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Summary. In competitive coevolution, the Red Queen principle entails constraints
on performance enhancement of all individuals if each is to maintain status quo in
relative fitness measured by an index relating to aggregate performance. This is
encapsulated in Lewis Caroll’s Red Queen who says ”in this place it takes all the
running you can do, to keep in the same place”. The substantive focus of this paper is
to experimentally generate stock market ecologies reflecting the Red Queen principle
for an explanation of the observed highly inegalitarian power law distribution in
investor income (measured here as stock holdings) and the emergence of arbitrage
free conditions called market efficiency. With speculative investors modelled as using
genetic programs (GPs) to evolve successful investment strategies, the analytical
statement of our hypothesis on the Red Queen principle can be implemented by
constraint enhanced GPs which was seminally developed in [19], [7] and [10].

1 Introduction

This paper aims to implement the methodology of computationally intelligent
multi-agent models to simulate stock markets as complex adaptive systems
(CAS). These markets are likened to complex ecologies involving the interac-
tion of a large number of agents who adaptively respond to their environment
and to other agents with the aid of computer programs or algorithms that
mimic evolutionary principles. The environment of such agents becomes com-
plex with statistical ’signatures’ such as power laws. Associated with this soup
of coevolving population of agents, each attempting to enhance its fitness rel-
ative to others, is the principle of the Red Queen based on the observation
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made to Alice by the Red Queen in Lewis Caroll’s Through the Looking Glass:
”in this place it takes all the running you can do, to keep in the same place”.
The principle of the Red Queen was first identified by an evolutionary biol-
ogist van Valen to encapsulate features of competitive coevolution in species.
In the competition that governs the fight for scarce resources or in cases of di-
rect confrontation with zero sum payoffs such as in parasite-host or predator-
prey situations what matters is relative rather than absolute performance
capabilities of the individuals. Certain attributes of individuals have to be
enhanced relative to the same in others to stay ahead of the race. But oth-
ers are like-wise involved in performance enhancement triggering off an arms
race. Since only hypothesis or conjectures but not the direct tests of the Red
Queen principle can be applied to evolutionary biology, Artificial Life sim-
ulations have become the means to understand the system dynamics and
distinctive if not generic features of competitive coevolution. The classic work
[13] and [16] are based on competing coevolving species. In [5] parasites were
deliberately introduced and it was noted that competition among coevolving
species could potentially prevent stagnation in local optima. The evolution of
intelligence itself is hypothesized to arise as a Red Queen type arms race giv-
ing rise to Machiavellian behaviour in social interactions, [14]. In [8] there is
a fuller discussion of the relevance of the Red Queen principle for Economics.
In competitive coevolution, the Red Queen principle, therefore, entails con-
straints on performance enhancement of all individuals if each is to maintain
status quo in relative fitness measured by an index relating to aggregate per-
formance. The substantive focus of this paper is to experimentally generate
stock market ecologies reflecting the Red Queen principle for a long over-
due explanation of the observed highly inegalitarian power law distribution
in investor income (measured here as stock holdings) and the emergence of
arbitrage free conditions called market efficiency. With speculative investors
modelled as using genetic programs (GPs) to evolve successful investment
strategies, the analytical statement of our hypothesis of the Red Queen is as
follows: each agent’s strategy must ’keep up’ with the average performance of
all other strategies in terms of returns. This can be implemented by constraint
enhanced GPs which was seminally developed in [19], [7] and [10]%.

