
 

 

Relating Volatility and Jumps between two markets 

under Directional Change 

 

 

A thesis submitted for the degree of Doctor of Philosophy in 

Computational Finance 

 

 

 

 

Centre for Computational Finance and Economic Agents (CCFEA) 

University of Essex 

 

April  2022 

Shengnan Li 

 

 

 

 

 

 

 

 

 

 

 



1 

 

 

 

 

Acknowledgements 

 

I would like to express my sincere gratitude to my supervisor Professor Edward Tsang 

and Dr. John OôHara for their professional guidance, valuable advice and continuous 

support during my whole PhD study.  

My special thanks go to my adviser, Dr Charles Manson and Sara Colquhoun for their 

support, encouragement, for proofreading this thesis and helping me with my English 

throughout my research project. 

Also thanks my thesis examiners: Dr Michael Kampouridis and Dr Raju Venkata 

Chinthalapati, for their professional comments and suggestions, which helped me 

improve my thesis considerably. 

Many thanks go to all my friends who have been taking good care of me through this 

long journey. 

Last but not least, I would like to thank my parents for their endless love, support and 

encouragement. 



Abstract 

Directional change (DC) is a new concept in sampling financial market data. Instead of 

recording the transaction prices at fixed time intervals, as is done in time series, DC lets 

the data alone decide when to record a transaction. In DC, a data point is recorded when 

the price has risen or dropped against the current trend by a significant percentage, 

which is known as the threshold. The magnitude of the threshold is determined by the 

analyst. Previous studies on DC mainly focus on analysing single price sequences of 

one market. This thesis focuses on a new path; working on the DC comparative analysis 

between two markets. We propose a novel data-driven approach to combine the 

observed DC series of two markets into a single data sequence, which we call the DC 

combined sequence. This allows us to conduct a comparative analysis between two 

markets under DC. Based on this approach, we propose a novel indicator that measures 

the relative volatility between two markets. In addition, we define jumps under DC. 

Under this measure, we can pinpoint the size, direction, and quantity of DC jumps in a 

market. Lastly, under the DC comparative analysis, we build a new DC approach to 

identify co-jumps between two markets. 
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Chapter 1. Introduction  

1.1 Background  

The research subject of this thesis is the development of relative volatility and co-jump 

measures relating two markets under the DC framework. We shall introduce the 

definition of the relative volatility, jumps, and co-jumps, and then proceed to study the 

behavior of the price changes through the empirical and data-driven approach of DC. 

 

The concept of ñdirectional changeò (DC) was first published by Guillaume et al. (1997), 

where they presented an algorithm to sample the DC market data. DC is an alternative 

way to record the price movements compared with data sampling under a fixed time 

interval as in time series (TS); details of DC will be introduced in Chapter 2. In TS, 

transactions are sampled under a regular time interval. In contrast, DC samples the 

transactions based on the significant price changes, so the time stamp of the DC data is 

passively determined by the price changes. This passivity leads to the greater emphasis, 

in the data collected, of time periods where there are more significant events, which 

allows more potential analysis of these regions that would otherwise have to be actively 

studied through more extensive sampling in a traditional TS setting. One disadvantage 

of DC, considering the irregular time interval, is that TS data allows easy and direct 

real-time comparative analysis, e.g. observers can directly compare the returns of two 

markets at every 1-minute interval. Because the DC data sequence is not sampled at a 

regular timescale, there is no direct way to implement this type of analysis with DC 
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data, i.e., it is not suitable without processing for real-time direct comparative analysis, 

especially in high-frequency data1. 

 

Under the DC comparative analysis, this research focuses on relating two markets in 

their volatility and co-jumps. In DC, researchers worked on measuring the volatility of 

the price movement in a single market (Tsang et al., (2017)). In Chapter 3, we work on 

a new path to measure the volatilities in two related markets (we named it relative 

volatility) through a data-driven approach. This study aims to develop an indicator to 

measure the relative volatility, which could be useful in real-time analysis.  

 

In financial markets, jumps are events usually related to unexpected information; for 

example, surprising economic data or a major historical event (e.g., COVID-19) may 

lead to uncommon trading behaviors from the traders; and these trading transactions 

may cause price jumps. In time series, researchers consider jumps based on the asset 

pricing model; a jump is a different source of risk compared to the risk of continuous 

volatility (Lee and Mykland (2008)) such that the jump is identified through the 

module-based method (details see section 2.3.1). In DC, there is an absence of  

published references focusing on jumps. This research aims to establish the definition 

of a DC jump, which is then used to implement the back-testing of detecting jumps in 

DC; we will present the details of the DC jumps in Chapter 4.  

 

Compared to past decades, along with more unexpected incidents (such as financial 

crises, natural disasters, geopolitical uncertainty, etc.), financial markets are more 

 
1 High-frequency data has been of interest since the late 1980s when the ability to collect data with the 

aid of new and improved technology arose (Dacorogna et al. (2001)). 
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fragile than before; the events of flash crashes across multiple assets have become more 

frequent, and this is a concern of researchers and related institutions2. The risk of co-

jumps has been emphasized by the researchers in the TS analysis (Barndorff-Nielsen 

and Shephard (2006), Jacod and Todorov (2009), and Bollerslev et al. (2008)); for 

instance, observers have been focusing on identifying co-jumps and measuring their 

risks to the markets (for details see Section 2.3). Based on the work on DC jumps, we 

propose a definition of co-jumps in DC (named DC co-jumps) related to two markets 

and develop an indicator to detect co-jumps. This allows us to investigate the 

relationship between certain historical events and the presence of DC co-jumps (for 

details see Chapter 5). 

 

1.2 Research motivations and objectives 

The focus of this research is the analysis of the relationship between two markets. This 

research is conducted under the directional change (DC) framework (Tsang et al. 

(2017)); specifically, in terms of the relative volatility and co-jump characteristics (as 

introduced in Section 1.1). The motivation and ambitions arising from the usage and 

resulting extension of the DC framework include: 

 

1. When performing comparative analysis, the classical time series method examines 

the volatility in two related markets by comparing the volatility of returns of the two 

markets during a pre-determined time interval. As previously discussed, in DC, 

researchers have focused on the measure of volatility in a single market. In this thesis 

we want to propose an approach to measure the volatilities in two related markets such 

 
2 For example, the Reserve Bank of Australia studied the flash crash (appreciation) of the Japanese Yen 

against several currencies (including the Australian dollar); 

https://www.rba.gov.au/publications/smp/2019/feb/box-b-the-recent-japanese-yen-flash-event.html 
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that the approach is better suited to be applied to high-frequency data or to the market 

micro-structure; in this research, the micro-structure indicates the tick data which the 

timescale is under the milliseconds. Would the approach allow better examination of 

the market micro-structure during periods of extreme fluctuation? In Chapter 3, we will 

present the DC approach of measuring relative volatility and discuss its benefits through 

historical studies. 

 

2. In the financial markets, a jump is an event which is usually caused by unexpected 

information. Past empirical studies have proved that jumps have substantial impact on 

risk management and asset pricing (Liu et al. (2003) and Johannes (2004)). In time 

series analysis (TS), the jump is a different source of risk in addition to the risk of 

continuous volatility in the asset pricing model (details about jumps in TS will be 

introduced in Section 2.3). In DC, there is no research in the field of jumps. Therefore, 

this thesis aims to define jumps under DC; based on this, we detect jumps through a 

data-driven approach. This leads us to pose the question of how the presence of TS and 

DC jumps are related? We then investigate this question in the form of a comparison of 

the detected jumps from both approaches in Forex data. Fundamentally, detecting 

jumps in TS is different from detecting jumps in DC; in TS a jump is identified by a 

model-based method, while in DC, we detect jumps through a data-driven approach.  

 

3. The identification of co-jumps has been a topic of interest over decades. Researchers 

emphasised that some macroeconomic news has a major impact on joint jumps 

spanning different assets. In portfolio risk management, it is important to accurately 

understand the resulting tail co-jumps and hedge against them. In TS, co-jump 

identification has been widely studied. Dungey and Hvozdyk (2012) introduced co-
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jumps as the occurrence of contemporaneous discontinuities in two price series, 

although there is no formal test procedure for the exact timing of identifying them. In 

this thesis, we consider how to define DC co-jumps, and then develop an indicator to 

identify them. Based on this, we study whether jumps between two markets happen 

together. Is there a relationship between certain historical events and DC co-jumps? We 

will give the details about the study of DC co-jumps in Chapter 5. Fundamentally, the 

concept of co-jumps in DC is different to the concept in TS. Under the DC framework, 

considering two marketsô price sequences, the co-jump is the event such that a jump in 

one market is followed by a jump in another market. A formal definition of the DC co-

jump and how it may be detected is given in Chapter 5.  

 

1.3 Thesis structure 

The thesis structure is based on the objectives discussed in the previous section. It 

begins with an overview of the data analysis between time series and DC in Chapter 2, 

describing the previous studies researchers have done in financial market data analysis. 

It then explains the concept of DC, jumps and co-jumps. Chapter 3 introduces the 

methodology of άὙὠ with the application of measuring άὙὠ between GBPUSD and 

EURUSD during the Brexit referendum event. Chapter 4 introduce the definition of DC 

jump; we will show a comparative analysis of the detected DC jumps and TS jumps 

and discuss the relationship between the historical events and DC jumps. Chapter 5 

introduce the approach of detecting DC co-jumps; we will study which historical events 

have more influence in causing DC co-jumps. In Chapter 6, we give a conclusion. 
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Chapter 2. Literature survey 

This chapter will  introduce the research literature concerning Directional Change (DC). 

Some past works about DC volatility will  be discussed, which is our fundamental for 

establishing DC micro-market relative volatility (άὙὠ. We first give a short overview 

of the early research in forex markets in time series analysis ( in low frequency data) 

and then review the studies in high-frequence data under the analysis of TS and DC. 

We then introduce the concept of DC and the mechanism of DC data sampling. We 

shall give an overview about the DC volatility measurement for a single price sequence. 

After that, we will introduce the background of jumps and co-jumps in the financial 

markets.  

 

2.1 Early research in forex markets in low frequency data 

With the breakdown of the Bretton Woods system in 1971, researchers were attracted 

to the study of floating exchange rates using time series data (weekly and monthly), 

especially in the statistical analysis of the FX price changes. Boothe and Glassman 

(1987) stressed that the distribution of the exchange rate changes is essential for 

examining the uncertainty of the price movements (referred to as volatility). Early 

studies focused on finding a proper distribution to summarise the exchange rate changes 

in low-frequency data (i.e., weekly and daily). Westerfield (1977) indicated that the 

exchange rate changes were Paretian stable3. Rogalski and Vinson (1978) used the same 

data as Westerfield, and they suggested that the floating exchange rates were better 

described by the Student distribution. McFarland et al. (1982) examined the logarithmic 

 
3 Paretian stable refers to the fact that the exchange rates changes follow the stable distribution (Fama 

1963). 
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daily exchange rates and concluded that the logarithmic daily exchange rates followed 

a stable Paretian distribution (also called a stable distribution). Boothe and Glassman 

(1987) proved that the exchange rate changes were not following a normal distribution 

and noted that the data was sharp leptokurtic and more fat-tailed than the normal 

distribution. Glassman (1987) compared the bid-ask spreads with the volatility and 

concluded that the size of the spread is related to the exchange rate volatility.  

 

2.2 Overview of the data analysis between time series (TS) and DC 

Since the late 1980s, high-frequency data has been of interest when the ability to collect 

data with the aid of new and improved technology arose (Dacorogna et al. (2001)). 

Nowadays, the advanced technology of big data collection and storage gives more 

opportunity for comprehensive analysis of financial data especially in high-frequency 

data. Frankel and Rose (1995) noted that while the theoretical coherence of the 

structural models at the time was attractive, their forecasting ability in practice was 

limited. Taylor (1995) concluded that further attempts to provide explanations of short-

term exchange rate movements based solely on macroeconomic fundamentals may not 

prove successful which might account for the shift towards more purely financial 

models of exchange rate movements and heightened interest in market microstructure. 

