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An Heterogeneous, Endogenous and
Co-evolutionary GP-based Financial Market

Serafin Martinez-Jaramillo, Edward P. K. Tsang,

Abstract— Stock markets are very important in modern so-
cieties and their behaviour have serious implications in a
wide spectrum of the world’s population. Investors, governing
bodies and the society as a whole could benefit from better
understanding of the behavior of stock markets. The traditional
approach to analyze such systems is the use of analytical models.
However, the complexity of financial markets represents a big
challenge to the analytical approach. Most analytical models
make simplifying assumptions, such as perfect rationality and
homogeneous investors, which threaten the validity of analytical
results. This motivates alternative methods.

In this work, we developed an artificial financial market and
used it to study the behavior of stock markets. In this market, we
model technical, fundamental and noise traders. The technical
traders are sophisticated genetic programming based agents that
co-evolve (by means of their fitness function) by predicting
investment opportunities in the market using technical analysis
as the main tool.

With this endogenous artificial market, we identified conditions
under which the statistical properties of price series in the
artificial market resembles those of the real financial markets.
Additionally, we modeled the pressure to beat the market by
a behavioral constraint imposed on the agents reflecting the
Red Queen principle in evolution. We have demonstrated how
evolutionary computation could play a key role in studying stock
markets.

Index Terms— Finance, Genetic Programming, Bounded ratio-
nality, Computer economics.

I. INTRODUCTION

THE complexity of the analytical analysis of financial
markets is the main cause for the use of other alternative

methodologies to gain a better understanding of some of
the unsolved problems in finance. Despite the existence of
previous or contemporary works, the most influential work in
artificial financial markets is the Santa Fe Artificial Stock Mar-
ket [45], [3]. A good introduction to Computational Finance
can be found in [52], to Agent-based Financial Markets in [28]
and to Agent-based Computational Economics in [51].

This branch of research is inspired in the notion that
financial markets can be seen as an adaptive complex system in
which rich dynamics exists and is full of emergent properties.
Such rich dynamics and emergent properties should arise en-
dogenously rather than being imposed exogenously. By using
this approach, the intention is to overcome the limitations of
the traditional theory in which many unrealistic assumptions
have to be made to allow analytical tractability.

Artificial financial markets of all sorts and flavors have been
developed in the last decade and are still being created with
an always increasing complexity and proximity to reality that

was not possible in the past. The research in this field is now
mature and its acceptance in Economics has finally increased.
This area has witnessed a sustained increase in the number of
papers published related to this field.

Although they all differ in the sort of assumptions made,
the methodology and tools used; these markets share the
same essence: the macro behavior of such market (usually the
price) should emerge endogenously as a result of the micro-
interactions of the (heterogeneous) market participants. This
approach is in opposition with the traditional techniques being
use in Economics and Finance.

Our approach to the modeling of artificial stock markets
is different to the above mentioned cases mainly on the
strategic behaviour of the agents. We use a very simple market
mechanism and sophisticated agents, because our aim is to
study the co-evolution of the group of genetic programming
based agents and the consequences on the price of changes in
the agents’ strategic behavior.

We are interested as well in finding the conditions under
which the statistical behaviour of the endogenously generated
price resembles the behaviour of real prices. The market
reported in this work is composed by different types of traders:
technical traders, fundamental traders, and noise traders. The
market mechanism, the agents’ strategic behavior and the
relevant parameters will be described in detail in later sections.
Additionally, with the purpose of investigating the role of
heterogeneity in artificial financial markets, we have developed
a flexible software platform with sophisticated traders and an
evolutionary inspired constraint.

A. Statistical properties of stock returns
The statistical analysis of the price time series is usually

performed on the continuously compounded return or log
return. The log returns are defined in the following way:

rt ≡ log
Pt

Pt−1
= pt − pt−1 (1)

where pt ≡ log Pt. Some of the advantages of such returns
are first that the continuously compound multiperiod return is
the sum of continuously compounded single period returns,
and second that it is more easy to derive the time-series
properties of additive processes than multiplicative processes.

Time series of stock returns exhibit interesting statistical
features which seem to be common to a wide range of markets
and time-periods. Such statistical properties are known as
“stylized facts” and have been reported for several types of
financial data and their presence seems to be ubiquitous in all
sorts of financial markets [10], [37], [38].
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Such statistical properties of the returns have become a very
important benchmark for the researchers of artificial financial
markets. Such properties are the first step to accomplish when
building a simulated financial market [32]. Moreover, some
artificial markets try to explain the origins of such stylized
facts [36].

We will not report all of such stylized facts for our ex-
periments due to different reasons, like the frequency of our
generated prices (which we will interpret as daily closing
prices). Therefore, we will describe briefly, as they are de-
scribed by Cont in [10], the facts that we will be reporting in
later sections:

1) Lack of autocorrelations: (linear) autocorrelations of
returns are usually insignificant. However, this is not
true for small intra-day time scales.

2) Volatility clustering: different measures of volatility dis-
play a positive autocorrelation over several days, which
quantifies the fact that high-volatility events tend to
cluster in time. As noted by Mandelbrot, “large changes
tend to be followed by large changes, of either sign, and
small changes tend to be followed by small changes”.

3) Slow decay of autocorrelation in absolute returns: the au-
tocorrelation function of absolute returns decays slowly
as a function of the time lag, roughly as a power law with
an exponent β ∈ [0.2, 0.4]. This is sometimes interpreted
as a sign of long-range dependence.

4) Heavy tails: The distribution of daily and higher fre-
quency returns displays a heavy tail with positive excess
kurtosis. The tail index is finite, higher than two and less
than five for most assets, exchange rates and indexes.

5) Conditional heavy tails: even after correcting returns for
volatility clustering (e.g. via GARCH-type models), the
residual time series still exhibit heavy tails. However, the
tails are less heavy than in the unconditional distribution
of returns.

6) Non Gaussianity: the stock returns on a weekly, daily
and higher frequencies fail to be normally distributed.

Figure 1, illustrates the daily closing prices 1(a) and log
returns 1(b) for the FTSE100 index and for the Barclays bank’s
share 1(c) and 1(d) from the 2nd of January 1998 to the 31st

of December 2004.
In order to verify that our endogenously generated price

mimics the above described statistical properties, we will
perform different sorts of test. For the first described property,
we will report the autocorrelations of the log returns, the
absolute log returns and the squared log returns for different
time lags. If the first property holds, one should observe that
the log returns’ autocorrelations for different lags should be
around zero. In Figure 2, we can observe that the log returns’
autocorrelation is effectively around zero for the FTSE100
index and the Barclays bank’s share. However, we can see
in the same figure, that such lack of autocorrelations does not
happen for the absolute or squared log returns, which is a
quantitative signature of the phenomenon known as volatility
clustering (property number two). The property number three
can be also verified in Figure 2, we can see there that the
autocorrelation of the absolute and squared log returns decays
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Fig. 1. Price and log returns for the FTSE100 (a) and (b); and the Barclays
bank’s share (c) and (d).

until it is practically zero for lags larger than eighty days.
The distribution of financial time series displays “fat tails”.

The term “fat tails” refers to higher density on the tails
of a distribution in comparison to the tails’ density under
the normal distribution. In order to be able to determine
the shape of the tail one must estimate the shape parameter
(α) or the tail index (τ ). The Hill tail index ([22]) is an
estimator of the α parameter and it could be considered as
an standard tool for the study of tail behavior of economic
data due to its good performance and simplicity. However,
one of the main problems on the application of such index
is that it is necessary to define a priori the size of the tail.
To overcome such limitation, the fourth property is going
to be tested by calculating and reporting the Hill tail index
for different tail sizes (0.1%, 0.5%, 1%, 2.5%, 5%, 10% and
15%). Additionally, we will report the returns’ kurtosis. For a
normal distribution the kurtosis is three. However, it has been
found in financial data sample kurtosis larger than three. This
phenomenon is known as excess kurtosis and is an indication
of fat tails.

The fifth property is going to be tested by reporting the
ARCH and GARCH coefficients. Both coefficients should be
less than one. The property number six is going to be tested by
the the Jacque-Bera test, which indicate us if the sampled data
is drawn from a Normal distribution or not. Table I-A, shows
for the FTSE100 and the Barclays’ share some basic statistics,
the GARCH and ARCH coefficients, skewness, kurtosis, the
Jacque-Bera H value, the correlation coefficient with lag one
and different Hill tail indexes for various tail sizes. Sample
kurtosis is an useful indicator of fat tails and of departure
from normality, such statistic should be three for the Normal
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Fig. 2. Autocorrelations for different lags of the log returns, absolute log
returns and squared log returns on the FTSE100 (a) and on the Barclays
bank’s share (b).

distribution and a value larger than three indicates that the
distribution possess fat tails. Typical values for sample kurtosis
in exchange rates, indexes and high frequency data are much
larger than three.

We can observe in Figure I-A typical values for the kurtosis
(5.13829 and 4.62582) and for the Hill tail index. Depending
on the percentage of extreme returns taken from the sample,
such index takes values from 6.7913 to 1.94232. In most of
the financial time series, the Hill tail index takes values from
5 to 2. Another interesting value to look at, is the result of the
Jacque-Bera test, which in the two reported cases rejects the
null hypothesis that the sampled data is drawn from a normal
distribution.

II. CHASM
The Co-evolutionary Heterogeneous Artificial Stock Market

(CHASM) can be considered as a software platform that allows
the user to perform a series of experiments that contemplate
different aspects of our simulated financial market. In this sec-
tion we explain the abstract model and its main characteristics,
later we explain the software and its interfaces.

A. Overview of the model

The market is populated by traders that will interact with
each other by means of buying and selling some assets. The
market participant i will be able to hold at time t, two different
types of assets:

Statistics FTSE100 Barclays
Mean -0.0000341 0.0002035
Median 0 0
Minimum -0.058853 -0.089806
Maximum 0.059026 0.093740
Std. Dev. 0.012459 0.023342
GARCH coefficient 0.89999 0.899536
ARCH coefficient 0.089564 0.089988
Skewness -0.133266 0.113409
Kurtosis 5.13829 4.62582
J-B Test H value 1 1
Corr. coefficient -0.008316 0.085004
AlphaHill 1 % 5.05533 6.7913
AlphaHill 2.5 % 3.96377 4.89301
AlphaHill 5 % 3.24536 3.35794
AlphaHill 10 % 2.61432 2.26481
AlphaHill 15 % 1.97705 1.94232

TABLE I
STATISTICS FOR THE LOG RETURNS FTSE100 AND BARCLAYS.

