

RULES RF RMC RC AARR RPR TP FP TN FN
GDT 1_R (35,50) 0.4034 0.6402 0.5392 0.6068 0.7059 213 144 399 379

GDT 2_R (35,50) 0.4122 0.6267 0.5366 0.6383 0.6755 221 155 388 371

GDT 3_R (35,50) 0.4012 0.6622 0.5366 0.6198 0.7096 200 134 409 392

GDT 4_R (35,50) 0.4006 0.6639 0.5366 0.6260 0.7078 199 133 410 393

GDT 5_R (35,50) 0.4025 0.6740 0.5339 0.6402 0.6966 193 130 413 399

GDT 6_R (35,50) 0.4103 0.5946 0.5427 0.5826 0.6929 240 167 376 352

GDT 7_R (35,50) 0.4147 0.6639 0.5295 0.6299 0.6735 199 141 402 393

GDT 8_R (35,50) 0.3994 0.6875 0.5330 0.6398 0.6916 185 123 420 407

GDT 9_R (35,50) 0.3982 0.6655 0.5374 0.6341 0.7173 198 131 412 394

GDT 10_R (35,50) 0.3640 0.6959 0.5463 0.7202 0.7244 180 103 440 412

MEAN 0.4006 0.6574 0.5372 0.6338 0.6995 202.8 136.1 406.9 389.2

STD 0.0141 0.0299 0.0048 0.0353 0.0167 17.7 17.5 17.5 17.7  

Table 5.3: The results of 10 GDTs generated by FGP-2 using R (35, 50). Note that each GDT name is 
appended with the constraint value R  which was used in FGP-2 for generating the GDT.  

RULES RF RMC RC AARR RPR TP FP TN FN
GDT 1 0.4111 0.4459 0.5656 0.5782 0.6661 328 229 314 264

GDT 2 0.4389 0.4493 0.5410 0.5240 0.6609 326 255 288 266

GDT 3 0.4235 0.5355 0.5427 0.5504 0.6897 275 202 341 317

GDT 4 0.4502 0.4307 0.5322 0.5496 0.6460 337 276 267 255

GDT 5 0.4409 0.4409 0.5401 0.5233 0.6368 331 261 282 261

GDT 6 0.4458 0.5253 0.5269 0.5402 0.6588 281 226 317 311

GDT 7 0.4333 0.5051 0.5392 0.5490 0.6557 293 224 319 299

GDT 8 0.4361 0.3885 0.5507 0.6034 0.6636 362 280 263 230

GDT 9 0.4336 0.4527 0.5454 0.5382 0.6521 324 248 295 268

GDT 10 0.4379 0.5034 0.5357 0.5509 0.6558 294 229 314 298

MEAN 0.4351 0.4677 0.5419 0.5507 0.6586 315.1 243.0 300.0 276.9

STD 0.0111 0.0471 0.0107 0.0242 0.0139 27.9 25.1 25.1 27.9  

Table 5.4: The results of 10 GDTs generated by FGP-1 (RC is the fitness function). 
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two tailed paired t-test with α=0.001 and with df = (20 - 2) =18. The critical value obtained from 

the t-test table is 3.922. If an observed t-value (the absolute value) exceeds this critical value, 

then we conclude that there is a significant difference between the means of the two considered 

results. In Table 5.5 are t-values and their corresponding p-values under each criterion. Results 

indicate that by using the novel constrained fitness function, the generated GDTs statistically 

exhibit better performances under criteria of RF, AARR, and RPR at significant level of α = 

0.001, though they statistically significantly grow worse with respect to RMC5. However, it is 

intriguing that that they do not show a statistically significant difference for RC (the absolute 

value of t-value is 1.16, which is less than the critical value, 3.922). That is to say, the difference 

in RC between the two groups could be due to chance. 

In summary, the preliminary promising results using the constraint R [35%, 50%] 

demonstrate that the constraint of R in the fitness function is crucial for FGP-2 to achieve a lower 

RF steadily and effectively. We argue that the constraint embedded in the fitness function 

changes the landscape of search space for FGP-2, and therefore, allows FGP-2 to search for 

solutions to the problem addressed here in the favourable space. The strength of the constrained 

fitness function is further demonstrated in the following series of experiments. 

                                                 
5 Since w_rmc is assigned zero, we do not penalise any GDT with poor performance on RMC. The generated GDT 
may have a very much higher RMC, as we do not care. 

Criteria For RF For 
RMC 

For RC For 
AARR 

For RPR 

t values -4.64* 6.33* -1.16 4.69* 4.71* 

p values 0.000205 0.000005* 0.261247 0.000182* 0.000175* 

Table 5.5: t-statistics for comparing the mean performances of the two groups with respect to the 
five criteria listed respectively. (Results using RC versus results using the constrained fitness 
function with R = [35%, 50%]). * indicates the statistically significant difference between the 
means of the two considered results with (α = 0.001). 
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5.4 Analysis 

5.4.1 An Overall Picture: Effects of the Constraint  

Section 5.3 presents the promising results of using the constrained fitness function. The 

effectiveness of f(2), however, is only demonstrated by taking a specific R [35%, 50%]. We do not 

know what kinds of influences there are on performances of GDTs if we adjust the constraint. To 

further investigate the impact of the constraint R on FGP-2 for reducing RF, additional 5 non-

overlapped Rs were adopted in the fitness function f(2) respectively. They are five mutually 

exclusive ranges with an interval of 5% each for R1 [5%, 10%], R2 [10%, 15%], and R3 [15%, 

20%], and an interval of 15% each for R4 [20%, 35%] and R5 [50%, 60%]. For each R, we ran 

FGP-2 10 times using all the same parameters (w_rc = w_rf =1 and w_rmc= 0), and then 

calculated its mean performance on the test data with respect to RF, RMC, RC, RPR, AARR and 

the mean of TP, FP, TN and FN. 

 

RF RMC RC AARR RPR TP FP TN FN

Mean 0.1348 0.9914 0.4819 2.2403 0.9222 5.1 1.1 541.9 586.9
STD 0.1485 0.0063 0.0026 2.2924 0.1086 3.8 1.4 1.4 3.8
Mean 0.2860 0.9405 0.4970 1.3681 0.8295 35.2 14.1 528.9 556.8
STD 0.0622 0.0165 0.0076 0.3052 0.0440 9.8 5.2 5.2 9.8
Mean 0.3102 0.8569 0.5174 0.9958 0.7902 84.7 40.4 502.6 507.3
STD 0.0521 0.0641 0.0167 0.2550 0.0547 38.0 26.5 26.5 38.0
Mean 0.3600 0.7525 0.5341 0.7568 0.7361 146.5 83.3 459.7 445.5
STD 0.0259 0.0550 0.0119 0.0955 0.0341 32.6 23.4 23.4 32.6
Mean 0.4006 0.6574 0.5372 0.6338 0.6995 202.8 136.1 406.9 389.2
STD 0.0141 0.0299 0.0048 0.0353 0.0167 17.7 17.5 17.5 17.7
Mean 0.4673 0.4547 0.5131 0.5226 0.6257 322.8 283.4 259.6 269.2
STD 0.0137 0.1040 0.0164 0.0163 0.0167 61.6 55.2 55.2 61.6

[20,35]

[35,50]

[50, 65]

R [Cmin,Cmax]

[5, 10]

[10, 15]

[15, 20]

 

Table 5.6: The mean performances on test data using six different constraint values of R. 
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For brevity, here, for each R, we do not list details of experimental results of all 10 runs, but 

the mean of 10 runs under each criterion. All experimental results are shown in Table 5.6, 

including the preceding results using R [35%, 50%]. We visualise all data in Figure 5.2. 

The Figure 5.2 shows that RF decreases progressively as R is reduced. The lowest RF 

(13.48%) is obtained by using the tightest R [5%, 10%], whereas the highest RF (46.76%) is 

achieved by using the loosest R [50%, 65%]. Six mean RFs plotted in the graph suggest that 

taking a reduced R in the fitness function may result in a lower RF.  

Reduction in RF obviously benefited RPR and AARR. RPR rises from 62.57% to 

92.22%. AARR increases dramatically from 52.26% to 224.03%. As a result, tighter constraints 

would be preferable to investors as the resultant GDT is likely to have a lower RF. That is to say, 

signals generated by the GDT are more reliable. The only drawback of using a tighter constraint 

is that the number of signals decreases accordingly. For example, the mean number of signals is 

49.3 (49.3 = 35.2 + 14.1; # of signals = TP + FP) for R [10%, 15%] over the 1135 trading day 

period, in contrast to 6.2 (6.2 = 5.1 + 1.1) for R [5%, 10%] over the same period. If we took an 

even tighter R further, for example, R = [2%, 5%], eventually we would not expect any signals at 

Figure 5.2: GDTs’ mean performances affected by the constraint R based on the test data as a whole. 

GDTs' PERFORMANCES ON THE TEST PERIOD AFFECTED 
BY THE CONSTRAINT R

0%

50%

100%

150%

200%

250%

300%

05_10 10_15 15-20 20-35 35-50 50-65

CONSTRAINT R  [Cmin, Cmax]

R
A

T
E

0

100

200

300

400

500

600

700

# 
of

 s
ig

na
ls

 

RF RPR AARR RC RMC # of SIGNALS 



 130

all from the generated GDT, as was verified by our experiments. Such a drawback is 

simultaneously reflected on the increasing RMC, which ranges from 45.47% for R [50%, 65%] to 

99.14% for R [5%, 10%]. So it is crucial to choose a proper R, which is a non-trivial task. The 

point that we are trying to make here is that R is a useful handle for turning RF in FGP-2.  

Two points are worth noting further. First, as R reduces, RF decreases from 46.73% to 

13.48% whilst RMC increases form 45.47% to 99.14%. However, RC almost remains unchanged 

regardless of the choices of R. RC ranges from 48.12% for R [5%, 10%] to 53.2% for R [35%, 

50%], which are balanced around 50%. This is desirable in financial prediction. A lower RF is 

achieved at the cost of a higher RMC, but without sacrificing the overall prediction accuracy, i.e. 

RC. This will suit applications where RMC is not a major concern.  

Second, when the range [Cmin, Cmax] is above the proportion of actual positive positions in 

the training data, FGP-2 could perform worse compared to FGP-1 with RC being only the fitness 

measure. The data in the last row of Table 5.6 are the results obtained by using R [50%, 65%], 

whose range is beyond the actual proportion (50%) of positive positions in the training data. Both 

RF, which is 46.73%, and RC, which is 51.31%, are worse than 43.51% and 54.19% obtained by 

using RC as the fitness function (see Table 5.4). This fact implies that in order to achieve a lower 

RF, the constraint R [Cmin,  Cmax] is recommended to have a range in which Cmax should be 

smaller than the proportion of actual positive positions in the training data.  

In summary, in terms of the above experiments results, the size of R chosen has 

significant effect on the RF performance of the GDT generated. A tighter R may result in quite a 

lower RF, but run the risk of not generating signals for a long time period (e.g., even several 

years here), and therefore miss more chances. In contrast, an inappropriate R may result in a 

higher RF, which could be avoidable. The beauty is that RC is not affected significantly. This 

overall picture reflects the effects of the constraint on the performances of GDTs generated. 

Besides, our experimental results show that in order to make f(2) effective, one is suggested to 
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choose a constraint R [Cmin, Cmax], where Cmax is smaller than the actual proportion of actual 

positive positions in the training data. In practice, the choice of R might be affected by many 

factors such as attitudes of investors, current market trend, capital adequacy, etc. This is beyond 

this study.  This study here focuses on the impact of choices of the constraint R on the RF 

performance of the GDT generated by FGP-2. 

5.4.2 In-Depth Analysis of the Resulting GDTs  

We have analysed the performances of GDTs over the test period as a whole. We have found that 

varying the constraint R can lead to varied results as expected. In general, a tighter constraint 

usually results in a lower RF. Meanwhile, RC is not affected significantly, though RMC 

increases accordingly. With regard to those generated GDTs, one may ask whether such an 

overall picture remains under different market circumstances. To answer this question, an in-

depth analysis of those generated GDTs is necessary. 

5.4.2.1 Results over Three Sub-Periods with Different Market Characteristics 

To further understand the properties of the GDTs under different market characteristics, for the 

purpose of analysis, the whole test period was divided into three partitions, namely, down-trend 

period, side-way-trend period, and up-trend period (see Section 5.2.2). The differences of the 

three periods are not simply reflected only in the distinctive market trends visualised in Figure 

5.1, but also in different proportions of opportunities (an opportunity is one actual positive 

position) over the period. Certainly, there are a larger proportion of opportunities (i.e. 74.3%) in 

the up-trend period, followed by a median proportion of opportunities (i.e. 53.0%) in the side-

way-trend period and a smaller one (i.e. 35.7%) in the down-trend period. We summarise 

performances of GDTs over the above three sub-periods respectively and display results in Table 

5.7.  
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Experimental results show that a similar overall picture does exist in each of the three 

sub-periods regardless of the market characteristics. A tighter constraint leads to a lower RF, a 

higher RMC, and a relatively stable RC (except for the RCs in the up-trend period using R [5%, 

10%], R [10%, 15%] and R [15%, 20%]. A higher RC is not achievable as the proportion of 

actual positive positions is highly skewed from the ranges defined by those constraints (74.3% vs 

[5%, 10%], [10%, 15%], or [15%, 20%])). A similar overall picture can also be illustrated by the 

three similar performance patterns visualised for the three periods in Figure 5.3, Figure 5.4, and 

Figure 5.5 respectively. 

Besides, we find an intriguing characteristic of the GDTs. They generate a significant 

different number of signals in terms of the trend types of market. During the down-trend period, 

the GTDs generate fewer signals compared to those in both the side-way-trend and the up-trend 

periods, given the same constraint R. We illustrate this by using the Signal Frequency (SFQ), 

given by: 

SFQ = %100x   
cases ofnumber   totalThe

 predicted) positions positive ofnumber  theN ( +
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All SFQs for each R under the three market situations are reported in Table 5.8. Results 

show that given the same constraint, GDTs always have a lowest SFQ in the down-trend market, 

followed by that in the side-way-trend and that in the up-trend in order (except for the example of 

RF RMC RC AARR RPR TP FP TN FN

Mean n/a 1.0000 0.6429 n/a n/a 0.0 0.0 243.0 135.0
STD n/a 0.0000 0.0000 n/a n/a 0.0 0.0 0.0 0.0
Mean 0.0500 0.9778 0.6492 0.6909 0.9667 3.0 0.6 242.4 132.0
STD 0.1225 0.0318 0.0072 0.1528 0.0816 4.3 1.9 1.9 4.3
Mean 0.3367 0.9193 0.6511 0.4555 0.6917 10.9 7.8 235.2 124.1
STD 0.3290 0.1206 0.0118 0.2982 0.3308 16.3 16.9 16.9 16.3
Mean 0.3442 0.8911 0.6553 0.3857 0.6923 14.7 10.0 233.0 120.3
STD 0.3091 0.1034 0.0111 0.3890 0.3010 14.0 13.2 13.2 14.0
Mean 0.4710 0.7467 0.6513 0.3099 0.5882 34.2 31.0 212.0 100.8
STD 0.0228 0.0930 0.0079 0.0454 0.0288 12.6 12.9 12.9 12.6
Mean 0.6126 0.4556 0.5254 0.1811 0.4608 73.5 117.9 125.1 61.5
STD 0.0280 0.3171 0.0887 0.0375 0.0290 42.8 74.3 74.3 42.8

Mean 0.1527 0.9878 0.4746 2.5580 0.8082 3.2 0.8 232.2 259.8
STD 0.1483 0.0107 0.0043 1.7883 0.3337 2.8 1.0 1.0 2.8
Mean 0.3829 0.9274 0.4845 1.2226 0.7660 19.1 11.8 221.2 243.9
STD 0.0549 0.0219 0.0087 0.2238 0.0660 5.8 3.9 3.9 5.8
Mean 0.4056 0.8582 0.4923 0.9563 0.6979 37.3 26.1 206.9 225.7
STD 0.0539 0.0571 0.0143 0.2838 0.0734 15.0 12.9 12.9 15.0
Mean 0.4756 0.7627 0.4806 0.6646 0.6510 62.4 57.0 176.0 200.6
STD 0.0299 0.0481 0.0133 0.1117 0.0429 12.7 13.2 13.2 12.7
Mean 0.4978 0.6749 0.4720 0.5628 0.6471 85.5 84.4 148.6 177.5
STD 0.0217 0.0541 0.0154 0.0473 0.0133 14.2 10.8 10.8 14.2
Mean 0.4962 0.5030 0.4748 0.4873 0.6343 130.7 128.2 104.8 132.3
STD 0.0348 0.0906 0.0383 0.0933 0.0673 23.8 19.3 19.3 23.8

Mean 0.0833 0.9902 0.2628 2.6002 0.9583 1.9 0.3 66.7 192.1
STD 0.1543 0.0082 0.0055 3.3519 0.1179 1.6 0.7 0.7 1.6
Mean 0.0847 0.9325 0.3004 2.2016 0.9573 13.1 1.7 65.3 180.9
STD 0.1192 0.0376 0.0257 1.2585 0.0615 7.3 2.5 2.5 7.3
Mean 0.1534 0.8119 0.3716 1.2460 0.9432 36.5 6.5 60.5 157.5
STD 0.0542 0.0875 0.0584 0.2336 0.0284 17.0 3.2 3.2 17.0
Mean 0.1900 0.6423 0.4602 0.9891 0.8715 69.4 16.3 50.7 124.6
STD 0.0516 0.0849 0.0540 0.1252 0.0451 16.5 6.1 6.1 16.5
Mean 0.1959 0.5716 0.4958 0.9625 0.8578 83.1 20.7 46.3 110.9
STD 0.0384 0.0513 0.0262 0.1105 0.0403 9.9 6.1 6.1 9.9
Mean 0.2303 0.3887 0.5682 1.0322 0.8316 118.6 37.3 29.7 75.4
STD 0.0818 0.0904 0.0787 0.2106 0.0750 17.5 18.1 18.1 17.5

R  [Cmin,Cmax]

[5, 10]

[10, 15]

[15, 20]

Down Trend Period ( Nte = 378, O+ = 135 and f te =35.7%) 

[20,35]

[35,50]

[50, 65]

[5, 10]

Side-Way Trend Period (Nte = 496, O+ = 263 and f te =53.0%) 

[10, 15]

[15, 20]

[20,35]

[35,50]

[20,35]

[35,50]

[50, 65]

[50, 65]

[5, 10]

[10, 15]

[15, 20]

Up Trend Period (Nte = 261, O+ = 190 and f te =74.3%) 

 

Table 5.7: Summarised mean results of GDTs generated by FGP-2 over three different market periods by 
using varied constraint Rs. (In one specific period, Nte is the total number of cases over test data, O+ is the 
actual number of positive positions and fte = O+/ Nte x 100% is the proportion of actual positive positions in 
percentage.  n/a means not available.) 
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R [10%, 15%], where the SFQ (6.23%) in the side-way-trend period is slightly bigger than the 

SFQ (5.67%) in the up-trend period). For example, for the R [15%, 20%], the GDTs generate a 

mean of 19 signals over a total 378 down-trend trading days. Its SFQ is 4.95% (19/378×100%) in 

comparison with 12.78% (63/496×100%) in the side-way-trend period and 16.48% 

(43/261×100%) in the up-trend period. For R [5%, 10%], the GDTs do not even trigger one 

signal in the down-trend period, in contrast to a few signals in both the side way (i.e. 4), and the 

up-trend period (i.e. 2.2).  