Flood and Taylor (1996) demonstrated that macroeconomic models were not 

satisfactory in their goal of exchange rate determination. Beginning from 1990s, once 

the shortcomings of the macro approach became clear (Frankel and Rose, (1995); 

Taylor, (1995); Flood and Taylor (1996)) researchers have been more focused on the 

analysis of the behaviour of price movement through a micro-view; for instance Lyons 

(2001) who examined a lot of the assumptions made in the past from the perspective of 

the market microstructure. The microstructure approach examines the behaviour and 
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interactions of individual agents in the market; for instance Lyons (1996) analysed 

microstructure data to determine how the informational content of trades was related to 

trading intensity, quote intensity and trading behaviour. The market participants have 

also become interested in high-frequency trading which has led to the development of 

many computational tools to assist in this sphere; big data being an important one (Wu 

et al. (2013); Han and Li, (2018)). The U.S. Securities Exchange Act Release No. 34-

61358, 75 FR 3594, 3606 (January 21, 2010)4 noted that estimates of high-frequency 

trading (HFT) typically exceed 50% of total volume in U.S.-listed equities and 

concluded that HFT is a dominant component of the current market structure and likely 

to affect all aspects of its performance. Observers can easily access the datasets in 

different time frames, e.g., the timescales of weekly, daily, and minutely sampling. In 

the past decade, the financial marketsô tick data (the deal transactions) have become a 

popular research project as analysts and traders endeavour to discover any valuable 

information to capture and interpret more micro-behaviour. Hence, it is essential to have 

the ability to correctly understand and interpret market data. The classical method 

studies the price movements based on a time series. A time series is a series of data 

points sampled regularly in time order. One should pre-determine the size of the time 

interval (e.g., 30 minutes), and then record the data point at the end of each time interval. 

TS data is also used in technical analysis (Pring, (2014)): people have developed many 

tools to study the price movements like Relative Strength Index (RSI) (Wilder, (1978)), 

Bollinger Bands (Bollinger, (2001)), Moving Average Convergence Divergence (Appel, 

(1985)) and Stochastic Momentum Index (Blau, (1993)). However, as discussed in 

section 1.1, TS may not adequately summarise some situations when the markets have 

the significant volatility for short periods. This drove researchers to establish a new 

 
4 For details see the link: https://www.sec.gov/rules/concept/2010/34-61358fr.pdf 
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mechanism to record the market transactions. DC is a data driven approach for studying 

the price movements. It allows us to study the financial markets on a data-led timescale, 

which means DC lets the data dictate when to sample the data points. In other words, 

the timescale is passively defined by the significant price changes. Hence, DC data can 

give precise insights when monitoring the significant price movements especially in 

high-frequency data. Comparing with TS data, Chen and Tsang (2021) discussed how 

DC data is more suitable for tracking the market in order to detect important signals.  

 

The concept of DC was first introduced by Guillaume et al in 1997 when they proposed 

a DC approach to examine the trend-following behaviour of the price changes. In fact, 

the technique of DC data sampling had been used to plot a Zig Zag pattern on the 

technical chart (Sklarew (1980)). The Zig Zag pattern is a useful technical chart pattern 

which is used to identify the price trends. Tsang (2010) formally defined the concept of 

directional change: the price movements are defined by a series of DC uptrends and 

downtrends (the formal DC definition will be introduced in Section 2). Glattfelder et al. 

(2011) illustrated the statistical discovery of 12 scale laws based on DC in high-

frequency FX data. Tsang et al. (2015) defined the reversal points as extreme points, 

which are confirmed when the cumulative price changes reach a threshold. The 

threshold defines the size of what is termed to be a significant price change. Tsang et 

al. (2017) present a set of DC indicators capturing market information. Chronologically, 

DC records the extreme points, and this is then converted into a DC sequence. The 

previous studies in the DC method mainly focus on analysing single price sequences of 

one major market, which includes forecasting the price trend reversals, trading 

algorithm design, stock index trading strategies, using the DC scaling laws to build 

trading models, DC agent-based models, measuring regime changes under the DC 
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approach, and technical pattern (óHead and Shoulders Patternô) recognition (Bakhach 

et al. (2016), Bakhach et al. (2018), Glolub et al. (2017), Ma et al. (2017), Dupuis and 

Olsen (2012), Petrov et al. (2018), Tsang and Chen (2018), Li and Tsang (2017)).  

 

2.3 Directional Change 

Directional change (DC) is a data-driven process of data sampling from financial 

markets. DC data is recorded as a series of alternate upward and downward trends. For 

any trend, the reversal point is confirmed when the price has changed beyond a 

threshold (a pre-determined price distance in terms of a  percentage) from the last 

highest/lowest price of the current trend (for details see Appendix A in Chen and Tsang 

(2021)). The process of DC data sampling is based on the DC algorithm in equation 

(2.1) and (2.2) below (Tsang et al. (2017)). In time series analysis, the market data is 

collected on a pre-determined timescale. However, the mechanism of DC data sampling 

uses the significant price changes such that the market data is recorded when the price 

change has reached a certain threshold from the last peak/trough of the price. In practice, 

the analyst determines the threshold as a percentage. Hence, price changes are recorded 

as a series of alternate uptrends and downtrends, and the timestamp of each DC data 

point is determined dynamically. In an uptrend, a peak is determined as a DC extreme 

point (EP) when the current price ὖ is lower than the last high price ὖ by a fixed 

threshold (in percentage) ɗ: 

 

ὖ ὖ ρ —.        (2.1) 

 

In contrast, a downtrend is terminated by a DC extreme point when the current price ὖ 

is higher than the last low price ὖ by a fixed threshold: 
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ὖ ὖ ρ —,        (2.2) 

 

where the size of the threshold — is given by the analyst. We define the current price ὖ 

as the DC confirmation point when the DC extreme point is determined. Figure 3.1 

below is an example of a DC summary of the exchange rate of EURUSD into a sequence 

of extreme points. According to Tsang et al. (2017), a DC downtrend (uptrend) 

decomposes into two parts ï a DC event and an overshoot event. The DC timescale, in 

Figure 3.1, illustrates a dynamic timescale such that the end of the current interval is 

determined when the price change has reached a threshold from the last highest or 

lowest price. Under the process of DC data sampling, for example, the last high price 

is kept updated when there is a higher high price until we determine a DC extreme point 

based on equation (2.1); in Figure 2.1, the last high price is the extreme point when the 

EP1 is confirmed. 

Figure 3. 1 

Figure 2.1 The price curve of EURUSD on 3rd May 2016. An example of a DC 

summary with a threshold (Ᵽ) of 0.05%. The three vertical brown lines (determined by 
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DC extreme points) separate the price curve into an uptrend and a downtrend. Under 

DC timescale, the time intervals indicate the periods of DC trends. 

 

A DC extreme point is a couple which contains a timestamp ὉὖȢὸ with a price ὉὖȢὴ: 

 

Ὁὖ ὉὖȢὸȟὉὖȢὴ.        (2.3) 

 

A DC sequence Ὓ  is a finite sequence which comprises the extreme points of the 

market A ordered by ὉὖȢὸ: 

 

Ὓ ὉὖȟὉὖȟȣȟὉὖȣȟὉὖ,      (2.4) 

 

where Ὁὖ is a DC extreme point, — is the threshold, and A is the market identify (e.g., 

market A). 

 

Figure 2.2 plots a series of 3 DC trends formed by the 4 contiguous Ὁὖs from a DC 

sequence. As we see in figure 2.2, the DC trends are plotted like a zigzag pattern such 

that the directions of the adjacent DC trends are changing alternately. 

Figure 2. 1 
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Figure 2.2 An example of DC trends in EURUSD using a threshold of 0.05%. The 

chart illustrates a series of 3 DC trends formed by 4 EPs. 

 

Tsang et al. (2017) introduced the total price movement (Ὕὓὠ) to measure the price 

distance between the extreme points that begin and end a DC trend.  

 

The Ὕὓὠ from extreme point Ὁὖ  to the next extreme point Ὁὖ, denoted by TMVi, 

is defined by the increase in proportional terms from Ὁὖ Ȣὴ to ὉὖȢὴ  normalized by 

the threshold: 

 

Ὕὓὠ
Ȣ  Ȣ

Ȣ  
,        (2.5) 

 

where ὉὖȢὴ is the price of the Ὁὖ at the end of the Ὥ  DC trend, and — is the threshold 

defined by the analyst.  

 

We can obtain the period of the Ὥ  DC trend, denoted by Ὕ, as the time interval 

between ὉὖȢὸ and Ὁὖ Ȣὸ. 

 

The time-adjusted return of DC (we call this ὝὙ for short) is the ratio of the Ὕὓὠ to Ὕ. 

Tsang et al. (2017) suggested that ὝὙ is a new way to evaluate the return of the DC 

trend when one considers the time taken for a DC trend. In the comparative analysis, 

ὝὙ is an indicator to measure the speed of forming the DC trend when two DC trends 

have equal values in their Ὕὓὠs.  
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The time-adjusted return of the DC trend (ὝὙ) measures the actual percentage of price 

change per time unit. For example, the time-adjusted return of the Ὥ  DC trend, denoted 

by Ὑ ,  is calculated by: 

 

Ὑ
ȿ Ȣ  Ȣȿ

Ȣ  

ȿ ȿ  
ȟ      (2.6) 

 

where — is the threshold defined by the analyst, Ὕ is the period between the ὉὖȢὸ and 

Ὁὖ Ȣὸ, i.e. Ὕ = ὉὖȢὸ  Ὁὖ Ȣὸ. 

 

Throughout this thesis, we use ȿzȿ to denote the absolute value. We set the terminal time 

of the Ὑ  by ὉὝ(Ὑ ὉὖȢὸ. This will be important for ordering the ὝὙs of two 

markets to produce a combined ὝὙ sequence of the two markets (we will introduce this 

in Chapter 5). 

 

DC measures the volatility of a single market based on the frequency of the observed 

EPs over a period (Guillaume et al. (1997)). Tsang (2017) discussed how the DC 

approach could measure market volatility. Given a period of T, the more DC trends 

observed, the indication is the more volatile the market. As explained in Figure 2.2, a 

DC trend is defined by connecting two adjacent EPs. Hence, the number of DC trends 

are quantified by the number of observed extreme points ὔ . Over the period T, the 

higher value of ὔ  indicates higher volatility. The idea of DC instantaneous volatility 

proposed by Petrov et al. (2019) that the equation (2.7) is developed based on the theory 

of Brownian motion for the price returns. Specicifically, Petrov et al. (2019) discussed 

that the progresses of the directional change intrinsic time has similar properties to the 
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random walk; based on equation (2.7), the volatility can be estimated for a trendless 

time series by counting the number of directional changes within the time interval: 

 

„  — ȟ        (2.7) 

 

where ὔ  is the number of extreme points from a market over the period Ὕ and — is 

the threshold which is utilised to obtain the marketôs DC sequence. 

 

2.4 Jump and co-jump 

A jump is a different source of risk compared to the risk of continuous volatility. 

Empirical studies proved that jumps have a substantial impact on risk management, 

option pricing and hedging strategy (Liu et al. (2003) and Johannes (2004)). In the 

financial markets, jumps are the market reactions to unexpected information or events 

(Lahaye et al. (2011)). The initial issue of studying jump risk was identifying jump 

events and analysing the detected jumpsô behaviour. In the asset pricing model, a jump 

is considered as a discontinuous component. In time series, a number of researchers 

have worked on jump detection (Barndorff-Nielsen and Shephard (2004), Huang and 

Tauchen (2005), Andersen et al. (2007), Andersen et al. (2011), Lee and Mykland 

(2008), and Aït-Sahalia and Jacod (2009)). Barndorff-Nielsen and Shephard (2004) first 

proposed the technique to locate jumps at a daily frequency. Lee and Mykland (2008) 

built a statistical method to detect intraday jumps. 

 

2.4.1 Jump identification in time series 

In time series, the idea of detecting TS jumps based on the asset pricing model (Nielsen 

and Shephard (2004) and Lee and Mykland, (2008)); a jump (TSJ) is a different source 
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of risk compared to the risk of continuous volatility in the asset pricing model. In the 

practice, following the works of Nielsen and Shephard (2004), a jump is a component 

of the realized variance (see equation (2.13)); Lee and Mykland (2008) proposed an 

approach to detecting jump (see equation (2.15)). 

 

In the asset return process model, the continuous time log-price process, ὴ, evolves as 

follows: 

 

 Ὠὴ АὨὸ„Ὠὡȟ  π ὸ Ὕ             (2.8) 

 

where Ὕ is the total number of days in the sample, А is the drift rate, „ is the 

instantaneous volatility and Ὠὡ  is Brownian motion. The solution to equation (2.8) is 

generally called an Itô process. As „ is a stochastic volatility process with a sample 

path that is right continuous, it is unable to capture the discontinuous jump event. When 

we wish to include the jump phenomena, we expand equation (2.9) as follows: 

 

Ὠὴ АὨὸ„Ὠὡ ὯὨή,    π ὸ Ὕ,             (2.9) 

 

where ή is the counting process, and Ὧ is the jump size when Ὠή ρ. 