• a risky asset, denoted by hi(t) or
• cash, denoted by ci(t)
The market is composed of technical, fundamental and noise

traders. We define NT as the number of technical traders,
NF as the number of fundamental traders, NN as the number
of noise traders and N as the total number of traders in the
market. The stock price at time t will be denoted by P (t).

At the beginning, all the agents are endowed with a certain
number of shares and a certain quantity of cash, both specified
by the investigator. Their position on each of the assets might
change as a result of the agents’ decision to sell or buy a
certain quantity of the risky asset.

B. Market mechanism

The market mechanism that we use in this paper is similar
to the one introduced in [20]. We chose a simple mechanism
in order to avoid the complexity that could prevent us from
understanding the important aspects that would lead to the
reproduction of the statistical properties of real financial
markets.

Our interest is on the impact that the agents change in
behavior, or the differences in information, or the differences
in computational capabilities, or the generation of limit orders
have on the price and on the traders wealth distribution.

The participants will take a decision di(t) at each time step
of the simulation. We denote the fact that an agent takes a
decision to buy by di(t) = 1 , to sell by di(t) = −1 or to
do nothing by di(t) = 0 . Moreover, they will make a bid or
offer of just a fraction qi(t) of their current holdings in the
following way:

qi(t) =





g ci(t)
P (t) if di(t) = 1

−ghi(t) if di(t) = −1
0 if di(t) = 0

(2)

The fraction g of change in the agents’ holdings is an
important parameter of our simulation and is related to the
cautiousness of the agents.
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The aggregated volume of bids, denoted by B(t) and the
aggregated volume of offers, denoted by O(t) will be used to
calculate the excess demand D(t) = B(t)−O(t)

To determine the price based on the excess demand D(t),
we follow a price determination equation similar to the one
in [17], [11], and [23]. The price is then calculated in the
following way:

P (t) = P (t− 1) + D(t)/λ (3)

The parameter λ represents the sensitivity of the market to
the order imbalance. In our market λ was set to be the number
of traders participating in that trading round times a constant
c, which is yet another parameter of our simulation.

The orders placed by the different types of traders will be
interpreted as market orders. However, the technical traders
will be able to place limit orders in particular situations to
be explained later. Such market and limit orders will be just
partially satisfied. The fraction of unsatisfied orders will be
the same for all the agents.

The rationing of the fulfilled orders is similar to the one
introduced in [20]. The total number of sell orders is O(t)
and the total number of shares that can be bought at the new
price can be calculated as follows:

B̃(t) = B(t)
P (t− 1)

P (t)
(4)

The fraction of filled buy δ+ and sell orders δ− can be
described as follows:

δ+ = min
(
1, O(t)

B̃(t)

)
, δ− = min

(
1, B̃(t)

O(t)

)
(5)

Having this, we can now calculate the amount of shares that
the agent i will buy or sell ρi(t) as:

ρi(t) =

{
gδ+

ci(t)
P (t) if di(t) = 1

−gδ−hi(t) if di(t) = −1
(6)

Finally we can update the traders holdings of cash and the
risky asset:

hi(t) = hi(t− 1) + ρi(t)
ci(t) = ci(t− 1) + ρi(t)P (t) (7)

C. Traders

Despite the complex task of defining all the different sorts
of traders that intervene in a financial market, there are some
well accepted classes of traders that are commonly used on
the literature. In this work we will limit such classes of
traders to three different types: technical traders, fundamental
traders, and noise traders. None of our traders follow rational
expectations and their interaction will be only by means of
the price. In the Artificial Financial Markets literature we will
find mostly those three types of traders, although the specific
mechanisms and implementations can vary widely.

1) Noise traders: The noise traders will take a decision
to buy, sell or do nothing with different probabilities pb ,
ps and pn respectively. Such probabilities are defined before
the simulation and remain with the same value during the
simulation. This type of traders were included to represent
a justifiable source of noise.

2) Value Traders: The behavior of the fundamental traders
is taken from [17]. The basic idea behind the strategy of such
traders is that they will change their position on the risky
asset if the price departs from a value that they perceive as
the fundamental one. These traders will continue to adjust
their positions until such difference T , is lower than a certain
threshold value τ .

The afore mentioned values will be generated for each
individual trader by drawing random numbers from uniform
intervals [Tmin, Tmax] for T and [τmin, τmax] for τ . The limits
of such intervals represent another four parameters of the
simulation.

3) Technical traders: We consider technical analysis as a
key feature for the modelling of the behavior of this group
of agents, despite the open debate between academics and
practitioners about it. We believe that technical analysis is an
important tool for decision making in investment [7]. Besides,
there is strong evidence that technical analysis is being used
extensively in financial markets.

Financial forecasting using neural networks, genetic algo-
rithms ([21]), genetic programming ([26]) and other machine
learning techniques has been a very dynamic field of study.
We can see some important work in the nineties and some
innovative recent proposals [1], [4], [5], [43], [12], [13], [18],
[19], [53].

Broadly speaking, the technical traders in our artificial
market forecast if the price is going to rise by a certain r%
within a certain n number of days. For that purpose, they
will be equipped with up to twelve different technical and
momentum indicators to form investment decision rules. Such
indicators are well known technical indicators. We chose a
short period indicator and a long period one because it is the
way in which they are used by technical analysts. We will give
more detail regarding the indicators in subsection II-D.3.

Each technical trader owns a population of such investment
decision rules, represented by decision trees. The decision
trees are randomly initialized and then evolved by an evo-
lutionary mechanism known as Genetic Programming (GP).
EDDIE ([53], [33], [54], [40], [56]) constitutes the basic
platform to the design of the investment strategy of this group
of agents. The selection of genetic programming was mainly
due to the fact that it has been used previously to model agents
in artificial financial markets [14], [15], [58], [8] and [41],
[42].

It is important to point out that the agents could use any
kind of financial information. However, we did not want to
have many exogenous sources of information and we decided
to let the traders built their own decision rules with technical
and momentum indicators, considering that we were able to
generate them all just by using the price. Additionally, under
certain circumstances they will be able to behave like the
fundamentalists.
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This group of traders is the richest in behavior and the most
complex of the market participants. Such traders are organized
in heterogeneous groups and the agents inside each group
share all the same parameters. The heterogeneity among the
groups will come from several sources: generation of limit
orders, computational capability, information, time horizon
and desired rate of return. We will explain in detail such
sources of heterogeneity later in this section.

The agents inside a group share the following parameters
and characteristics:
• Technical indicators
• Logical functions
• Relational functions
• Genetic Programming parameters
• Time horizon and desired rate of return
• Retraining condition
• Limit orders generation
• Fundamental behavior.

D. Important Features in CHASM

In this section we will describe in detail some of the most
important features of CHASM. The implications of changes
in such important aspects of our model will be described by
experimentation in the next section.

1) Market and limit orders: When a person, a professional
trader, a market maker or a corporation are trading on a stock
market, there are different ways to do so. After the decision
making process of any of such entities an order must be
submitted to a broker (or the representant that is trading on
behalf of them). Essentially 1, there are two main types of
orders:
• Market orders
• Limit orders
The market orders are buying or selling orders that must

be executed at the current price of the stock on the market.
There is certainty about the execution of a market order but
uncertainty about the execution price. On the other hand, limit
orders are buying or selling orders in which the trader specifies
the price at which she is willing to trade (such prices are called
bid or ask prices). In the case of limit orders, there is certainty
about the execution price, but there is no certainty about the
execution of the order.

In order to have a complete and realistic investment strategy,
we incorporated certain types of limit orders in addition to the
market orders to model an exit strategy for the agents. We have
basically two types of limit orders: profit taking limit orders
and stop loss limit orders.

The profit taking limit orders are orders for selling that are
sent after a purchase of a stock takes place. The asking price
for such limit orders must be higher than the purchasing price
that originated the profit taking limit order. The basic idea
behind such order is to lock a certain profit realization for the
trader. However, there is no certainty of the execution of such
type of orders.

1there is a number of other types of orders, but it is not our intention to
give a full account of them

The stop loss limit orders are orders for selling a stock that
is being held by an investor. Such order becomes a market
order after the price is at or goes below a threshold price (stop
price) defined by the investor. The basic idea behind such limit
orders is to try to limit the loss of an investment made by the
trader.

The profit taking limit orders are incorporated in our model
to provide the agents’ with a complete investment strategy. To
be more specific, if the agent forecasts that the price is going
to rise and he buys now a certain amount of shares, he would
have to sell them whenever the price actually reaches such
forecasted increase. On the other hand, if the price does not
rise beyond her forecast she should sell at the end of her time
horizon due to budget constraints.

The stop loss limit orders are incorporated as well as part of
an exit strategy for our agents. The generation of such orders
and the profit taking ones during the trading has important
repercussions on the dynamics and the statistical properties of
the price as we will see on the experiments reported in the
next section.

2) Fundamental trading: In addition to the incorporation
into the market of fundamental traders, CHASM allows us to
incorporate fundamental like behavior on top of the technical
traders. This characteristic of the technical traders in our model
can be justified by arguing that in real life some traders do use
technical analysis in conjunction with fundamental analysis.
These traders know that the price of a certain stock is well
beyond a reasonable value (fundamental value); however, they
still follow the trend a little longer (short time horizon) in order
to make a profit out of it. In [50] the authors report that more
than 90 percent of dealers in the foreign exchange market use
some form of technical analysis and in short time horizons,
technical analysis predominates over fundamental analysis.

In CHASM, we are able to have technical (fundamental)
traders that behave like fundamental (technical) traders under
certain specific circumstances. These traders will behave like
technical traders until the price is well beyond a reason-
able (fundamental) value. Then, they trigger the fundamental
trading until such discrepancy disappears. We will report the
experimental implications of such behavior later in this work.