It is encouraging that a) the results in the three markets are consistent with the overall picture 

presented in Section 5.4.1, and b) the number of signals generated from a GDT varies reasonably 

according to the market situation.  

R [Cmin,Cmax] Down-trend period Side-way-trend period Up-trend period 
[5, 10] 0.00% 0.81% 0.84% 
[10, 15] 0.95% 6.23% 5.67% 
[15, 20] 4.95% 12.78% 16.48% 
[20, 35] 6.53% 24.07% 32.84% 
[35, 50] 17.25% 34.25% 39.77% 
[50, 65] 50.63% 52.20% 59.73% 

Table 5.8: Comparisons of SFQ for each R under the three different market situations. 
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Figure 5.3: GDT mean performances in the down-trend period affected by the constraint R. 

Figure 5.4: GDT mean performances in the side-way-trend affected by the constraint R. 

 

Figure 5.5: GDT mean performances in the up-trend period affected by the constraint R. 
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5.4.2.2 Further Investigation 

In Section 5.4.2.1, we investigated the performances of GDTs under the three sub-periods with 

the three distinctive market trends. It is encouraging that the overall picture for each period is 

almost the same. In the case studied here, the novel constrained fitness function is effective for 

achieving a low rate of failure in the three typical market trends, namely, down-trend, side-way-

trend, and up-trend. Now, we examine whether the overall picture with regard to GDTs’ 

performances retains if those generated GDTs were applied to another test period over DJIA. To 

do this, we chose a second test period from 10/04/81 to 29/10/1984, which includes 900 trading 

days following the first test period (from 12/10/1976 to 09/04/1981). For simplicity, details of 

values are not presented here. We only visualise the results in Figure 5.6. The illustrated patterns 

confirm what we expect. The overall picture remains.  

5.5 Comparative Study 

Up to this point, we only tested the proposed constrained fitness function on the DJIA index data. 

Should FGP-2 be effective and applicable to individual stock data? How does FGP-2 compare 

Figure 5.6: GDT mean performances on the test data II (900 trading days: from 12/10/1976 to 
09/04/1981) affected by the constraint R. 
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with other methods?   

To partially answer these questions, we refer to Saad et al. (1998) in which three specially 

developed Neural Networks, (i.e. Time Delay (TDNN), Recurrent (RNN) and Probabilistic 

(PNN)), and a linear classifier were employed to address a similar prediction problem. They also 

have the goal of achieving low false alarm. Here, we compare performances based on predictions 

with r = 2% and n = 22 (i.e. daily predictions on whether a return of 2% or more can be 

achievable within the next 22 trading days).  

5.5.1 The Data 

We obtained from Saad the 10 stock data. The 10 stocks cover a larger variety of categories:  

• Apple (AAPL, IBM (IBM), Motorola (MOT) and Microsoft (MSFT) represent the 

technology group which generally has high volatility.  

• American Express (AXP) and Well Fargo (WFC) represent the banks.  

• Walt Disney Co. (DIS) and McDonald (MCD) represent the consumer stocks.  

• Public Svc New Mexico (PNM) and Energras (V.EEG) are cyclical stocks.  

All data series ended at 06/03/1997, but with different starting dates. Following (Saad et al. 

1998), for each stock, the last 100 days were chosen as the test data.  

5.5.2 Experiments 

In the experiments, for each data set, we ran FGP-2 10 times. For each run, we took 500 trading 

data just before 100 test data as the training data, and took a constraint R = (20%, 30%) for most 

data sets except for AAPL, PNM and V.EEG, for which we took a constraint R = (10%, 20%). 

The three weights in the constrained fitness function f(2) were still kept with w_rc = w_rf = 1 and 

w_rmc = 0 as before. The termination condition was 50 generations.  
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Here, for each stock data set, we report both the mean and the standard deviation of 

GDTs’ results over 10 runs. Results reported here focus on RF and the number of signals as they 

are only available in (Saad et al. 1998). In order to compare fairly, for each stock data set, we 

also select the best GDT from the 10 runs in terms of RF and report its results. This strategy 

follows the one in (Saad et al. 1998). Note that a better method should be capable of achieving a 

lower RF and meanwhile producing a larger number of positive positions. 

5.5.3 Results  

Table 5.9 lists all performance results of the three different NNs, the linear classifier and FGP-2 

on the 10 stocks with respect to RF and the number of signals. The “Total” column summarises 

the total number of signals on all 10 stocks for each method. The last column, “Ave.” column 

reports the average rate of failure over the 10 stocks.  

Like NNs., FGP-2 out-performs the linear classifier for all the stocks in terms of RF. The 

10 best GDTs produced 385 signals totally, which is slightly more than 373, produced by the 

linear classifier. However, the average RF of the GDTs found, 5.08% is much better than 

18.62%, the average RF of the linear classifier.  

Results by the best of the GDTs are either as good as or better than those of NNs in terms 

of the number of “zero” prediction failure over the total 10 stocks. The 10 best GDTs achieved 8 

zero-RFs, in contrast, TDNN got 8 zero-RFs as well; PPN, 2 zero-RFs; and RNN, 5 zero-RFs. 

Though both the best GDTs and TDNN achieve equally 8 zero-RFs, the total number of signals 

produced by GDTs over all 10 stocks is more than twice as large as that by TDNN (i.e. 385 vs 

186). In terms of the average RF, the 10 best GDTs, which achieve a mean RF of 1.29%6 over the 

10 data sets, out-perform each of the three NNs, which achieve the average RFs of 3.05%, 3.61% 

                                                 
6 The favorable results by FGP-2 may be partly due to the rather bullish market over test period in which over 50% 
of the positions are positive for all the shares; e.g. 87% of the positions were positive for MSFT and 92% for AXP. 
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and 7.56% respectively.  

Our conclusion, based on Table 5.9, is that FGP-2 performs significantly better than the 

linear classifier and favourably compares against each of the three NNs. Moreover, FGP-2 has its 

distinctive advantages: a) it generates the GDTs that the user can interpret, and b) it can generate 

GDTs with varied RF performances by tuning the constraint in the fitness function. These are not 

available to the methods compared here.  

The results of GDTs presented for comparison are merely based on one set of better 

solutions that are chosen by us. The solutions we think have a good trade-off between the 

performance of RF and the quantity of signals. Numerous potential solutions are still available if 

different constraints were applied to the task. By turning the constraint in the fitness function, 

either a further lower RF would be available at the price of reducing the number of signals or a 

further higher RF would be obtained with the consequence of increasing the number of signals. 

This provides users with more options.  

 

AAPL IBM MOT MSFT AXP WFC DIS MCD PNM V.EEGTotal Ave.
62 72 81 87 92 85 74 73 50 70 746 74.6
51 25 48 49 20 45 19 4 63 14 338

7.84 4.00 18.75 4.08 0.00 4.44 0.00 0.00 36.50 0.00 7.56

10 9 27 61 17 19 7 6 22 8 186

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 18.00 12.50 3.05
16 22 33 46 49 29 48 53 35 37 368

0.00 0.00 3.03 2.17 0.00 0.00 0.00 5.66 17.14 8.11 3.61

82 24 87 17 10 22 2 32 20 76 372
31.71 20.83 18.39 0.00 0.00 13.64 0.00 21.88 60.00 19.74 18.62

Mean 18.5 68.7 20.7 26.8 38.3 66.6 20.1 40.2 23.4 49.4 373

STD 9.9 3.9 5.1 6.2 9.9 11.1 3.1 1.8 5.9 9.6

Mean 9.16 10.15 1.33 3.10 3.72 8.20 0.40 0.00 13.07 4.83 5.08

STD 5.66 1.13 2.82 2.47 3.10 2.33 1.30 0.00 12.30 3.90

4 70 28 33 39 69 22 43 28 49 385

0.00 8.57 0.00 0.00 0.00 4.35 0.00 0.00 0.00 0.00 1.29

The Best 
GDT

Total N+
RF (%)

Total N+
RF (%)

Mean and 
STD of 10 

GDTs 

Total N+

RF (%)

The Linear 
Classifier

TDNN Total N+

RF (%)

RNN Total N+
RF (%)

PPN Total N+  

RF (%)

Stocks
Profit Opp. (r=2%;n=22)

 

Table 5.9: Performance comparisons among three NNs, a linear classifier and FGP-2 in terms of RF and N+ 

(the total number of position positions produced). 
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5.6 Related Work 

The novel constrained fitness function that we invent and incorporate into FGP-2, aims to 

achieve a low rate of failure. In essence, by virtue of the constrained fitness function, FGP-2 is 

capable of reducing the number of false positive positions (FP) at the expense of increasing the 

number of false negative positions (FN), while maintaining prediction accuracy. In the context of 

investment, such a trade-off is valuable. Mistaking an actual negative position for a positive 

position (a false positive position) is much more costly than the opposite of mistaking an actual 

positive position for a negative position (a false negative position), because the latter error only 

means missing a chance, no loss at all.  

 In this work, our research target is closely related to cost-sensitive learning, which is a 

subject of a burgeoning literature in machine learning (Turney (1997) provides an online 

bibliography on this topic). More specifically, the target that the novel constrained fitness 

function is designed to attack is similar to misclassification-cost classification. Moreover, our 

research method is also closely related to classification-oriented evolutionary algorithms. 

In machine learning, approaches to misclassification-cost classification could be 

considered to fall into three main categories in terms of stages of processing induction trees. 

1) Pre-processing: re-sampling training data  

One currently available procedure of this type is stratification - changing the frequency of classes 

in the training data in proportion to their cost (Breiman et al. 1984; Chan & Stolfo 1998; Provost 

& Buchanan 1995). Underlying such research work is the fact that the training class distribution 

likely affects the performance of the learned classifier and results in classifiers with varied 

performances with respect to misclassification cost.  

2) During processing: varieties of biases applied in the process of building decision trees 

• Robert et al. (1995) applied methods in the process of building decision trees by taking 
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misclassification costs into account. In one approach, cost factors are used in the class 

selection criterion at the leaves of the decision tree. In another approach, in the test 

selection criterion at the branches of the decision tree. 

• Cost-sensitive specialisation (Webb 1996) involves specializing aspects of a classifier 

associated with high misclassification costs and generalizing those associated with low 

misclassification costs, aimed at reducing the costs of misclassification errors. 

• Bradford et al. (1998) apply both an extended cost-complexity pruning to loss and a 

Laplace correction based decision pruning to minimizing loss. 

3) Post-processing: adjustment of threshold or ordering rules generated 

• Fawcett and Provost (1997) consider non-uniform cost per error in their cellular phone 

detection task and exhaustively searched (with a fixed increment) for the linear Thresh-

old Unit’s threshold that minimize the total cost. 

• Pazzani et al. (1994) present a method, called RCO (Reduced Cost Ordering) algorithms, 

which select and order the rules generated by any rule learner such as C4.5, FOCL, to 

minimize misclassification costs. 

As work in boosting and bagging has become more convincing (Breiman 1994; Freund & 

Schapire 1996; Quinlan 1996a), recently, methods based on these techniques have been 

developed to address classification cost. Such methods involve re-sampling training data and 

altering the empirical biases of the learning system in the process of decision tree inductions (see, 

e.g., Ting & Zheng 1998; Fan et al. 1999; Domingos 1999).  

The above approaches in machine learning demonstrated that they were superior to the 

related learning systems that did not account for misclassification cost. However, none of them 

can provide mechanisms to reduce the concerned misclassification errors (e.g. the rate of failure) 

gradually with some control to some extent. In contrast, the constraint embedded in the fitness 
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function f(2), provides a useful handle for tuning the misclassification error (e.g., the rate of 

failure in FGP-2). In our cases, the tighter the constraint is, the lower rate of failure is achievable 

at the cost of missing more chances. 

Research work that applies evolutionary algorithms to classification problems is also 

related to FGP. Frey and Slate (1991) applied a genetic algorithm (in particular, a learning 

classifier system (LCS)) to letter recognition.  DeJong et al. (1993) and Janikow (1993) presented 

more successful work. There are also several papers that address classification problems using 

genetic programming (e.g., Ngan et al. 1998; Nikolaev & Slavov 1997; Bojarczuk et al. 1999). 

However, none of the above work has the capability of attacking cost-sensitive classification 

problems.  

To our best knowledge, ICET (Turney 1995) is the only system that not only takes 

misclassification costs into account but also involves genetic algorithms. However, unlike FGP, 

in which genetic programming straightforward plays a main role, ICET uses genetic algorithm as 

a supplementary means of finding a set of better parameters for a decision tree induction 

algorithm. The fittest tree is constructed directly through decision tree induction algorithms, 

rather than genetic algorithms. The novel constrained fitness function that we invent makes it 

possible for genetic programming to act as a main framework to approach cost-sensitive 

classification problems. Besides, like other cost-sensitive methods in learning system, ICET 

cannot provide the mechanism to find varied potential solutions either.  

We argue that such a mechanism is important and desirable. Solutions with varied 

performances with respect to misclassification costs provide the user with multiple options. In 

practice, any one of choices may be interesting and valuable to a specific group of users because 

different users have different preferences. In FGP-2, varying the constraint, embedded in the 

fitness function, can lead to different GDTs with varied RFs as expected. The investor tends to 

choose the GDT that is likely to reflect his/her risk preference. 
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5.7 Summary and Conclusion 

5.7.1 Summary  

FGP-1, the first version of FGP, has been demonstrated to be useful for improving prediction 

accuracy in terms of RC. However, in many real-world prediction problems, RC is not the sole 

concern. Aimed at achieving a low RF prediction, we developed the second version of FGP, 

FGP-2, in which we use a novel constrained fitness function. 

We accomplished the enhancement through modification of the fitness function. The 

novelty of FGP-2 lies in a crucial constraint embedded in the fitness function. The proposed 

constrained fitness function is more general and superior to the previous fitness function, i.e. RC, 

used mainly in FGP-1. Its effectiveness was investigated and demonstrated in a series of 

experiments using different Rs on the DJIA data.  In general, varying the constraint results in 

expected results. A tighter constraint usually results in a lower RF. Meanwhile, RC is not 

affected significantly, though RMC increases accordingly. This overall picture holds in the three 

sub-periods with three different market situations, namely, down-trend, side-way-trend, and up-

trend, and a further additional test period. Moreover, in our tests, the generated GDTs seem to 

cope well with different market trends as the quantity of positive positions predicted reasonably 

varies in accordance with the market properties in our case. 

By tuning the constraint R, FGP-2 is capable of achieving different levels of RF. This 

makes FGP-2 attractive. It provides users with a means to their preferences.   

To evaluate FGP-2, we compare FGP-2 against three NNs, and a linear classifier reported 

in (Saad et al. 1998) based on a specific prediction problem over the 10 American stock data. 

FGP-2 beats the linear classifier and favourably compares against the three NNs in terms of the 

performance of RF. FGP-2 exhibits its superiority over the three NNs with respect to the quantity 

of positive positions predicted. The fact that the parameter of constraint R in the fitness function 
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is adjustable makes FGP-2 more attractive. 

The work in this chapter is closely related to cost-sensitive learning, as well as work using 

classification-oriented evolutionary algorithms. The work of using a novel constrained fitness 

function in GAs to attack misclassification-cost classification problems is novel.  No similar 

techniques have been found so far in our review. The applicability of the novel constrained 

fitness function to other domains is worth further investigation.     

5.7.2 Conclusion 

In order to achieve the second research goal: to reduce the RF, we developed FGP-2. FGP-2 

implements a method for tuning the RF performance to a certain extent. This is achieved by 

introducing a novel constrained fitness function to FGP.  