‘In [10] GPs were trained to detect arbitrage opportunities in a program called
EDDIE-ARB which is geared toward conducting arbitrage operations in the index
options and futures markets. Historical data indicated that arbitrage opportunities
exist, but they are few and far between. From a large domain of search, fewer than
3% of these were found to be profitable in excess of transactions costs. While the
GPs could be successfully trained to find arbitrage opportunities, many of these were
being missed. The novel feature of EDDIE-ARB is a constraint satisfaction feature
supplementing the fitness function that enables the GP to satisfy a degree of search
intensity specified as a minimum and maximum as required by the problem. In other
words, as no more than 3% of the data is likely to contain arbitrage opportunities
that became the maximum. The minimum was specified to suit the needs of the
user.
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In the Santa Fe artificial stock market model of [1] it was found that when
the forecast performance of agents as genetic programs was altered by dif-
ferent rates of retraining, the stock price dynamics varied correspondingly.
When the genetic programs were given a slow rate of retraining, the market
converged to homogenous rational expectations (HRE) while when retraining
rate was speeded up, the more volatile dynamics of real stock markets was
observed. However, from our perspective on the Red Queen principle, perfor-
mance enhancement should not be ad hoc and exogenously imposed by the
experimenter, but should be an endogenous constraint. The work described
in [2] is exceptional in having proposed an endogenous scheme for when and
by how much investors equipped with genetic programs retrain in an artificial
stock market environment. The authors in [2] (pp. 377-379) discuss the process
of enhancement of individual investment performance in terms of peer pres-
sure and self-realization. They prescribe an endogenous way in which agents
look for "better’ investment rules and call this procedure Visiting the Business
School. In [2] (p. 379) the authors make an important point which can be sum-
marized as follows: in so far as each agent’s investment performance differs
from one another relative to some (endogenously given) benchmark, agents
now coevolve governed by a different fitness or objective function. However,
the following problem may be cited with the Chen and Yeh measure based on
the peer pressure criterion. It depends on a notion of rank [2] (p. 377) which
presupposes knowledge by an agent of all other agents’ investor performance.
On the basis of decentralized information, this is not viable. Hence, we ar-
gue that relative investment performance had best be evaluated by aggregate
market index returns —-the straight forward idea of ’beating the market’.
Further, we move away from the Sante Fe type use of the Sharpe ratio invest-
ment decision rule used in [2] and elsewhere as it not optimal when returns
are not Guassian with constant volatility. The latter is very unlikely in the
case of Red Queen returns.

For above reasons, we follow the framework described in [6] which is
more in keeping with the Complex Adaptive Systems framework and is con-
cerned with power law generation of investor wealth as a manifestation of
self-organized complexity. We extend the model in [6] so as to directly focus
and test for the Red Queen constraint which is missing in their work. We ar-
gue that when agents retrain, the rate of retraining corresponds to the extent
to which a lower bound constraint on investor wealth relative to aggregate
wealth is satisfied or not: agents have to run faster or not in terms of the re-
training they do. Our hypothesis is that asset market efficiency and the power
law distribution in investor stock holdings requires as a necessary condition
that all traders work harder and harder to 'beat’ the market. Then, there is
a point at which none of them can do so. The value of each investor’s risky
fund follows a stochastic multiplicative process and the distribution of stock
holdings in the economy should in principle converge to the power law Pareto
distribution when this lower bound Red Queen constraint on investor wealth is
satisfied. By turning this Red Queen constraint on and off, we experimentally
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verify if the collective competitive behaviour of agents to 'beat’ the market is
indeed the way in which markets become efficient.

2 Power Laws in Investor Wealth and the Test for the
Red Queen Principle

2.1 Steps in the Test For the Red Queen Effect

In a model with the endogenous emergence of the power law in stock returns
we define the power law in terms of the distribution of investor wealth. In
a large microagent system of N agents the probability distribution (or the
proportion of individuals in a population with wealth of size w) being given
as ®

P(w) ~ w72, (1)

Here, w (integer valued) is a certain value of wealth w in the population.
The total wealth is generated from the N micro agent systems is

W(t) = wi(t) + wa(t) + ...+ wn (). (2)

It has been discovered that dynamics characterized by generalized Lotka
Voltera equations for each micro system can under certain conditions bring
about the power law distribution in Equation 1. We consider here only the
simplest form of this that involves \;(¢), the random multiplicative wealth gen-
erating factor which arises due to the performance of each agent’s forecasting
model and strategy to buy, sell or not to trade in relation to the market’s
generation of the spot price which is common to all traders.

wi(t—i—l) :)\i(t)wi(t),izl,Q,...,N. (3)

The main results are outlined below. The power law in Equation 1 fol-
lows if and only if the multiplicative coefficient \;(¢) in equation 3 on agent’s
wealth becomes independent of agent i factors and all agents’ payoffs from
strategies are drawn from the same uniform probability distribution. That is,
on average no strategy has an undue advantage over another strategy in ob-
taining higher than average payoff at each ¢. The important point here is that
this is an emergent phenomena amongst traders who are each trying to find
rules to ’beat’ the market and assiduously try and select ’good’ forecast rules
by generic evolutionary fitness criteria of rewarding those rules that increase
investor wealth shares, w;(t)/W (¢). Thus, the emergence of market efficiency
is sustained in the micro agent based model under circumstances very differ-
ent from what is traditionally associated with trader rationality. Traditionally,

*Note that P(w) = 0 for w < 0 and limP(w) = 0 as w — oo. That is, the
distribution is zero if w is negative or tends to infinity.
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the latter is at odds with agents who attempt to ’beat’ the market. Note also
that the power law distribution of investor wealth in an efficient market does
reward a small proportion of investors with large returns while many have
very little.