3) Indicators: The indicators used by the technical traders
to forecast increases or decreases in the price are a very
important aspect of our market. Such indicators can make
a substantial difference on the behavior of the endogenously
generated price.

The indicators used for the current work consist of technical,
momentum and volatility indicators. The different indicators
that were used and their periods are: The price moving average
of the last 12 and 50 days, the trading breakout rule of the
last 5 and 50 days, the filter rule of the last 5 and 63 days, the
price volatility of the last 12 and 50 days, the momentum of
the last 10 and 60 days and the momentum moving average
of the last 10 and 60 days. We use a short horizon and a long
horizon indicator because that is the way in which they are
used by practitioners of technical analysis.

Given a price time series {P (t), t ≥ 0} and given a period
of length L, we will define our interpretation of some popular
technical indicators as follows:
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The Moving Average indicator is defined as:

MA(L, t) =
P (t)−

(
1
L

∑L
i=1 P (t− i)

)

1
L

∑L
i=1 P (t− i)

(8)

The Trading Breakout indicator is defined as:

TRB(L, t) =
P (t)−max {P (t− 1), ..., P (t− L)}

max {P (t− 1), ..., P (t− L)} (9)

The Filter indicator is defined as:

Filter(L, t) =
P (t)−min {P (t− 1), ..., P (t− L)}

min {P (t− 1), ..., P (t− L)} (10)

The Volatility indicator is defined as:

V ol(L, t) =
σ (P (t), ..., P (t− L + 1))

1
L

∑L
i=1 P (t− i)

(11)

where σ, represents the standard deviation.
The Momentum indicator is defined as:

Mom(L, t) = P (t)− P (t− L) (12)

The Moving Average Momentum indicator is defined as:

MomMA(L, t) =
1
L

L∑

i=1

Mom(L, t− i) (13)

We chose such indicators mainly because they proved to
be useful on forecasting rises and drops of the price in
previous works like [7], [53], [33], [54], [55], [56], [18]
and [19]. However, due to the design of the forecasting
mechanism, there is no reason to stop us from using some
other information like more sophisticated technical indicators,
information from the limit order book, market microstructure
information, fundamental information, etc. Additionally, we
performed a sort of standardization in order to avoid that the
range of numbers, generated by the GP mechanism, could very
large and therefore increasing the size of the search space.

Further in this work we will explore experimentally the
implications of changes on the information (modeled here by
the above listed indicators) provided to the different groups of
technical traders.

4) Desired return and time horizon: The technical traders
will be organized in groups that will share some common
characteristics, as it has been described previously. Among
such characteristics we have the desired rate of return and
the corresponding time horizon to achieve such rate of return.
These two characteristics (parameters) proved to be of central
importance on the behavior of the market, since our GP agents
work as classifiers.

The majority of the simulated markets possesses agents that
do not consider a multi-period preferences and the agents share
the same planning, forecasting and decision making horizon
[28]. CHASM is different to most of the previously designed
models in the forecasting mechanism and the heterogeneity of
time horizons.

The GP forecasting mechanism of our agents works by
classifying the training cases in three different classes: buy,
sell or hold. Such classification depends on the time horizon
provided as the mechanism will verify for each data point if

in the near future (time horizon) effectively, there was a rise
(drop) on the price by more (less) than the desired rate of
return.

If the selection of such quantities is unreasonable, it will
cause the classifier to be biased towards a certain class.
Therefore, creating unrealistic (unreasonable) investment rules
and having an unrealistic price and statistical properties of the
returns as a result. We designed some experiments to test the
impact that this feature of CHASM has on the dynamics of
the simulation.

5) Trading proportion: The trading proportion is a param-
eter of the market that controls the proportion of the asset or
cash that the traders would commit on each of the operations
that they will perform during the trading rounds as it can be
clearly seen in 2. Such trading proportion is a quantity that
we can use to model the degree of cautiousness of the agents
in our market.

The trading proportion proved to be of central importance
in our simulations. The implications of this important feature
of our market will be tested experimentally and described in
the next section.

6) Fitness function: The fitness function is a very important
aspect of our market, we use a prediction accuracy fitness
function to drive the GP mechanisms of each of the agents.
The fitness function used as a rate of accuracy was the rate
of correctness defined as the number of correct classification
over the total number of cases. There exist the possibility of
using some other ingredients (like the rate of failure) on the
fitness functions to bias the search over the solution space.
Some interesting changes to the fitness measure have been
implemented and tested in [34].

The flexibility on the manipulation of the fitness function
due to the original design of the GP forecasting mechanism
is one of the main advantages that we consider important in
the use of GP as a successful technique to perform financial
forecasting.

III. LEARNING TO FORECAST INVESTMENT
OPPORTUNITIES

In this section we explain the main forecasting mechanism
which is the basic framework for the decision making process
of the technical traders. Genetic programming is at the heart
of such mechanism and it has been used in the past to perform
technical analysis by several research groups like [43], [12],
[19].

The modeling of the learning process by the agents is a
central part of our research agenda. Regarding the agents’
learning process, we consider of extreme importance what
Lucas wrote in [35]:

In general terms, we view or model an individual
as a collection of decision rules (rules that dictate
the action to be taken in given situations) and a set
of preferences used to evaluate the outcomes arising
from particular situation-action combinations. These
decision rules are continuously under review and
revision; new decision rules are tried and tested
against experience, and rules that produce desirable
outcomes supplant those that do not.
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Fig. 3. Example of a decision tree.

For the modeling of the learning process described above by
Lucas we will use genetic programming. Such technique has
been previously described as a suitable way to model economic
learning in [6]. The learning process that we used to model
our agents’ behaviour will be described further in this section.

A. Forecasting with EDDIE

We use the architecture for EDDIE explained in [53] and
[33] for the elaboration of the agents’ decision rules which
recommend whether to buy, hold or sell. As is standard with
genetic programming, each agent is assigned an initial pop-
ulation of decision rules randomly generated. These include
well known fundamentals based forecasting rules or trend
following moving average type technical rules. Candidate
individuals are selected randomly, biased by their fitness, for
involvement in generating members of the next generation.
General mechanisms (referred to as genetic operators, e.g.
selection, crossover, mutation) are used to combine or change
the selected candidate individuals to generate offspring, which
will form the population in the next generation.

In EDDIE, an individual is represented by a decision tree.
The basic elements of such decision tress are rules and forecast
values. A single rule consists of one useful indicator for
prediction, one relational operator such as “greater than”, or
“less than”, etc, and a threshold (real value). Such a single
rule interacts with other rules in one decision tree through
logic operators such as “Or”, “And”, “Not”, and “If-Then-
Else”. Forecast values in this model are directions of price
movements, either a positive trend (i.e. positive x% return
within specified time interval can be achievable) or negative
trend (i.e. negative x% return within a specified time interval
can be achievable).

Figure III-A shows and example of one possible decision
tree. In such figure we can see that the root node is always
an If-Then-Else node, the left child an If-Then-Else node is
a “condition” node. Additionally, there are two right children
which could be either a “decision” node or another If-Then-
Else node. The rule that is being represented by the decision

TABLE II
A CONTINGENCY TABLE FOR THREE-CLASS CLASSIFICATION/PREDICTION

PROBLEM

Predicted Predicted Predicted
price rise no inf. price drop

(PBs) (PHs) (PSs)
BUY HOLD SELL

Actual # of True # of Actual Buy # Actual Buy
price rise Buys Predicted Hold Predicted Sell
(ABs)
BUY (TB) (BH) (BS)
Actual # of Actual Hold # of True # of Actual Hold
no inf. Predicted Buy Holds Predicted Sell
(AHs)
HOLD (HB) (TH) (HS)
Actual # of Actual Sell # of Actual Sell # of True
price drop Predicted Buy Predicted Hold Sells
(ASs)
SELL (SB) (SH) (TS)

tree in Figure III-A is the following one:

1 If ((MV 12 = 0.98)AND(NOT (TRB 5 < 0.25))) Then
2 Buy
3 Else
4 If(V OL 12 = −0.56) Then
5 Sell
6 Else
7 Hold
8 End if
9 End if

Fig. 4. Example of a decision rule interpreted from a decision tree

The type of node is going to become relevant when applying
the crossover and mutation genetic operators because it is
precise to maintain the tree consistency. For example, in the
case that a mutation operation is going to take place and the
selected node where such mutation is going to happen is a
“condition” node; then, the randomly generated mutation must
be a “condition” like node. The same should happen for the
crossover operation: there must be compatibility between the
subtrees than are going to be exchanged by the parents.

Recommendation to BUY at t follows from the prediction
of a price rise (positive trend) over a given period, rec-
ommendation to do nothing (HOLD) follows from the fact
that there is no evidence of a price rise or a price drop
and recommendation to SELL follows from the prediction
of a price fall (x% negative trend). Note different returns
thresholds and horizons exist for different classes of traders.
Since decision trees are used to predict directions of price
changes and make recommendations for trade, the success or
failure of recommendations can be categorized as a three-
class classification problem. Each prediction point for every
decision tree can be classified into either a positive position,
a holding position or a negative position. For each decision
tree, we define RC (Rate of Correctness), and RF (Rate of
Failure) as its prediction performance criteria. Formula for
each criterion is given through a contingency table in Table II
as follows:

Lets define: RC as the Rate of Correctness; and RF as the
Rate of Failure.
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RC =
TB + TH + TS

ABs + AHs + ASs
(14)

RF =
HB + SB

PBs
+

BH + SH

PHs
+

BS + HS

PSs
(15)

Each agent selects the decision tree which constitute trading
strategy to buy or sell that maximizes the fitness function

Γ(1) = ϕ(rc)RC − ϕ(rf)RF (16)

The fitness function involves two performance values, i.e.
RC and RF, each of which is assigned a different weight ϕ(rc)
or ϕ(rf) respectively. While the fitness function can guard
against loss making positions, the population of decision trees
from which agents conduct their search may lead to invest-
ment income under-performance. One important advantage of
genetic programming is that we can bias the search mechanism
by using different values for such weights. However, we used
a value of zero for the weight ϕ(rf). In other words, we used
just the rate of correctness as the performance criteria to drive
the evolutionary mechanism.