In this chapter, the experimental results produced by FGP-2 demonstrate that FGP-2 is 

capable of achieving a lower rate of failure (RF), at the cost of a higher rate of missing chances 

(RMC), without sacrificing the overall prediction accuracy of the system (RC).  By tuning the 

constraint parameter in the fitness function, users can generate GDTs to suit their preferences 

with regard to RF and RMC.  

In the next chapter, we shall examine whether this overall picture remains if FGP-2 is 

applied to other similar prediction tasks or other data sets.    
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Chapter 6  

Discussion 

6.1 Introduction  

In Chapter 5, we described the procedure of developing a constrained fitness function in FGP-2. 

The target of using FGP-2 is to achieve the second research goal: a low rate of failure. By using 

the constrained fitness function, FGP-2 is capable of generating GDTs with the low rate of failure 

in the experiments using the DJIA daily closing prices over an eleven-year period. We analysed 

the behaviour of FGP-2 by varying the parameter of constraint R in the fitness function. A tighter 

R tends to lead to a lower RF without affecting the overall RC significantly, though at the price 

of a higher RMC. The effectiveness of FGP-2 was further demonstrated by the comparison of 

FGP-2 with three NNs and a linear classifier over the 10 American stock data. 

In this chapter, we would like to further investigate the effectiveness and applicability of 

FGP-2. We focus our investigation on the utility of the constrained fitness function for achieving 

a low RF. We would like to know whether the overall picture remains under several different 

circumstances. 

Our investigation here is motivated by several questions that arise in connection with the 

results of FGP-2 obtained in the preceding chapter. These questions are: 

1. Is FGP-2 with the constrained fitness function effective for prediction task r
nP  over a short 

period?   

2. Can FGP-2 achieve the consistent results under the unbalanced cases (see the definitions in 

Section 6.3.1), where both ftr and fte (see Equation 4.5 and 4.6, page 104) are no longer 
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around 50% in the data used? 

3. Is FGP-2 applicable to a down-trend market? 

To answer the above questions, we carried out a series of experiments. We completed three 

separate experiments.   

The first is a study of 8.0
5P  using DJIA data over a relatively short period (i.e. n = 5 

trading days, as opposed to 21 trading days). This is intended to address the first question. We 

shall present and discuss the results, as opposed to the results of study on 2.2
21P  presented in 

Chapter 5. The second experiment is actually a set of tests over DJIA data, which involve the 

prediction tasks of 3
21P , 4

21P , and 5
21P . This attempts to address the second question. The third 

group of experiments is carried out on a set of foreign exchange data of $US/£BP (US Dollar 

against British Pound) for attacking the prediction tasks of 1
21P  5.1

21P , and 2
21P . The whole period 

of the foreign exchange data set that we adopted shows a general down-trend, as displayed in 

Figure 6.7. This group of tests is intended to address the third question and partially address the 

second question.  

With the three groups of experiments, the hope is that a series of empirical results obtained 

may help us to understand the applicability of FGP-2, and manifest the strength and weakness 

possessed by FGP-2 with the novel constrained fitness function. We shall describe the 

experimental methods used, and then present and discuss the results. 

6.2 Testing over a Short Period 

We have completed a series of experiments over both the DJIA and the 10 American stock data. 

However, the prediction tasks were restricted to a period of 21 trading days, which is a middle 

term from the perspective of investors. However, in finance, predictions over a shorter period are 

not uncommon. The question arises concerning the applicability of FGP-2 over a short period. 
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 To answer this question, we choose 8.0
5P  and ask FGP-2 to attack it. The data used are the 

same as the DJIA data used previously, as shown in Figure 5.1 (see page 120). Note that (ftr , fte) 

is (50.00%, 51.63%) in the case of  8.0
5P  and the data used. Both values are around 50%. Such a 

case is referred to as a balanced case, as opposed to an unbalanced case, where both values of ftr 

and fte are not around 50% (both cases are to be defined in Section 6.3).    

The objective of this experiment is to examine further the capabilities and limitations of 

FGP-2. In particular, we would like to know whether results obtained over a shorter period by 

FGP-2 are consistent with what we found over a middle-sized period. In this experiment, we took 

the same parameters as those used in the previous experiments over the DJIA data (some of 

which are shown in Table 5.2 (see page 121)), and the same indicators as input to FGP-2. We 

chose different intervals of R, which are mutually exclusive. For each R, we ran FGP-2 10 times. 

For simplicity, in Table 6.1 we only report the mean results over 10 runs and their corresponding 

standard deviations for each R chosen, respectively. All results are visualized in Figure 6.1. 

Results in Table 6.1 show the similar overall picture, which has already been manifested in 

the preceding study over a middle-sized period (see Table 5.6, p128). Varying the constraint in 

the fitness function can lead to varied results accordingly. A tighter constraint results in a lower 

RF without affecting the RC much, though at the price of the increased RMC. Consequently, the 

number of positive position predicted is gradually reduced as the constraint chosen becomes 

tighter. However, both RPR and AARR increase progressively as the constraint gets tighter, 

which indicates that investors may benefit more by choosing a tighter constraint R. Figure 6.1 

visualises the patterns. 
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For example, for R [5, 10], which is the tightest constraint chosen, FGP-2 achieved the 

lowest RF (17.11%), but with the highest RMC (98.39%) and a lowest RC (49.02%), which is 

around 50%. In contrast, for R [35, 50], which is the loosest constraint chosen, the acquired RF is 

the highest (44.37%), but with the lowest RMC (74.42%), a moderate RC (51.01%), which is 

around 50% as well.  

It is worth noting again that all RC performances obtained are approximately around 50% 

level regardless of the constraint R chosen. However, differences in RF and RMC are significant. 

R [Cmin,Cmax] RF RMC RC AARR RPR # of signals 

Mean 0.1711 0.9838 0.4902 2.4176 0.8352 11.6 
[5, 10] STD 0.1556 0.0073 0.0038 1.0980 0.1589 6.0 

Mean 0.2976 0.9553 0.4955 1.5916 0.7326 39.0 
[10, 15] 

STD 0.1005 0.0161 0.0068 0.5117 0.0913 19.9 

Mean 0.3655 0.8807 0.5089 1.1661 0.7009 111.2 
[15, 20] 

STD 0.0450 0.0160 0.0061 0.2132 0.0453 20.4 

Mean 0.3805 0.8514 0.5127 1.0541 0.6763 141.3 
[20, 35] STD 0.0320 0.0333 0.0077 0.1504 0.0335 34.9 

Mean 0.4437 0.7442 0.5101 0.7219 0.6126 269.8 
[35, 50] STD 0.0249 0.0291 0.0110 0.1032 0.0250 34.1 

Table 6.1: GDTs’ mean performances of over a short period (e.g., 5 trading day) on DJIA. 
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Figure 6.1: GDT performances over a shorter period (e.g. n=5 trading days) affected by the constraint. 
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For example, the maximum difference in RF is 27.26% (44.37% - 17.11%). The maximum 

difference in RMC is 23.96% (98.38% -74.42%). This suggests again that the reduced RF is at 

the cost of increased RMC, but not RC.             

6.3 Testing in Unbalanced Cases 

So far, the prediction task r
nP  that have been attacked by FGP-2 is restricted to a kind of case 

where the number of actual positive positions is roughly 50% of whole data cases over both a 

training and a testing period respectively. We would like to refer to such cases as balanced cases 

(a more formal definition will be given in the next section). Though balanced cases are common 

in the study of machine learning, unbalanced cases are ubiquitous in the realistic world. In the 

case the prediction tasks r
nP , unbalanced cases can be easily formed due to varieties of 

combinations of n and r. 

 In this section, we shall present the study on the effectiveness of FGP-2 in the unbalanced 

cases. We shall discuss the empirical results. Meanwhile, we shall point out the weaknesses of 

FGP-2 found in these experiments.   

6.3.1 Definitions of Balanced Cases and Unbalanced Cases  

Before presenting our experiments, we would like to give our definitions regarding balanced 

cases and unbalanced cases with respect to r
nP .  

There are a variety of combinations between the size of r and the length of n for r
nP . The 

choices of two parameters rely on the preference of the user. Given a fixed r and a fixed n, 

however, the r
nP  can only possibly categorized into either a balanced case or an unbalanced case, 

which are defined as follows based on a pair of values (ftr , fte) (see its definition at p104).  

• Balanced case: the prediction task in which both “45 ≤  ftr ≤ 55” and  “45 ≤ fte  ≤ 55” are 
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met. In other words, a prediction situation that the number of actual positive positions and 

number of actual negative positions are roughly around 50% both on the training data and 

on the test data. 

• Unbalanced case: the prediction task that does not belong to the balanced case. 

Obviously, there are two different sets of unbalanced cases. One is a set of unbalanced 

cases where the number of actual positive positions is less than the number of actual negative 

positions. Another is an opposite set of unbalanced cases where the number of actual positive 

positions is more than the number of actual negative positions. We call the former a negative 

unbalanced case, and the latter a positive unbalanced case. A positive unbalanced case is not 

particularly of interest to us, as it is relatively easier for FGP-2 to achieve a low RF (for example, 

see the results obtained over the 10 American stocks in Chapter 5).  

Negative unbalanced cases attract more attention from us (in what follows, we focus on this 

kind of the unbalanced case, as opposed to the positive unbalanced case). We use three different 

terms, namely, a slightly unbalanced case, a moderately unbalanced case or a severely 

unbalanced case, to distinguish the extent of the difference between the number of actual positive 

positions and the actual negative positions in data. The three definitions are below: 

• A slightly unbalanced case: the prediction task in which both “35 ≤ ftr < 45” and  “35 ≤     

fte < 45” are met. 

• A moderately unbalanced case: the prediction task in which both “25≤ ftr <35” and “25 

≤ fte < 35” are met. 

• A severely unbalanced case: the prediction task in which both “0 < ftr < 25” and  “0 < fte 

< 25” are met. 

Note that in the last chapter, FGP-2 was mainly investigated and analysed in a balanced 
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case, which is the prediction task 2.2
21P  over the DJIA data. In the following experiments, FGP-2 

is investigated into three types of the above unbalanced cases, which are formed over the DJIA 

data as well.  

6.3.2 Experiments 

In the following series of experiments, we ran FGP-2 using the same DJIA data and GP 

parameters that were used for addressing 2.2
21P . Three prediction tasks that we selected are 3

21P , 

4
21P , and 5

21P , which make predictions over the same middle-term period, i.e. 21 trading days. 

Due to a different expected return r chosen, the potential predictive patterns, which FGP-2 

attempts to find, might be different for each prediction. The choice of the above three prediction 

tasks makes it easy for us to compare them against the balanced case 2.2
21P , whose results were 

already presented in the last chapter. 

 The three prediction tasks: 3
21P , 4

21P , and 5
21P , belong to unbalanced cases. Note that as 

the r increases, the prediction task r
nP  gets unbalanced to a greater extent. As the involved (ftr , 

fte) is (42.95%, 41.32%), 3
21P  belongs to a slightly unbalanced case. Similarly, 4

21P  and 5
21P  are 

categorised into a moderately unbalanced case with a (ftr , fte) = (30.37%, 26.52%) and a severely 

unbalanced case with a (ftr , fte) = (21.58%,16.12%) respectively.      

6.3.3 Results and Discussion 

To address the slightly unbalanced case 3
21P , we took five mutually exclusive Rs as the 

constraints in the fitness function respectively. Note that the Cmax in the loosest constraint R 

[30%, 40%] reported here is limited at 40%, which is less than the ftr (42.95%). As discussed in 

the case of 2.2
21P , taking a constraint that is larger than the ftr would possibly make the constrained 

fitness function not work for achieving a low RF (see Section 5.4.1). This is also true in this 
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slightly unbalanced case (our experimental results confirm this, though results are not shown 

here). Similarly, we considered the fact when we chose the constraints for approaching both 4
21P  

and 5
21P . 

For each constraint chosen, we ran FGP-2 10 times. Table 6.2 shows the experimental 

mean results of the 10 GDTs obtained. Figure 6.2 depicts an overall picture in which 

performances of GDTs are affected by the constraint chosen. 

R [Cmin,Cmax] RF RMC RC AARR RPR # of signals 

Mean 0.0998 0.9885 0.5903 1.3922 0.9384 6.8 
[5, 10] 

STD 0.1925 0.0079 0.0029 0.9132 0.1299 6.0 

Mean 0.2490 0.9237 0.6068 1.3388 0.8676 48.9 
[10, 15] 

STD 0.1233 0.0131 0.0077 0.3104 0.0588 14.0 

Mean 0.4043 0.8825 0.6015 0.8573 0.7700 93.5 
[15, 20] STD 0.0740 0.0100 0.0110 0.0937 0.0642 16.0 

Mean 0.5005 0.8360 0.5856 0.5899 0.7022 155.2 
[20, 30] STD 0.0290 0.0192 0.0082 0.0855 0.0606 27.0 

Mean 0.5417 0.7424 0.5641 0.4276 0.6206 267.3 
[30, 40] STD 0.0382 0.0570 0.0256 0.0668 0.0452 77.0 

Table 6.2: GDT performances affected by the constraint in the unbalanced case: 3
21P  with (ft r = 42.95%, 

fte= 41.32%).  
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Figure 6.2: GDT performances affected by the constraint in the unbalanced case: 3
21P . 
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The overall picture associated with this slightly unbalanced case, i.e. 3
21P , displays a very 

similar pattern as the one in the balanced case, 2.2
21P . A tighter constraint leads to a lower RF at 

the price of a higher RMC, while maintaining a relatively stable RC. Experimental results show 

that in the slightly unbalanced case, 3
21P , FGP-2 works as well as in the balanced case, 2.2

21P . 

 

Similarly, our experimental results of applying FGP-2 to both 4
21P  and 5

21P  are reported in 

Table 6.3 and Table 6.4 respectively, as well as virtualised in Figure 6.3 and Figure 6.4.  

Four different constraints (see the first column in the Table 6.3) were used to approach 

R [Cmin,Cmax] RF RMC RC AARR RPR # of signals 

Mean 0.2268 0.9864 0.7371 1.4834 0.9746 5.6 
[5, 10] 

STD 0.1670 0.0060 0.0013 1.2485 0.0541 2.1 

Mean 0.4689 0.9269 0.7360 1.0409 0.8123 42.6 
[10, 15] 

STD 0.0853 0.0199 0.0065 0.2822 0.0484 10.7 

Mean 0.5834 0.8787 0.7211 0.6419 0.7648 88.6 
[15, 20] STD 0.0609 0.0184 0.0098 0.0822 0.0596 10.9 

Mean 0.6594 0.8183 0.6889 0.4356 0.6905 161.5 
[20, 30] STD 0.0374 0.0229 0.0136 0.0575 0.0693 9.4 

Table 6.3: GDT performances affected by the constraint in the unbalanced case: 4
21P  with (ft r = 30.37%, 

fte= 26.52%). 
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Figure 6.3: GDT performances affected by the constraint in the unbalanced case: 4
21P . 
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4
21P . The Cmax (30%) in the loosest constraint chosen is restricted to be less than ftr (30.37%). For 

this moderately unbalanced case, the GDTs generated are still able to achieve satisfactory lower 

RFs. For example, taking the loosest constraint R [5%, 10%] into the constrained fitness function, 

FGP-2 achieved a mean of RF (22.68%). Moreover, the overall picture retains as does in the 

slightly unbalanced case of 3
21P . These experimental results show that FGP-2 works well and 

achieves acceptable lower RFs. 

Three different constraints (see the first column in the Table 6.4) were used with the Cmax 

(20%) in the loosest constraint (R [15%, 20%]) less than ftr (21.58%). The overall picture seems 

to remain. However, unlike the cases of 3
21P  and 4

21P , all three means of RFs obtained are not 

acceptable. Even the lowest mean of RFs is 45.33%, which is nearly two times higher than RF 

R [Cmin,Cmax] RF RMC RC AARR RPR # of signals 

Mean 0.4533 0.9809 0.8391 0.8614 0.9133 6.6 
[5, 10] 

STD 0.2289 0.0116 0.0022 0.6244 0.2218 3.6 

Mean 0.7106 0.9219 0.8189 0.5123 0.8297 51.1 
[10, 15] 

STD 0.0474 0.0103 0.0084 0.0921 0.0456 12.5 

Mean 0.7783 0.8995 0.7947 0.3652 0.7733 86.8 
[15, 20] STD 0.0484 0.0094 0.0180 0.0747 0.0816 21.7 

Table 6.4: GDTs performance affected by the constraint in the unbalanced case: 5
21P with (ft r = 

21.58%, fte= 16.12%). 
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Figure 6.4: GDT performances affected by the constraint in the unbalanced case: 5
21P . 
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(22.68%) with 4
21P , and much higher than RF (9.98%) with 3

21P .  The results show that in the 

severely unbalanced case, 4
21P , FGP-2 dose not achieve an acceptable lower RF as happen in the 

balanced, slightly unbalanced, and moderately unbalanced case. This fact suggests that it is 

preferable not to ask FGP-2 to address the prediction task r
nP , which falls into a severely 

unbalanced case. FGP-2 may not generate an acceptable low RF as expected. 

In terms of our experimental results with regard to three unbalanced cases, namely, 3
21P , 

4
21P , and 5

21P , together with results with respect to the balanced case, 2.2
21P , we emphasis some 

points as follows. 