The steps in the proof of the result requires that the a parameter in
Equation 1 to be positive. For this there has to be a lower bound, W, (),
which dictates that the central limit theorem no longer applies at large ¢ and
log normal distributions do not follow for w;(t). The lower bound wy,, (t) is
specified as

Wmin(t) = qu(t). (4)
This yields

q = Wmin (t)/m(t)v (5)

where wW(t) = W(t)/N, ie. W(t) is the mean wealth at time ¢.
On placing the lower bound constraint on minimum wealth given above,
the wealth dynamics for each agent is defined as

w;i(t+1) = A\i(t)w;(t), (6)

with the lower cut-off 6

wi(t +1) = qu(t). (7)

When the power law in Equation 1 holds for the system dynamics in
Equations 6, 7, for given N and ¢ in range 1 > ¢ > 1/In N, the exponent «
in Equation 1 is given by 7

a=1/(1-q). (8)

2.2 Constraint Satisfaction And Power Law

To underscore the importance of the role of constraint satisfaction and how
the Red Queen Effect works, we rewrite the lower bound condition in Equation
7 by substituting for w;(t + 1) from Equation 6 and using the equality,

Wt
w;(t)’

®In [17] the author discusses a number of ways in which agents whose wealth
violated the lower bound constraint could be fixed. Unlike social security payments,
in investment markets it is unlikely that public subsidies are given to agents whose
performance fails to satisfy some lower bound constraint.

"The derivation for this is given in [17]. For this note that f:jmn P(w)dw

[ w™'™*dw = 1 and average wealth is given by [* wP(w)dw

Wmin

foo w % w =w

Wmin

XM () =¢q 1>¢>1/InN. (9)
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As the first term in Equation 9 is common to all agents, the implication of
Equation 9 is that A;(¢) has to be proportionately greater (smaller) when the
mean wealth of the population of traders w(t) = W (t)/N exceeds (is less than)
that of the ith agent. In other words, as we will see, agents are constrained
to improve their forecast/investment performance when it is below average.
This follows the point made above in [2] (p.379), GPs now effectively coevolve
with different fitness functions. While in numerous studies, criteria governing
search intensity for better forecast/investment rules have been included, often
in an ad hoc way, what has not been precisely stated as above nor tested is
how the emergence of i-independence of A;; in Equation 3 and the emergence
of the power law in investor wealth distribution follows as a population of
N agents apply the constraint in Equations 6, 7 and 9 in their selection of
investment strategies which collectively determine investor wealth dynamics.
The failure to finely discriminate the reason for the emergence of power laws in
multi-agent stock market models has led to vague conclusions such as ”almost
every realistic microscopic market model we have studied in the past shares
this characteristic of w-independent IT(X) distribution”, [18].

The problem is to follow in detail the link between agent strategies which
are GPs selected by the evolutionary principle of proportional fitness and the
market impact of individual trades which together determine A;(t) in Equation
9. The details regarding the latter are kept to a minimum as our immediate
purpose here is to illustrate how the use of the constraint enhanced GPs ([7]
and [10]) is ideally suited to model and test for the role of constraints in
Equation 9.

The price is determined solely as a function of excess demand with respect
to aggregate bids, B, and offers, O, at each t. Denoting the total number of
agents/traders in the market as N, the aggregate bids and offers at ¢ is

Bt:Zbit andOt:ZOjt,i#j (10)
i J

We follow the price adjustment scheme discussed in [2] which is based on
excess demand (By — Oy)

Pry1 =P (14 B(B: — O1)) (11)

Here 8 can be interpreted as the speed of adjustment parameter. The form
that this takes is identical to that in [2],®

tanh(ﬁl (Bt - Ot)) ’Lf B; > Oy,
tanh(ﬁg(Bt - Ot)) ’Lf B; < O

The stock return, R;, is defined as

B(B; — Oy) = { (12)

eXPz — €XP_g
exp, +exp_, "

8Here tanh is the hyperbolic tangent function : tanh(z)
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Rt = (lnPt_H - ln B) (13)

In Equation 10, as will be explained later, whether bids or offers are made
by traders depend on the recommendations made by their respective GPs.
The Palmer rationing scheme is then used for the allocation of shares to each
agent. Denoting the ith agent’s holdings of shares at time ¢ by hj,

hit = hit—1 + gibt or (-gi%) (14)

Here V; = min(By, Oy) is the volume of trade in the stock and the expres-
sion in the bracket is the case that applies when the agent is going short.