We implemented a very efficient method to avoid bloat and
to speed up our simulation, see [47]. Bloat happens during the
evolutionary process, when the trees grow in size but there is
no improvement in fitness, see [27]. Essentially, this means
that there are some branches of the trees that are redundant or
even worse, they reduce the fitness of the individual.

We considered that the control of bloat is important because
it was necessary for us to generate realistic investment rules.
It would be very difficult for us (and for anyone) to justify
very complex rules being used by the agents.

B. Learning

Learning is a key factor in our simulation and as we were
investigating the repercussions of the type of the learning
frequency on the endogenously generated price, we had to
verify that the learning process has been beneficial. To be more
precise, learning should enable the individual to improve her
wealth in relation to the other traders. The technical traders
are the only type of traders that will be able to learn during
the simulation of the market.

To investigate this issue, we performed several experiments
in the following way: on each experiment we replicated one
trader (technical) and followed both traders’ wealth (the orig-
inal and the replicated one) throughout the whole simulation.
We set the replicated trader to be able to retrain every 1000
steps of the simulation. We can see clearly in Figure III-
B that after the execution of the GP mechanism with the
endogenously generated price, the replicated trader improved
her wealth in comparison to the original trader. We executed
these experiments several times with different traders from
different groups and in the vast majority of the cases the
replicated traders did better than the original ones.

We allowed the replicated trader to retrain every 1000
periods of trading because we wanted to give the original
trader the opportunity to improve during that period and may
be even to perform better than the retrained agent, as we
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Fig. 5. Examples of wealth evolution with and without learning.

can see in Figure 5(a). Additionally, we wanted to avoid
that too many things changed at the same time and that
the comparison became impossible. We could certainly try to
perform experiments with some reasonable shorter lapses of
time, but the computational cost plays a role as well.

During the retraining phase, the GP mechanism is executed
with the same conditions as it was executed for the initial
training. This is done with the objective of preserving what we
perceive as a realistic and competent forecasting mechanism.
It is worth mention that the rate of correctness of the agents
during the initial trading is above sixty percent.

It is important to point out that in our case, the fitness
measure used to drive the evolution process was the rate
of correctness. Moreover, such classification measure can be
translated into an improvement on the traders wealth. We
consider such result as an important one in our research that
can be stated in the following way: a classification rate driving
the evolutionary process has a direct impact on the agent’s
wealth.

IV. THE SIMULATION

The market will operate as if each trading round is one
day. This is due to the fact that our technical traders were
trained with daily closing prices. However, there is nothing to
prevent us from interpreting the time in another scale or train
the agents with high frequency data. The market participants
will be able to trade on every single round of the market with
some exceptions to be explained next.

Noise traders will take a decision to buy, sell or do nothing
based on the probabilities assigned for each decision. They will
be able to participate in the market on every single iteration
of the simulation program.
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The fundamentalists enter on a buying (selling) cycle if there
is a difference between the stock’s price and the fundamental
value beyond certain threshold value T . They will stay in such
cycle until the difference is smaller than another threshold
value τ . After the return of the stock’s price to the fundamental
value, this type of traders will review again if there exists a
difference between the price and fundamental value and so on.

The technical traders can change their position on each
trading round based on their forecasts, unless they have some
pending limit orders to execute. Once they have completed the
round trip (the investment decision and the exit strategy), they
can take another decision based on the generated rules.

Once all the market participants make their bids and offers,
we calculate the excess demand and then the price can be
updated. Afterwards, each agents’ orders are partially satisfied
by a proportion that clears the market considering the new
price. Finally, the holdings of the risky asset and cash are
updated for each of the traders that participated in the trading
round.

After all the above steps are executed, each technical trader
reviews its retraining condition. In the model there exist two
types of conditions for retraining: in fixed time intervals and
in an endogenous way known as Red Queen retraining.

In the case that the retraining periodicity is set to be in
fixed time intervals, the trader launches the GP mechanism
creating the initial population of rules with half of her current
population and the other half randomly generated.

The case of the Red Queen retraining is more complex:
retraining for a certain agent will take place whenever the
agent’s wealth falls below the average wealth. The agent’s
initial population for each retraining process is generated in
the same way as was described for the retraining with fixed
periodicity.

A. Parameters

We have created a flexible model in which we have a large
number of different parameters for us to explore and analyze
different phenomena in financial markets. These parameters
are going to be divided mainly in two different classes: market
parameters and traders’ parameters.

1) Market Parameters: The market parameters control
some of the general parameters of the simulation, they de-
termine for example the proportion to invest, the number of
periods of trading, etc. Below is a list of the relevant market
parameters:
• Number of trading periods
• Proportion to trade
• Price constants
• Random seed
2) Traders’ parameters: The different types of traders pos-

sess different parameters. For example, the noise traders only
have three parameters: the probability to buy, the probability
to sell and the probability to do nothing. On the other hand,
the fundamentalists have four constants as parameters: Tmin,
Tmax, τmin and τmax. All the different traders share as
parameters the initial number of shares and the initial amount
of cash available at the beginning of the simulation.

The group of technical traders is organized in several
groups. Within such groups they share the same parameters.
This organization allowed us to model a key factor in our
research: heterogeneity. It is possible to split the parameters of
the technical traders in three different types: group parameters,
information parameters and genetic programming parameters.

The most important group parameters are:
• Desired rate of return
• Time horizon
• Memory length
• Retraining condition
• Fixed retraining periodicity
• Fitness function type
• Limit order to sell generation
• Limit order to buy generation
• Fundamental behaviour
• Tmin, Tmax, τmin and τmax

The information parameters refer to the technical indicators
that the agents can use to generate the investment rules during
the execution of the GP mechanism. With the parametrization
of the indicators we can model different types of technical
traders. For example, we can have moving average or mo-
mentum traders.

Within the parameters of the technical traders, the GP ones
constitute an important set for the simulation. Such parameters
will determine how close to a competent trader the agents
are. For example, if the traders are equipped with a limited
population size and a small number of generations, there is
little chance that the traders will create accurate investment
rules. The most important parameters that control the genetic
programming mechanism are:
• Population size
• Number of generations
• Mutation rate
• Crossover rate
• Initial tree depth
• Maximum tree depth
• Tournament size
• Probability of selecting the best individual of the tourna-

ment
• Tarpeian constant

V. EXPERIMENTS

This section describes the experimental results performed in
order to obtain a realistic price behavior. We seek to discover
the minimal conditions under which stylized facts 2 arise in
CHASM. It is worth emphasizing that with a complex model it
is not a trivial task to search for such conditions. Furthermore,
it is the first work (to our knowledge) in which an exhaustive
search for the minimal set of conditions under which realistic
price dynamics emerge. The complexity of some artificial
markets usually prevents the researcher from knowing which
aspect of her model is the responsible for the emergence of
stylized facts.

2The so called “stylized facts” appear to be ubiquitous in different markets
see [10] for an introduction.
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Regarding the exploration of the parameters and main
features, we performed a full exploration of each of the
parameters involved on the simulation. For example, in the
case of the trading proportion parameter we scaled it from
one percent to one hundred percent. We presented the most
relevant examples for illustrative purposes. In the case of the
limit orders, their exploration was easier as there are only
eight possible variations on this feature. In the case of the
fundamental behaviour we turned on and off for every single
group of the technical traders. We proceeded on the same
fashion for all the above mentioned parameters and features.
Nevertheless, we will only present the results of the most
relevant cases.

A. Parameters and features exploration

In the previous section we described the most important
features and parameters of CHASM. Due to the different
possible combinations of such features and parameters, a
systematic approach was necessary to discover promising areas
under which we could obtain the desirable properties of the
price.

In the following subsections of this section we will first
describe the characteristics of what we call the Base Case and
then, we will describe the experimental results of changes on
the other features and parameters of the model.

B. The base case

A large amount (one for each trader) of controlled experi-
ments were conducted before obtaining a price that resembles
the dynamics present in real prices. In this section, we present
the results of a parameter setting which reproduces statistical
properties of stock returns. This setting will be used as a base
case for studying the effects of changing the model along
individual dimensions listed in the previous section. The Base
Case has the following parameters and characteristics:
• Seven different groups of technical traders.
• The groups have different indicators.
• The groups share the same desired rate of return (5.5%)

and time horizon (14 days).
• The agents trade 8% of their current holdings or use the

8% of their cash to buy more shares.
• The agents generate both types of limit orders.
• The groups have the same computing power.
• There is no learning taking place.
• Group number seven of technical traders behave like

value traders under certain circumstances.
Besides the set of indicators used by each group of traders

and the fundamental behavior exhibited just by one group, the
remaining conditions are the same for all the different groups.
The indicators were assigned in the following way: group one
was assigned with the two moving average indicators, group
two was able to use the trading breakout indicators, group
three had the filter indicators, group four used the volatility,
group five used the momentum indicator, group six used a
moving average of the momentum indicator and finally group
seven used all the indicators. For the experiments reported in
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Fig. 6. Price and log returns for the Base Case.
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Fig. 7. Autocorrelations for different lags of the log returns, absolute log
returns and squared log returns on the Base Case.

this paper the number of agents in each groups is typically
three.

In Figure 6 we can see the price and the log returns
of the Base Case. We can see that the price resembles the
dynamics of the prices in real markets and the log returns
capture the well known phenomena of volatility clustering.
Such phenomenon can be investigated quantitatively and in
Figure 7 it is possible to see the autocorrelation for different
lags of the log returns, the absolute log returns and the squared
log returns.

We can observe in Figure 7, that the autocorrelation of log
returns is around zero, as it should be. Additionally, we can
see in the same figure that for the absolute and squared log
returns, there is a positive autocorrelation that decays slowly
but remains positive even for lags larger than eighty. However,
such positive autocorrelation is never close to zero as we saw
on the cases of the FTSE100 and the Barclays bank’s share.