1. The overall picture which results from using the constrained fitness function remains in 

the four types of cases studied here, namely, the balanced case, the slightly unbalanced 

case, the moderately unbalanced case, and the severely unbalanced case. A tighter 

constraint leads to a lower RF at price of a higher RMC without affecting the overall 

RC. A reduction in RF benefits RPR and AARR. 
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2. FGP-2 works reasonably well for achieving a lower RF in the balanced case, the slightly 

unbalanced case, and the moderately unbalanced case. However, it does not achieve an 

acceptable lower RF in the severely unbalanced case. This implies that it is preferable 

not to ask FGP-2 to address a prediction task r
nP , which falls into the severely 

unbalanced case. 

3. In this study, it is interesting to note that given a fixed constraint, though the achieved 

RF is different in different cases, the RPR almost always has a similar performance. 

Figure 6.5 visualises this phenomena. For example, given a constraint R [5%, 10%], the 

achieved RFs are 13.48%, 9.98%, 22.68% and 45.33% with respect to 2.2
21P , 3

21P , 4
21P , 

and 5
21P  respectively. However, the achieved corresponding RPRs are 92.22%, 93.84%, 

97.46%, and 91.33% respectively, which do not show much difference. Similarly, this 

situation exists for both R [10%, 15%] and R [15%, 20%].    
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Figure 6.5: Performance comparisons for 2.2
21P , 3

21P , 4
21P , and 5

21P with respect to RF and RPR using 
different constraints. 
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4. The number of positive positions generated over the test period may not be affected 

significantly by the actual number of positive positions (opportunities) held in training 

data, but mainly affected by the constraint R supplied. Figure 6.6 illustrates the fact. 

Although there are different numbers of opportunities in the four different prediction 

cases over the test period, the numbers of signals (positive positions predicted) generated 

by FGP-2 in the different cases are roughly the same as long as the same constraint is 

applied. (One exception is that the number of positive positions (125) with respect 

to 2.2
21P and constraint R [15%, 20%] is higher than others).  
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6.4 Testing on a Market with Down-trend 

So far, we have tested FGP-2 on a number of data, including the DJIA index closing prices, 

individual stock closing prices data such as Microsoft, IBM and McDonald’s, etc. However, all 

the experimental data are gathered from the same kind of resource, i.e. stock markets.  Common 

sense concerning the property of this kind of market is that a general up-trend usually holds from 

a long historical viewpoint. Question arises as to whether FGP-2 works properly in a market with 

a general down-trend rather than with a general up-trend. 

Unlike many stock prices, prices in foreign exchange markets do not hold the up-trend 

property in general. Some of them do display the down-trend within a finite long historical 

period. In order to answer the above question, we purposely choose a foreign exchange data of 

$US/£BP, which shows a generally down-trend. The data are shown in Figure 6.7 (note that the 

data may show a up-trend in some sub-periods). We shall use the data to investigate the 

effectiveness of FGP-2 for achieving the lower RF in a market, in particular, with the property of 

a generally down-trend.  
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Figure 6.7: The foreign exchange closing prices (total 3035 trading days from 24/01/75 to 
11/02/87, including training data: 1900 cases (from 24/01/75 to 16/08/82), and 1135 cases 
(from 17/08/82 to 11/02/87)). 
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6.4.1 Experiments 

Settings in these experiments are the same as those adopted in the experiments in Section 6.3, 

including parameters for running GP, 6 indicators input to FGP-2, etc. The prediction tasks set up 

for investigation are 1
21P , 5.1

21P , and 2
21P . They can be categorised into the balanced case, the 

slightly unbalanced case, and the moderately unbalanced case respectively. As before, we took 

several mutually exclusive constraints for the constrained fitness function individually for 

running FGP-2. For each constraint chosen, we ran 10 times and reported only the mean results. 

6.4.2 Results and Discussion 

Table 6.5 shows the mean results of GDT performances over the test data with respect to 1
21P  (a 

balanced case). These results are visualised in Figure 6.8. In this foreign exchange market, which 

shows a generally down-trend, FGP-2 still achieved the similar results as those obtained in the 

stock markets. The overall picture remains. A tighter constraint leads to a lower RF at the price 

of a higher RMC without affecting RC much. 

 Similarly, for 5.1
21P  (a slightly unbalanced case) and 2

21P  (a moderately unbalanced case), 

we can still observe the overall picture. Both results are reported in Table 6.6 with the graph in 

Figure 6.9, and in Table 6.7 with the graph in Figure 6.10 respectively. In both unbalanced cases, 

FGP-2 works properly. This is consistent with what we found in the experiments on the DJIA 

data. This fact may also partially answer the second question we intend to address in this chapter.  

Based on the empirical results here, we may state that the effectiveness of FGP-2 may not 

be affected significantly by the trend of the market to which it is applied. 
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R [Cmin,Cmax] RF RMC RC AARR RPR # of signals 

Mean 0.0998 0.9885 0.5903 1.3922 0.9384 6.8 
[5, 10] STD 0.1925 0.0079 0.0029 0.9132 0.1299 6.0 

Mean 0.2490 0.9237 0.6068 1.3388 0.8676 48.9 
[10, 15] STD 0.1233 0.0131 0.0077 0.3104 0.0588 14.0 

Mean 0.4043 0.8825 0.6015 0.8573 0.7700 93.5 
[15, 20] 

STD 0.0740 0.0100 0.0110 0.0937 0.0642 16.0 

Mean 0.5005 0.8360 0.5856 0.5899 0.7022 155.2 
[20,30] 

STD 0.0290 0.0192 0.0082 0.0855 0.0606 27.0 

Mean 0.5417 0.7424 0.5641 0.4276 0.6206 267.3 
[30,40] STD 0.0382 0.0570 0.0256 0.0668 0.0452 77.0 

 Table 6.5: GDT performances affected by the constraint over the foreign exchange data: 

$US/£BP with respect to 1
21P . 

GDTs PERFORMANCES ON TEST PERIOD AFFECTED BY THE 
CONSTRAINT R  (n=21; r=1%)
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Figure 6.8: GDT performances affected by the constraint over the foreign exchange data: 

$US/£BP with respect to 1
21P . 
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6.5 Conclusions 

In the preceding chapter, we described the procedure of developing a constrained fitness function 

in FGP-2, and demonstrated its effectiveness for achieving a low rate of RF on the DJIA data and 

several American stock data. In this chapter, we have further investigated the effectiveness of 

FGP-2 with the constrained fitness function over a variety of prediction tasks and data sets. Our 

investigation has been carried out by targeting the prediction over a short period, a number of 

prediction tasks in unbalanced cases, and predictions over data with the property of a general 

down-trend respectively.   

In terms of the empirical results we have obtained, we draw our conclusions as follows. 

R [Cmin,Cmax] RF RMC RC AARR RPR # of signals 

Mean 0.1684 0.9754 0.5630 1.9898 0.8342 15.8 
[5, 10] 

STD 0.1013 0.0160 0.0045 1.1548 0.0984 8.3 

Mean 0.3028 0.9111 0.5752 0.8349 0.7420 67.0 
[10, 15] STD 0.1034 0.0349 0.0080 0.3606 0.0958 32.1 

Mean 0.3587 0.8307 0.5863 0.8433 0.6852 135.6 
[15, 20] STD 0.0687 0.0487 0.0126 0.1594 0.0707 45.3 

Mean 0.3635 0.7648 0.5982 0.8327 0.6943 188.6 
[20, 40] STD 0.0749 0.0679 0.0258 0.1509 0.0840 59.6 

Table 6.6: GDT performances affected by the constraint over the foreign exchange data: $US/£BP with 

respect to 5.1
21P . 

GDTs PERFORMANCES ON TEST PERIOD AFFECTED BY THE 
CONSTRAINT R (n=21,r=1.5%)
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Figure 6.9: GDT performances affected by the constraint over the foreign exchange data: $US/£BP 

with respect to 5.1
21P .   
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1. FGP-2 works properly over a shorter period in the tests conducted. The overall picture 

retains over a shorter period. A tighter constraint leads to a lower RF at the cost of a 

higher RMC, without affecting RC much (see Section 6.2). 

2. FGP-2 works well in the unbalanced cases tested. It is capable of generating acceptable 

lower RFs in slightly and moderately unbalanced cases (see Section 6.3 and Section 6.4). 

However, in the severely unbalanced case, it fails to achieve acceptable lower RFs (see 

Section 6.3). Nevertheless, the overall picture remains in any kind of unbalanced cases 

that we studied here, namely, the lightly, the moderately, or the severely unbalanced 

cases. 

R [Cmin,Cmax] RF RMC RC AARR RPR # of signals 

Mean 0.3190 0.8991 0.6442 0.9177 0.7055 55.7 
[5, 10] STD 0.0582 0.0333 0.0072 0.3263 0.0659 28.4 

Mean 0.3581 0.8387 0.6493 0.7438 0.6874 109.5 
[10, 15] STD 0.0651 0.0534 0.0089 0.1531 0.0611 42.7 

Mean 0.4177 0.7646 0.6448 0.7377 0.6456 177.7 
[15, 20] 

STD 0.0612 0.0717 0.0138 0.0686 0.0567 65.8 

Mean 0.3962 0.7711 0.6523 0.7091 0.6476 163.6 
[20, 30] 

STD 0.0652 0.0366 0.0168 0.1086 0.0675 37.2 

Table 6.7: GDTs performance affected by the constraint over the foreign exchange data: $US/£BP with 

respect to 2
21P . 

GDTs PERFORMANCES ON TEST PERIOD AFFECTED BY THE 
CONSTRAINT R  (n=21; r=2%)
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Figure 6.10: GDTs performance affected by the constraint over the foreign exchange data: $US/£BP 

with respect to 2
21P .   
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3. The effectiveness of FGP-2 may not be affected by the general trend observed in the data 

to which it is applied. Like predictions on the data with a general up-trend, the RF 

achieved by FGP-2 is acceptable in the data with a general down-trend property and the 

overall picture holds. 

Caution should be exercised here, though we have completed substantial experiments on 

investigation of the effectiveness of FGP-2 with the novel constrained fitness function. First, like 

any other machine learning tools, FGP-2 is only capable of finding the pattern if it exists.  We do 

not wish to give the false impression that FGP-2 can find the pattern in every data series. In fact, 

FGP-2 failed to find patterns in certain share prices that we tested on, e.g., HSBC and BT from 

1995 to 2000. This may indicate that the business nature of the company have changed, or the 

behaviour by the investors in these shares have changed over the period tested. Second , we would 

like to emphasize that FGP-2 is only a tool, not a replacement for human experts. By tuning the 

constraint in the fitness function, FGP-2 can provide the user with multiple options concerning 

RF performances. Success of FGP-2 depends on the user’s choice of indicators. Besides, the 

users are given the responsibility to verify the rules that FGP-2 generates.  
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Chapter 7  

Conclusions 

This chapter concludes this thesis, summarises its essential contributions and makes 

recommendations for future improvements in our current research work. 

7.1 Research Summary 

The overall research in this thesis is to develop a genetic programming based machine learning 

tool. We demonstrate the effectiveness of the tool by targeting financial forecasting. Two crucial 

goals in the tool that we propose are: 1) to improve prediction accuracy and 2) to achieve a low 

rate of failure. 

Since our research focuses on financial forecasting, investigations on predictability of 

financial markets are necessary to justify that this research is not futile. Based on our review on 

Efficient Market Hypothesis (EMH), we conclude that financial forecasting is not impossible. 

Moreover, our review on the study of technical rules in financial literature results in some 

indicators, which are used as input to our tool. Meanwhile, a literature survey indicates that our 

research lies in the field of application of GAs in finance. Examples of works in this field are 

Bauer (1994), Allen & Karjalainen (1995), and Mahfoud & Mani (1996). 

Aimed at the first goal of this research, we developed the first version of our program, 

called FGP-1. FGP-1 is intended to improve prediction accuracy over the given base predictions. 

In this thesis, FGP-1 is demonstrated to be useful, based on two instances of base predictions. 

The first is that base predictions consist of ordinal forecasts from experts involved. The second is 

that base predictions come from non-adaptive technical rules considered in their normal usages. 
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Based on our experiments, we conclude that FGP is capable of generating more accurate 

predictions than any of the given expert forecasts, as well as non-adaptive individual technical 

rules with respect to the prediction tasks that we address.  

Aimed at the second goal of this research, we developed the second version of our 

program, called FGP-2. FGP-2 is intended to achieve a low rate of failure, which is often 

desirable in financial forecasting. The novelty of FGP-2 lies in the fitness function. A novel 

constrained fitness function is developed and put into FGP-2. The effectiveness of FGP-2 for 

achieving a low rate of failure is demonstrated and analysed in a variety of prediction tasks and 

data sets. We analyse FGP-2, especially its RF performances by tuning the constraint parameter 

in the fitness function. A tighter constraint leads to a lower RF at the price of a higher RMC 

without affecting the overall RC much. Result comparisons between FGP-2 and the three NNs 

and the liner classifier have been carried out over 10 American share data. Based on our review 

on cost-sensitive learning and data-mining using GAs, we did not find techniques similar to the 

constrained fitness function for approaching classification problems where misclassification-cost 

needs to be taken into account.  

In summary, in this thesis, we have developed a genetic programming based machine 

learning tool particularly for attacking financial forecasting problems. Basically, we have 

achieved the two main research goals by applying FGP-1 and FGP-2 respectively.  FGP-1 and 

FGP-2 are built on top of canonical genetic programming techniques. In particular, we use the 

grammar-based presentation to generate valid GDTs; we use the hill-climb technique to locally 

optimise the thresholds in GDTs; furthermore, we develop a constrained fitness function in order 

to reduce RF. The ideas have been demonstrated to be useful for addressing the financial 

prediction tasks in this thesis.  
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7.2 Experiments: Summary and Conclusions 

In this thesis, we have applied FGP-1 and FGP-2 to a variety of prediction tasks and data sets. 

Table 7.1 summarises the experiments we have completed using FGP-1. Table 7.2 summarises 

the experiments we have completed using FGP-2. In both tables, the claims that each experiment 

supports are listed (last but one column). The major conclusions are listed as follows. 

Table 7.1: Experiments carried out using FGP-1 and the related claims. (Notes: r
nP means: to predict whether or 

not the price will increase a required r% (e.g. 2%) or more within a user-defined period n (e.g., 21 days). As for 
(ftr, fte), please refer to Equation 4.5 and 4.6, p104).   

Prediction 
task 

Type Data used Property of the data  
Input to 
FGP-1 

Claims 
related 

Section 
in 

thesis 

Weekly 
HSI 
Movement 
Prediction 

Three 
class 
classifica
-tion 
(Bullish, 
bearish 
or 
sluggish)  

Weekly movement of 
Hang Seng index (103 

cases) (25/05/1991-16/10/ 
1993) 

The whole data set is 
divided into three 
mutually exclusive 

subsets: 
D1: 34 cases (25/05/1991 - 

11/01/1992); 
D2: 35 cases (18/01/1992 - 

5/12/1992); 
D3: 34 cases (12/12/1992 - 

16/10/1993) 

Each of these data 
sets was used as 

testing data set once, 
whilst the remaining 

two sets were 
employed as the 

training data set.  The 
mean forecasting 
accuracy was the 
overall number of 
correct forecasts 

divided by number of 
cases in the whole 

data set. 

9 expert 
forecasts 

(1.1) 4.2.3.1 

S & P 500 
4

63P  

Balanced 
case; 
longer 
period 

Training Data  
(1800:02/04/63-02/07/70) 

 
Test Data 

(900:04/07/70-25/01/74) 

(ftr, f te) = 
(46.56%, 53.78%) 

 

6 direct 
forecast 

predicted   
by 6 

technical  
rules in their 

normal 
usages 

(1.1) 4.2.3.2 

DJIA 
2.2

21P  

Balanced 
case; 
middle 
period 

Training Data  
(1900:07/04/69-11/10/76) 

 
Test Data 

(900:12/10/76-05/05/80) 

(ftr, f te)  =  
(52.47%, 47.11%) 

MV_12 (t), 
MV_50 (t), 
TRB_5 (t), 
TRB_50 (t), 
Filter_5 (t), 
Filter_63(t) 

(1.2); 
(3) 

4.3.3.3 

DJIA 4
63P  

Balanced 
case; 
longer 
period 

Training Data  
(1900:07/04/69-11/10/76) 

 
Test Data 

(900:12/10/76-05/05/80) 

(ftr, f te)  = 
(52.84%, 49.22%) 

MV_12 (t), 
MV_50 (t), 
TRB_5 (t), 
TRB_50 (t), 
Filter_5 (t), 
Filter_63(t) 

(1.2); 
(3) 4.3.3.4 
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Table 7.2: Experiments carried out using FGP-2 and the related claims. (Notes: r
nP means: to predict whether or 

not the price will increase a required r% (e.g. 2%) or more within a user-defined period n (e.g., 21 days). As for 
(ftr, fte), please refer to Equation 4.5 and 4.6, p104). 

 

1. FGP-1 can be used to improve prediction accuracy over the given base predictions with 

respect to the prediction tasks we address. 

1.1  FGP-1 can be used to combine ordinal individual forecasts and improve forecasting (Weekly 

HSI Movement Prediction and S&P 500 4
63P ). 

FGP-1 is fed with ordinal forecasts such as: bullish, bearish or sluggish predictions; buy or 

not-buy predictions. It can be used to generate more accurate GDTs than each of those 

input ordinal predictions by combining them (see Chapter 4).    