Agents have to commit to buy and sell orders based on their expectations
of capital gains or losses. Expectations are a function of an information set
which includes only current and past prices, total market value or Wy , number
of traders in the market, their own wealth and strategy set. Associated with
each agent’s choice of trading strategy is an indicator function %ZB’O(+1, -1)
which determines whether the strategy is profitable (+1) or loss making (—1)
with respect to the returns R;y;. Thus, the distribution over time f(\;;) on
agent’s investment returns from (6) is given by

B,0
Fie) = (ST (+1,=1), Ryiye41) (15)
Roy(iyt+1 = dIn(wig 1 /wit) is referred to as the agent’s return factor.
To include the constraint on agent’s investment performance in Equation
9 which we claim is the direct characterization of the Red Queen, we define
the range in which each agent’s Red Queen constraint applies. The minimum

search effort for better forecasting rules is defined as a function of wL(t) and

with ¢ = 1/1n N, it is inversely proportional to the log of the number of agents
N. Thus, ?

__ 1w
Hmin = 0N wi(t) ~
Indeed, if ¢ = 0, agents do not make any effort, then a = 1 from Equation
8 and deterioration of agents’ wealth share with below average investment
performance can also lead to a to be less than one.

The maximum search effort is more problematic to specify. If ¢ is set to 1
(ie. Wmin = W), effectively a becomes infinite in Equation 8 and the ownership
distribution becomes highly egalitarian or degenerate with the entire popula-
tion having the same wealth share. The value of ¢ has to be one that implies

a reasonable power law coefficient «, 1 < @ < 2. For this, 0.5 > ¢ > 1/InN
with ¢ = 0.4 is recommended. Thus

(16)

w; (tt)

°It is convenient to express Equation 16 in percentage terms. Thus fimin =
—In(In N) + Inw(t) — Inw;(t).

Pomaz = 0.4 >0 (17)
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2.3 EDDIE and Constraint Satisfaction in GPs: Design For Test of
Red Queen

We retain the architecture for EDDIE explained in [19], [7] for the selection
of decision rules which recommend whether to buy or sell. As is standard
with GPs, each agent is assigned an initial population of decision rules. These
include well known fundamentals based forecasting rules or trend following
moving average type technical rules. Candidate solutions are selected ran-
domly, biased by their fitness, for involvement in generating members of the
next generation. General mechanisms (referred to as genetic operators, e.g. re-
production, crossover, mutation) are used to combine or change the selected
candidate solutions to generate offspring, which will form the population in
the next generation.

In EDDIE, a candidate solution is represented by a genetic decision tree
(GDT). The basic elements of GDTs are rules and forecast values. A single
rule consists of one useful indicator for prediction, one relational operator such
as ”greater than”, or ”less than”, etc, and a threshold (real value). Such a
single rule interacts with other rules in one GDT through logic operators such
as ”0Or”, ”And”, "Not”, and ”If-Then-Else”. Forecast values in this model
are directions of price movements, either a positive trend (i.e. positive x%
return within specified time interval can be achievable) or negative trend (i.e.
negative x% return within a specified time interval can be achievable).

Table 1. A contingency table for two-class classification/prediction problem

Predicted Predicted
negative trend positive trend
(Q-) (@)
SELL BUY
Actual negative # of True #t of False
trends (Q-) Negative (TN) Positive (FP)
39 =41 B =-1
Actual positive # of False # of True
trends (Q+) Negative (FN) Positive (TP)
39 =-1 3P =41

RC: Rate of correctness; RF: Rate of failure

_TP+TN _TP+TN _E+ﬂ
Qi +Q@- = Q4 +Q-° Qr Q-7
where Q. = FN+TP;Q_ =TN+FP;Q_=TN+FN;Q, = FP+TP
Recommendation to BUY at t follows from the prediction of a price rise

(positive trend) over a given period and recommendation to SELL follows from

the prediction of a price fall (x% negative trend). Note different returns thresh-
olds and horizons exist for different classes of traders. Since GDT's are used to

RC;

RF; (18)
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predict directions of price changes and make recommendations for trade, the
success or failure of recommendations can be categorised as a two-class clas-
sification problem. Each prediction point for every GDT can be classified into
either a positive position or a negative position. For each GDT, we define RC
(Rate of Correctness), and RF (Rate of Failure) as its prediction performance
criteria. Formula for each criterion is given through a contingency table in
Table 1.