C. Limit Orders

After the first attempts that we made at the beginning of
our research, we decided that a more complete strategy was
necessary to obtain realistic price dynamics. Our agents were
equipped with a powerful forecasting mechanism; neverthe-
less, after forecasting that the price would rise and buy some
assets they did not realized the profits that they would get as a
reward for their forecasting ability. For example, it would be
unreasonable to buy some shares today if we forecasted that
the price was going to rise and later on, keep them without
realizing the profit that we could get.
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Fig. 8. Price and log returns for the Base Case without limit orders.

The previous reason is the main cause for including an exit
strategy for our agents in CHASM. Such exit strategy will be
modeled by two different types of limit orders: profit-taking
limit orders and stop-loss limit orders.

In order to test the relevance and the impact of the inclusion
of limit orders on the agents’ trading strategy we designed
some experiments in which we turned on and off the use of one
or both types of limit orders. We departed from the base case
by no generating both limit orders everything else remaining
the same.

In Figure 8 we can see the price and the log returns of
the Base Case without limit orders being generated. We can
observe by simple inspection from such figure that the price
dynamics are not realistic and that such orders represent an
important element in the generation of dynamics close to the
reality. Moreover, at the end of the price’s graph we can see
that there was a sort of consensus between the traders and
the price started to increase without reversion taking place.
This phenomenon might be caused by the lack of a complete
investment strategy as it was explained before. In other words,
the agents were not selling to make profits after they bought
with the purpose of making some profits.

In Figure 9, we can observe the behavior of the autocorrela-
tions for different lags of the log returns, absolute log returns
and squared log returns. Considering the two examples on
Subsection I-A, we can appreciate that the behaviour of the
autocorrelation for the log returns is not like in those examples
(oscillating around zero). Such autocorrelation is even negative
for lags between sixty and ninety. The autocorrelations for the
absolute and squared log returns do not do well neither, for
short lags they are very high and decay. However, they remain
positive, particulary the autocorrelation for the absolute log
returns.

D. Fundamental trading

Fundamental behavior is one of the aspects that most of the
Artificial Financial Markets possess. It is a very important
mechanism, in our experience, in order to avoid the price
to behave in a very simplistic fashion. Before including
such characteristic in our market, we had prices that were
either always increasing or decreasing until they collapsed.
We modeled the fundamental behavior as it was designed in
[17], on top of the technical trading behavior. This means
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Fig. 9. Autocorrelations for different lags of the log returns, absolute log
returns and squared log returns on the Base Case without limit orders being
generated.
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Fig. 10. Price and log returns for the Base Case without fundamental trading.

that the agents will be trading like technical traders until the
price departs beyond a certain threshold value from what they
consider to be the fundamental value of the risky asset.

In order to test the impact of triggering the fundamental
behavior we performed some experiments in which we acti-
vated or deactivated such behavior in just one of the groups.
Departing from the Base Case, we turned on and off the
fundamental-like behavior while in group seven everything
else remained the same. We did not impose such mechanism
in all the groups for two reasons: first, we wanted to have
certain heterogeneity and second, we wanted to prevent that
the endogenously generated price would follow too closely the
exogenous fundamental value.

In Figure 10 we can see the price and the log returns of the
Base Case without fundamental behavior taking place in any of
the groups. We can observe that the price behaves somehow in
a “reasonable” way and we can see on the log returns that they
capture the volatility clustering and they look “reasonable” as
well. To verify that, we have to recur to Figure 11.

In Figure 11 it is possible to observe the autocorrelation
for different lags of the log returns, absolute log returns
and squared log returns. In such figure, we can see that the
autocorrelations of the log returns are around zero (which is
fine). Additionally, we have that the autocorrelations for the
absolute and the squared log returns are positive for short lags
and we observe a decay that takes them close to zero. However,
such autocorrelations remain positive even for lags larger than
ninety.
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Fig. 11. Autocorrelations for different lags of the log returns, absolute
log returns and squared log returns on the Base Case without fundamental
behavior.
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Fig. 12. Price and log returns for the Base Case with homogeneous indicators
set for all groups.

E. Indicators

The indicator set used by each of the different groups of
agents is one of the most relevant factors that we identified
in order to reproduce stylized facts. We used the indicator set
to model information asymmetries on the different groups of
agents.

We had two different possibilities: first, as it was described
for the base case, we could have that each group possess
one specific type of indicator and one of the groups could
possess them all; second, all the different groups could built
their decision rules with all the available indicators.

We tested the two different approaches by departing from
the base case and we either provided all the groups with all the
available indicators or assigned the different types of indicators
in the way that was described for the Base Case.

In Figure 12 we can see the price and the log returns
of the Base Case with homogeneous indicators set for all
groups. Despite the appearance of the endogenously generated
price, we can observe that the returns do not resemble the
returns present in real markets. The returns generated in our
experiments for this case started to present lower volatility
at later stages of the simulation. Additionally, we cannot see
volatility clustering in our generated returns. In Figure 13, we
can see this more clearly.

In Figure 13, we can see how the autocorrelation for the
log returns does fine in comparison with the examples in
SubsectionI-A. However, we observe a high autocorrelation for
the squared and the absolute log returns that remains positive
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Fig. 13. Autocorrelations for different lags of the log returns, absolute
log returns and squared log returns on the Base Case with homogeneous
information for all groups.

without decay. Therefore, this experimental setting fails to
replicate the behaviour of the autocorrelation for the squared
and absolute log returns.

F. Desired return and time horizon

The desired rate of return and the time horizon are two
very important aspects of our model. In fact, these two
parameters will rule the creation of investment rules during
the evolutionary process.

In order to test the impact of such parameters on the
behavior of the price, we performed several experiments in
which we either had homogeneity among the different groups
(like in the Base Case) or we had heterogeneity in those two
parameters. We have to stress the importance of a careful
selection of both parameters. For example, if, for a particular
group, we programmed them to ask for a large desired return
on their investment, then it was unreasonable to assign them
a small time horizon. Such unreasonable selection of both
parameters could lead to unreasonable behavior of the agents,
like agents that buy all the time or agents that do nothing the
most of the time. In other words, lets assume that we want
to get a 20% return, clearly this is very difficult to observe
in real markets. However, if we want to achieve this in five
days this is almost impossible to observe. The result of such
selection would generate training data in which the class that
would have the majority is the “Do Nothing” class 3

In Figure 14 we can see the price and the log returns of the
Base Case with homogeneous indicators set for all groups.
In such figure we can observe an interesting price and the
returns that present volatility clustering. In Figure 15, it is
possible to see the autocorrelation for different lags of the log
returns, absolute log returns and squared log returns. We will
observe later in this section the statistical properties properties
of this experimental setting. Again, what we can infer from
this setting is that heterogeneity is very important to emulate
the properties of real prices.

In Figure 15, we can see that despite the somehow realistic
behaviour of the autocorrelations for the log returns, the
autocorrelations for the absolute and squared returns is highly
positive and remains in such way for all the reported lags. We

3Remember that the agents are trying to classify each price point to belong
to the classes: “Buy”, “Sell” and “Do Nothing”
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Fig. 14. Base Case with heterogeneous desired return and time horizon for
each group price and log returns
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Fig. 15. Autocorrelations for different lags of the log returns, absolute log
returns and squared log returns on the Base Case with heterogeneous desired
rate of return and time horizon

can say that we would like to observe that the autocorrelations
for the nonlinear functions of the log returns to present higher
decay.

G. Trading proportion

The trading proportion parameter could be used to model
how cautious or aggressive to trade the agents are. If we
wanted to model rather conservative agents, the trading pro-
portion parameter would be close to 1%. On the other hand, if
we wanted to model aggressive trading, such parameter would
be close to 100%.

In the base case the trading proportion is 8%, from there we
varied then the trading proportion parameter in order to test
the impact of such parameter on the market dynamics. The
changes on such parameter were essentially in one direction,
this means, we increased the value of such parameter above
8% because we did not have significant changes to report
with smaller trading proportions. However, we must stress
that changes in such parameter were closely related to the
parameter market depth on the price determination equation.

In Figure 16 we can see the price and the log returns of the
Base Case with a trading proportion of 30%, 90% and 100%.
Due to space limitations, we will not report the Base Case
with all the other possible trading proportion values. From
such figures we can see that when the trading proportion is
getting close to the 100% value the dynamics worsen and the
log returns can even take unreasonable values. For example,
in one of the cases (90 % trading proportion) there are values
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Fig. 16. Base Case with a trading proportion of 30%, 90% and 100% price
and log returns.

for the log return of less than -1. Such value would imply a
drop on the price of more than a hundred percent!

In Figure 17, we can see the autocorrelations of the log re-
turns, the absolute and squared log returns for different trading
proportions. In Figure 17(a), we can see that the behaviour of
the autocorrelations of log returns for a trading proportion of
30% is somehow acceptable. However, for the absolute and
squared log returns, the decay of the autocorrelations is not
enough to mimic the behaviour of real financial time series.

For the 90% trading proportion, the behaviour of all the
autocorrelations is far from realistic (Figure 17(b)). In Fig-
ure 17(c), we can observe an acceptable appearance of the
autocorrelations of the log returns. On the other hand, the
autocorrelations for the absolute and squared returns remains
positive without a desirable more pronounced decay.

VI. THE RED QUEEN PRINCIPLE AND CO-EVOLUTION IN
CHASM

Co-evolution is said to take place when two or more lineages
have an impact on each other’s selection mechanism and cause
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Fig. 17. Autocorrelations for different lags of the log returns, absolute log
returns and squared log returns on the Base Case with trading proportion of
30%, 90% and 100%.

changes on each other that increases fitness. This mutual
adaptation happens whenever certain ecological interaction
derives into fitness effects for all the participants.

Co-evolution in Evolutionary Computation and in particular
in GP, is an important area of study in Computer Science and
has been used in the modeling of independent agents in the
past [39]. Moreover, the notion of evolving competitively pop-
ulations and in particular decision trees has been intensively
studied in [2], [24] and [25].