1.2  FGP-1 can be used to generate more accurate GDTs than each of the six technical rules 

 Prediction 
task 

Type Data used Property 
of the data  

Rs used 
(Cmin,Cmax) 

Claims 
related 

Section 
in thesis 

DJIA 2.2
21P  

Balanced case; 
middle period 

(ftr, f te) = 
(52.47%, 
47.11%) 

(5, 10); (10, 15); 
(15, 20); (20, 35); 
(35, 50); (50, 65) 

(2.1.1) 5.3 and 
5.4 

DJIA 3
21P  

Slightly 
unbalance case;  
middle period 

(ftr, f te) = 
(42.95%, 
41.32%) 

(5, 10); (10, 15); 
(15, 20); (20, 30); 

(30, 40) 
(2.1.2) 6.3 

DJIA 4
21P  

Moderately 
unbalanced case; 

middle period 

(ftr, f te) = 
(30.37%, 
26.52%) 

(5, 10); (10, 15); 
(15, 20); (20, 30) (2.1.2) 6.3 

DJIA 5
21P  

Severely 
unbalanced case;  
middle period, 

(ftr, f te) = 
(21.58%, 
16.12%) 

(5, 10); (10, 15); 
(15, 20) (2.1.2) 6.3 

DJIA 8.0
5P  

Balanced case; 
shorter period  

Training Data 
(1900:07/04/69-11/10/76) 

 
Test Data 

(1135:12/10/76-09/04/81) 
Including: three period 

below: 
 

Down-trend: 
(378:12/10/76-12/04/78) 

 
Side-way-trend: 

(486: 13/04/78-27/03/80) 
 

Up-trend: 
(261: 28/03/80-09/04/81) 

(ftr, f te) = 
(50.00%, 
51.63%) 

(5, 10); (10, 15); 
(15, 20); (20, 35); 

(35, 50) 
(2.2) 6.2 

FE 1
21P  Balanced case; 

middle period 

(ftr, f te) = 
 (48.42%, 
57.44%) 

(5, 10); (10, 15); 
(15, 20); (20, 30); 

(30, 40) 

(2.1.1); 
(2.3) 6.4 

FE 5.1
21P  

Slightly 
unbalance case; 
middle period 

(ftr, f te) = 
 (40.42%, 
44.49%) 

(5, 10); (10, 15); 
(15, 20); (20, 40) 

(2.1.2); 
(2.3) 6.4 

FE 2
21P  

Moderately 
unbalanced case; 

middle period 

Foreign Exchange 
($/£) 

 
Training Data 

(1900: 24/01/75-17/08/82) 

 
Test Data 

(1135:17/08/82-11/02/87) 

(ftr, f te) = 
 (32.05%, 
37.51%) 

(5, 10); (10, 15); 
(15, 20); (20, 30) 

(2.1.2); 
(2.3) 6.4 

10 US-
Shares 

2
22P  

Mixture of 
balanced cases 

and positive 
unbalanced cases; 

middle period 

10 American 
Individual Stocks 

 
Training Data (Varied) 

Test Data 
(100:14/10/96-06/03/97) 

50<f tr<92; 
50< f te<97 

(10, 20);  
(20, 30) 

(2.1.2); 
(4) 5.5 
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considered in their normal usages with respect to the prediction tasks r
nP  (DJIA 2.2

21P , DJIA 

4
63P ). 

FGP-1 is fed with the six indicators as input that are extracted from the six technical rules 

respectively. FGP-1 can constitute different types of selectors that correspond to types of 

input indicators. Each selector has the form [Indicator relation threshold] where the 

relation belongs to the set {=, <, >} and the threshold is a real number. The threshold in 

each selector could possibly be adjusted during evolution. Moreover, FGP-1 looks for the 

interactive combination structures between those selectors. The way of selector 

combination is either conjunctive or disjunctive. By doing so, FGP-1 is capable of evolving 

GDTs that are able to make predictions of higher accuracy than any of the six technical 

rules considered in their normal usages (see Chapter 4).  

2. FGP-2 allows the user to tune a parameter, i.e. the constraint, in the fitness function in 

order to reduce RF without affecting the RC significantly, though, at the price of 

increasing RMC. FGP-2 has achieved consistent results in a variety of data sets and 

prediction tasks, as explained below (see Chapter 5 and Chapter 6). 

2.1  FGP-2 on prediction tasks with balanced as well as unbalanced cases. 

2.1.1  In balanced cases (see the definition in Section 6.3.1). 

In our experiments (DJIA 2.2
21P , 8.0

5P , $/£ 1
21P ), varying the constraint results in varied 

results as expected. An overall picture emerges, i.e. a tighter constraint results in a lower 

RF without affecting RC much, though at the cost of a higher RMC.  

A further analysis of GDTs’ performances is conducted over three sub-periods during the 

whole test period for the 2.2
21P . The three sub-periods represent three distinct market 

characteristics, namely, down-trend, side-way-trend, and up-trend. Results show that the 
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overall picture remains over each sub-period. On the other hand, GDTs display an 

interesting and desirable nature, i.e. they produce a far fewer number of positive positions 

over the down-trend market situation compared with those over the side-way trend or the 

up-trend. In other words, FGP-2 has the potential to cope well with varied market situations 

in the data tested. 

2.1.2  In unbalanced cases (see the definitions in Section 6.3.1).  

In the slightly, moderately and severely unbalanced cases, the overall picture remains. This 

is verified by experiments of DJIA 3
21P , DJIA 4

21P  and DJIA 5
21P ; and FE (Foreign 

Exchange ($/£)) 5.1
21P  and FE 2

21P . However, in a severely unbalanced case, i.e. DJIA 5
21P , 

FGP-2 does not achieve an acceptable low RF as expected. Experimental results of the 10 

American shares 2
22P  show that the overall picture also remains in the positive unbalanced 

cases (see the definition in Section 6.3.1, p149).   

2.2     FGP-2 on prediction tasks with long as well as shorter periods. 

Prediction tasks with a shorter period might be more attractive. FGP-2 can deal with the 

task with a shorter period (e.g. 5 days) well in the data tested. This is demonstrated by the 

experiments of DJIA 8.0
5P , in which the overall picture holds (see Section 6.2). 

2.3    FGP-2 on data that show general up-trend as well as general down-trend.  

Majorities of our experiments are conducted on stock markets. Data in such markets are 

generally of up-trend in the long term. To investigate whether the overall picture holds or 

not on general down-trend markets, a foreign exchange data ($/£) is chosen to verify this. 

In both the balanced case (FE 1
21P ) and the unbalanced cases (FE 5.1

21P , FE 2
21P ), empirical 

results show the overall picture remains on the general down-trend market that we study  

(see Section 6.4). 
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3. FGP-1 outperforms C4.5 with respect to the experiments that we have carried out. 

C4.5 does not provide mechanisms to approach problems where the misclassification cost 

is taken into account. Thus, comparisons are only meaningful with FGP-1. Comparisons 

are completed over prediction tasks with two different periods, namely, 63 and 21 days 

using the DJIA data (DJIA 2.2
21P , 4

63P ) (see Section 4.3). 

4. FGP-2 favourably compares with the three NNs and beats the linear classifier with 

respect to the 10 American individual stocks based on 2
22P  (see Section 5.5). 

7.3 Contributions 

This thesis contributes to the fields of machine learning, genetic programming and financial 

forecasting. Two major contributions to the body of knowledge made in this thesis are: 

1. We have examined two ways of applying genetic programming to financial forecasting, 

demonstrated by FGP-1:  

a) If ordinal predictions are given, FGP-1 can potentially combine these predictions to make 

more accurate predictions;  

b) If indicators are given, FGP-1 can use them to build rules by constructing selectors and 

searching for thresholds. 

Our experiments support that FGP-1 can combine predictions to make predictions with 

higher accuracy. It can also generate rules with higher prediction accuracy. 

2. A novel constrained fitness function has been proposed. By embedding it into FGP, the 

resulting algorithm, FGP-2, is capable of achieving a lower rate of failure (RF), without 

significant effect on the rate of correctness (RC), at the price of a higher rate of missing 

chances (RMC). This, to a certain extent, allows users to produce GDTs to suit their 

preferences with regard to RF and RMC.   
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7.4 Further Research 

With respect to FGP system developed in this thesis, the following recommendations may 

enhance and extend FGP. 

1. Understanding the roles of the parameters in the constrained fitness function 

The constrained fitness function has been demonstrated to be useful for achieving lower RFs in a 

variety of data sets and prediction tasks. However, for FGP-2 to work, one must set up 

appropriate values of the parameters in the fitness function (i.e. three weights: w_rc, w_rmc,  

w_rf , and the constraint, R). Improper settings of these parameters can lead to bad results. It 

would be worthwhile to research the effects of these parameters on the efficiency of the 

constrained fitness function.  

2. Applicability of FGP to other domains 

As discussed in Section 5.7, the idea of putting a constraint into the processes of decision tree 

generation is potentially be applicable to other algorithms in machine learning. In the context of 

two-class classification problems, there are two forms of misclassification: false positive and 

false negative. In many applications, one form of misclassification is more costly than another. 

The novel constrained fitness function enables the user to reduce one of these two forms of 

misclassification at the price of the other. We would like to see more use of it in other domains.  
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Appendix A  

The Schema Theorem for Genetic Algorithms  

The Schema Theorem of Holland (1975) is based on the concept of schemas. A schemas is 

defined for fixed-length string structures as follows: 

A schema, H, is a similarity template describing a subset of strings with similarities at 

certain string positions (Goldberg 1989). 

For a fixed-length binary representation, the alphabet for this language is {0, 1}. Here, to be 

brief, a schema is any string composed of 0s, 1s and *’s, where each * is interpreted as a “don’t 

care” symbol, which matches either 0 or 1. A schema thereby describes a subset of the potential 

solutions. For example, the schema 0*00 represents the set of bit strings that includes exactly 

0010 and 0110. 

Two properties associated with a schema H are: 

• The Defining Length, δ (H) is the number of bits between the index of the first specified 

position and the index of the last specified position. For example, δ (1*****10) = 7 − 1 

= 6, while  δ (1*******) = 1-1 = 0. 

• The Schema Order, o(H) is the number of specified positions (i.e. the number of non-* 

positions) in H. For example, o(1*******) = 1, while o(11111111) = 8. 

The schema theorem intends to characterize the evolution of the population within a GA in 

terms of the number of instances representing each schema. Let m(H, t) denote the number of 

instances of schema H in the population at time t (i.e., during the tth generation). The schema 
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theorem describes the expected value of m(H, t+1) with respect to m( H, t) and other properties of 

the schema, population, and GA algorithms parameters. 

There are three steps in developing the schema theorem. Three steps are selection step, 

crossover step, and mutation step, each of which has effect on the expected value of m(H, t+1) 

during population evolving in the GA. Considered in the schema theorem are a fitness-

proportionate selection strategy, a single-point crossover, and a bit-flipping mutation, which are 

associated in corresponding steps. 

Step 1: Schemata and Fitness-Proportionate Selection  

The first step involves the consideration of the effect of that selection has on H from one 

generation to the next. According to fitness-proportionate selection strategy, the propagation of H 

will be proportional to the average fitness of the population samples containing H, in relation to 

the average fitness of the entire population. Thus, given m( H, t),  the expected number instances 

of schema H given in the next generation may be stated as  

E [m (H, t+1)] = m (H, t) 
f

Hf )(
      (A.1) 

 where, f(H) is the average fitness of the bit strings matching a schema H. f is the average fitness 

of the entire population. This formula states that schemata in the population, with above-average 

fitness, will receive exponentially increasing representations from generation to the next. 

Step 2: Schemata and Single-Point Crossover 

The single-point crossover operator is normally applied probabilistically to the population 

of binary strings. Note that crossover disrupts a schema only when the crossover point occurs 

within the defining length of the schema. The probability that a schema H survives the disruption 

of crossover in a string of length of l, denoted with Ps (c), is given as follows. 

 Ps (c) ≥ 1 − Pc 
1

)(

−l

Hδ
       (A 2) 
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where Pc is the probability crossover, and the inequality reflects that fact that crossover may not 

actually disrupt the schema even when the crossover point is within the defining length. 

Step 3: Schemata and Bit-Flipping Mutation 

Mutation normally defined as a low-probability operator that randomly flips the bit value 

for any position in a population. The probability that a schema H survives disruption due to 

mutation, denoted by Ps (m) is then given as follows. 

Ps (m) = (1 − Pm ) 
o(H)       (A 3) 

Note that the schema theorem only considers the possible negative influence of crossover 

and mutation operation, i.e. crossover or mutation disrupts H for the next generation, without 

considering their (presumably) positive effects, i.e. crossover or mutation constructs possible one 

or two new Hs for the next generation. Thus, the full schema theorem for the genetic algorithms 

with fitness-proportionate selection, single-point crossover and bit-flipping mutation, provides a 

lower bound on the expected frequency of schema H at the next generation, as follows. 

E [m (H, t+1)] ≥ m (H, t) 
f

Hf )(
(1 − Pc 

1

)(

−l

Hδ
) (1 − Pm ) 

o(H)      (A 4) 

The Schema Theorem can be interpreted by stating that “short, low-order, above-average 

schemata receive exponentially increasing trails in subsequent generations” (Holland 1975). 



 175

Bibliography  

[Alander, 1994] Alander, J. T. (1994). An indexed bibliography of genetic algorithms: Years 
1957-1993. Art of CAD Ltd., Vaasa (Finland)  (over 3000 GA references). 

[Alander, 1995] Allander, J.T. (1995). Indexed bibliography of genetic algorithms papers of 
1996. University of Vaasa, Department of Information Technology and Production 
Economics, Rep.94-1-96.  

[Alexander, 1961] Alexander, S. S. (1961). Price movements in speculative markets: Trends or 
random walks. Industrial Management Review, 2 (2). 7-26. 

[Alexander, 1964] Alexander, S. S. (1964). Price movement in speculative markets: Trend or 
random walks, No. 2. In Cootner, P. (ed.). The Random Character of Stock Market 
Prices, MIT Press, Cambridge, MA, 338-372. 

[Allen & Karjalainen 1995] Allen, F. & Karjalainen, R.  (1995). Using genetic algorithms to find 
technical trading rules. Working paper at Rodney L. White Center for Financial Research, 
The Wharton School, University of Pennsylvania. 20-95.  

[Allen & Karjalainen, 1999] Allen, F. & Karjalainen, R. (1999). Using genetic algorithms to find 
technical trading rules. Journal of Financial Economics, Vol. 51, Issue 2, February. 245-
271. 

[Altenerg,  1995]  Altenerg, L. (1995). The schema  theorem  and  price’s  theorem. In   Whitley, 
L.D. & Vose, M.D. (eds.). Foundations of Genetic Algorithms 3, Morgan Kaufmann. 23-
49. 

[Anderson et al., 1992] Anderson, B.L., McDonnell, J.R. & Page, W.C. (1992). Configuration 
optimisation of mobile manipulators with equality constraints using evolutionary 
programming. Proceedings of First Annual Conference on Evolutionary Programming. 
San Diego, CA: Evolutionary Programming Society. 71-79. 

[Angeline et al., 1999] Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X. & Zalzala, A. 
(eds.). (1999). Proceedings of the Congress on Evolutionary Computation, (CEC’99). 
Washington D.C., USA. IEEE Press. 

[Angeline & Pollack, 1992] Angeline, P.J. & Pollack, J.B. (1992). The evolutionary induction of 
subroutines. In Proceedings of the Fourteenth Annual Conference of the Cognitive 
Science Society. Bloomington, Indiana, USA. Lawrence Erlbaum Associates. 

[Angeline & Kinnear, Jr., 1996] Angeline, P.J. & Kinnear, Jr., K. E. (eds.), (1996). Advances in 
genetic programming II. MIT Press.  

[Arifovic, 1994] Arifovic, J. (1994). Genetic algorithms learning and the cobweb model. Journal 
of Economic Dynamics and Control, 18(1), 3-28. 

[Arifovic, 1996] Arifovic, J. (1996). The behaviour of the exchange rate in the genetic algorithms 
and experimental economics. Journal of Political Economy, 104, 510-541. 

[Arthur, 1992] Arthur, B. (1992). On learning and adaptation in the economy. Santa Fe Institute 
Working Paper 92-07-38. 

[Asch et al. 1984] Asch, P., Malkiel, B. G. & Quandt, R. E. (1984). Market efficiency in 
racetrack betting. Journal of Business, Vol. 57, No. 2, 165-175. 



 176

[Bäck, 1996] Bäck, T. (1996). Evolutionary algorithms in theory and practice. New York: 
Oxford University Press. 

[Bäck, 1997] Bäck, T. (ed.), (1997). Proceedings of the seventh international conference on 
genetic algorithms. San Francisco, California: Morgan Kaufmann Publishers, Inc., 1997. 

[Bäck et al., 1997] Bäck, T., Hammel, U. & Schwefel, H.P. (1997). Evolutionary computation: 
Comments on the history and current state. IEEE Transactions on Evolutionary 
Computation. Vol. 1 No. 1. 3-17. 

[Backus, 1959] Backus, J.W. (1959). The syntax and semantics of the proposed international 
algebraic language of Zurich. ACM-GAMM conference, ICIP, Paris, June. 

[Bachelier, 1900] Bachelier, L. (1900). Theory of speculation in the random character of stock 
market prices. MIT, Cambridge, MA, 1964; Reprint.   

[Banzhaf et al., 1998] Banzhaf, W., Nordin, P., Keller, R.E. Francone, F.D. (1998). Genetic 
Programming: An introduction on the automatic evolution of computer programs and its 
applications. San Francisco, California: Morgan Kaufmann. 