 

The discrete-time returns are 

 

 ὶ ὴ ὴ ,   ὸ ρȟςȟȣ            (2.10) 
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where the unit time interval is usually referred to as a ódayô. Assume that there are ὓ

ρ observations per day of high-frequency data, then the continuously compounded ὓ 

intra-daily returns for day ὸ are denoted by  

 

 ὶȟ ὴȟ ὴȟ ,  ὸ ρȟςȟȣȟὝ               (2.11) 

 

where ὴȟ is the Ὦth intraday log-price on day ὸ and Ὕ gives total number of days 

sampled. 

 

The daily realized variance is defined by: 

 

Ὑὠ В ὶȟ,   ὸ ρȟςȟȣȟὝ,              (2.12) 

 

where Ὦ is the intraday interval. As emphasized by Barndorff-Nielsen and Shephard 

(2004), the realized variance is decomposed into two components with increasing 

sample frequency (the size of the intraday time interval tending to zero), ὓᴼЊ: 

 

ὙὠO ᷿ „ ὨίВ Ὧȟȟ  ὸ ρȟςȟȣȟὝ,            (2.13) 

 

where the first term is the integrated variance for the continuous component, and the 

second term is the jump component. 

 

Barndorff-Nielsen and Shephard (2004) introduced the bipower variation to estimate 

the instantaneous volatility as: 
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ὄὠḳА В ὶȟ ὶȟ ȟ  ὸ ρȟςȟȣȟὝ,            (2.14) 

 

where А ςȾ“ and ὓ is the total number of intervals per day. As ὓᴼЊ, we have: 

 

 ὄὠO ᷿ „ Ὠί,  ὸ ρȟςȟȣȟὝ.             (2.15) 

 

According to Lee and Mykland (2008), a jump is detected by the ratio: 

 

ὐόάὴȟ
ȟ

ȟȾ
, ὸ ρȟςȟȣȟὝ.               (2.16) 

 

Lee and Mykland (2008) infer the presence of jumps from the distribution of the 

statisticôs maximum over the sample size. Under the null hypothesis of no jump in the 

day ὸ and the time interval Ὦ, the sample maximum of the absolute value of a standard 

normal converges to a Gumbel distribution. We reject the null hypothesis of no jump 

if:  

 

ὐόάὴȟ Ὃ ρ ‌Ὓ ὅ,                (2.17) 

 

where Ὃ ρ ‌ is the ρ ‌ quantile function of the standard Gumbel distribution, 

ὅ ς ὰέὫ ὲ Ȣ  

  Ȣ
 and Ὓ

  Ȣ
, ὲ being the total number of 

observations (i.e., ὓ Ὕ). According to Lee and Mykland (2008), given the 

significance level of ‌ ρϷ, the threshold for 
ȟ

 is ‍ᶻ, with ‍ᶻ



19 

ὰέὫὰέὫπȢωω τȢφππρȢ Thus, if 
ȟ τȢφππρ, we reject the null 

hypothesis of no jump and establish the presence of a jump. 

 

2.4.2 co-jumps 

Barndorff-Nielsen and Shephard (2006), Jacod and Todorov (2009), and Bollerslev et 

al. (2008) define co-jumps using multivariate tests whereas Lahaye et al (2011) define 

co-jumps in a natural way using a univariate test with co-jumps as simultaneous 

significant jumps to permit straightforward estimates of co-jumps. There have even 

been alternative definitions of co-jumps using wavelets (Barunik and Vacha, 2018). A 

co-jump is defined by Lahaye et al (2011) in that they detect jumps happening  

simultaneously in two markets by using the product of the indicator functions of the 

jumps in the individual markets; the co-jump indicator function on a set of markets ὓὯὸ 

at a period ὸ, Ὦ: 

 

ὅὕὐόάὴȟ  Б Ὅ ὐόάὴȟ                (2.18) 

 

where Ὅẗ is the indicator function for a positive argument and ὐόάὴȟ refers to 

significant jumps detected at period ὸ, Ὦ on market ά  in the set ὓὯὸ. For example, 

given two marketsô datasets, when jumps are determined from both two markets at 

period ὸ, Ὦ,  ὅὕὐόάὴȟ ρ; however, if there is a jump identified from one of two 

markets or there are no jumps at period ὸ, Ὦ, then ὅὕὐόάὴȟ π. Lahaye et al (2011) 

detected co-jumps between EURUSD and GBPUSD, and between EURUSD and 

JPYUSD; the propotion of the determined TS co-jumps over the total observations are 

less than 1%. 
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Once adequate definitions of co-jumps were found, applications and implications of 

these definitions were sought. Barunik and Vacha (2018) investigated how co-jumps 

significantly influence correlations in currency markets. It was also found that the 

market conditions preceding jumps and co-jumps are associated with higher quote 

volume, greater illiquidity, greater jump-signed order flow (Piccotti, (2018)). The 

association of traditional time series co-jumps (defined as a jump of both assets within 

the same time interval) with macroeconomic news announcements was studied by 

Chatrath et al (2014). They conducted a co-jump regression analysis and concluded that 

positive surprises (difference between the actual value and the consensus value 

normalized by standard deviation) in U.S. macroeconomic announcements increases 

the probability of observing cojumps with a negative jump of the foreign currency (Euro, 

Sterling, Japanese Yen). In addition, it was found that a negative surprise in a U.S. 

announcement increases the probability of co-jumps with a positive jump exhibited by 

the foreign currency. Lahaye et al (2011) discussed the link between macroeconomic 

news and co-jumps from the back testing restuls based on a probit model; they 

concluded that there was a strong relation between news surprises and co-jumps. Also, 

through a regression analysis, Dungey and Hvozdyk (2012) observed that the 

probability of co-jumps presenting increased with the scheduled macroeconomic news. 

Bibinger and Winkelmann (2014) analysed on co-jumps in futures on German 

government bonds with short and long maturity; they concluded that the interest rate 

decision has a marjor impart on co-jumps presenting. Caporin et al. (2017) exaimed the 

relation between stocks co-jumps and news; they found that co-jumps associated with 

bad news increased the stock variances and the correlations, and the stock prices are 
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more likely to drop. In contrast, the goods rise the stock variances and the correlations, 

and the stock prices are likely to increase. 
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Chapter 3. Relative Volatility  

This chapter introduces a new approach in measuring relative volatility between two 

markets based on the directional change (DC) framework. DC is a data-driven approach 

for sampling financial market data such that the data is recorded when the price changes 

have reached a significant amplitude rather than recording data on a pre-determined 

timescale. Being able to measure relative volatility between two different assets helps 

analysts to monitor the relative strength of the volatility between two markets; and this 

could be an additional tool to better inform the role of risk management. In DC, the 

majority of the published references focus on the study of volatility measurement of a 

single market (Guillaume et al. (1997), Tsang (2017), and Petrov et al. (2019)) for 

instance. In measuring relative volatility of two markets, due to the varying timescale 

of the DC data, there is no direct way to measure the volatility of two markets 

simultaneously. Especially in the study of the high-frequency data, observers have to 

consider the pre-determined period to be used in order to collect the DC data of two 

markets to enable the measurement of the relative volatility. As discussed in Section 

1.1, it is suspected that it would be preferable to let the data dictate the time interval 

based on the behaviour of the two marketsô price changes. Hence, in terms of the 

contribution of this chapter, we propose the new concept of DC micro-market relative 

volatility (άὙὠ) to evaluate relative volatility between two markets. Unlike the time 

series method, άὙὠ dynamically redefines the timescale based on the frequency of the 

observed DC data between the two markets. As we shall show through the results of 

our studies (discussion in Section 3.5.3),  it is useful for measuring the relative volatility 

in micro-market activities (high-frequency data) both in terms of providing more data 
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during times of significant events and enabling the precise localisation of the 

measurement of volatility.  

 

The remainder of this chapter is organised as follows. Section 3.2 introduces the 

concept of Directional Change and the volatility measurement in the DC framework. 

Section 3.3 presents the measure of DC relative volatility using a pre-determined period. 

Section 3.4 introduces the concept of DC micro-market relative volatility mRV and its 

measurement method. Section 3.5.1 contrasts the classical method (time series 

approach) with the DC method from the perspective of measuring relative volatility. 

Section 3.5.2 illustrates the back-testing of measuring relative volatility between 

EURUSD and GBPUSD over seven years from 2012 to 2018. Particularly, mRV 

detected that Sterling was extremely volatile in comparison to the Euro in the week of 

the Brexit referendum. Inter alia, mRV detected that GBPUSD was extremely volatile 

compared to EURUSD after the voting time of the Brexit referendum. In Section 3.5.3, 

we discuss the benefits of measuring mRV compared to the classical method. In 

addition, Section 3.5.4 proposes a scaling-law to evaluate the relationship between the 

average period of sub-sequence and threshold chosen by the analyst.  In Section 3.6, we 

give our conclusions. 

 

3.1 Introduction 

Evaluating volatilities between different financial instruments is a primary idea in the 

application of risk management and trading strategy. The classical approach of 

measuring relative volatility is through comparing the variance of the price return on 

the regular timescale. It is capable of evaluating relative volatility if the objective 

dataset could better coincide with a period of relatively high homogeneity (like daily or 
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weekly time interval). However, in high-frequency data, the general approach might 

not present an accurate result for evaluating relative volatility, and there are two main 

reasons: (1) on the pre-determined timescale it is hard to summarise the real behaviour 

in terms of micro-market activity because, for instance, the volume of the participantsô 

transactions are not equal on the regular timescale. (2) the marketsô reactions to a 

sudden event might not be synchronously recorded in the prices, in other words, there 

might be a time delay between the response of markets. For instance, in measuring the 

consistency of the co-jumps between two markets, one price jump of market A may be 

followed by a price jump from market B with a short time delay. Under the DC 

framework, we propose a new concept of DC micro-market relative volatility (mRV) 

in evaluating relative volatility. In mRV, measuring relative volatility does not require 

a pre-defined timescale since the mRV approach determines the timescale based on a 

data-driven process. Specifically, we build the DC relative sequence, which combines 

the DC sequences of two markets into a single sequence. In a DC relative sequence, the 

timescale is passively defined by the observation of the DC data.  

 

As introduced in Section 2.1, the methodology of measuring relative volatility is 

different between the TS method and the DC method. Thus, there are some questions 

as follows: could the DC approch show similar results to the TS method in measuring 

relative volatility? How can observers benefit from using mRV compared with the TS 

method? In addition, to measure mRV, we build the DC relative sequence to combine 

the DC sequences of two markets into a single sequence. Can we find a new scaling 

law between the magnitude of the threshold and the timescale of the DC relative 

sequence? In other words, can we estimate the timescale of the DC relative sequence 
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(in terms of an average value) given a certain threshold? We will answer these questions 

in the following sections. 

 

3.2 Directional Changes 

Directional change (DC) is a new framework in the data sampling of the financial 

market transactions for the analysis of the market behaviours. The process of DC data 

sampling is based on the DC algorithm in equation (2.1) and (2.2) below (Guillaume et 

al. (1997) and Tsang et al. (2015)). In time series analysis, the market data is collected 

under a pre-determined timescale. However, the mechanism of DC data sampling 

considers the significant price changes such that the market data is recorded when the 

price change has reached a certain threshold from the last peak/trough of the price. In 

practice, the analyst determines the threshold as a percentage. Hence, price changes are 

recorded as a series of alternate uptrends and downtrends, and the timestamp of each 

DC data point is determined dynamically.  

 

3.2.1 DC volatility  

DC measures the volatility of a single market based on the frequency of the observed 

EPs over a period (Guillaume et al. (1997)). Tsang (2017) discussed how the DC 

approach could measure market volatility. Given a period of T, the more DC trends 

observed; this provides an indication of greater market volatility. As explained in Figure 

2.1 (in Section 2.3), a DC trend is defined by connecting two adjacent EPs. Hence, the 

number of DC trends are quantified by the number of observed extreme points ὔ . 

Over the period T, a higher value of ὔ  indicates higher volatility. Petrov et al. (2019) 

presented the measure of instantaneous volatility such that the equation (2.7) is 
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developed based on the theory of Brownian motion for the price returns (for deails of 

instantaneous volatility see Section 2.3). 

 

It is worth reiterating that DC and time series (TS) sample data differently. Therefore, 

given the same raw tick data, DC and TS will generate different sample datasets. 

Although volatility measures under DC and TS both reflect the market, they cannot be 

compared directly.  