We aim to model traders in real markets. Therefore, we
consider co-evolution to be of central importance in our work,
because in real life the traders certainly have an influence in
each other’s trading strategies. Additionally, it is common for
them to change their strategy if they are not performing well

in relation to the other market participants. Therefore, in our
opinion it is necessary to include in our market model the co-
evolution of the agents’ trading strategies. In our market the
co-evolution of such strategies will be modeled by using two
different mechanisms:

• The endogenous generation of the risky asset’s price.
• The regeneration of the technical trader’s “strategies”. In

CHASM, this can be done in a fixed or endogenous way.

In our market, the population of investment rules of each
trader co-evolve through the price. The effectiveness of each
rule (its forecasting precision) determines the probability of
it being selected to be part of the population of the next
generation during the evolutionary process. The precision of
a certain rule belonging to a particular trader depends on the
rules of the other traders because they will have to change
their rules if their performance on the market is not good.
Therefore, it affects the trader’s fitness.

Regarding the learning process, in CHASM the user can
model the agents, so that they are able to adapt to the new
conditions of the market, either periodically (with a user
defined periodicity) or with a periodicity that is endogenously
generated by a behavioral constraint known as the Red Queen
constraint. CHASM allows those two different conditions
to trigger learning because we want to contrast both ways,
although we believe that learning in an endogenous way is
more realistic.

Adaptation of the market participants with fixed periodicity
has been used on previous works, eg. [3]. However, we
consider it unrealistic because in real life, the traders do not
change their investment strategies (at least not the totality) in
strictly fixed way. Moreover, the findings reported in [31] are
very revealing about the importance of the learning periodicity.
In [31] the authors reported the differences on the price
properties due to changes on the frequency of the retraining
procedure and the memory length of the agents.

The condition to trigger endogenously the learning process
has been modeled in previous works. For example, the notion
of self realization was modeled in [8] and [58], which is
based on a notion of rank. However, we believe that the
traders decision to change their strategy must be motivated
by their performance on the market in terms of wealth. It is
very likely that this decision is strongly related to the other
market participants’ performance. This was recognized as an
important aspect in artificial financial markets by LeBaron in
[28].

To summarize, we believe that the modeling of co-evolution
in simulated markets is important. Therefore, we make it a
key feature in CHASM. It is possible to model the way in
which learning is triggered in two different ways: with fixed
periodicity or endogenously. In CHASM we are able to model
such forms of adaptation and we will report the results of some
experiments later in this section.

A. Individual versus Social Learning

In the case that an Evolutionary Computation technique is
being used to model the agents’ learning process, there are
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two main possibilities for such modelling: Single Population
(SP) or Multiple Population (MP).

When SP is used, each individual of the population repre-
sents an economic agent. This means that there is just one
evolutionary mechanism driving the simulation and the agents
have no control over it. On the other hand, in the case of MP
each agent possesses a population of individuals and “runs”
an evolutionary mechanism by herself.

There are advantages and disadvantages when using either
of the two approaches. Nevertheless, we can point out to the
ones that we believe are the most significant: when a SP
evolutionary process is being used, the individual intelligence
is not being explicitly modeled, when a MP evolutionary
process is being used, social learning must be represented in
an explicit way.

In [8] and in a later and extended work [58] the authors
explore two different architectures of an Artificial Stock
Market. In the first one, they propose basically a SP-GP
mechanism enhanced with another SP-GP mechanism known
as the “Business School”. In the second one, the authors
propose a MP-GP mechanism for the agents and in addition
they preserve the “Business School” as well. In the Santa Fe’s
experiments, they use a MP-GA and the change of behavior
is exogenously imposed by the experimenters [3].

Our approach is similar to the architecture in [58] in the
sense that each of the agents run a GP mechanism. However,
in our market there is no “Business School” or any other
explicit mechanism of social interaction. In our case, the
interaction through the price (and some other elements) is
enough to replicate the stylized facts. Besides, we believe that
the inclusion of “trend following” indicators as part of the
agents information, can replace an explicit model of interaction
among them. Moreover, as it was stated at the beginning of
this work the modeling or implications of social interactions
in financial markets is beyond the scope of our research.

B. The Red Queen in CHASM

In our research we have a market populated by a co-evolving
population of agents, each attempting to enhance its fitness
relative to others. This is inspired by the Red Queen principle,
based on the observation made to Alice by the Red Queen in
Lewis Caroll’s Through the Looking Glass: “in this place it
takes all the running you can do, to keep in the same place”.

The Red Queen principle was originally proposed by the
evolutionary biologist Leigh van Valen in [57] as a metaphor of
a co-evolutionary arms race between species. In cases in which
the competition for scarce resources rules the behavior of the
participants; the important performance measure is relative to
the other individuals involved in such arms race.

The Red Queen principle has been studied in Computer
Science, more specifically in competitive co-evolution [46],
[44]. In particular, in [9] the authors propose some means
to measure the progress in computer simulated co-evolution.
The Red Queen effect has been also studied in the context
of Economics in the past. In [48], the author claims that
the evolution of intelligence itself is hypothesized to arise
as a Red Queen type arms race giving rise to Machiavellian

behavior in social interactions. In [49] the author describes
the relation between the evolution of complex organisms, the
reasons behind sexual reproduction, the emergence of high
intelligence and the Red Queen effect.

In competitive co-evolution, the Red Queen principle, there-
fore, entails constraints on performance enhancement of all
individuals, if each is to maintain status quo in relative fitness
measured by an index relating to aggregate performance.

In CHASM, the Red Queen principle will be modeled
through the Red Queen Constraint. Such behavioural con-
straint will force a trader to search for new investment rules
whenever she is being “left behind”. More specifically, a trader
will launch a GP mechanism considering the most recent
information (the most recent price history and the relevant
indicators) whenever her wealth is below the population’s
average wealth. As it was recognized in [28] by LeBaron:
“A trader’s performance depends critically on the behavior
of others”.

C. Experimental design

To experimentally test the impact of the Red Queen prin-
ciple, we designed a set of experiments in which the agents
will retrain in a fixed or endogenous way. Then, we observe
the differences in the statistical properties of the stock returns
and the agents’ wealth distribution.

In such experiments we defined some study cases which
we considered to be interesting. This was taking into account
the experience gained with the experiments described in the
previous section. Such study cases were different variations
of the factors that we identified as important in the previous
phase of experimentation.

We first executed the simulation program with the parame-
ters that we consider to be appropriate to get realistic statistical
behavior of the log returns. Afterwards, we observed the price
behavior and we performed a series of statistical tests to
identify if the price presented the stylized facts. In case the
stylized facts were not replicated we tried another parameter
constellation and so on until we got the desired properties.
After getting the appropriate parameters, we executed the
market with the same setting but allowing the agents to learn
with fixed periodicity. Then, we reported the statistics of such
execution. For the experiments reported in this paper learning
with fixed periodicity was triggered every one thousand trading
periods.

Using the same configuration of the two previous exper-
iments, we allowed the agents to retrain in an endogenous
way, this means that we turned on the Red Queen Constraint.
Then, we observed the price and the statistical properties of the
logarithmic returns. For the experiments reported in this paper,
the Red Queen constraint was implemented by retraining the
agents whenever their wealth was below the total population’s
average wealth.

The vertical scales of the different graphs may differ and
make comparisons more difficult. However, the change of scale
is due to the different behaviour of the price and log returns;
therefore, to apply the same scale to all the graphs might
cause difficulty to appreciate the behaviour of the price or log
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returns. The case of the differences on the horizontal scales is
due to the computational cost of the market’s execution when
the Red Queen constraint is activated. The cases where we
report the price and log returns under Red Queen retraining
will normally have less data points than the cases where such
learning does not happen.

D. Case studies and results

Exploring the model as described in the previous section,
we developed a series of experiments by changing key fea-
tures and parameters of the simulation, already identified as
important. We have different base cases in which the statistical
properties of the price will be reported for different parameters.
After tuning the simulation under each case of study to obtain
interesting prices and statistics, the simulation is executed
again with learning taking place. This allowed us to observe
the changes on the statistical properties of price due to the
different types of learning.

We will present four out of the possible eight combinations
of three important features (Computing Power, Information,
and Time Horizon and desired Rate of Return) that we detected
as important in the previous phase of experimentation. The
reason for the exclusion of the other four cases depends on
the specific case. The excluded cases are the following:
• Heterogeneous Computing Power, Heterogeneous Infor-

mation and Heterogeneous Time Horizon and Return.
• Heterogeneous Computing Power, Heterogeneous Infor-

mation and Homogeneous Time Horizon and Return.
• Heterogeneous Computing Power, Homogeneous Infor-

mation and Homogeneous Time Horizon and Return.
• Homogeneous Computing Power, Homogeneous Infor-

mation and Homogeneous Time Horizon and Return.
The reason for the exclusion of the first three cases is

that our previous results showed that heterogeneity on the
computational capabilities proved to be counterproductive in
our quest for stylized facts. In all the experiments that we
performed with heterogeneous computational capabilities, the
results were similar in the sense that the price did not resemble
by any means prices in real financial markets.

The reason for the exclusion of the last case is that we
detected that complete homogeneity was not good neither in
our aim. The results of the last case (not reported here) showed
a monotonous price (always increasing or always decreasing),
ie, there was a sort of consensus and a self fulfilling behavior
of the price. We believe that this was mainly caused by the
homogeneity of agents on these important features that we
detected.

1) Statistics: For each of the experiments’ log returns we
will report: basic descriptive statistics, the result of the Jacque-
Bera Test, the GARCH and ARCH coefficients, the skewness
and kurtosis, the correlation coefficient, and the Hill estimator
for the 0.1%, 0.5%, 1%, 2.5%, 5%, 10% and 15% most
extreme log returns of the experiment’s respective data series.

The basic descriptive statistics reported here are the mean,
median, minimum, maximum and the standard deviation. Well
known stylized facts on stock market returns are that on a
weekly, daily and higher frequencies they fail to be normally

distributed and they are also unpredictable. By the Jacque-
Bera test, we find significant departures from normality for
the returns for all the runs. Another stylized fact related
to normality is excess kurtosis, the kurtosis for a normal
distribution should be equal to 3. However, kurtosis in financial
time series is commonly larger that 3.