[Banzhaf et al., 1999] Banzhaf, W, Daida, J., Eiben, A.E.,  Garzon, M.H., Honavar, V., Jakiela, 
M. & Smith, R.E. (eds). (1999). Proceedings of the Genetic and Evolutionary 
Computation Conference (GECCO’99). Orlando, Florida, USA, 13-17 July. Morgan 
Kaufmann. 

[Bauer, 1994] Bauer, R. J. Jr. (1994). Genetic algorithms and investment strategies. New York, 
John Wiley & Sons, Inc. 

[Beyer, 1997] Beyer, H.-G. (1997). An alternative explanation for the manner in which genetic 
algorithms operate. BioSystems. 41: 1-15. 

[Blume et al., 1994] Blume, L., Easley, D. & O'Hara, M. (1994). Market statistics and technical 
analysis: the role of volume, Journal of finance, 49, 153-181. 

[Bojarczuk et al., 1999] Bojarczuk, C.C., Lopes, H.S. & Freitas, A.A. (1999). Discovering 
comprehensible classification rules by using genetic programming: a case study in a 
medical domain. In Banzhaf, W,  Daida, J.,  Eiben, A.E. Garzon, M.H.,  Honavar, V., 
Jakiela, M. & Smith, R.E. (eds.). Proceedings of the Genetic and Evolutionary    
Computation Conference, Vol. 2, Orlando, Florida, USA, July. Morgan Kaufmann. 953-
958, 

[Bollerslev, 1986] Bollerslev, T. (1986). Generalized autoregressive conditional 
heteroskedasticity. Journal of Econometrics, 31, 307-327. 

[Box & Jenkins, 1976] Box, G.E.P. & Jenkins, F.M. (1976). Time series analysis: Forecasting 
and control, 2nd ed. Oakland, CA: Holden-Day. 

[Bradford et al., 1998] Bradford, J.,  Kunz, C., Kohavi, R., Brunk, C. & Brodley, C. (1998). 
Pruning decision trees with misclassification costs. In Proc. of the 1998 European 
Conference on Machine Learning. 131-136. 

[Breiman et al., 1984] Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). 
Classification and Regression Trees. Wadsworth, Pacific Grove, CA. 

[Breiman, 1994] Breiman, L., (1994). Bagging predictions, Technical Report 421, Dept. of 
Statistics Technical Report 421, University of Claifornia, Berkeley, Claifornia.  

[Brock et al., 1992] Brock, W., Lakonishok, J. & LeBaron, B. (1992). Simple technical trading 
rules and the stochastic properties of stock returns. Journal of Finance, 47, 1731-1764. 



 177

[Brooker et al., 1989] Brooker, L.B., Goldberg, D.E. & Holland, J.H. (1989). Classifier systems 
and genetic algorithms. Artificial Intelligence 40: 235-282. 

[Brown & Jennings, 1989] Brown, D., and Jennings, R. (1989). On technical analysis, Review of 
Financial Studies, 2, 527-552. 

[Butler, 1997] Butler, J.M. (1997). Eddie beats the market, data mining and decision support 
through genetic programming. Developments, Reuters Limited, (1997), Vol.1. 

[Campbell et al., 1997] Campbell, J.Y., Lo, A.W. & MacKinlay, A.C. (1997). The econometrics 
of financial markets, Princeton, N.J.: Princeton University Press. 

[Chan & Stolfo, 1998] Chan, P.K. & Stolfo, S.J. (1998). Toward scalable learning with non-
uniform class and cost distributions: A case study in credit card fraud detection. Proc. 4th 
International Conference on Knowledge Discovery and Data Mining. New York, NY, 
164-168. 

[Chen, 1997] Chen, S.-H. (1998). Evolutionary computation in financial engineering: A road 
map of GAs and GP. Financial Engineering News, Vol. 2, No. 4. 

[Chen et al., 1998] Chen, S.-H., Yeh, C.-H. & Lee, W.-C. (1998). Option pricing with genetic 
programming. In Koza, J.R., Banzhaf, W., Chellapilla, K., Deb, K., Dorigo, M., Fogel, 
D.B., Garzon, M.H., Goldberg, D.E., Iba, H. & Riolo, R. (eds.), Proceedings of the Third 
Annual Genetic Programming Conference, CA: Morgan Kaufmann Publishers. 32-37. 

[Chen & Duffy, 1996] Chen, S-H. & Duffy, J. (1996). Genetic programming in the coordination 
game with a chaotic best-response function. In Fogel, L., Angeline, P. & Bäck, T. (eds.). 
Evolutionary Programming V, MIT Press. 277-286. 

[Chen & Lin, 1998] Chen, S.-H. & Lin, W.-Y. (1998). The appeal of evolution: The case of the 
RGA-based portfolios," in Debnath, N.C. (ed.). Proceedings of the ISCA 13th 
International Conference. 125-130. 

[Chen & Lu, 1999] Chen, S.-H. & Lu, C.-F. (1999). Would evolutionary computation help in 
designs of ANNs in forecasting foreign exchange rates?  In Angeline, P.J., Michalewicz, 
Z., Schoenauer, M., Yao, X. & Zalzala, A. (eds.). Proceedings of the Congress on 
Evolutionary Computation, (CEC’99). Washington D.C., USA. IEEE Press. 267-274. 

[Chen & Yeh, 1996a] Chen, S-H. & Yeh, C-H. (1996a). Genetic programming learning and the 
cobweb model. In Angeline, P. & Kinnear, K.E. (eds.). Advances in genetic programming 
2, MIT Press, Cambridge, MA. Chapter 22. 443-466. 

[Chen & Yeh, 1996b] Chen, S.-H. & Yeh, C.-H. (1996b). Genetic programming and the efficient 
market hypothesis. In Koza, J.R., Goldberg, D., Fogel, D. & Riolo, R. (eds.). Procedings 
of the First Annual Conference on Genetic Programming. Stanford University, CA, USA, 
28-31 July. MIT Press. 45-53. 

[Chen & Yeh, 1996c] Chen, S.-H. & Yeh, C.-H. (1996c). Toward a computable approach to the 
efficient market hypothesis: An application of genetic programming. Journal of 
Economic Dynamics and Control, 21, 1043-1063. 

[Chen & Lee, 1997] Chen, S.-H. & Lee, W.-C. (1997). Option pricing with genetic algorithms: 
the case of european options," in Back, T (ed.), Proceedings of 1997 International 
Conference on Genetic Algorithms, Morgan Kaufmann Publishers, San Francisco. 704-
711. 

[Chen & Yeh, 1997a] Chen, S.-H. & Yeh, C.-H. (1997). Using genetic programming to model 
volatility in financial time series. In Koza, J.R., Goldberg, D., Fogel, D. & Riolo, R. 



 178

(eds.). Procedings of the Second Annual Conference on Genetic Programming. Stanford 
University, CA, USA, 28-31 July. MIT Press. 58-63. 

[Chen & Yeh, 1997b] Chen, S.-H. & Yeh, C.-H. (1998). Genetic programming in the overlapping 
generations model: An illustration with dynamics of the inflation rate. In Porto, V.W., 
Saravanan, N. Waagen, D. & Eiben, A.E. (eds.). Evolutionary Programming VII, Lecture 
Notes in Computer Science.  829-838. 

[Chen & Kuo, 1999] Chen, S.-H. & Kuo, T.-W. (1999). Towards an agent-based foundation of 
financial econometrics: An approach based on genetic programming artificial markets. In 
Proceedings of the Genetic and Evolutionary Computation Conference. San Francisco, 
CA: Morgan Kaufmann. 966-973. 

[Chan & Stolfo, 1996] Chan, P.K & Stolfo, S. (1996). Scaling learning by meta-learning over 
disjoint and partially replicated data. Proc. of Ninth Florida Artificial Intelligence 
Research Society. 151-155. 

[Chan & Stolfo, 1998] Chan, P.K. & Stolfo, S.J. (1998). Toward scalable learning with non-
uniform class and cost distributions: A case study in credit card fraud detection. Proc. 4th 
International Conference on Knowledge Discovery and Data Mining, New York, NY, 
164-168. 

[Colin, 1994] Colin, A. (1994). Genetic algorithms for financial modelling, In Deboeck, G. 
(eds.). Trading on the edge: Neural, genetic and fuzzy systems for chaotic financial 
markets. John Wiley & Sons, NY. 148-173. 

[Cootner, 1962] Cootner, P. (1962). Stock prices: random vs systematic changes. Industrial 
Management Review, 3 (2), 24-45. 

[Cootner, 1964] Cootner, P. (ed.). (1964). The Random Character of Stock Market Prices. MIT 
Press, Cambridge, MA. 

[Cowles, 1933] Cowles, A. (1933). Can stock market forecasters forecast? Econometrica, 1, 309-
324. 

[Chomsky, 1956] Chomsky, N. (1956). Three models for the description of language. IEEE 
Transactions on Information Theory, 2(3): 113-124. 

[Daida et al., 1996] Daida, J.M., Bersano-Begey, T.F., Ross, S.J. & Vesecky, J.F. (1996).  
Computer-assisted design of image classification algorithms: Dynamic and static fitness 
evaluations in a scaffolded genetic programming environment. In Koza, J.R., Goldberg, 
D., Fogel, D. & Riolo, R. (eds.). Procedings of the First Annual Conference on Genetic 
Programming. Stanford University, CA, USA, July. MIT Press. 279-284. 

[Darwin, 1859] Darwin, C. (1859). On the origin of species by means of natural selection. John 
Murray. 

[Davis, 1991] Davis, L. (ed.). (1991). Handbook of genetic algorithms. Van Nostrand Reinhold. 

[Davis, 1994] Davis, L. (1994). Genetic algorithms and financial applications. In Deboeck, G. 
(eds.) Trading on the edge: Neural, genetic and fuzzy systems for chaotic financial 
markets. John Wiley & Sons, NY. 

[Domingos, 1999] Domingos, P. (1999). MetaCost: A general method for making classifiers 
cost-sensitive. In Proc. of the Fifth International Conference on Knowledge Discovery 
and Data Mining (KDD-99). San Diego, CA: ACM press. 

[Donaldson & Kamstra, 1996] Donaldson, R.G. & Kamstra, M. (1996). Using artificial neural 
networks to combine financial forecasts. Journal of Forecasting, Vol. 15, 49-61. 



 179

[Donchian, 1957] Donchian, R.D. (1957). Trends following methods in commodity analysis. 
Commodity Year Book. 

[Dorsey & Mayer, 1995] Dorsey, R.E. & Mayer, W.J. (1995). Genetic algorithms for estimation 
problems with multiple optima, non-differentiability, and other irregular features. Journal 
of Business and Economics Statistics, Vol.13, No. 1, 53-66.  

[Deboeck, 1994] Deboeck, G.J. (eds), (1994). Trading on the edge: neural, genetic, and fuzzy 
systems for chaotic financial markets. New York: Wiley. 

[DeJong 1975] DeJong, K.A. (1975). An analysis of the behaviour of a class of generic adaptive 
systems. Ph.D dissertation. University of Michigan. 

[DeJong et al., 1993] DeJong, K.A., Spears, W.M. & Gordon, D.F. (1993). Using genetic 
algorithms for concept learning.  Machine Learning, 13, 161-188. 

[de la Maza, 1989] de la Maza, M. (1989). A SEAGUL visits the race track. Proceedings of the 
3rd International Conference on Genetic Algorithms. Morgan Kaufman, 208-212. 

[de la Maza & Yuret, 1995] de la Maza, M. & Yuret, D. (1995). A model of stock market 
participants. In Biethahn, J. & Nissen, V. (eds). Evolutionary Algorithms in Management 
applications, Springer Verlag, Heidelberg. 290-304. 

[Dworman et al., 1996] Dworman, G., Kimbrough, S.O. and Laing, J.D. (1996). Bargaining by 
artificial agents in two coalition games: A study in genetic programming for electronic 
commerce. In Koza, J.R., Goldberg, D., Fogel, D. & Riolo, R. (eds.). Procedings of the 
First Annual Conference on Genetic Programming. Stanford University, CA, USA, July. 
MIT Press. 54-62. 

[Economist, 1993] The Economist (1993). Frontiers of finance. 328 (7832). October 9th, a survey. 

[Edmonds & Kershaw, 1994] Edmonds, A.N. & Kershaw, P.S. (1994). Genetic programming of 
Fuzzy logic production rules with application to financial trading. Proceedings of the 
IEEE World Conference on Computational Intelligence, Orlando, Florida. 

[Edwards & Magee, 1992] Edwards, R.D. & Magee, J. (1992). Technical analysis of stock 
trends. New York: New York Institute of Finance. 

[Engle, 1982] Engle, R.F. (1982). Autoregressive conditional heteroskedasticity with estimates of 
the variance of U.K. inflation. Econometrica, 50, 987-1008. 

[Evett & Fernandez, 1998] Evett, M. & Fernandez, T. (1998). Numeric mutation improves the 
discovery of numeric constants in genetic programming. In Koza, J.R., Banzhaf, W., 
Chellapilla, K., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M.H., Goldberg, D.E., Iba, H. 
& Riolo, R. (eds). (1998). Proceedings of the Third Annual Conference on Genetic 
Programming. University of Wisconsin, Madison, Wisconsin, SA, 22-25 July. Morgan 
Kaufmann. 66-71. 

[Fama, 1965] Fama, E.F. (1965). The behaviour of stock prices. Journal of Business 38, 34-105. 

[Fama & Blume, 1966] Fama, E.F. & Blume, M.E. (1966). Filter rules and stock-market trading. 
Journal of Business, Vol. 39, 226-241. 

[Fama, 1970] Fama, E.F. (1970). Efficient capital markets: A review of theory and empirical 
work Journal of Finance 23, 383-417. 

[Fama, 1991] Fama, E.F. (1991). Efficient capital markets: II. Journal of Finance 46(5), 1575-
1617. 

[Fama & French, 1988] Fama, E.F. & French, K.R. (1988). Permanent and temporary 



 180

components of stock prices. Journal of Political Economy. 246-273.  

[Fama & Blume, 1966] Fama, E.F. & Blume, M.E. (1966). Filter rules and stock-market trading. 
Journal of Business 39 (1), 226-241. 

[Fan et al., 1996] Fan, D.K., Lau, K-N. & Leung, P-L. (1996). Combining ordinal forecasting 
with an application in a financial market. Journal of Forecasting, Vol. 15, No.1, Wiley, 
January, 37-48. 

[Fan et al., 1999] Fan, W., Stolfo, S. J., Zhang, J. & Chan, P.K. (1999). AdaCost: 
Misclassification Cost-sensitive Boosting. In Proc. of the 1999 International Conference 
on Machine Learning (ICML99). 

[Fawcett & Provost, 1997] Fawcett, T., & Provost, F.J. (1997). Adaptive fraud detection. Data 
Mining and Knowledge Discovery, 1 (3). 

[Fogel et al., 1966] Fogel, L.J., Owens, A. & Walsh, M. (1966). Artificial intelligence through 
simulated evolution. New York: John Wiley & Sons. 

[Fogler, 1993] Fogler, H.R. (1993). A modern theory of security analysis. Journal of Portfolio 
Management. Spring, 6-15. 

[Fogler, 1995] Fogler, H.R. (1995). Investment analysis and new quantitative tools. Journal of 
Portfolio Management. Summer, 39-48. 

[Fogel & Ghozeil, 1998] Fogel, D.B. & Ghozeil, A. (1998). The schema theorem and the 
misallocation of trials in the presence of stochastic effects. In Porto, V.W.  Saravanan, N., 
Waagen, D.E. & Eiben, A.E. (eds.). Evolutionary Programming VII: Proceedings of the 
7th Annual Conference on Evolutionary Programming, San Diego, CA. Springer-Verlag. 
313-321. 

[Foster, 1986] Foster, G. (1986). Financial statement analysis. Second Edition, Prentice-Hall. 

[Frankel & Froot, 1990] Frankel, J.A. & Froot, K.A. (1990). Chartists, fundamentalists, and 
trading in the foreign exchange market. American Economic Review, 80(2), 181-185. 

[Freund & Schapire, 1996] Freund, Y. & Schapire, R.E., (1996). Experiments with a new 
boosting algorithm, In Proc. of the Thirteenth International Conference on Machine 
Learning, Morgan Kaufmann, 148-156. 

[Frey, 1991] Frey, P.W. & Slate, D.J. (1991). Letter recognition using Holland-style adaptive 
classifiers, Machine Learning, 6, 161-182. 

[Gencay, 1996] Gencay, R. (1996). Non-linear prediction of security returns with moving 
average rules. Journal of Forecasting, 15, 165-174.   

[Gibbons & Hess, 1981] Gibbons, M.R. & Hess, P. (1981). Day of the week effects and asset 
returns. Journal of Business. 579-590. 

[Goldberg, 1989] Goldberg, D.E. (1989). Genetic algorithms in search, optimization and 
machine learning. Addison-Wesley. 

[Goldberg & Schulmeister, 1988] Goldberg, M. & Schulmeister, S. (1988). Technical analysis 
and stock market efficiency. Economic research reports #88-21. C.V. Starr Center for 
Applied Economics. Department of Economics, New York University. 

[Goonatilake & Treleaven, 1995] Goonatilake, S. & Treleaven, P. (eds.), (1995). Intelligent 
systems for finance and business. Wiley, New York. 