 

3.3 DC relative volatility 

DC relative volatility (DCRV) is a concept in comparing the intensity of one marketôs 

volatility relative to another market in a period ὝȢ The general method of evaluating 

relative volatility is through comparing the variances of the price returns between the 

two markets in a period Ὕ, which requires the same timescale of the two marketsô price 

returns. For instance, analysts compare the variances of hourly price returns between 

market A and market B in a particular month. In DCRV, the relative volatility is 

measured by differencing the values of two marketsô DC volatilities („ ) in a period 

Ὕ; e.g. the measure of DCRV between market A and market B denoted „ ȟ , is 

given by:  

 

„ ȟ  =  „ Ȣ „ Ȣ — Ȣ Ȣ

Ѝ
,                                     (3.1) 

 

where „ Ȣ and „ Ȣ are the DC volatilities of the markets A and B respectively,  

ὔ Ȣ and ὔ Ȣ are the number of extreme points of market A and market B over the 

period Ὕ and — is the threshold which is applied to obtain the DC sequences of market 

A and market B. 
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Given the „ ȟ  over a period T: 

i. If „ ȟ π, the volatility of market A is relatively higher than the volatility 

of market B. 

ii.  If „ ȟ π, the volatility of market A and market B are at the same level. 

iii.  If „ ȟ π, the volatility of market A is relatively lower than the volatility 

of market B. 

 

3.4 DC micro-market relative volatility  

Section 3.3 introduces the measure DCRV in a pre-determined period Ὕ evaluating the 

relative volatility depending on the length of the period. However, given a set of data, 

the DCRV may indicate different results in measuring relative volatility when the length 

of Ὕ is selected randomly. In the example below, Figure 3.1 shows a segment of the DC 

sequences of market A and market B. Given the three different lengths of the periods 

ὝȟὝȟὝ, we obtain different numbers of EPs from the two markets. According to 

equation (3.1), the DCRV approach indicates three different results (
Ȣ

, 
Ȣ

 and 

Ȣ
) in measuring the relative volatility under the periods of ὝȟὝȟὝȢ Figure 3.1 

raises the question of how should we select the length of the Ὕ for measuring the relative 

volatility.  

 

DC takes a data-driven approach to sampling. Based on the same principle, it may be 

better to let the data pick Ὕ. That motivates us to find a data-driven measure of relative 

volatility. Also, the DCRV approach might be incapable of evaluating the event-based 

collapse at micro-level. Figure 3.2 below shows two differently arranged frequencies 
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of the EPs from market A and market B in the same period Ὕ. In Scenario 1, there is a 

constant frequency of the observed EPs between the two markets in that, every two EPs 

of market B follows one EP of market A. In scenario 2, there is the same number of 

total EPs as in scenario 1. However, the frequency of the observed EPs is entirely 

different (six consecutive EPs of market B follow two EPs of market A, then two EPs 

of market B follow two EPs of market A). Although the two scenarios have differently 

arranged frequencies, the DCRV approach presents the same result because of the same 

number of EPs of the two scenarios (according to equation (3.1)). 

 

The shortcoming described in the previous paragraph is addressed with the concept of 

DC micro-market relative volatility (άὙὠ. This is a concept used to evaluate the 

relative volatility based on a data-driven process. In άὙὠȟ the period Ὕ is determined 

according to the observation of the extreme points of the two markets. It is important to 

note time is passively defined in άὙὠ. A formal definition of άὙὠ and how it may be 

measured is given in the next sections. 

Figure 3.1 The DC sequences of market A and market B with the periods of  ╣ȟ╣ȟ╣ . 

Under the three different lengths of the periods, the DCRV measurement shows 

different conclusions in evaluating relative volatility between the two markets. 

Figure 3. 2 
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 Figure 3.2 The same number of EPs from market A and market B in the same period 

T.  

 

3.4.1 DC relative sequence (RS) 

As discussed in the beginning of Section 3.4, a progressive data driven method is to 

dynamically determine the period Ὕ based on the observing EPs of the two markets. 

The DC relative sequence (RS) combines the two DC sequences into a new sequence 

in chronological order. In a RS, the termination of the current period depends on 

changes of the market identity between the current EP and the next EP. Figure 3.3 

illustrates the DC relative sequences according to scenario 1 and scenario 2 as described 

in Figure 3.2. In scenario 1 of Figure 3.3, the Ὕ is terminated when the identity of the 

EP.A4 is different from the identity of the EP.B3. In scenario 2 of Figure 3.3, the Ὕ is 

terminated when the identity of the EP.A13 is different from the identity of the EP.B12 

(we suppose that the EP.13 is from market A). Hence, in scenario 1 of Figure 3.3, the 

DC relative sequence is decomposed into the four sub-sequences of the time periods 

Figure 3. 3 



30 

ὝȟὝȟὝȟÁÎÄ ὝȢ Likewise, the DC relative sequence of scenario 2 is decomposed into 

the two sub-sequences given by Ὕ and ὝȢ 

 

Figure 3.3 The decomposed periods of Figure 3.2. We assume that the EP.A13 is from 

market A for both scenario 1 and scenario 2. 

 

3.4.2 Formal definitions of DC relative sequence 

A DC combined sequence comprises all observed EPs from the two DC sequences of 

3 ÁÎÄ 3 ordered by the timestamp ὉὖȢὸ: 

 

Ὓ
ȟ
 ὉὖȟὉὖȟȣȟὉὖ ,       (3.2) 

 

where m equals the amount of the total number of EPs from both 3 ÁÎÄ 3, and 

ὉὖȟὉὖȟȣȟὉὖ are either from 3 or 3. The examples of scenario 1 and scenario 2 

from Figure 3.2 are summarised as follows: 

 

(1) Scenario 1 from Figure 3.2:  

Figure 3. 4 
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Ὓ
ȟ

ὃȟὄȟὄȟὃȟὄȟὄȟὃȟὄȟὄȟὃ ȟὄ ȟὄ .     (E3.1) 

(2) Scenario 2 from Figure 3.2: 

Ὓ
ȟ

ὃȟὃȟὄȟὄȟὄȟὄȟὄȟὄȟὃȟὃ ȟὄ ȟὄ .      (E3.2) 

A DC relative sequence (╡╢) is generated by a division process ɜὛ
ȟ

 which 

divides a DC relative sequence into z sub-sequences according to the identity of the 

adjacent EPs:  

 

ὙὛ
ȟ

ɜὙ
ȟ

 ὣȟὣȟȣȟὣȟȣȟὣ ,  (3.3) 

 

where ὣ is a sub-sequence of ὙὛ. All ὣ contain at least two EPs that one EP from Ὓ  

and another from Ὓ , thus the maximum value of Ú is . Otherwise, at least one ὣ 

contains more than two EPs, so Ú  . For every ὣ:  

 

 ᶅÊȡ ὣ ὉὖȟȟὉὖȟȟὉὖȟȟȣȟὉὖȟ ȟὉὖȟ . (3.4) 

 

The termination of the current sub-sequence ὣ depends on the identity of the next EP. 

When the identity of the upcoming EP is not the same as the identity of the current EP, 

the length of the period of the current ὣ is determined by: 

 

Ὕὣ ὉὖȢὸ ȟ ὉὖȢὸȟ.   (3.5) 

 

Given the DC sequences Ὓ  and Ὓ  of scenario 1 and scenario 2 in Figure 3.3, we 

obtain the DC relative sequences: 

(1) Scenario 1 from Figure 3.3: 
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ὙὛ
ȟ

ὃȟὄȟὄ ȟὃȟὄȟὄ ȟὃȟὄȟὄ ȟὃ ȟὄ ȟὄ Ȣ 

(E3.3) 

(2) Scenario 2 from Figure 3.3: 

ὙὛ
ȟ

ὃȟὃȟὄȟὄȟὄȟὄȟὄȟὄ ȟὃȟὃ ȟὄ ȟὄ Ȣ        (E3.4) 

 

3.4.3 The measure of DC micro-market relative volatility (□╡╥) 

The approach of DC micro-market relative volatility bases on equation (3.1), while the 

subject of the measurement is the sub-sequence ὣ of ὙὛ
ȟ
ȡ 

 

άὙὠ — Ȣ Ȣ
,                                                  (3.6) 

 

where, Ὕὣ is defined in equation (3.5). We shall abuse the notation by using άὙὠ as 

a measure as well as an abbreviation of the concept. Given the measure άὙὠ of the 

sub-sequence ὣ: 

 

i. If άὙὠ π, the volatility of market A is relatively higher than the volatility 

of market B. 

ii.  If άὙὠ π, the volatility of market A and market B are at the same level. 

iii.  If άὙὠ π, the volatility of market A is relatively lower than the volatility of 

market B. 

 

In scenario 1 of Figure 3.3, we measure the άὙὠ in the first sub-sequence ὣ of ὙὛ
ȟ

 

through equation (3.6): 
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άὙὠ
Ѝ Ѝ

 
Ȣ

.             (E3.1) 

 

Given the DC relative sequence of equation (3.3), άὙὠ measures each sub-sequence 

through equation (3.6): 

 

άὙὠ
ȟ

άὙὠȟάὙὠȟȣȟάὙὠ ȟȣȟάὙὠ ,           (3.7) 

 

where, άὙὠ
ȟ

 is a sequence, and ὣ refers to the sub-sequence Ὦ. 

 

In scenario 1 and scenario 2 of Figure 3.3, the άὙὠ is measure by:  

 

(1) Scenario 1 from Figure 3.3:  

άὙὠ
ȟ

άὙὠȟάὙὠȟάὙὠȟάὙὠ Ȣ      (E3.2) 

(2) Scenario 2 from Figure 3.3: 

άὙὠ
ȟ

άὙὠȟάὙὠ .         (E3.3) 

 

3.4.4 Discussion: the merits of using mRV in micro markets 

When measuring άὙὠ, the sub-sequence ὣ is the primary object. Ὕὣ  is a secondary 

object defined by the sub-sequence. DC is a data-driven approach of sampling the 

market data such that the DC data is only recorded when significant price changes are 

observed. Under the DC framework, the DC relative sequence is a combined sequence 

of two marketsô sequences. We then divide the DC relative sequence into a number of 

sub-sequences based on the market identity of the adjacent extreme points (EPs).  At 
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the end of Section 3.4.2, the example of scenario 1 (equation (E3.3)) illustrates that ὄ 

is the last EP of the first sub-sequence because ὃ (the next EP) is from a different 

market compared to ὄ . According to equation (3.5), the period Ὕ of the first sub-

sequence (ὣ) is passively determined by Ὕὣ ὉὖȢὸȟ ὉὖȢὸȟ; in the example of 

E.3, we have Ὕὣ ὃȢὸ ὃȢὸ. Hence, the period Ὕ is intrinsically determined by 

the behaviour of the two marketsô price changes, rather than being a fixed time interval 

pre-determined by the analyst. Based on the sub-sequence, we can precisely locate the 

timestamp when a significant άὙὠ value is determined within the period Ὕ. For 

example, an unusual óflash eventô may produce a series of EPs from market A compared 

to one EP from market B within a sub-sequence. We can then simply measure the 

relative volatility of this special event by calculating the άὙὠ of the sub-sequence. 

 

3.4.5 Discussion: regarding threshold selection 

Fundamentally, the DC data summarises the original price movement based on a pre-

determined threshold. In practice, observers utilize the threshold to capture the 

significant price changes and filter out the unnecessary noise of the price movement. 

Hence, the magnitude of the threshold directly impacts the frequency of the EPs over a 

period. An extremely small threshold will cause every tick data point to be determined 

as an EP. On the other hand, an extremely large threshold will give the result of 

recording no DC data. So, what is the órightô threshold for us to use? It is unlikely to 

find an óoptimalô threshold for sampling DC data in this research. In fact, there are no 

ówrongô ways of determining the size of thresholds. It is actually the observerôs 

prerogative to set the threshold to suit the individual observerôs needs. High-frequency 

traders might prefer a smaller threshold to acquire the micro price changes, while 

institutions might be more focused on larger price movements. In addition, Glattfelder 
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et al. (2011) show that the same statistical measures can be observed under different 

thresholds.  

 

3.5 Experiment 

In this section, we contrast the realised volatility (the classical time series method under 

the regular timescale) and άὙὠ in the measurement of relative volatility. It is worth 

reiterating that DC and time series work on different datasets sampled from tick data, 

and therefore, volatility measures utilizing those frameworks cannot be compared 

directly. The aim of this experiment is to examine the consistency of measuring relative 

volatility between the two methods.  

 

3.5.1 Comparing relative volatility between Time Series and DC 

In this section, we compare the realised volatility (the classical time series method under 

the regular timescale) and άὙὠ as a measure of relative volatility. The aim of this 

experiment is to examine the consistency of measuring relative volatility between the 

two methods.  

In time series, we select four groups of the data under the regular time intervals ЎÔ = 

{10 seconds, 1 min, 5 min, and 15 min}. The return at time ὸ, Ὑ, is defined by: 

 

 Ὑ ÌÎὖ ÌÎ ὖ Ўȟ                 (3.8) 

 

where, ÌÎὖ is the logarithmic price at the end of each time interval ЎÔ. Given the 

sequence of the returns over a period † (e.g., a trading day or a trading week), the 

realised volatility is defined by the standard deviation (Alexander (2008)): 
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„  
В

ȟ                 (3.9) 

 

where n is the number of returns over a period †, and Ὑ is the mean of the sequence of 

the returns. Given the standard deviation of market A and market B, we calculate the 

difference of „ȟ and „ȟ to evaluate the relative volatility between the market A and 

market B over a period †: 

 

 ὈίὨȟ
Ў „ȟ „ȟȟ               (3.10) 

 

where Ўὸ is the initially selected time interval to obtain the logarithmic price.  