Each agent selects the GDT which constitute trading strategy to buy or
sell that maximizes the fitness function

I'hy =¢(re)RC — o(rf)RF (19)

The fitness function involves two performance values, i.e. RC and RF, each
of which is assigned a different weight o(rc) or ¢(rf) respectively. While the
fitness function can guard against loss making positions, the population of
GDTs from which agents conduct their search may lead to investment income
under-performance as there is no constraint as to how intense the search
for suitable GDTs should be. Hence, the role of the constraint satisfaction
enhanced GPs was devised in [7]. A new parameter set

R= [Hmzna ﬂmaz] (20)

is specified to supplement the fitness function (19) in EDDIE. Using the
conditions defining ft,in and pye, in Equations 16 and 17 agents intensify
their search for GDTs to enhance their investment performance to satisfy the
analytical conditions for the emergence of power law in investor wealth distri-
bution in the stock market. Such a constraint enhanced coevolving population
of trading strategies is allowed to run for a large number of time periods. This
completes the description of the design of the framework that aims to test for
the Red Queen Effect in the emergence of power laws and efficiency of asset
markets.

2.4 Implementation of Wealth Dynamics

All EDDIE agents have the same initial wealth wy and are given a fixed and
equal number Sy of stocks and Cy cash at the beginning of time. Then, wealth
att+1

Witt1 = (Prhie + Cit). (21)

Here, h;; is holdings of stocks by the iy, agent.

Wealth dynamics follows a simple rule based on a agent’s GP recommen-
dation: agents go 100% in the direction recommended by their GP forecasts
for price trends. That is, if the required x% (-x%) return is achievable in a
given time horizon, the agent will place bids (offers) to buy (sell) stocks to
the full extent that his budget will permit.
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Cir
bir = hig—1 + —5— 1 Cit > 0 (22a)
t

0jt = hyp—1 ,if hjz_1 >0 (22b)

The actual holdings, h;, that this will result in is determined by the ra-
tioning scheme in (14). Every BUY recommendation at t automatically sets
up a limit order to sell the first time the required return is achieved or at
the specified horizon whether or not the forecast is fulfilled. Likewise, SELL
recommendation at t is followed by a buy limit order the first time a pre-
dicted price fall occurs, but no buy follows if the forecast is not fulfilled at
the investment horizon. An investment scheme of this kind will result in the
maximization of the growth of wealth in a manner that is entirely predicated
by the agent’s forecasting capability (see, [15]). At the end of his investment
horizon, an agent whose prediction is wrong in the sense that he bought pre-
dicting a price rise will have lost a substantial part of his wealth in cash.
The agent who predicted a price fall wrongly will end up failing to recoup his
holdings of stocks. As only holdings of stocks can ultimately enhance wealth,
individual wealth shares w;/ Ef;l w; can grow only as an agent increases his
holdings of stocks relative to total stocks. For this reason in the next section
we will report the distribution of stock holdings.

3 Results from Experimental Data

In this section, we report the results on price data and the distribution of
stock holdings in the final run of simulations in the two cases : with the Red
Queen constraints on GP performance and when GP retraining is undertaken
in an ad hoc fashion specified by the experimenter. For the latter we simply set
the different classes of agents to retrain at fixed intervals of time rather than
prompted by any endogenous constraint on their investment performance.
Further, it must be noted that in this preliminary analysis, the Red Queen
constraint only involves that agents retrain when their wealth falls below av-
erage wealth. The experiments with and without Red Queen constraints were
done for 200 and 1000 periods. Appendix A summarizes genetic programs,
agent and market related parameters. Traders are organized into 4 groups of
upto 20 in each. Each group is given a subset of the some of the well known
technical trading rules. Each trader/agent uses a single population GP with
70 generations to generate the returns forecasts at each ¢.

Well known stylized facts on stock market prices and returns are that they
fail to be normally distributed and also stock returns are unpredictable. By
the Bera-Jarque test, we find significant departures from normality for returns
data for all the runs. Further, the price series generated for both lengths of
runs with the Red Queen constraint satisfies the null hypothesis that their
respective unit root coefficients are not statistically different from zero.
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What is important for our analysis is the empirical cumulative density
function for stock holdings on a log-log scale, given in Figures 1-4 in Appendix
B. The distribution of stock holdings is more egalitarian with ad hoc retraining
case than for the Red Queen case. The results of the regression on the log of
the number of agents with stock holdings greater than h on the log of h gives
the estimate of the relevant power law exponent. What is interesting, is that
in the case of a 1000 runs, the Red Queen data shows values for the power
law exponent of 1.466 which is close to the classic 3/2 value found by Pareto
for income distribution.