[Granger, 1972] Granger, C.W.J. (1972). Empirical studies of capital markets: A survey. In 



 181

Szego, G.P. and Shell, K. (eds.), Mathematical Models in Investment and Finance. 
Amsterdam:North-Holland. 469-519. 

[Granger, 1992] Granger, C.W.J. (1992). Forecasting, in Newman, P., Milgate, M. & Eatwell, J. 
(eds.). New palgrave dictionary of money and finance, Macmillan, London, 142-143. 

[Grefenstette, 1992] Grefenstette, J.J. (1992). Deception considered harmful. In FOGA-92, 
Foundations of Genetic Algorithms, (Vail, Colorado), 24-29 July. 

[Grefenstette & Baker, 1989] Grefenstette, J.J. & Baker, J.E. (1989). How genetic algorithms 
work: a critical look at implicit parallelism. In Schaffer, J.D. (ed). Proceedings of the 
Third International Conference on Genetic Algorithms. George Mason University. 
Morgan Kaufmann. 20-27. 

[Grossman & Stiglitz, 1980] Grossman, S. & Stiglitz, J. (1980). On the impossibility of 
informationally efficient markets. American Economic Review 70, 393-408. 

[Gritz & Hahn, 1997] Gritz, L. & Hahn, J.K. (1997). Genetic programming evolution of 
controllers for 3-D character animation. In Koza, J.R., Deb, K., Dorigo, M., Fogel, D.B. 
Garzon, M., Iba, H & Riolo, R.L. (eds.) Genetic Programming 1997: Proceedings of the 
Second Annual Conference. Stanford University, CA, USA, July. Morgan Kaufmann. 
139-146. 

[Gruau, 1996] Gruau, F. (1996). On using syntactic constraints with genetic programming. In 
Angeline, J. & Kinnear, Jr., K.E. (eds.). Advances in Genetic Programming II, MIT Press, 
Camridge, MA, 377-394. 

[Gujarati, 1995] Gujarati, D.N. (1995). Basic econometrics, 3rd ed. New York: McGraw-Hill. 

[Handley, 1994] Handley, S.G. (1994). The automatic generations of plans for a mobile robot via 
genetic programming with automatically defined functions. Advances in Genetic 
Programming. Kinnear, Jr., K.E.. (ed.). MIT  Press, Cambridge, MA, 391-401.  

[Harrald & Kamstra, 1997] Harrald, P. G. & Kamstra, M. (1997). Evolving Artificial Neural 
Networks to Combine Financial Forecasts. IEEE Transactions on Evolutionary 
Computation, Vol. 1, No. 1, 40-52. 

[Harvey, 1993] Harvey, A.C. (1993). Time series models. Second Edition. Harvester Wheatsheaf. 

[Haynes et al., 1995] Haynes, T.D., Wainwright, R., Sen, S. & Schoenefeld, D. (1995).  Strongly 
typed genetic programming in evolving cooperation strategies. In Eshelman, L. (ed.). 
Proceedings of the Sixth International Conference on Genetic Algorithms, Morgan 
Kaufmann. 271-278. 

[Hausch & Ziemba, 1985] Hausch, D.B. & Ziemba, W.T. (1985). Transactions costs, extent of 
inefficiencies, entries and multiple wagers in a racetrack betting model. Management 
Science, Vol. 31, No. 4, 381-394. 

[Holland, 1962] Holland, J.H. (1962). Outline for a logical theory of adaptive systems. Journal of 
Association of Computer Machine. Vol. 3, 297-314. 

[Holland, 1975] Holland, J.H. (1975). Adaptation in natural and artificial system, University of 
Michigan Press. 

[Holland, 1986] Holland, J.H. (1986). Escaping brittleness: The possibilities of general purpose 
learning algorithms applied to parallel rule-based systems. In Michalske, R., Carbonell, J. 
& Mitchell, T. (eds). Machine learning: An artificial intelligence approach, Vol. 2. San 
Mateo, Calif.: Morgan Kaufmann. 



 182

[Holland, 1992] Holland, J.H. (1992). Adaptation in natural and artificial system. Cambridge , 
Mass.: MIT Press. 

[Hooker, 1995] Hooker, J.N. (1995). Testing heuristics: we have it all wrong. Journal of 
Heuristics, Vol.1, No.1, 33-42. 

[Howley, 1996] Howley, B. (1996). Genetic programming of near-minimum-time spacecraft 
attitude manoeuvres. In Koza, J.R., Goldberg, D., Fogel, D. & Riolo, R. (eds.). 
Procedings of the First Annual Conference on Genetic Programming. Stanford 
University, CA, USA, July. MIT Press. 98-106. 

[Hudson et al., 1996] Hudson, R., Dempsey, M. & Keasey, K. (1996). A note on the weak form 
efficiency of capital markets: The application of simple technical trading rules to UK 
stock prices- 1935 to 1994. Journal of Banking and Finance, 20, 1121-1132. 

[Izumi & Okatsu, 1996] Izumi, K. & Okatsu, T. (1996). An artificial market analysis of exchange 
rate dynamics. In Fogel, L., Angeline, P. & Bäck, T. (eds.). Evolutionary Programming 
V, MIT Press. 27-36. 

[Janikow, 1993] Janilow, C. Z. (1993). a knowledge-intensive genetic algorithms for supervised 
learning. Machine Learning, 13, 189-228. 

[Jegadeesh, 1990] Jegadeesh, N. (1990). Evidence of predictable behaviour of security returns. 
Journal of Finance, 45, No 3, 881-898. 

[Jegadeesh & Titman, 1993] Jegadeesh, N. & Titman, S. (1993). Returns to buying winners and 
selling losers: Implications for stock market efficiency. Journal of Finance, 48, No.1, 65-
91. 

[Karjalainen, 1994] Karjalainen, R. (1994). Using genetic algorithms to find technical trading 
rules in financial markets. Ph.D. Thesis, University of Pennsylvania. 

[Keim, 1983] Keim, D.B. (1983). Size-related anomalies and stock return seasonality: Further 
empirical evidence. Journal of Financial Economics, 13-32. 

[Kendall, 1953] Kendall, M.G. (1953). The analysis of economic time series-Part I: Prices. 
Journal of the Royal Statistical Society, Series A: 11-25. 

[Kho, 1996] Kho, B.C. (1996). Time-varying risk premia, volatility and technical trading rule 
profits: Evidence from foreign currency future markets. Journal of Financial Economics, 
41:249-290. 

[Kinnear, Jr., 1994] Kinnear, Jr. K.E. (eds.), (1994). Advances in genetic programming, MIT 
Press. 

[Kinnear, Jr., 1994a] Kinnear, Jr., K.E. (1994a). Alternatives in automatic function definition: A 
comparison of performance In Advances in Genetic Programming, Kinnear, Jr., K.E. 
(ed.). MIT Press, Cambridge, MA, 119-141. 

[Kitano, 1990] Kitano, H. (1990). Designing neural network using genetic algorithms with graph 
generation system. Complex Systems, (4). 461-476. 

[Koza, 1992] Koza, J.R., (1992). Genetic Programming: on the programming of computers by 
means of natural selection. MIT Press.  

[Koza, 1994] Koza, J.R. (1994). Genetic Programming II: Automatic Discovery of Reusable 
Programs. MIT Press. 

[Koza, 1994a] Koza, J.R. (1994a). Scalable learning in genetic programming using automatic 
function definition. Advances in Genetic Programming, Kinnear, Jr., K.E. (ed.). MIT  



 183

Press, Cambridge, MA, 99-117. 

[Koza, 1995] Koza, J.R. (1995). Genetic programming for economic modelling. In Goonatilake, 
S. & Treleaven, P. (eds.).  Intelligent systems for finance and business. Wiley, New York. 
250-270. 

[Koza, 1995a] Koza, J.R. (1995a). Genetic programming for economic modelling. In 
Goonatilake, S. & Treleaven, P. (eds.), (1995). Intelligent systems for finance and 
business. Wiley, New York. 250-270. 

[Koza, 1995b] Koza, J.R. (1995b). Evolving the architecture of a multi-part program in genetic 
programming using architecture-altering operations. In McDonnell, J.R. Reynolds, R.G. 
& Fogel, D.B. (eds.). Evolutionary Programming IV:  Proceedings of the Fourth Annual 
Conference on Evolutionary Programming.  San Diego, CA, 1995. MIT Press. 695-717. 

[Koza, 1995c] Koza, J.R. (1995c). Two ways of discovering the size and shape of a computer 
program to solve a problem. In Eshelman, L.J. (ed.). Proceedings of the Sixth 
International conference on Genetic Algorithms. Morgan Kaufmann Publishers, Inc. San 
Francisco, California.  287-294. 

[Koza & Andre, 1996] Koza, J.R. & Andre, D. (1996). Classifying protein segments as 
transmembrane domains using architecture-altering operations in genetic programming. 
In Angeline, P.J. and Kinnear, K.E. (eds.). Advances in Genetic Programming 2, chapter 
8, pages 155-176. MIT Press, Cambridge, MA, USA. 

[Koza et al., 1996] Koza, J.R., Goldberg, D., Fogel, D. & Riolo, R. (eds.). (1996). Proceedings of 
the First Annual Conference on Genetic Programming. Stanford University, CA, USA, 
July. MIT Press. 

[Koza et al., 1997] Koza, J.R., Bennett III, F.H., Andre, D., Keane, M.A. & Dunlap, F. (1997). 
Automated synthesis of analog electrical circuits by means of genetic programming. IEEE    
Transactions on Evolutionary Computation, 1(2): 109-128. 

[Koza et al., 1997] Koza, J.R., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M., Iba, H. & Riolo, 
R.L. (eds). (1997). Proceedings of the Second Annual Conference on Genetic 
Programming. Stanford University, CA, USA, 13-16 July. Morgan Kaufmann. 

[Koza et al., 1998] Koza, J.R., Banzhaf, W., Chellapilla, K., Deb, K., Dorigo, M., Fogel, D.B., 
Garzon, M.H., Goldberg, D.E., Iba, H. & Riolo, R. (eds). (1998). Proceedings of the 
Third Annual Conference on Genetic Programming. University of Wisconsin, Madison, 
Wisconsin, SA, 22-25 July. Morgan Kaufmann. 

[Koza & Bennett III, 1999] Koza, J.R and Bennett III, F.H. (1999). Automatic synthesis, 
placement, and routing of electrical circuits by means of genetic programming. In 
Spector, L., Langdon, W.B., O'Reilly, U.M. & Angeline, P.J. (eds.). Advances in Genetic 
Programming 3, MIT Press, Cambridge, MA, USA 105-134.  

[Lau & Tsang, 1997] Lau, T.L. & Tsang, E.P.K. (1997). Solving the processor configuration 
problem with a mutation-based genetic algorithm. International Journal on Artificial 
Intelligence Tools (IJAIT), World Scientific, Vol.6, No.4, 567-585. 

[LeBaron et al., 1999] LeBaron, B., Abu-Mostafa, Y.S., Lo, A.W. & Weigend, A.S. (eds.). 
(1999). Computational Finance 1999, MIT press. 

[LeBaron, 2000] LeBaron, B. (2000). Agent Based Computational Finance: Suggested Readings 
and Early Research, (forthcoming), Journal of Economic Dynamics and Control, 2000. 

[Lettau, 1997] Lettau, M. (1997). Explaining the facts with adaptive agents: The case of mutual 



 184

fund flows. Journal of Economic Dynamics and Control, 21, 1117-1148. 

[LeBaron, 1998] LeBaron, B. (1998). Technical trading rules and regime shifts in foreign 
exchange. In Acar, E. & Satchell S. (eds.), Advanced trading rules, Butter-worth 
Heinemann. 

[Lederman & Klein, 1995] Lederman, J. & Klein, R. (ed.). (1995). Virtual Trading. Chicago: 
Probus Publishing.  

[Lehmann, 1990] Lehmann, B.N. (1990). Fad, martingales, and market efficiency. Quarterly 
Journal of Economics, 105, 1-28. 

[Leinweber & Arnott, 1995] Leinweber, D.J. & Arnott, R.D. (1995). Quantitative and 
computational innovation in investment management. Journal of Portfolio Management. 
Winter, 9-15. 

[Levy, 1996]  Levy, H. (1996). Introduction to Investments. South-Western College Publishing. 

[Levich & Thomas, 1993] Levich, R.M. & Thomas, L.R. (1993). The significant of technical 
trading-rule profits in the foreign exchange market: A bootstrap approach. Journal of 
International Money and Finance, 12, 451-474. 

[Li, 1999] Li, J. (1999). FGP: A genetic programming tool for financial prediction. Proceedings 
of GECCO-99 PhD Student Workshop, Orlando, Florida, USA, July 13-19 1999. p374. 

[Li & Tsang, 1998] Li, J. & Tsang, E.P.K. (1998). Market efficiency, predictability and genetic 
algorithms, March 1998. Technical Report CSM-307, University of Essex. 

[Li & Tsang, 1999a] Li, J. & Tsang, E.P.K. (1999a). Improving technical analysis predictions: an 
application of genetic programming. Proceedings of The 12th International Florida AI 
Research Society Conference. Orlando, Florida, May 1-5, 1999, 108-112. 

[Li & Tsang, 1999b] Li, J. & Tsang, E.P.K. (1999b). Investment decision making using FGP: a 
case study. Proceedings of The Congress on Evolutionary Computation (CEC'99). 
Washington DC, USA, July 6-9 1999, 1253-1259. 

[Li & Tsang, 2000] Li, J. & Tsang, E.P.K. (2000). Reducing failures in investment 
recommendations using genetic programming. Proceedings of 6th International 
Conference on Computing in Economics and Finance, Society for Computational 
Economics, Barcelona, July, 2000. (a revised version was submitted to the Journal of 
Computational Economics, under review). 

[Lo & MacKinlay, 1990] Lo, A.W. & MacKinlay, A.C. (1990). When are contrarian profits due 
to stock market overreaction? Review of Financial Studies 3, 175-206. 

[Lobo, 1991] Lobo, G. (1991). Alternative methods of combining security analysts' and statistical 
forecasts of annual corporate earnings, Journal of Forecasting, 57-63. 

[Lukac et al., 1988] Lukac, L.P., Brorsen, B.W. & Irwin, S.H. (1988). A test of futures market 
disequilibrium using twelve different technical trading systems. Applied Economics, 20, 
623-639. 

[Lukac & Brorsen, 1990] Lukac, L.P., Brorsen, B.W. (1990). A comprehensive test of futures 
market disequilibrium. Financial Review, 25 (4), 593-622. 

[MacDonald & Marsh, 1994] MacDonald, R. & Marsh, I. (1994). Combining exchange rate 
forecasts: what is the optimal consensus measure? Journal of Forecasting, 313-332.  

[Mahfoud & Mani, 1996] Mahfoud, S. &  Mani, G. (1996). Financial Forecasting Using Genetic 
Algorithms. Journal of Applied Artificial Intelligence Vol.10, Num 6, 543-565. 



 185

[Malkiel, 1992] Malkiel, B. (1992). Efficient market Hypothesis, in Newman,P., Milgate, M. and 
Eatwell, J. (eds.), New Palgrave Dictionary of Money and Finance. Macmillan, London, 
pp739. 

[Mandelbrot, 1963] Mandelbrot, B. (1963). The variation of certain speculative prices. Journal of 
Business, Vol. 36, 394-419. 

[Manning & Schutze, 1999] Manning, C.D. & Schutze, H. (1999). Foundations of Statistical 
Natural Language Processing. MIT Press. 

[Marengo & Tordjman, 1995] Marengo, L. & Tordjman, H. (1995). Speculation, heterogeneity, 
and learning: in a rational expectation model. Technical report, WP-95-17, International 
Institute for Applied Systems Analysis, Vienna, Austria. 

[Margarita, 1991] Margarita, S. (1991). Neural network, genetic algorithms and stock trading. 
Artificial Neural Networks 1, 1763-1766. 

[Margarita, 1992] Margarita, S. (1992). Genetic neural networks for financial markets: Some 
results. In Neumann, B. (ed.). Proceedings of 10th European Conference on Artificial 
Intelligence, John Wiley & Sons. 211-213. 

[Marimon et al., 1990] Marimon, R., McGrattan, E. & Sargent, T, J. (1990). Money as a medium 
of exchange in an economy with artificially intelligent agents. Journal of Economic 
Dynamics and Control. 14, 329-373. 

[Markowitz & Xu, 1994] Markowitz, H. M. & Xu, G.L. (1994). Data mining corrections, Journal 
of Portfolio Management, Fall, 60-69. 

[McDonnell et al., 1992] McDonnell, J.R., Anderson, B.L., Page, W.C. & Pin, F.G. (1992). 
Mobile manipulator configuration optimisation using evolutionary programming. 
Proceedings of First Annual Conference on Evolutionary Programming. San Diego, CA: 
Evolutionary Programming Society. 52-62. 

[Mehta & Bhattacharyya, 1999] Mehta, K. & Bhattacharyya, S. (1999). Combining rules learnt using 
genetic algorithms for financial forecasting. Proceedings of the Congress on Evolutionary 
Computation (CEC'99), Washington DC, USA, July 6-9 1999, 1245-1252. 

[Miller & Goldberg, 1995] Miller, B.L. & Goldberg, D.E. (1995). Genetic algorithms, 
tournament selection, and the effects of Noise. IlliGAL Report No. 95006.  

[Mitchell, 1996] Mitchell, M. (1996). An introduction to genetic algorithms. MIT Press. 

[Mitchell, 1997] Mitchell, T. M. (1997). Machine learning. McGraw-Hill, New York.. 