 

Glattfelder et al. (2011) discovered 12 DC scaling laws in the market. For instance, the 

analytical relationship between the size of threshold and the average percentage change 

of a DC trend. The DC scaling law 10 gives the statistical property that the average 

period of a DC trend ộὝ Ớ is approximately equal to a function of the threshold —: 

 

 ộὝ Ớ
ȟ

ȟ

ȟ                (3.11) 

 

where Ὁȟ  and ὅȟ  are the scaling law parameters, ộȢỚ is the operator to calculate 

the mean, and — is the threshold. Based on equation (3.11), we can estimate the average 

period of a DC trend ộὝ Ớ given a threshold —, and vice versa (we present a basic 

summary of the 12 DC scaling laws in Appendix C). Hence, we obtain the four 

corresponding thresholds given the time intervals ЎÔ 

 ρπ ÓÅÃÏÎÄÓȟρ ÍÉÎȟυ ÍÉÎȟÁÎÄ ρυ ÍÉÎȢ A DC total movement defines a trend of the 
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price movement between two adjacent extreme points (see Figure 2.1 in Section 2.2). 

According to the DC definition, a trend is terminated when the price changes have 

reached a certain threshold — from the last peak/trough of the price. In DC, the 

peak/trough defines the extreme point (EP). Given a threshold and the scaling law 10 

(equation (3.11)), we can estimate the average period of the trend and vice versa. 

Glattfelder et al. (2011) estimated the average values of the parameters ὅȟ  and Ὁȟ  

across 13 pairs of exchange rates, and obtained ὅȟ πȢππρφυ and Ὁȟ ςȢπς. In 

this experiment, ộὝ Ớ is the ȹt. Given ȹts, using equation (3.11), we obtain the 

corresponding thresholds, — = {0.005%, 0.013%, 0.028%, 0.048%}. Based on the four 

thresholds, we calculate the DC sequences of the market A and market B and generate 

the DC relative sequence ὙὛ
ȟ

 through equation (3.3). Then, we measure the άὙὠ 

through equation (3.7). According to equation (3.10), we evaluate the relative volatility 

in the period † of daily (D), weekly (W) and monthly (M) of ὈίὨȟ
Ў . As introduced 

in equation (3.7), άὙὠ
ȟ

 is a sequence. Hence, we calculate the mean value of 

άὙὠ
ȟ

 over the period † to match the value of ὈίὨȟ
Ў . In the back-testingȟ we 

calculate the mean of daily ộάὙὠ
ȟ
Ớȟ the mean of weekly ộάὙὠ

ȟ
Ớȟ and 

the mean of monthly ộάὙὠ
ȟ
ỚȢ The data source is from Tickstory5 that gives 

direct access to the database of Dukascopy6. We select EURUSD as the major exchange 

rate comparing with five exchange rates. Table 3.1 summaries the two approaches in 

the measure of relative volatility. 

 

 

 
5 Tickstory is a retailer of market data that their data source is from Dukascopy. https://www.tickstory.com/ 

6 Dukascopy Bank is a Swiss online bank which provides high quality market data in different types. 
https://www.dukascopy.com/swiss/english/home/ 

https://www.tickstory.com/
https://www.dukascopy.com/swiss/english/home/
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Table 3.1 The summary of the two approaches in the measurement of relative volatility. For the 

classical method, the equations (3.8)-(3.10) provide the definitions for the measure of the relative 

volatility in daily, weekly and monthly. The back-testing picked 24 hours tick-by-tick data on 

weekdays from Monday 00:00:00.000 to Friday 22:00:00.000. 

 ὈίὨȟ
Ў  ộάὙὠ

ȟ
Ớ 

The raw data 

sampling 

The sequences of the returns under 

ȹt = {10 s, 1 min, 5 min, 15 min} 

over seven years from 2012 to 2018 

The DC relative sequence under — = 

{0.005%, 0.013%, 0.028%, 0.048%} over 

seven years in tick data from 2012 to 2018 

The periods of 

the 

measurement 

Daily: ὈίὨȟ
Ў , Weekly: 

ὈίὨȟ
Ў   

Monthly: ὈίὨȟ
Ў  

Daily: ộάὙὠ
ȟ
 Ớ,  

Weekly: ộάὙὠ
ȟ
 Ớ  

Monthly: ộάὙὠ
ȟ
Ớ 

The measure 

of the pairs of 

exchange rates 

ὈίὨȟ
Ў , 

ὈίὨȟ
Ў , 

ὈίὨȟ
Ў , 

ὈίὨȟ
Ў , 

ὈίὨȟ
Ў  

 

ộάὙὠ
ȟ

Ớ, 

 ộάὙὠ
ȟ

Ớ, 

ộάὙὠ
ȟ

Ớ, 

ộάὙὠ
ȟ

Ớ 

ộάὙὠ
ȟ

Ớ 

Table 3. 1 

In the seven year dataset, we obtain 1825 results for ὈίὨȟ
Ў , 366 results for 

ὈίὨȟ
Ў  and 84 results for ὈίὨȟ

Ў . ộάὙὠ
ȟ
Ớ also exhibited the same 

number of results. Given the results of the back-testing, we measure the correlation 

between the results of the two approaches. As the data have not been fit ted to a Gaussian 

distribution, we evaluate the correlation through the Spearman rank-order correlation 

coefficient. The Spearman correlation tests the association of the ordinal relationship 

between ὈίὨȟ
Ў  and ộάὙὠ

ȟ
ỚȢ Table 3.2 is a summary of the results of the 

correlation coefficient. 
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Table 3.2 The results of the correlation coefficient. The function ἍἷἺἺȢ is the correlation test given 

the two sequences obtained by the approaches of ╓▼▀Ⱳȟ═ ║
Ў◄  and ộ□╡╥╡╢

╢═
Ᵽȟ╢║
Ᵽ
ỚⱲ. In the first row, EU, 

GU, UJ, AU, UC, and GJ are the abbreviation of EURUSD, GBPUSD, USDJPY, AUDUSD, 

USDCAD, and GBPJPY, respectively. The last column indicates the average value of each row 

spanning the five pairs of exchange rates under the parameters of ȹt and ɗ. All the correlation 

coefficients below satisfy the significance level of ▬ < 0.05.  

   
GU-

EU 

UJ-

EU 

AU-

EU 

UC-

EU 

GJ-

EU 
Average 

Daily:       

#ÏÒÒὈίὨȟ ȟộάὙὠ
Ȣ Ϸȟ Ȣ Ϸ

 Ớ  0.830 0.835 0.634 0.766 0.782 0.769 

#ÏÒÒὈίὨȟ ȟộάὙὠ
Ȣ Ϸȟ Ȣ Ϸ

Ớ  0.869 0.921 0.713 0.794 0.862 0.832 

#ÏÒÒὈίὨȟ ȟộάὙὠ
Ȣ Ϸȟ Ȣ Ϸ

Ớ  0.839 0.917 0.733 0.784 0.847 0.824 

#ÏÒÒὈίὨȟ ȟộάὙὠ
Ȣ Ϸȟ Ȣ Ϸ

 Ớ  0.780 0.858 0.657 0.703 0.778 0.755 

  Weekly:       

#ÏÒÒὈίὨȟ ȟộάὙὠ
Ȣ Ϸȟ Ȣ Ϸ

 Ớ  0.855 0.839 0.621 0.783 0.791 0.778 

#ÏÒÒὈίὨȟ ȟộάὙὠ
Ȣ Ϸȟ Ȣ Ϸ

Ớ  0.908 0.941 0.723 0.794 0.893 0.852 

#ÏÒÒὈίὨȟ ȟộάὙὠ
Ȣ Ϸȟ Ȣ Ϸ

Ớ  0.898 0.950 0.786 0.830 0.905 0.874 

#ÏÒÒὈίὨȟ ȟộάὙὠ
Ȣ Ϸȟ Ȣ Ϸ

 Ớ  0.881 0.919 0.751 0.780 0.868 0.840 

  Monthly:       

#ÏÒÒὈίὨȟ ȟộάὙὠ
Ȣ Ϸȟ Ȣ Ϸ

 Ớ  0.952 0.845 0.615 0.797 0.792 0.800 

#ÏÒÒὈίὨȟ ȟộάὙὠ
Ȣ Ϸȟ Ȣ Ϸ

Ớ  0.938 0.955 0.757 0.789 0.898 0.867 

#ÏÒÒὈίὨȟ ȟộάὙὠ
Ȣ Ϸȟ Ȣ Ϸ

Ớ  0.887 0.966 0.846 0.867 0.943 0.902 

#ÏÒÒὈίὨȟ ȟộάὙὠ
Ȣ Ϸȟ Ȣ Ϸ

 Ớ  0.839 0.949 0.833 0.886 0.925 0.886 

Table 3. 2 

Table 3.2 summarizes the results of the correlation coefficients between ὈίὨȟ
Ў  and 

ộάὙὠ
ȟ
ỚȢ The statistical tests report strong positive correlation in that all the 

correlation coefficients are over 0.6. The far-right column is the mean of each row, 

which indicates the average correlation coefficients across the five pairs of exchange 

rates under the time intervals ЎÔ = {10 seconds, 1 min, 5 min, and 15 min} (with the 

four corresponding thresholds —ί). In Figure 3.4 (1), the three dot-lines illustrate the 

values of the right end column over the periods of daily, weekly and monthly timescales. 

Figure 3.4 (1) indicates that the correlation coefficients are tightly bunched for ЎÔ of 

10s and 1 min, while the spread enlarges at timeframes of 5 min and 15 min. Figure 3.4 

(2) shows the average correlation coefficients of each of the dot-lines and the average 



40 

correlation coefficients are 0.795, 0.836, and 0.864 for the daily, weekly, and monthly 

data. Overall, the results of the correlation test conclude that there exists positive 

correlation between ὈίὨȟ
Ў  and ộάὙὠ

ȟ
Ớ from 2012 to 2018.  

Figure 3.4  (1) the three dot-lines indicate the average values of the correlation under 

the pairs of parameters ȹt and ɗ; (2) the three columns show the average values of each 

line from the left chart, which indicate the average correlation coefficients at 

frequencies of daily, weekly and monthly sampling.  

 

3.5.2 The back-testing of □╡╥ between Sterling and Euro 

This section will discuss the application of measuring άὙὠ between GBPUSD and 

EURUSD. The unexpected result of the Brexit referendum caused Sterling to fall -8.016% 

against the US dollar in 24/06/2016, which was the most significant single day drop 

since 20007. In the same day, Euro crashed -2.65% against the US dollar. The goal of 

 
7 According to the data source from Reuters Eikon. 

Figure 3. 5 
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this experiment is to ask whether άὙὠ is useful for measuring the relative volatility 

between the two markets. To answer that question, we have conducted two sets of 

experiments. First, we examine the average monthly άὙὠ over a long historical period 

from 2012 to 2018 to view the relative volatility between Sterling and Euro in the long-

term. Second, we test the άὙὠ at the micro-level in that we monitor the άὙὠ over each 

sub-sequence during the week of Brexit referendum.  

 

Throughout the two experiments, we select two thresholds —ί = {0.05%, 0.1%} to 

calculate the άὙὠ. According to equation (3.6), the value of άὙὠ could be very small 

if we select too low a threshold. Hence, we normalise the values of άὙὠ by the 

threshold, άὙὠ = .  We simplify the notation for the mean of monthly 

ộάὙὠ
Ȣ Ϸ ȟ Ȣ Ϸ

Ớ to ộάὙὠȢ ϷỚ in this section. 

 

Figure 3.5 illustrates the mean of monthly ộάὙὠȢ ϷỚ under the threshold of 0.05% 

over seven years. From 01/2012 to 09/2014, the volatility of EURUSD was relatively 

higher compared to GBPUSD in that the ộάὙὠȢ ϷỚ  was changing smoothly 

between -0.01 to 0 (except the months of 08/2013, 01/2014, and 02/2014, in which the 

values of the άὙὠ were slightly positive). During the year of 2015, EURUSD was more 

highly volatile compared to GBPUSD after the quantitative easing (QE) announcement 

from the European Central Bank8. In the periods between 01/2016 and 06/2016, there 

was a sharp climb in the values obtained from -0.011 to 0.0374. After the month of 

Brexit referendum (06/2016), Sterling retained higher volatility compared to the Euro 

 
8 Details check https://www.ecb.europa.eu/press/pr/date/2015/html/pr150122_1.en.html 

https://www.ecb.europa.eu/press/pr/date/2015/html/pr150122_1.en.html
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until the end of 2016. Under the threshold of 0.1%, the ộάὙὠȢϷỚ shows a consistent 

result (see Figure A1 in Appendix A). 