The correlation coefficient reported here is the autocorrela-
tion with one day difference. Nevertheless, we will report as
well the autocorrelation for several different lags. Additionally,
we will report the autocorrelation of the absolute log returns
and the squared log returns. The autocorrelation of the absolute
and squared log returns will allow us to investigate the
phenomena known as volatility clustering. Empirical studies
in various stock indexes and stock prices have shown that the
autocorrelation function of the squared returns remains posi-
tive and decays slowly over several days. The autocorrelation
function can be defined in the following way:

C(τ) = corr(r(t, δt), r(t + τ, δt)) (17)

2) Case 1: Heterogeneous Computing Power, Homogeneous
Information and Heterogeneous Time Horizon and Return.:
In this study case we have seven groups of technical traders
with heterogeneous computing capabilities, homogeneous in-
formation, heterogeneous desired return and time horizon.

The purpose of testing and analyzing this specific case
was to verify the impact that the asymmetry in computational
power (in terms of the GP mechanism) has in the market. In
other words, heterogeneity in computing power refers to two
of the GP parameters assigned to the agents: population size
and number of generations. We identified these two parameters
as the most relevant ones for measuring the computational
capabilities of the agents. In this experiment, the first group of
agents was provided with the smallest number of generations
and population size (10 and 50 respectively), the second group
had a bigger number of generations and population size than
the first group (50 and 100 respectively), the third had bigger
numbers in both parameters than the second group (75 and
250 respectively), the forth was the most competent of all the
different groups (100 generations and 500 population size) and
then we started to reduce the population size and number of
generations for the remaining three groups.

The obtained prices were the least successful to replicate the
stylized facts in comparison to the other cases. We expected
such results to a certain extent because it is very important
that the behavior of the agents is closer to reality, we need
competent traders to participate in our market. Otherwise, the
price and its statistical properties do not resemble real data. We
found very unrealistic behavior of the price even with learning
taking place, in fact the price behavior is worst when learning
happens as we can see in Figure 18.

Figures 18(a) and 18(b) show the price and log returns
without learning taking place. The next two figures 18(c) and
18(d) show the price and log returns when learning with fixed
periodicity takes place. Finally, the figures 18(e) and 18(f)
show the price and log returns when the Red Queen constraint
is applied. In such figure, we can observe that the price, when
learning is not taking place, looks somehow realistic. However,
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Fig. 18. Case 1 prices and log returns

if we observe the other two cases (when learning takes place);
then, it was clear that under this conditions and parameter
constellation we would not get any closer to the stylized facts.

In Figures 18(c) and 18(e) we can appreciate the sort of
things that can go wrong in artificial financial markets research
and why is difficult to find the conditions under which the
simulated market resembles real markets. By looking at such
figures we can see that the agents’ perception about the price
converged after a certain period and then there was no trading
activity. In other words, there were no bids or offers and
the agents’ were essentially maintaining their current position.
The trading activity stopped around the trading period 5000
in the case where learning was taking place in a fixed way.
In the case where learning was controlled by the Red Queen
constraint, the same thing happened much earlier (around the
trading period 1250).

Figure 19 shows the autocorrelations for different lags of
Case 1 (No learning, Fixed learning and learning with the
Red Queen constraint). Regarding the autocorrelations of the
above mentioned three cases, we can see that the case where
learning does not take place is the more realistic. On the other
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Fig. 19. Autocorrelations for different lags of the log returns, absolute log
returns and squared log returns on Case 1 with no learning taking place,
learning with fixed periodicity and learning under the Red Queen constraint.

hand, in the cases where learning takes place we observe a
very unrealistic behaviour of the autocorrelations for the log
returns, the absolute and the squared log returns.

Finally, Table III shows the statistics corresponding to this
first case. In addition to the standard descriptive statistics we
are reporting the correlation, GARCH and ARCH coefficients,
skewness, kurtosis, the Hill estimator for different tail sizes
and the Jacque Bera test for normality. In such table we can
see that the values reported are not very well related to the
stylized facts that we are looking for, despite that normality
is rejected. In particular the values for the Hill estimator for
the fixed learning case are well out of the desired range.

3) Case 2: Homogeneous Computing Power, Heterogeneous
Information and Homogeneous Time Horizon and Return.:
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TABLE III
STATISTICS FOR THE LOG RETURNS CASE 1

Statistics No Learning Learning
Fixed Red Queen

Mean -0.000091 0.0000353 0.00032
Median 0 0 0
Minimum -0.261032 -0.007471 -0.010513
Maximum 0.399649 0.007448 0.010535
Std. Dev. 0.023713 0.001721 0.001389
GARCH coefficient 0.916433 0.355824 0.965349
ARCH coefficient 0.083566 0.644174 0.034649
Skewness 0.982907 0.100449 3.79522
Kurtosis 38.6423 9.30956 26.2017
J-B Test H value 1 1 1
Corr. coefficient -0.108092 -0.881107 0.746318
AlphaHill 0.1 % 3.6429 221.124
AlphaHill 0.5 % 2.99165 42.2454
AlphaHill 1 % 2.97188 13.2267 5.69426
AlphaHill 2.5 % 1.88164 3.88784 2.97623
AlphaHill 5 % 1.45753 3.12363 2.06187
AlphaHill 10 % 1.13026 0.451349
AlphaHill 15 % 0.715213

In this case we have seven groups of technical traders with
homogeneous computing capabilities, heterogeneous informa-
tion, homogeneous desired return and time horizon. This
configuration is the same as for the base case reported on
Subsection V-B.

The purpose on the setting up of this case was to study
the role that the information, modeled here by the different
indicators, has on the price formation and wealth distribution.
For that purpose, the computational capabilities of the agents
will be homogeneous and the same will happen with the
desired return and time horizon. Therefore, the only difference
between the trader groups is the information set they will use
to create the investment rules. For example, the agents in the
first group will use just the moving average indicators to create
decision rules, the second group of agents will use the trading
breaking rules to do the same, the third group will use filter
rules, the forth group will use the volatility, the fifth will use
a momentum indicator, the sixth a moving average indicator
based on the momentum and the last group will use all the
indicators.

Figures 20(a) and 20(b) show the price and log returns
without learning taking place. The next two figures 20(c) and
20(d) show the price and log returns when learning with fixed
periodicity takes place. Finally, figures 20(e) and 20(f) show
the price and log returns when the Red Queen constraint is
applied.

In this case, we can see that having traders with more
computing power creates more interesting price dynamics.
Additionally, we can observe the impact that the heterogeneity
in the use of information has on the price dynamics. It is
perceivable from Figure 20 that more realistic price dynamics
emerged in comparison with Case 1 and that the log returns
present volatility clustering in the three different cases.

Figure 21 shows the autocorrelation for different lags of
Case 2. In such figure, we can see that the autocorrelations for
the experiments where learning does not take place, behave in
a realistic way to a certain extent (in particular the autocor-
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Fig. 20. Case 2 prices and log returns

relations of the log returns). When learning in a fixed way
takes place, the autocorrelations behave less reasonable, with
the autocorrelation of the squared returns being practically
zero for all lags. The case where the Red Queen constraint
is applied is the one that reports the best behaviour for all the
autocorrelations. We observed in the Red Queen constraint
experiment that there is a positive autocorrelation of the
absolute and squared log returns for short lags, even the decay
for such case is quite acceptable.

Table IV shows the statistics corresponding to the second
of the analyzed cases. We can observe from the statistics,
as it was already revealed by the figures, that this case is
very good in reproducing the stylized facts. This suggest
that heterogeneity in the information used is a key factor to
reproduce our desirable statistical properties of the log returns.

4) Case 3: Homogeneous Computing Power, Homogeneous
Information and Heterogeneous Time Horizon and Return.: In
this case we have seven groups of technical traders with ho-
mogeneous computing capabilities, homogeneous information
and heterogeneous desired return and time horizon.

The purpose of this experiment was to verify the importance
of the heterogeneity in the agents’ time horizon and desired
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Fig. 21. Autocorrelations for different lags of the log returns, absolute log
returns and squared log returns on Case 2 with no learning taking place,
learning with fixed periodicity and learning under the Red Queen constraint.

rate of return in reproducing the statistical properties in real
financial markets.

In this experiment, for the first group of agents, we chose a
small time horizon and a desired rate of return that made sense
for such time horizon (otherwise we would have experienced
the same problems that we had at the beginning of our
research). For the second group we chose a slightly bigger time
horizon and again a desired rate of return that was reasonable
to expect in such time. We increased the time horizon and
chose the respective desired rate of return for the remaining
five groups. With this organization, we had the first groups
with small time horizon and rate of return and the last groups
with the parameters taking bigger values.

Figures 22(a) and 22(b) show the price and log returns

TABLE IV
STATISTICS FOR THE LOG RETURNS CASE 2

Statistics No Learning Learning
Fixed Red Queen

Mean 0.000122 -0.000091 -0.000097
Median 0 0 0
Minimum -0.129137 -0.552234 -0.296821
Maximum 0.151981 0.516802 0.358635
Std. Dev. 0.013666 0.060209 0.051374
GARCH coefficient 0.991996 0.845768 0.870907
ARCH coefficient 0.007227 0.15423 0.129091
Skewness 0.148694 -0.305522 0.030099
Kurtosis 19.5229 14.4732 8.14092
J-B Test H value 1 1 1
Corr. coefficient -0.307564 -0.268753 -0.268612
AlphaHill 0.1 % 4.72968 3.173
AlphaHill 0.5 % 4.0303 2.92985
AlphaHill 1 % 3.25591 3.04049 4.55034
AlphaHill 2.5 % 2.47495 3.02408 2.94514
AlphaHill 5 % 1.82119 2.64413 2.62655
AlphaHill 10 % 0.88278 2.1084 2.23069
AlphaHill 15 % 0.486301 1.81222 1.90355

without learning taking place. The next two figures 22(c) and
22(d) show the price and log returns when learning with fixed
periodicity takes place. Finally the figures 22(e) and 22(f)
show the price and log returns when the Red Queen constraint
is applied.