Table 2. Estimates for Power Law Coeficients

¢ GEV Shape 1/¢ Tail Index Ln-Ln OLS

Parameter # for Fat Tails Slope for «
Red Queen
200 runs 1.03 0.97 0.448
(.544, & 0.89)
1000 runs 0.57 1.75 1.466
(.378, £ 0.62)
Ad Hoc Retraining
200 runs 1.205 0.83 0.1985
(0.5017, + 0.82)
1000 runs 1.92 0.52 3.68

(.0009, & .0014)

In the brackets are given the standard errors for the estimates and the
critical values at 95% confidence level for the null hypothesis that £ = 0.

As seen from Table 4 the power law exponent o = 3.68 in the case of ad
hoc retraining indicates a more equal distribution of stock holdings than the
simulations with the Red Queen constraints. However, in the latter case, it
should be noted that the GEV Generalized Extreme Value '° shape parameter
& which results in the tail index of 1.75 is not statistically significantly different
from ¢ = 0 at 95% confidence level.

4 Concluding Remarks

The endogenous explanation for the emergence of a power law in phenomena
as varied as earth quakes, size of cities and income distribution is currently of
interest with the framework of complex systems theory (see, [11] for a survey).
It is alleged in [11] that the power law generated in the [6] model ”depends on
an arbitrarily imposed lower bound ”constraint on individual agent’s wealth
defined as a function of the mean wealth of the population (see, Equation

'9This has been estimated using the EVIM program described in [4].
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(7)). In this paper, we argue that this is far from an arbitrary constraint. The
satisfaction of this lower bound constraint is modelled here as a behavioural
one that dictates performance enhancement in adaptive learning. In artificial
stock market models in which agents have to individually learn and adapt in a
multi population GP environment, retraining of GPs is mostly done in an ad
hoc way. Reference [2] is an exception here. The bulk of the modelling effort
in this paper has gone to explicitly set up the multi-population form of the
constraint enhanced GPs of [7] in an artificial stock market environment.

Though interesting results supportive of the Red Queen hypothesis have
been obtained, the limited experimental runs done so far, should make the
experimental results reported here rather tentative. Further, the Red Queen
constraint was implemented only in a limited way. More detailed results will
be reported in the near future.
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A Appendix 1

This appendix summarizes the GP, market and agent related parameters

A.1 Genetic Programming Parameters

Table 3. Genetic Programming Parameters

Initial tree depth 3

Maximum tree depth 7

Percent of population to copy 30
Probability of mutation 0.01
Probability of maximization 0.01
Number of generations 70
Population size 60
Maximization step 10

Table 4. Functions

Relational Functions =<,>
Logical Functions AND, OR, NOT

A.2 Market Parameters

Table 5. Market Parameters

Number of Groups of Traders 4

Number of trading Periods 200 or 1000
B 0.0001
B2 0.00008

A.3 Indicators

See [19] for explanation of these well known technical rules.

A.4 Traders’ Conditions
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Table 6. Indicators

Group One

Group Two

Group Three

Group Four

Moving Average 12
Moving Average 50

Volatility 12
Volatility 50

Trend Rule 5
Trend Rule 50
Filter 5

Moving Average 12
Moving Average 50
Volatility 12

Filter 63 Volatility 50
Trend Rule 5
Trend Rule 50
Filter 5

Filter 63

Table 7. Traders’ groups

Group One Two Three Four
Number of Traders 20 20 10 10
Horizon(Days) 5 10 21 30
Rate of Return 1 1.5 2 3.5

4000 4000 4000 4000
100 100 100 100

Initial Cash
Initial Stocks

B Appendix 2
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Fig. 1. Cummulative Density Function of Stock Holdings: Red Queen Retraining
1000 periods.
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Fig. 2. Cummulative Density Function of Stock Holdings: Red Queen Retraining
200 periods.

Fig. 3. Cummulative Density Function of Stock Holdings: Ad Hoc Retraining 1000
periods.
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Fig. 4. Cummulative Density Function of Stock Holdings: Ad Hoc Retraining 200
periods.