Figure 3.5 The mean of monthly ộ□╡╥╡╢
Ȣ ϷỚ╜ measures the monthly average □╡╥ 

under the threshold of 0.05%. From 2012 to 2018, there were 84 data points. The values 

of □╡╥ are normalised by ɗ.  

 

In the second experiment, we evaluate the άὙὠ in each sub-sequence under the 

thresholds of 0.05% and 0.1%. We select the DC relative sequences ὙὛȢ Ϸ ȟ Ȣ Ϸ  

and ὙὛȢϷ ȟ ȢϷ  from 16/06/2016 to 30/06/2016 such that the periods cross the 

five working days before and after the Brexit referendum day on 23/06/2016. Given the 

DC relative sequences, we calculate άὙὠȢ Ϸ. Figure 3.6 plots the άὙὠȢ Ϸ of the 

2200 sub-sequences under the threshold 0.05%. Note that the x-axis in Figure 3.6 is not 

physical time, but the indices of the sub-sequences; the y-axis is the άὙὠ value. We 

highlight (in red colour) the sub-sequences in the period right after the voting of Brexit 

Figure 3. 6 
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referendum until the end of next day from 22:00 06/23/2016 to 22:00 06/24/20169 

(UTC) (24 hours after the vote of Brexit referendum). This corresponds to index 0 to 

2200 in Figure 3.6. Hence, the 2200 sub-sequences are separated into three parts:  

 

1) Part 1: from 00:00 16/06/2016 to 22:00 06/23/2016 (140 hours in total trading 

hours);  

2) Part 2: from 22:00 06/23/2016 to 22:00 06/24/2016 (24 hours);  

3) Part 3: from 00:00 06/27/2016 to 24:00 30/06/2016 (96 hours).  

Figure 3. 7 

 
Figure 3.6 The sequence of □╡╥╡╢

Ȣ Ϸ  over the periods from 16/06/2016 to 

30/06/2016. We select the tick-by-tick data of GBPUSD and EURUSD to calculate the 

□╡╥ of each sub-sequence. Figure 3.6 plots 2200 sub-sequences observed under the 

threshold of 0.05%. Note that the x-axis refers to the index of the sub-sequences. Part 

1(blue line): from 00:00 16/06/2016 to 22:00 06/23/2016 (140 hours); Part 2 (red line): 

 
9 The voting ended at 22:00, which corresponds to index 590 (the period of the sub-sequence starts 

from 21:53:58 23/06/2016 to 22:00:06 23/06/2016) in Figure 3.6.  
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from 22:00 06/23/2016 to 22:00 06/24/2016 (24 hours); Part 3 (purple line): from 00:00 

06/27/2016 to 24:00 30/06/2016 (96 hours). 

 

 Two observations stand out from the results shown in Figure 3.6: 

Observation 1: GBPUSD is highly relatively volatile compared to EURUSD in Part 2. 

In the highlighted area of Figure 3.6 (the period of Part 2), there are enormous changes 

in άὙὠ after the voting time. In Part 2, we observe the sub-sequence of the highest 

άὙὠ reached the value 0.834 in the period T from 23:17:53 23/06/2016 to 23:18:27 

23/06/2016. In this sub-sequence, there are 35 EPs of GBPUSD and 1 EP of EURUSD 

in 34 seconds. In contrast, the lowest value of άὙὠ is -0.633 and there is 1 EP of 

GBPUSD and 4 EPs of EURUSD in the period T of 3 seconds (from 03:59:28 

24/06/2016 to 03:59:31 24/06/2016). In table 3.3, we present the mean and median of 

the άὙὠȢ Ϸ in the three periods (from the second column to the fourth column). 

Visibly, the values of ộάὙὠȢ ϷỚ and ὓὩὨὭὥὲάὙὠȢ Ϸ of Part 2 are higher than 

the values in Part 1 and Part3, which indicates the significant volatility of GBPUSD 

compared to EURUSD after the voting. This conclusion is further confirmed by the 

ratio test, as shown in the last two columns of Table 3.3. In the column of Part2/Part1, 

the ratios reach 5.736 and 4.743 under the mean and median values of άὙὠȢ Ϸ. In 

the column of Part2/Part3, the ratios reach 3.723 and 2.591.  

 

Table 3.3 The mean and median of the □╡╥╡╢
Ȣ Ϸ. The operator ╜▄▀░╪▪Ȣ denotes the 

median of a sequence. 

 Part 1 Part 2 Part 3  0ÁÒÔςȾ0ÁÒÔρ 0ÁÒÔςȾ0ÁÒÔσ 

ộάὙὠȢ ϷỚ 0.014 0.082 0.022  5.736 3.723 

ὓὩὨὭὥὲάὙὠȢ Ϸ 0.011 0.053 0.02  4.743 2.591 

Table 3. 3 
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Observation 2: GBPUSD and EURUSD are much more volatile in Part 2 than Part 1 

and Part 3. 

During the period of Part 2, we observe 949 sub-sequences out of the total 2200, which 

account for 43% of the total sub-sequences in 11 trading days. The period of Part 2 is 

24 hours after the Brexit referendum, which means around 39 sub-sequences 

determined in each hour. Also, we observe 1251 sub-sequences in the periods of Part 1 

and Part 3 (236 hours in total). Thus, there are approximately 5 sub-sequences in each 

hour over 236 hours. According to the definition of DC volatility (Section 3.2.2), in a 

period T, the higher value of ὔ  (the number of EPs) indicates higher volatility. Hence, 

we evaluate the instantaneous volatility („ , equation (3.9)) of GBPUSD and 

EURUSD in Part 2 and obtained the values of 0.00598 and 0.00374, respectively. We 

also measure the daily „  of Part 1 and Part 3 to compare with the „  of Part 2. Figure 

3.7 illustrates the daily instantaneous volatility from 16/06/2016 to 30/06/2016. For 

both GBPUSD and EURUSD, there is an increase in 23/06/2016, and a peak in 

24/06/2016 (the period of Part 2). The „  of GBPUSD and EURUSD declines after 

24/06/2016. 
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Figure 3.7 The daily instantaneous volatility Ɑ╓╒ of GBPUSD and EURUSD. On 

17/06/2016 (Friday), the trading hours were terminated at 22:00 (UTC). On 23/2016, 

we select the period from 00:00 to 22:00 (the period before the end of the voting). On 

24/2016, the period was selected from 22:00 06/23/2016 to 22:00 06/24/2016 (the 

period of Part 2). 

 

We summarise the testing results in table 3.4: the third column and the fourth column 

present the mean and median of „  in Part 1 and Part 3; ὖὥὶὸςȢ„  is the „  of Part 

2; the last two columns are the ratios ὖὥὶὸςȢ„ ȾộὖὥὶὸρȢ„ Ớ and ὖὥὶὸςȢ„ Ⱦ

ộὖὥὶὸσȢ„ Ớ. For both GBPUSD and EURUSD, the instantaneous volatility of Part 2 

is much higher than Part 1 and Part 3. For GBPUSD, the ratiosὖὥὶὸςȢ„ Ⱦ

ộὖὥὶὸρȢ„ Ớ and ὖὥὶὸςȢ„ ȾộὖὥὶὸσȢ„ Ớ are 3.4 and 2.61, respectively. For 

EURUSD, the ratios are 3.17 and 2.49, respectively. Obviously, in the period of Part 2, 

the volatility of GBPUSD and EURUSD was much higher than in the periods of Part 1 

and Part 3. The results of evaluating instantaneous volatility prove the conclusion of 

observation 2. 

Figure 3. 8 
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Table 3.4 The measure of instantaneous volatility in the periods of three parts.  

Name  Part 1 Part 3  
ὖὥὶὸςȢ„
ȾộὖὥὶὸρȢ„ Ớ 

ὖὥὶὸςȢ„
ȾộὖὥὶὸσȢ„ Ớ 

GBPUSD       

 ộ„ Ớ 0.00176 0.00230  3.40 2.61 

 ὓὩὨὭὥὲ„  0.00166 0.00217    

EURUSD       

 ộ„ Ớ 0.00118 0.00150  3.17 2.49 

 ὓὩὨὭὥὲ„  0.00107 0.00147    

Table 3. 4 

We repeat the second application under the threshold of 0.1%. The results are consistent 

with what we found in the second application in Section 3.5.2 (for details see Appendix 

B). 

 

3.5.3 Benefits of measuring □╡╥ 

As discussed in Section 3.4.4, the άὙὠ measure has been developed under the DC 

framework. DC is an alternative approach to record price movements. Instead of 

recording the transaction prices at fixed time intervals, as is done in time series, DC lets 

the data alone decide when to record the transaction. In practice, we measure the άὙὠ 

of every observed sub-sequence. The sub-sequences are the result of the division 

process of a DC relative sequence (RS, see equation (3.3)). The period of a sub-

sequence is passively determined by the observed extreme points of the two markets. 

Hence, we can precisely locate the time when we observe a significant value of άὙὠ 

(for details see Observation 3 below). The precise time location of άὙὠ allows the 

observation of significant values which may not be registered by ὈίὨ (an example will 

be presented in Observation 4). Because the division process of a RS is not conducted 

using regular time intervals, the frequency of the sub-sequences varies over a given 

trading period, e.g. a trading day. The more observed EPs of the two markets there are, 
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the more sub-sequences will likely be determined (we will discuss this point in 

Observation 5 below).  

 

Observation 3: DC can precisely locate the exact times within which an extreme Í26 

occurred. This cannot be done under time series (TS).  

 

As mentioned, at the beginning of section 3.5.3, using άὙὠ can give a precise time 

location when there is a significant value of the relative volatility. In micro-market 

analysis, it is beneficial for analysts who need to monitor the relative volatility in high-

frequency data. In contrast, the classical method ὈίὨ cannot give the same precise 

timing because the measure of ὈίὨ is based on sampling at fixed time intervals. So, the 

presence of a significant value can only be narrowed down to the particular fixed time 

interval in which it occurred in this case.  

 

Fundamentally, since DC and TS are different frameworks for data sampling, there is 

no direct comparison between άὙὠ and ὈίὨ. To draw parallels with the άὙὠ result 

in Figure 3.6, we calculated the ὈίὨ between GBPUSD and EURUSD during the same 

time period (from 00:00 16/06/2016 to 24:00 30/06/2016). Based on equation (3.10), 

we sampled the TS data at 10 second time intervals (ЎÔ = 10 seconds) and calculated 

the value of ὈίὨ for every period of 10 minutes († = 10 minutes). Sampling at 10 

second intervals allows the capture of patterns in high frequency data and then the 

period of 10 minutes for the calculation of ὈίὨ permits the gathering of sufficient data 

points for an accurate calculated figure. In Figure 3.8 (2), we labelled the four 

significant ὈίὨ values with their respective time intervals. Correspondingly, there were 

also four significant values of άὙὠ. As shown in detail in table 3.5, for άὙὠ, the 

periods of the four significant values were located within the time intervals associated 



49 

with the significant values of ὈίὨ. Specifically, the periods of the four sub-sequences 

are distinct and each is less than 1 minute.  

 

Figure 3.8 The measure of relative volatility in the periods from 16/06/2016 to 

30/06/2016; Part 1(blue line): from 00:00 16/06/2016 to 22:00 06/23/2016 (140 hours); 

Part 2 (red line): from 22:00 06/23/2016 to 22:00 06/24/2016 (24 hours); Part 3 (purple 

line): from 00:00 06/27/2016 to 24:00 30/06/2016 (96 hours). (1) The sequence of 

□╡╥╡╢
Ȣ Ϸ between GBPUSD and EURUSD; Ᵽ = 0.05%; the x-axis refers to the index 

of the sub-sequence; the y-axis refers to the value of □╡╥. (2) The series of 

╓▼▀Ⱳ □░▪
ЎἼ ▼ between GBPUSD and EURUSD; ЎἼ = 10 seconds, Ⱳ = 10 minutes; the 

x-axis refers to the timescale; the y-axis refers to the value of ╓▼▀. 

 

For instance, as illustrated in Figure 3.9, the time interval of the highest ὈίὨ (ὈίὨ-2) 

was determined as being the 10 minute interval from 23:10:00 to 23:20:00. Whereas in 
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contrast, we observed the sub-sequence of the highest άὙὠ (άὙὠ-2) was contained 

within the 34 second time interval that ran from 23:17:53 to 23:18:27, which was 

located within a small sub-interval of the time interval for ὈίὨ.  