[Montana, 1995] Montana, D.J. (1995). Strongly typed genetic programming. Evolutionary 
Computation, Vol. 3:2, 199-230. 

[Mozetic, 1985] Mozetic, I. (1985). NEWGEM: Program for learning from examples, program 
documen-tation and user’s guide. University of Illinois Report Number UIUCDCS-F-85-
949, Urbana-Champaign, ILL. 

[Neely et al., 1997] Neely, C., Weller, P. & Ditmar, R. (1997). Is technical analysis in the foreign 
exchange market profitable? A genetic programming approach. Journal of Financial and 
Quantitative Analysis, 32, 405-26. 

[Neftci, 1991] Neftci, S.N. (1991). Naï ve trading rules in financial markets and Wiener-
Kolmogorov prediction theory: A study of 'technical analysis'. Journal of Business, 64, 
No. 4, 549-571. 

[Ngan et al., 1998] Ngan, P.S., Wong, M.L. & Leung, K.S. (1998), Using grammar based genetic 



 186

programming for data mining of medical knowledge. Genetic Programming 1998: Proc. 
of 3rd Annual Conference, Morgan Kaufmann, 254-259. 

[Nikolaev & Slavov, 1997] Nikolaev, N.I. & Slavov, V. (1997). Inductive genetic programming 
with decision trees. Proc. of 1997 European Conference on Machine Learning (ECML-
97). 

[Nordin & Banzhaf, 1997] Nordin, P. & Banzhaf, W. (1997). An on-line method to evolve 
behaviour and to control a miniature robot in real time with genetic programming. 
Adaptive Behaviour, 5:107-140. 

[Nolan et al., 1999] Nolan, F., Wilkiewicz, J., Dasgupta, D. & Franklin, S. (1999).  Evolutionary 
Economic Agents. Proceedings of the Sixteenth National Conference on Artificial 
Intelligence (AAAI-99). AAAI Press.     

[Nunez, 1988] Nunez, M., (1988). Economic induction: A case study, Proc. of the Third 
European Working Session on Learning, EWSL-88, California: Morgan Kaufmann, 139-
145. 

[Nunez, 1991] Nunez, M., (1991). The use of background knowledge in decision tree induction, 
Machine Learning, 6, 231-250. 

[O’Reilly, 1995] O’Reilly, U.-M. (1995). An analysis of genetic programming. PhD thesis, 
Carleton University, Ottawa-Carleton Institute for Computer Science, Ottawa, Ontario, 
Canada, 22 September.  

[Oussaidene et al., 1997] Oussaidene, M., Chopard, B., Pictet, O. & Tomassini, M. (1997). 
Practical aspects and experiences - Parallel genetic programming and its application to 
trading model induction, Journal of Parallel Computing Vol. 23, No. 8, 1183-1198. 

[Park & Song, 1997] Park, Y. & Song, M. (1997). Genetic programming approach to sense 
clustering in natural language processing. In Koza, J.R., Deb, K., Dorigo, M., Fogel, D.B. 
Garzon, M., Iba, H & Riolo, R.L. (eds.) Genetic Programming 1997: Proceedings of the 
Second Annual Conference. Stanford University, CA, USA, July. Morgan Kaufmann. 
p261. 

[Patell & Wolfson, 1984] Patell, J.M. & Wolfson, M.A. (1984). The intraday speed of adjustment 
of stock process to earnings and dividend announcements. Journal of Financial 
Economics. June, 223-252.   

[Palmer et al., 1994] Palmer, R.G., Arthur, W.B., Holland, J.H., LeBaron, B. & Tayler, P. (1994). 
Artificial economic life: A simple model of a stock market. Physica D, 75, 264-274. 

[Pau, 1991] Pau, L. (1991). Technical analysis for portfolio trading by syntactic pattern 
recognition, Journal of Economic Dynamics and Control, 15, 715-730. 

[Pazzani et al., 1994] Pazzani, M., Merz, C., Murphy, P., Ali, K., Hume, T., & Brunk, C. (1994). 
Reducing misclassification costs. In Proceedings of the 11th International Conference of 
Machine Learning, New Brunswick. Morgan Kaufmann, 217-225. 

[Pictet et al., 1995] Pictet, O.V., Dacorogna, M.M., Chopard, B., Oudsaidene, M., Schirru, R. & 
Tomassini, M. (1995). Using Genetic Algorithm for Robust Optimization in Financial 
Applications. Neural Network World Vol. 5. No. 4. 573-587. 

[Poli & Cagnoni, 1997] Poli, R & Cagnoni, S. (1997). Genetic programming with user-driven 
selection: Experiments on the evolution of algorithms for image enhancement. In Koza, 
J.R., Deb, K., Dorigo, M., Fogel, D.B. Garzon, M., Iba, H & Riolo, R.L. (eds.) Genetic 
Programming 1997: Proceedings of the Second Annual Conference. Stanford University, 



 187

CA, USA, July. Morgan Kaufmann. 269-277. 

[Poli & Langdon, 1997] Poli, R. & Langdon, W.B. (1998). Schema theory for genetic 
programming with one-point crossover and point mutation. Evolutionary Computation, 
Vol. 6, no. 3, 231-252.  

[Pring, 1991] Pring, M.J. (1991). Technical analysis explained (Second Edition). McGraw-Hill, 
New York. 

[Provost & Buchanan, 1995] Provost, F.J. & Buchanan, B.G. (1995). Inductive policy: The 
pragmatics of bias selection. Machine Learning, 20 (1/2): 35-61. 

[Provost et al., 1998] Provost, F.J. Fawcett, T. & Kohavi, R. (1998). The case against accuracy 
estimation for comparing induction algorithms. In Proc. 15th International conference on  
Machine Learning, Madison, WI. 445-453. 

[Quinlan, 1986a] Quinlan, J. R. (1986b), Induction of decision trees. Machine Learning, 1: 
81−106.  

[Quinlan, 1986b] Quinlan, J. R. (1986c). Simplifying decision trees. International Journal of 
Man­Machine Studies, 27:221−234.  

[Quinlan, 1987] Quinlan, J. R. (1987). Generating production rules from decision trees. In Proc. 
IJCAI­1987: International Joint Conference on Artificial Intelligence, pages 304−307, 
Los Altos, CA. Morgan Kaufmann.  

[Quinlan, 1993] Quinlan, J. R., (1993). C4.5: Programs for machine learning. Morgan 
Kaufmann, Los Altos, CA.  

[Quinlan, 1996a] Quinlan, J. R. (1996a). Bagging, boosting, and C4.5. In Proc. AAAI­1996: 
Thirteen National Conference on Artificial Intelligence, pages 725−730, Menlo Park, CA. 
AAAI Press.  

[Quinlan, 1996b] Quinlan, J. R., (1996b). Improved use of continuous attributes in c4.5. Journal 
of Artificial Intelligence Research, 4: 77−1990. 

[Rabatin, 1998] Rabatin, A. (1998). Adaptive Portfolio trading using genetic algorithms. 
Proceedings of the Fifth International Conference on Forecasting of Financial Markets. 
London, May. 

[Raj & Thurston, 1996] Raj, M. & Thurston, D. (1996). Effectiveness of simple technical trading 
rules in the Hong Kong futures markets. Applied Economic Letter, Vol. 3 33-36.  

[Raymer et al., 1996] Raymer, M.L., Punch, W.F., Goodman, E.D. & Kuhn, L.A. (1996). Genetic 
programming for improved data mining: An application to the biochemistry of protein 
interactions. In Koza, J.R., Goldberg, D., Fogel, D. & Riolo, R. (eds.). Procedings of the 
First Annual Conference on Genetic Programming. Stanford University, CA, USA, July. 
MIT Press. 375-380. 

[Rechenberg, 1973] Rechenberg, I. (1973). Evolutionsstratrategie: optimierung technischer 
systeme nach prinzipien der biologischen evolution. Stuttgart: Frommann-Holzboog. 

[Roberts et al., 1995] Roberts, H., Denby, M. & Totton, K. (1995). Accounting for 
misclassification costs in decision tree classifers.  In Intelligent Data Analysis (IDA-95).  

[Rosca, 1997] Rosca, J.P. (1997). Analysis of complexity drift in genetic programming. In Koza, 
J.R., Deb, K., Dorigo, M., Fogel, D.B. Garzon, M., Iba, H & Riolo, R.L. (eds.) Genetic 
Programming 1997: Proceedings of the Second Annual Conference. Stanford University, 
CA, USA, July. Morgan Kaufmann. 286-194. 



 188

[Rose, 1997] Rose, C.P. (1997). Robust Interactive Dialogue Interpretation. PhD thesis, 
Language Technologies Institute, Carnegie Mellon University. 

[Ross, 1976] Ross, S.A. (1976). The arbitrage theory of capital asset pricing. Journal of 
Economic Thoery, 13, No. 3, 341-360. 

[Routledge, 1994] Routledge, B. R. (1994). Artificial selection: Genetic algorithms and learning 
in a rational expectations model. Technical report, GSIA, Carnegie Mellon, Pittsburgh, 
Penn. 

[Rumelhart & McClelland, 1986] Rumelhart, D.E. & McClelland, J.L. (eds.). (1986). Parallel 
distributed processing: Explorations in the microstructure of cognition: Volumn I: 
Foundations. Cambridge, Mass.: MIT Press. 

[Rust et al., 1994] Rust, J., Miller, J.H. & Palmer, R. (1994). Characterizing effective trading 
strategies: Insights from a computerized double action tournament. Journal of Economic 
Dynamics and Control. 18 (1). 61-96. 

[Saad et al., 1998] Saad, E., Prokhorov, D., and Wunsch, D., (1998). Comparative study of stock 
trend prediction using time delay, recurrent and probabilistic neural networks, IEEE 
Transactions on Neural Networks, vol. 9. 1456-1470. 

[Schwefel, 1981] Schwefel, H.-P. (1981). Numerical optimisation of computer models, Wiley, 
Chichester.  

[Schulmeister, 1987] Schulmeister, S. (1987). An essay on exchange rate dynamics. 
Wissenschaftszentrum Berlin fur Sozialforschung, Berlin. IIM/LMP 87-8. 

[Schwefel, 1981] Schwefel, H.-P. (1981). Numerical optimisation of computer models. Wiley, 
Chichester. 

[Sharpe, 1964] Sharpe, W.F. (1964). Capital asset price: A theory of market equilibrium under 
condition of risk, Journal of Finance, 19, No.3, 425-442. 

[Sharpe et al., 1995] Sharpe, W.F., Alexander, G. Bailey, J.V. (1995). Investments (Fifth 
Edition). Prentice Hall, Inc. 

[Silber, 1994] Silber, W. (1994). Technical trading: when it works and when it doesn’t. Journal 
of Derivatives, 1, Spring, 39-44. 

[Smith, 1980] Smith, S.F. (1980). A learning system based on genetic adaptive algorithms. 
Doctoral dissertation. University of Pittsburgh, Pittsburgh, Pa. 

[Smith, 1983] Smith, S.F. (1983). Flexible learning of problem solving heuristics via adaptive 
search. In Proceedings of the eighth international joint conference on artificial 
intelligence. 422-425. 

[Spector, 1996] Spector, L. (1996). Simultaneous evolution of programs and their control 
structures. In Angeline, P. & Kinnear, Jr., K.E. (eds.). Advances in genetic programming 
2, MIT Press, Cambridge, MA. 137-154.  

[Salomon, 1998] Salomon, R. (1998). Short notes on the schema theorem and building block 
hypothesis in genetic algorithms. In Porto, V.W.  Saravanan, N., Waagen, D.E. & Eiben, 
A.E. (eds.). Evolutionary Programming VII: Proceedings of the 7th Annual Conference on 
Evolutionary Programming, San Diego, CA. Springer-Verlag. 113-124. 

[Sweeney, 1986] Sweeney, R. J. (1986). Beating the foreign exchange market. Journal of 
Finance, 41 (1), 163-182. 

[Sweeney, 1988] Sweeney, R. J. (1988). Some new filter rule test: Methods and results. Journal 



 189

of Financial and Quantitative Analysis, 23, 285-300. 

[Taylor, 1995] Taylor, P. (1995). Modelling artificial stocks markets using genetic algorithms. In 
Goonatilake, S. & Treleaven, P. (eds.). Intelligent systems for finance and business. 271-
288. 

[Taylor, 1986] Taylor, S.J. (1986). Modeling financial time series. Wiley, New York, NY. 

[Taylor, 1992] Taylor, S.J. (1992). Rewards available to currency futures speculators: 
compensation for risk or evidence of inefficient pricing? Economic Record, 68 
(Supplement): 105-116. 

[Taylor, 1994] Taylor, S.J. (1994). Trading futures using the channel rule: A study of the 
predictive power of technical analysis with currency examples. Journal of Futures 
Markets, 14(2), 215-235. 

[Taylor & Allen, 1992] Taylor, M.P. & Allen, H. (1992). The use of technical analysis in the 
foreign exchange market. Journal of International Money and Finance, 11, 304-314. 

[Ting & Zheng, 1998] Ting, K.M. & Zheng, Z. (1998). Boosting trees for cost-sensitive 
classifications. In Proc. 10th European Conference on Machine Learning. Chemnitz, 
Germany. 191-195. 

[Treynor & Ferguson, 1985] Treynor, J., and Ferguson, R. (1985). In defence of technical 
analysis. Journal of Finance, 40, 757-773. 

[Tsang, 1993] Tsang, E.P.K. (1993). Foundations of constraint satisfaction. Academic Press, 
London. 

[Tsang et al., 1998] Tsang, E.P.K., Li, J. & Butler, J.M. (1998). EDDIE beats the bookies, 
International Journal of Software, Practice & Experience, Wiley, Vol.28 (10), 1033-
1043. 

[Tsang & Li, 1999] Tsang, E.P.K., Li, J. (1999). A genetic programming tool for financial 
forecasting. (Submitted to Journal of forecasting, under review).  

[Tsang & Li, 2000] Tsang, E.P.K. & Li, J. (2000). Combining ordinal financial predictions with 
genetic programming. Proceedings of the Second International Conference On Intelligent 
Data Engineering And Automated Learning. (IDEAL2000) December 2000. Hong Kong. 

[Tsang et al., 2000] Tsang, E.P.K., Li, J., Markose, S., Er, H., Salhi, A., and Iori, G. (2000).  
EDDIE in financial decision making. (Submitted to Journal of Finance and 
Management). 

[Turney, 1995] Turney, P.D. (1995). Cost-sensitive classification: Empirical evaluation of a 
hybrid genetic decision tree induction algorithm. Journal of Artificial Intelligence 
Research, 2, 369-409. 

[Turney, 1997] Turney, P.D. (1997). Cost-sensitive learning bibliography. Online bibliography, 
Institute for Information Technology of the National Research Council of Canada, 
Ottawa, Cadada, http://ai.iit.nrc.ca/bibliographies/cost-sensitive.html. 

[Vacca, 1997] Vacca, L., (1997). Managing options risk with genetic algorithms. Proceedings of 
the IEEE/IAFE 1997 Computational Intelligence for Financial Engineering (CIFEr), New 
York City, March 1997, 29-35. 

[Vriend, 1994] Vriend, N.J. (1994). Self-organized markets in a decentralised economy. Santa Fe 
Institute, Economics Research Program, Working paper 94-03-013. 

[Wall & Correia, 1989] Wall, K. & Correia, C. (1989). A preference -based method for forecast 



 190

combination. Journal of Forecasting, 269-192. 

[Webb, 1996] Webb, G. I. (1996). Cost-sensitive Specialization. Proc. of the 1996 Pacific Rim 
International Conference on Artificial Intelligence. Cairns, Springer-Verlag, 23-34. 

[Werner et al., 1987] Werner, F.M., Bondt, D. & Thaler, R. (1987). Further Evidence on Investor 
Overreaction and Stock Market Seasonality. Journal of Finance, 42, No. 3, July. 557-581. 

[Weiss, 1999] Weiss, G. M. (1999). Timeweaver: a Genetic Algorithms for identifying predictive 
patterns in sequences of events, In Proceedings of the Genetic and Evolutionary 
Computation Conference. San Francisco, CA: Morgan Kaufmann. 718-725. 

[Weiss & Kulikowski, 1991] Weiss, S.M. & Kulikowski, C.A. (1991). Computer system that 
learn. Morgan Kaufmann. 

[White, 1998] White, A.J. (1998). A genetic adaptive neural network approach to pricing options: 
a simulation analysis. Journal of Computational Intelligence, Vol. 6, No. 2, 13-23. 

[Whigham, 1996] Whigham, P. A. (1996). Grammatical Bias for Evolutionary Learning. PhD 
thesis, School of Computer Science, University College, University of New South Wales, 
Australian Defence Force Academy. 

[Yao, 1993] Yao, X. (1993). A review of evolutionary artificial neural networks. International 
Journal of Intelligent Systems. (8). 539-567. 

[Yao and Liu, 1998] Yao, X., & Liu, Y. (1998). Making use of population information in 
evolutionary artificial neural networks. IEEE Transactions on Systems, Man, and 
Cybernetics, Part B: Cybernetics, 28, 417-425. 

[Yao et al., 1997] Yao, X., Kim, J.-H. & Furuhashi, T. (1997). Simulated Evolution and 
Learning. Lecture Notes in Artificial Intelligence, (eds.), Volume 1285, Springer-Verlag, 
Heidelberg, Germany. 

[Yao, 1999] Yao, X. (1999). Evolutionary Computation: Theory and Applications. (ed.), World 
Scientific Publ. Co., Singapore. 