We can observe that the obtained dynamics without learning
are interesting and realistic. However, when learning in a fixed
way takes place, after certain time, there is a sort of agreement
and the volatility of the log return starts to decrease. When the
Red Queen Constraint is applied, the price exhibits volatility
clustering as well and a decrease on it as in the fixed learning
case.

Figure 23 shows the autocorrelation for different lags of
Case 3. In such figure we can observe well behaved auto-
correlations for the three different cases: when there is no
learning, when there is learning in fixed time periods and when
there is learning under the Red Queen constraint. In particular,
we can observe that when learning takes place under the Red
Queen constraint, there is a positive autocorrelation for short
lags and there is a decay quite similar to the one observed
on the two examples in SubsectionI-A. The behaviour of such
autocorrelations is the best so far and the Red Queen constraint
seems to have an impact on them.

Table V shows the statistics for the case number three.
Despite the initial success under this scenario (the values
for the reported statistics are within the desired range), the
scenario when the Red Queen Constraint is applied is less
successful. This would imply that heterogeneity in the agents’
time horizon and desired rate of return certainly helps to
reproduce stylized facts. However, such heterogeneity is not
enough and some more ingredients might be needed to finally
obtain the desired statistical properties.

5) Case 4: Homogeneous Computing Power, Heterogeneous
Information and Heterogeneous Time Horizon and Return.: In
this case we have seven groups of technical traders with ho-
mogeneous computing capabilities, heterogeneous information
and heterogeneous desired return and time horizon.
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Fig. 22. Case 3 prices and log returns

TABLE V
STATISTICS FOR THE LOG RETURNS CASE 3

Statistics No Learning Learning
Fixed Red Queen

Mean -0.000084 -0.000094 -0.000313
Median 0 0 0
Minimum -0.227218 -0.302405 -0.52115
Maximum 0.388358 0.338526 0.565525
Std. Dev. 0.020352 0.033338 0.060565
GARCH coefficient 0.933505 0.918561 0.866955
ARCH coefficient 0.066493 0.081437 0.133043
Skewness 0.711244 0.281638 0.241175
Kurtosis 31.6569 14.4124 26.2376
J-B Test H value 1 1 1
Corr. coefficient -0.245651 -0.391441 -0.392911
AlphaHill 0.1 % 3.32575 5.30302
AlphaHill 0.5 % 3.19726 3.28499
AlphaHill 1 % 2.6011 3.21093 2.37963
AlphaHill 2.5 % 2.49727 2.57308 2.19594
AlphaHill 5 % 2.21421 2.36902 1.77109
AlphaHill 10 % 1.86745 2.11074 1.6755
AlphaHill 15 % 1.6483 1.85418 1.60089
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Fig. 23. Autocorrelations for different lags of the log returns, absolute log
returns and squared log returns on Case 3 with no learning taking place,
learning with fixed periodicity and learning under the Red Queen constraint.

The purpose of this experiment is to explore the impact on
the price of the heterogeneity in information, desired return
and time horizon. This case would allow us to clarify the
importance of the heterogeneity in our market. We expected
the price dynamics in this case to be the best of all of our
basic cases. Benefitting from the experience of the previous
cases, we decided not to make the traders different in terms
of the GP mechanism (computational capability). The sources
of heterogeneity were: the indicators, the desired rate of
return and the time horizon. We assigned the indicators to
the different groups in the same way that was described in
Case 2. In the case of the time horizon and desired rate of
return we proceeded in the same way that was described in
the study Case 3.
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Fig. 24. Case 4 prices and log returns

Figures 24(a) and 24(b) show the price and log returns
without learning taking place. The next two figures 24(c) and
24(d) show the price and log returns when learning with fixed
periodicity takes place. Finally Figures 24(e) and 24(f) show
the price and log returns when the Red Queen constraint is
applied.

In this case we can observe a very realistic price being
generated without learning taking place, and more importantly:
without any exogenous process being used. Additionally, we
can observe the emergence of bubbles and crashes during
the execution of the experiment in which the Red Queen
Constraint is activated (still getting stylized facts), this result
is very important since we can clearly appreciate some of the
phenomena difficult to explain with current models. It is the
case, in our experience, that technical trading might be the
responsible for some of the dynamics present in real financial
markets. Despite the strong cyclical behaviour of the price, the
third experiment of this case is quite revealing on the basis that
the price still presents some of the stylized facts.

Figure 25 shows the autocorrelation for different lags of
Case 4. The autocorrelations when learning does not take
place, behave on a similar way to the most of the cases when
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Fig. 25. Autocorrelations for different lags of the log returns, absolute log
returns and squared log returns on Case 4 with no learning taking place,
learning with fixed periodicity and learning under the Red Queen constraint.

learning does happen. In Figure 25(a), we observe a well
behaved autocorrelations of the log returns. On the other hand,
the autocorrelations for the absolute and squared log returns
remains positive for several lags with a small decay. When
learning on fixed periods happens, the autocorrelations behave
on a similar way to the case when learning does not happen.
Nevertheless, the have smaller values for the different lags.
The case when the Red Queen constraint is applied, shows
similar decay to the reported cases on the SubsectionI-A for
the absolute log returns.

Table VI shows the statistics for Case number four. Despite
the market cyclical behaviour of the price, in terms of the
statistical properties of the log returns, we can say that we
have very reasonable values for each of the three different
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TABLE VI
STATISTICS FOR THE LOG RETURNS CASE 4

Statistics No Learning Learning
Fixed Red Queen

Mean -0.000036 -0.000092 0.000079
Median 0 -0.000083 -0.000239
Minimum -0.293954 -0.777021 -0.303987
Maximum 0.283729 0.575629 0.392999
Std. Dev. 0.089299 0.077507 0.038924
GARCH coefficient 0.953031 0.922381 0.864849
ARCH coefficient 0.046967 0.077617 0.135149
Skewness 0.329118 0.152999 0.438554
Kurtosis 8.62664 6.23266 17.5102
J-B Test H value 1 1 1
Corr. coefficient -0.391261 -0.473053 -0.236828
AlphaHill 0.1 % 13.7083 11.6683
AlphaHill 0.5 % 4.87626 4.71139
AlphaHill 1 % 3.79693 3.94017 3.29714
AlphaHill 2.5 % 2.97087 3.85935 2.61319
AlphaHill 5 % 2.60586 3.48402 2.21265
AlphaHill 10 % 1.98593 2.52688 1.7273
AlphaHill 15 % 1.56148 2.11641 1.4732

experiments. We can say that this study case is the best of the
four study cases in terms of the statistical properties observed.

VII. CONCLUSIONS

The most important conclusions that we can make about
such experiments will be explained in detail in the following
subsections.

6) Initial training: The initial phase of training was im-
portant in order to generate agents with realistic behavior. At
the beginning of the project we did not put enough emphasis
on the desired rate of return for a given time horizon. Given
our chosen rate of return and time horizon, the classes on
the training data were heavily unbalanced. For example, if we
asked an unreasonable high return for an unreasonable short
time horizon, the class with the highest frequency was the
HOLD one. Obviously, the kind of decision trees (investment
rules) that were generated by the evolutionary process were
trees whose most likely recommendation was to HOLD. This
is a well known problem in machine learning and we had to
solve it before going any further on the research.

Given the experience gained on the importance of the initial
training, we decided to create heterogeneous groups of agents
whose desired rate of return and time horizon caused the
training data to be equally split on the three different classes
(BUY, SELL and HOLD). For example, if a trader wants to
achieve a 3% return, she must have a time horizon of at least
5 days because in real financial data changes by 3% over 5 or
fewer days are rare; if she wants to get a 4% return, she must
wait at least for 7 days because of the few cases present in
real financial time series. Otherwise, we could have the classes
on the training data highly unbalanced and that would have
biased the evolutionary search.

7) Learning and wealth: Learning must have helped to
improve the trader’s wealth if we were to study its impact
on artificial markets. This was a crucial issue for us. In order
to prove the importance of learning, we conducted a series of
experiments in which we replicated one trader and allowed

her to retrain during the simulation of the market. The rest of
the traders remained without changes, i.e. without retraining.
Afterwards, we compared the wealth of both the original trader
and the replicated one. To be able to generalize from this
experiments, we performed this task for different traders in
different groups. The results in the majority of the cases proved
that learning does help to improve performance on wealth
terms.

8) Fitness measure: The fitness function, based on the rate
of correctness of the GP mechanism, can be used to drive the
agent’s learning process. This result might sound obvious but it
cannot be assumed to be always true, as the rate of correctness
of the agents’ GP mechanism (working as a classifier) is
not necessarily translated into the agents’ wealth. The results
mentioned in the previous section can be used to justify this
point, because we used the rate of correctness for the learning
processes.

9) Heterogeneity: Heterogeneity is important for the prop-
erties of the simulated returns. By using CHASM we could
model heterogeneity in different forms, including: information,
computing capability, desired rate of return and time horizon,
fundamental like behavior, generation of limit orders, etc.

The different sources of heterogeneity had different effects
on the properties of the price and the returns. The experiments
described on the Subsection V-B and VI may give us a
clear idea of such effects. For example, heterogeneity in the
information used by the agents is useful; on the other hand,
heterogeneity in computing power is irrelevant.

10) Learning and returns: The learning mechanism does
change the statistical properties of the returns. Moreover,
we can observe the implications of programming the traders
with fixed and Red Queen retraining on the results of the
experiments described in Section VI. We can observe that,
despite the fact that the simulated prices behave closely to the
real prices, when learning happens the properties of the returns
reproduce more closely the stylized facts.

11) The Red Queen Principle: The implementation of the
behavioral constraint known in this work as the Red Queen
constraint is an important component of our model. There have
been previous attempts to model the necessity for adaptation
to the new conditions on the environment as seen in [8] and
[29]. However, we are convinced that the necessity of adap-
tation should be defined endogenously. The results reported
in SectionVI show the difference on the statistical properties
of the returns without learning, with learning in fixed periods
and with learning driven by the Red Queen constraint. The
results show that learning driven by such constraint has a more
beneficial impact on the statistical properties of the log-returns
in relation with the other two cases.
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