 

 

Figure 3.9 □╡╥ shows a more precise period of high relative volatility between 

GBPUSD and EURUSD. 

 

Table 3.5 The observations of relative volatility using the methods of □╡╥ and ╓▼▀.   

άὙὠ (DC)  ὈίὨ (TS) 

 Periods Values   Periods Values 

άὙὠ-1 21:04:36 ï 21:04:55 0.2831  ὈίὨ-1 21:00:00 ï 21:10:00 0.0006624 

άὙὠ-2 23:17:53 ï 23:18:27 0.8343  ὈίὨ-2 23:10:00 ï 23:20:00 0.001575 

άὙὠ-3 01:08:34 ï 01:08:42 0.6531  ὈίὨ-3 01:00:00 ï 01:10:00 0.00108 

άὙὠ-4 02:44:14 ï 02:44:26 0.5236  ὈίὨ-4 02:40:00 ï 02:50:00 0.001103 

άὙὠ-5 03:59:28 ï 03:59:31 -0.6331     

 

 

Observation 4: Through άὙὠ, DC enables us to observe changes in relative volatility 

that are not observable under ὈίὨ in time series. 

 

We observed a sub-sequence (which we labelled as άὙὠ-5 in Figure 3.8 (1)) with the 

biggest negative άὙὠ value from 03:59:28 to 03:59:31 24/06/2016. This sub-sequence 

only lasted for 3 seconds. The άὙὠ-5 mentioned above records the lowest άὙὠ value 
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(-0.6331) in the whole period observed in Figure 3.8 (1). Notice that we do not observe 

significant negative values in ὈίὨ in Figure 3.8 (2). There are two possibilities why the 

significant negative value might not be reflected in the ὈίὨ that we can take away from 

this case. Firstly, the 3 seconds of high relative volatility for EURUSD compared with 

GBPUSD (as indicated by άὙὠ-5) would tend to be diminished by the rest of the 

recordings within the 10 minutes. Secondly, with a sampling period of 10 seconds, a 3 

second spike might well not be even sampled in the first place. Thus, άὙὠenables us 

to observe changes in relative volatility between markets that cannot be observed by 

other means.  

 

Observation 5: The frequency of determining sub-sequences depends on the intrinsic 

behaviour of the two marketsô price changes. 

 

As discussed at the beginning of this section, the period Ὕ of the sub-sequences 

obtained in order to calculate the values of άὙὠ are passively determined by the 

observation of the extreme points of the two markets. Hence, the period Ὕ is 

intrinsically determined by the behaviour of the two marketsô price changes, rather than 

being a fixed time interval pre-determined by the analysts. In Figure 3.8 (1), the 

majority of the sub-sequences are determined within the period of Part 2 (from 22:00 

06/23/2016 to 22:00 06/24/2016 (24 hours)) as both two exchange rates were much 

more volatile in Part 2 (see Observation 2) compared to within the periods of Part 1 and 

Part 3. This illustrates how the approach facilitates the recording of more of the fine-

grained behaviour during periods of high flux. In contrast, we cannot observe such a 

quantity of data in TS as the data was collected using a fixed time interval. Specifically, 

in table 3.6, there were 949 sub-sequences confirmed in Part 2, which accounted for 43% 
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of the total sub-sequences. However, during the same period, 144 ὈίὨ values were 

calculated under TS, which only accounted for 9% of the total observations.  

 

 

Table 3.6 The number of observations in the periods of three parts under the methods 

of □╡╥ and ╓▼▀.   

 Number of observations (Percentage of total, %) 

 άὙὠ ὈίὨ 

Part 1 590 (27%) 840 (54%) 

Part 2 949 (43%) 144 (9%) 

Part 3 661 (30%) 576 (37%) 

Total 2200 1560 

 

3.5.4 The relationship between the threshold and the average period 

of the sub-sequence 

In Section 3.4.4, we discussed the merits of not requiring a pre-determined time interval 

for measuring άὙὠ. The period Ὕ of the sub-sequence is passively determined by the 

observation of the extreme points of the two markets. However, how long is the period 

of a sub-sequence before being terminated in practice? Is there a relationship between 

the thresholdôs magnitude and the period of the sub-sequence? Hence can we obtain a 

degree of control over the period of a typical sub-sequence through intelligent selection 

of the threshold? We implemented back-testing to examine the relationship between the 

average period of the sub-sequence ộὝὣỚ and the size of the threshold —. As discussed 

in Section 3.5.1, Glattfelder et al. (2011) developed 12 scaling laws under the DC 

framework. The DC scaling law 10 gives an estimation of the average period of a DC 

trend given a DC threshold. Following their work, we discovered a scaling law between 

the average period of a sub-sequence ộὝὣỚ and the size of the threshold —. 
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As shown in table 3.7, we selected four pairs of exchange rates over four years (from 

2015 to 2018). The experiment selected 100 thresholds to calculate the ộὝὣỚ over four 

years, ranging from 0.005% to 0.104% with the values increasing in increments of 

0.001%. The raw data type is tick-by-tick. Table 3.7 summarises the details of the data 

sources for the back-testing.  

 

Table 3.7 Specification of the back-testing. The back-testing utilises 24 hours of tick-by-tick data 

during the weekdays from Monday 00:00:00.000 to Friday 22:00:00.000. 

Data Type Tick-by-tick 

Periods 24 hour weekdays, from 2015 to 2018 

DC relative sequences ὙὛ ȟ
ȟὙὛ

ȟ
ȟὙὛ

ȟ
ȟὙὛ

ȟ
ȟ  

Thresholds 100 thresholds from 0.005% to 0.104% with an increment of 0.001% 

 

Following equation (3.11) in Section 3.5.1, we have a new óperiod-thresholdô scaling 

law between the average period of a sub-sequence ộὝὣỚ and the size of threshold —: 

 

 ộὝὣỚ
ȟ

ȟ

,                 (3.12) 

 

where ộὝὣỚ indicates the average period of the sub-sequence related to a certain 

threshold —, and Ὁȟ, ὅȟ are the parameters of the scaling law. Figure 3.10 illustrates 

the log-log chart of the ộὝὣỚ versus the DC threshold — in the four pairs of exchange 

rates. Under logarithmic scaling, there are apparent linear relationships between ộὝὣỚ 

and — crossing the four pairs of exchange rates. For example, the blue dot-line indicates 

the scaling law of GBPUSD and EURUSD.  
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Figure 3.10 The scaling law of the average period of a sub-sequence related to the size 

of the DC threshold. On the horizontal axis, the thresholds are chosen from 0.005% to 

0.104% with an incremental step of 0.001%. On the vertical axis, the unit of ộ╣╨Ớ is 

seconds. The estimated scaling law parameters are summarised in table 8. 

 

Table 3.8 The óperiod-thresholdô scaling law: the parameters 

DC relative sequence  ὅȟ  Ὁȟ  Ὑ  

ὙὛ
ȟ

 6.80147E-06 1.711108 0.99665483 

ὙὛ
ȟ

 6.92514E-06 1.739012 0.997322782 

ὙὛ
ȟ

 6.72848E-06 1.68019 0.996119037 

ὙὛ
ȟ

 6.20971E-06 1.698149 0.996568535 
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Under the DC framework, the data-driven approach passively determines the time 

interval of the sub-sequence based on observed extreme points of the two markets. On 

the other hand, unlike time series which uses a fixed time interval, there is no explicit 

timeline for the termination of a sub-sequence. In other words, if there is no upcoming 

DC data, we canôt terminate the current sub-sequence. The óperiod-thresholdô scaling 

law gives a relationship between ộὝὣỚ and —. This gives us a basic estimate for the 

average period of the sub-sequence given the size of the threshold. However, in practice, 

there is no explicit guarantee between the average period and the actual period of a sub-

sequence. For example, for the sub-sequence of ὙὛ
ȟ

, the ộὝὣỚ is 

approximately 1493 seconds (or 25 minutes) if the threshold is specified as 0.05%, but 

using the same size of the threshold, the ộὝὣỚ was 40 seconds in the 24 hours after 

the Brexit referendum. By changing the threshold, the óperiod-thresholdô scaling law, 

allows the analyst control of the typical time period when the market is behaving 

normally. In future work, we would like to investigate the effect of the threshold on the 

deviation of the time period from the average values given by the scaling law in order 

to obtain indications as to the accuracy of the results from the óperiod-thresholdô scaling 

law. 

 

3.5.5 Discussion on Experiments 

In Section 3.5.1, we calculated the relative volatility using the approaches of  ὈίὨȟ
Ў  

and  ộ„
ȟ
Ớ. The Spearman correlation test indicated high correlation for the 

measure of relative volatility between the two approaches. The correlation coefficients 

reached average values of 0.795, 0.836 and 0.864 under the periods of daily, weekly 

and monthly windows. This means άὙὠ agrees moderately with the relative volatility 

measure from the time series methodology. In Section 3.5.2, the results of monthly 
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relative volatility indicated that EURUSD was relatively more volatile than GBPUSD 

from 2012 to 2015. Starting from 2016, GPBUSD was exceedingly more volatile than 

EURUSD after the unexpected result of the Brexit referendum. Throughout the long-

term back-testing, we observed that the significant άὙὠ changes corresponded to the 

major historical events during that period. The second application summarises two 

observations in high-frequency data. The first observation concluded that GBPUSD was 

far more relatively volatile then EURUSD right after the time of the Brexit vote. For 

the second observation, we noted a substantial number of sub-sequences in Part 2, 

which accounted for 43% of the total sub-sequences in 11 trading days. This 

observation indicates that GBPUSD and EURUSD were both more volatile in Part 2 

compared to Part 1 and Part 3. In Section 3.5.3, compared with the time series method 

ὈίὨ, we illustrated that DC can precisely locate the exact times within which an 

extreme άὙὠ occurred (Observation 3). One weakness of the DC approach is that we 

donôt know when the current sub-sequence will terminate. This is a disadvantage of the 

data driven approach; if there is no upcoming DC data, we canôt terminate the current 

sub-sequence. This is only a problem during times with limited amounts of DC events. 

In Section 3.5.4, we proposed the óperiod-thresholdô scaling law to estimate the average 

period of a sub-sequence ộὝὣỚ given a certain threshold. In practice, the deviation 

between the average value ộὝὣỚ and the actual value Ὕὣ  could be significant 

especially during major events. Nevertheless, this new scaling law gives observers a 

basic guide to inform their influence on the average period of the sub-sequence when 

they select the size of the threshold.  
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3.6 Conclusions 

Directional change is an alternative way of sampling the price changes to form a DC 

sequence based on a data-driven process. Under the DC framework, this study opens a 

new path in studying the relative volatility between two markets. The DCRV approach 

evaluates the relative volatility based on the pre-determined period Ὕ. We have shown 

(in Section 3.4) that the DCRV measure is sensitive to the size of Ὕ. Also, we introduce 

άὙὠ, a data-driven measure of relative volatility. To develop άὙὠ, we introduce the 

DC relative sequence (Section 3.4.2). It is a sequence which chronologically combines 

two marketsô DC sequences. In practice, the termination of the current sub-sequence 

depends on the identity of the upcoming extreme point (EP). Hence, the period Ὕ is 

dynamically defined by the length of the sub-sequence. In Section 3.5.1, the correlation 

test proved that άὙὠ has a similar conclusion to the time series method in measuring 

relative volatility. Also, the correlation test indicates a positive relationship between the 

correlation coefficient and the period † in that the longer the selected period †, the 

higher the correlation coefficient obtained. In Section 3.5.2, we executed back-testing 

in evaluating relative volatility between GBPUSD and EURUSD. In the long historical 

period from 2012 to 2018, significant changes in άὙὠ corresponded to major historical 

events. We also tested the relative volatility in high-frequency data from 16/06/2016 to 

30/06/2016 such that the periods span the five working days before and after the Brexit 

referendum day on 23/06/2016. Specifically, we separated the 11 trading days into three 

parts: (1) Part 1: from 00:00 16/06/2016 to 22:00 06/23/2016 (140 hours of total trading 

hours); (2) Part 2: from 22:00 06/23/2016 to 22:00 06/24/2016 (24 hours following the 

vote of Brexit referendum); (3) Part 3: from 00:00 06/27/2016 to 24:00 30/06/2016 (96 

hours). The advantage of the data-driven process is that it was possible to locate the 

sub-sequences which showed the highest and the lowest άὙὠ. In Part 2, we observed 
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significant changes in άὙὠ, which indicated the extreme volatility of GBPUSD versus 

EURUSD. In Observation 2, by comparing the number of sub-sequences between the 

three parts, we concluded that GPBUSD and EURUSD were both more volatile in Part 

2 than Part 1 and Part 3.  

 

To conclude, under the DC framework, we developed a new method to measure relative 

volatility by using άὙὠ which can be narrowed down to a precise time location in times 

of extreme values of relative volatility. This cannot be done under time series 

(Observation 3, details see Section 3.5.3). We believe, for instance, that άὙὠ can give 

an alternative approach to monitor in near real time the relative volatility in micro-

market activities when analysts consider high-frequency data or tick data. 
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Chapter 4. Jumps 

In recent decades, significant price turbulence has become more common in the 

financial markets. Past financial crises have emphasized the risk of instantaneous 

extreme price changes, so-called jumps. In fact, a substantial amount of the empirical 

research supported that the existence of jumps not only accompanied major financial 

crises but are also associated to different major news events, such as economic data, 

political crisis, natural disasters, etc. Being able to identify jumps could give a better 

understanding about the jumpsô behaviours and monitor the response of jumps to new 

information. In this chapter, we propose a novel approach to identify jumps based on a 

data-driven approach; that of Directional Change (DC). 

 

Compared with the data recording in time series, DC offers an alternative approach of 

sampling the price movement. In time series, a jump (TSJ) is a different source of risk 

compared to the risk of continuous volatility in the asset pricing model (Lee and 

Mykland, (2008)). The classical method identifies jumps through a model-based 

approach (for details see section 2.3). However, in DC, the jumps are identified by a 

data-driven approach. About the contribution of this chapter, we proposed the definition 

of jumps in DC (the data-driven approach) and implemented the back-testing of 

detecting DCJs from the selected datasets; we compared both the data-driven approach 

(DC) and model-based method (TS) for the ability to detect jumps, and the results 

indicate that the two approaches complement each other in identifying jumps in Forex. 

According to our back-testing, the results indicate that both approaches are effective in 

detecting jumps. The two approaches both found common jumps. Some TS jumps were 

not found as DC jumps and vice versa. Also, we examine the relationship between 
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major economic events and the jumps under both methods. The outcomes demonstrated 

that some jumps followed the economic events. DCJ can give precise information about 

the behavior of jumps in terms of size, direction, and quantity. According to our back-

testing, DC jumps offer the benefit of more fine-grained analysis in the monitoring of 

jump behavior in high-frequency data.     

 

The remainder of this chapter is organised as follows. Section 4.1 introduces the 

motivation of the study of DC jumps. Section 4.2 presents the process of DC data 

summary. Section 4.3 introduces the time-adjusted return sequence (ὝὙ sequence). In 

section 4.4, we will introduce the definition of DC jump. The experimental design and 

results will be given in section 4.5 and section 4.6. The results of the experiment are 

discussed in section 4.7. In Section 4.8, we present our conclusion. 

 

4.1 Introduction 

In the financial markets, one of the core topics is to understand the ótrueô value of the 

asset price. Some analysts believe that the efficient market hypothesis suggests that 

asset prices should react to all the relevant news (Bodie et al. (2013)). Others think that 

the asset prices may not totally coincide with the fundamentals (Levy and Post (2005)). 

From a practical perspective, researchers have been focussing on various factors to 

improve the asset price model. One subject of study is to understand how markets react 

to the information contained in news bulletins (Andersen et al. (2007); Jiang et al. 

(2011)). Some researchers emphasise that some sensitive news may cause price jumps 

that have an impact on risk management and asset pricing (Chatrath et al (2014); Jurdi 

(2020)). Erdemlioglu and Gradojevic (2019) conclude that there are two challenging 
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issues for studying jump behaviours: (1) the difficulty of identifying jumps; (2) 

analysing the determinants of jumps.  

 

In time series analysis (TS), the jump is a different source of risk in addition to the risk 

of continuous volatility in the asset pricing model. The classical method detects the 

jumps through the model-based approach. Barndorff-Nielsen and Shephard (2004) 

introduced bipower variation to estimate the instantaneous volatility. Jumps are 

determined through filtering out the instantaneous volatility from the realised variance. 

Barndorff-Nielsen and Shephard (2004) first presented their method to locate the jumps 

at a daily frequency. Lee and Mykland (2008) detected the jump arrival times and size 

in the intraday timeframe. 

 

Detecting jumps is also important for researchers to measure the market reactions to 

different news events through evaluating the jump behaviour. The events can generally 

be separated into two categories: (1) scheduled events, such as the scheduled 

macroeconomic announcements; (2) unscheduled events, such as natural disasters. In 

general, the unscheduled events may have more impact on jumps presenting than the 

scheduled events as participants are highly sensitized to the uncertain risk. However, 

some scheduled events may cause extreme turbulence in the financial markets. For 

instance, the unexpected result of the Brexit referendum produced significant shocks 

spanning various assets. 

 

As introduced in section 2.3, Barndorff-Nielsen and Shephard (2004) first presented 

their method to locate the jumps at a daily sampling frequency. Lee and Mykland (2008) 

detected the jump arrival times and size in the intraday timeframe. The classical method 
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identifies jumps based on a fixed time interval such that jump behaviour may depend 

on the length of the pre-determined time interval chosen. Many jumps may present 

randomly as unscheduled events that can occur at any time. For example, a jump may 

start at any time point within a fixed time interval and in addition, a jump may exist 

spanning the boundary of the current time interval. Fundamentally, the jump behaviours 

are the reactions of the participantsô trading actions. However, one can never know the 

participantsô trading behaviours to infer the timing of the jumpsô arrivals.   

 

As discussed above, the method of identifying jumps is developed under the framework 

of time series. Under the DC framework, we introduce a data-driven approach to detect 

jumps, which is different to the classical method in that it does not rely on a pre-defined 

model. DC is a concept for sampling the financial market data (Guillaume et al. (1997)). 

Tsang et al., (2017) developed the DC indicators to summarise the features of the price 

movements. They recognized that some features observed by DC indicators may not be 

discovered in time series analysis. Encouraged by their works, the DC jump (Ὀὅὐ) is 

defined based on the DC indicator, time-adjusted return (ὝὙ). In DC, we detect the 

presentence of the jump based on the ὝὙ of the DC trend. Specifically, the existence of 

a Ὀὅὐ is judged by two factors of the DC trend: (1) significant price changes; (2) a short 

time period over which this occurs. These two requirements are quantified by the ὝὙ. 

The formal definition of the Ὀὅὐ will introduce in section 4.4. 

 

Theoretically, the jump in DC is a different concept compared to the jumps in TS. They 

cannot directly compare with each other. In DC, what is termed a Ὀὅὐ is an event 

whereby the price has changed by a significant magnitude in a short period. Since the 

DC approach of identifying jumps is different to the time series method, there are some 
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questions that follow: could we detect jumps under DC? Can we find the unique jumps 

under both methods? Or are the jumps detected under DC independent of the jumps 

detected under time series? Are Ὀὅὐs associated to news events? Can we detect DC 

jumps during unscheduled events? And how can analysts benefit from the observed 

Ὀὅὐs? We will answer these questions in the following sections. 

 

4.2 The DC data summary  

In DC, we judge the presence of jumps based on DC trends. Specifically, we consider 

two factors to determine a DC jump: (1) significant price changes; (2) a short period of 

the DC trend. Tsang et al. (2017) introduced the indicator of the time-adjusted return of 

DC (we call this ὝὙ for short). ὝὙ not only measures the magnitude of total price travel 

of the DC trend (the TMV), but also evaluates the periods of the price movement to 

complete the DC trend. Section 2.2 introduced a formal definition of the TMV and ὝὙ. 

Here, we would like to review the definitions in a practical way.  

 

For a certain financial instrument, a buyer and a seller made a deal at a certain price 

which is then recorded as the raw transaction price with a confirmed timestamp. In 

quantitative analysis, the recorded raw price is also called tick data. Over the period of 

trading activities, we record a sequence of tick data in irregular time. Normally, analysts 

summarise the raw data on a regular time interval and the result is called time series 

data. Given a pre-determined time scale like an hourly time interval, we record the 

transaction prices at the end of every hour.  

 

DC is an alternative way of data sampling. As introduced in section 2.2, DC records the 

reversal point when there is a significant opposite price change from the last 
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downtrend/uptrend. In practice, a significant change is defined by the threshold on a 

percentage scale which is given by the researcher. Thus, DC summarises the original 

transaction data as a series of alternative uptrends and downtrends which we call the 

DC trends. The reversal point between two DC trends is defined as the extreme point 

(Ὁὖ). An Ὁὖ is a couple which comprises a transaction price (ὉὖȢὴ) and a timestamp 

(ὉὖȢὸ): 

 

Ὁὖ ὉὖȢὸȟὉὖȢὴ.        (4.1) 

 

Tsang et al. (2017) introduced useful DC indicators to be used in the analysis of price 

movements. We will introduce the indicators which will be used for DC jump detection 

in this chapter. 

 

As shown in Figure 4.1 below, the upward DC trend is the connection from Ὁὖ to Ὁὖ. 

The price distance travelled of the DC trend is measured by the total price movement 

(Ὕὓὠ) which is the percentage change normalized by the threshold —. Hence, we can 

obtain the price distance from Ὁὖ to Ὁὖ: 

 

Ὕὓὠ
Ȣ   Ȣ

 Ȣ  
,        (4.2) 

 

Also, the time distance between Ὁὖ and Ὁὖ is given by Ὕ ὉὖȢὸ  ὉὖȢὸ. Tsang et 

al. (2017) proposed the time-adjusted return of the DC trend (ὝὙ), denoted by Ὑ , to 

measure the price change over time. In the example of Figure 4.1, we can calculate the 

ὝὙ by: 
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Ὑ
ȿ Ȣ  Ȣ ȿ

 Ȣ  z

ȿ ȿ  
.      (4.3) 

 

Note, the terminal time of the Ὑ  above is defined by ὉὝ(Ὑ ὉὖȢὸ. In practice, 

ὝὙ measures the óspeedô of forming the DC trend, which considers both the price 

change and the time taken. ὝὙ is the fundament for us to judge the presence of a DC 

jump as we need to consider both the significant price change and the (short) time 

period of the DC trend. 

 

Figure 4.1 A hypothetical example of the data summary in DC. 

 

4.3 The ╣╡ sequence 

 

This section will introduce the ὝὙ sequence of a single market. In section 2.2, equation 

(2.4) defines a DC sequence which comprises a series of extreme points of the market 

A, i.e., Ὓ ὉὖȟὉὖȟȣȟὉὖ. In Figure 4.2, we plot the DC trends of market A by 

connecting the EPs. For each DC trend, we calculate the ὝὙ through equation (4.3); the 
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Ὑ  is the ὝὙ in Ὥ  DC trend. Thus, given a DC sequence of a market, we can generate 

the ὝὙ sequence using equation (4.3). 

 

Figure 4.2 An example of DC trends in a market. The chart illustrates a series of 5 DC 

trends formed by the 6 EPs. 

 

A ὝὙ sequence, denoted by Ὓ , is a finite sequence of ὝὙs: 

 

Ὑ ȟὙ ȟȣȟὙ ,       (4.4) 

 

where Ὑ  is obtained through equation (4.3) and ὲ equals the total number of DC 

trends from a DC dataset. 

 

In Figure 4.3, there are four Ὁὖs (from Ὁὖ to Ὁὖ). Given the four Ὁὖs, we form three 

DC trends, and obtain the time intervals of the three DC trends (Ὕ, Ὕ, and Ὕ). We 

calculate the ὝὙs of the three DC trends (from ὝὙ to ὝὙ). At the bottom of Figure 

4.3, we present a segment of the ὝὙ sequence.     

            
Figure 4. 1 
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Figure 4.3 Features of a ╣╡ sequence: (1) Threshold, Ᵽ; (2) Extreme Point, ╔╟; 

(3) The period of the DC trend, ╣; (4) The time-adjusted return, ╣╡; (5) the absolute 

value of ╣╜╥, ȿ╣╜╥ȿ. For each DC trend, we generate the ╣╡, e.g., ╣╡

ȿ╣╜╥ȿzⱣȾ╣ . At the bottom of this chart, we present a segment of the ╣╡ 

sequence. 

 

4.4 DC Jump (╓╒╙) 

As discussed in Section 4.1, a DC Jump (╓╒╙) is an event such that the price has 

changed by a significant magnitude in a short period. In other words, DC judges the 

presence of a jump according to two requirements: (1) significant price changes; (2) a 

short time period over which this occurs. As introduced in Section 4.2, ὝὙ measures 

the time-adjusted return of the DC trend. Hence, we detect the existence of a Ὀὅὐ based 

on the ὝὙ of the DC trend; the significance of a ὝὙ is judged with reference to the 

historical ὝὙs, e.g., whether the ὝὙ is above 95% of the historical observations. 

 






































































































































































































