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Chapter 1

Introduction

The theory of risk measurement has evolved immensely since the work of

Harry Markowitz in the 1950s. In today’s environment, which is marked by

intensifying competition, traditional risk measurement tools are no longer

sufficient. The core subject of this thesis is the measurement of financial

risk with high frequency data. This introductory chapter provides a general

theoretical background to risk management and a brief overview of risk mea-

surement is presented in Section 1.1. In Section 1.2, essential concepts of

market risk quantitative models are introduced and weaknesses of the Value

at Risk (VaR) model are addressed. Section 1.3 discusses the importance

of high frequency analysis that influences the risk measurement. The main

objectives and contributions are summarised in Section 1.4. The final section

in this chapter outlines the structure of the whole thesis.
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1.1 Risk and Risk Management

Understanding the concept of risk is a crucial condition for creating a good

risk management strategy. Risk can be defined as the uncertainty of out-

comes. In the financial literature, risk is the likelihood of losses resulting

from unexpected events related to movements in the financial market (Jorion

(2006)). Extreme events (like crashes) may have a low probability of occur-

ring but also may cause a big loss. These low probability events are more

intractable because they are usually hard to anticipate (Horcher (2005)).

Companies are exposed to different types of risk which could be generally

categorised into two main types: business risk and financial risk.

1. Business risks “are those which the corporation willing assumes to create

a competitive advantage and add value for shareholders” (Jorion (2006),

p. 4). Business risk pertains to the risk a company faces solely due to

their presence in the product market. Activities such as technological

innovations, product design and marketing are related to this kind of

risk.

2. Financial risk, which arises through changes in financial variables and

transactions in financial markets, is classified into various subcate-

gories, such as market risk, credit risk, liquidity risk, operational risk,

and legal risk. Market risks are the unexpected changes in financial

asset prices (such as equity price, commodity price, interest rate and

foreign exchange rate). Credit risk is the risk of loss due to the coun-

terparty’s inability to fulfill its obligations or other credit event. In the

3



banking industry, credit risk is the most common reason for bankruptcy.

Liquidity risk can be classified into market (or asset) liquidity risk and

funding liquidity risk. Market liquidity risk normally arises from the

higher cost and difficulty of executing the trade which is caused by

an illiquid market. Funding risk is driven by the inability to meet

obligations with immediacy due to the unsecured funding sources. Op-

erational risk is due to human and technical errors, such as inadequate

systems, management failures or fraud. Finally, legal risk normally oc-

curs when a counterparty has failed to provide the legal enforcement

to engage in a transaction.

Risk management has gained much attention over the past two decades, es-

pecially in the current financial crisis. Traditional risk control models are

challenged by today’s financial environment. Beyond the lessons from fi-

nancial disasters, regulation is an important factor defining the behaviour

of financial institutions in how they deal with risk. The Group of Thirty

(1993)(G30) provided 20 best-practice price risk management recommenda-

tions and four recommendations for regulators. The G30 emphasised the

importance of consistent risk measurement which stresses the VaR method.

The Basel Committee on Banking Supervision published Basel II 1 to create

an international standard regulation. The famous “three pillars” framework

proposed in Basel II is: (1) minimum capital requirement, (2) supervisory

review process and (3) market discipline requirement. The new Basel III also
1Basel II are the second Basel Accords, which were initially published in 2004 and

are updated every year by the Basel Committee on Banking Supervision (BCBS). The
BCBS promote greater consistency and improve the quality of banking supervision across
national borders (see http://www.bis.org).
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Figure 1.1: Risk Management Process (adapted from: ISO 31000 (2009),
page 8).

strengthens the “three pillars” and increases the capital requirements based

on the original Basel II.2

Risk management includes five components: (1) risk identification, (2) risk

measurement, (3) model evaluation, (4)model selection and (5) monitoring

the consequence. The ISO 31000 (2009)3 provides a standard process of risk

management which is illustrated in Figure 1.1. The necessary condition for

successful risk management requires a method to accurately measure risk.

Value at Risk (VaR) as a traditional method of measuring market risk is

introduced in the next section.
2Basel III are the third Basel Accords, which were recently published by the Basel

Committee on Banking Supervision (BCBS). (see http://www.bis.org).
3ISO 31000 (Risk Management Principles and Guidelines on Implementation) is codified

by the International Organisation for Standardisation which provides standard principles
and guidelines on risk management.
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1.2 Traditional Market Risk Assessment Method

The theory of risk measurement has evolved since the work of Harry Markowitz

in the 1950s (see Markowitz (1952) and Markowitz (1959)). In this section,

we first introduce the background to conventional risk measurements and

discuss the limitations of the VaR model.

1.2.1 Value at Risk

Value at Risk (VaR) was initially developed to solve market risk, which arises

from the changes in the prices of financial assets and liabilities. The VaR

model measures the worst loss at a certain probability over a specific time

period:

Pr(△W < −V aR) = 1− c = α, (1.1)

where △W is the change of wealth of the asset over the holding period, c is

the confidence level and α is the probability that the expected loss exceeds

the VaR value (see Dowd (2002), page 19 and Jorion (2006), page 157).

In other words, VaR answers the question: how much can I lose with α%

probability over a specific time horizon? Three factors need to be kept in

mind when measuring the VaR of an asset. First, we need to know the initial

value of the asset. The second factor is the holding period. Thirdly, the

confidence level is required to ascertain the likelihood that we will get an

outcome no worse than our VaR. Figure 1.2 shows an illustration of VaR

with a confidence level of 99% and 95%. The VaR computation methods will

be introduced in Chapter 2.

6



−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
0

10

20

30

40

50

60

70

Log Return

P
ro

ba
bi

lit
y

Left tail VaR 
(c=99%)

Left tail VaR 
(c=95%)

Figure 1.2: Illustration of Value at Risk. The red line displays the empir-
ical density of daily log returns over two years on the FTSE100 (07/2007-
07/2009). With a 95% confidence level, we need to cut-off the lower 5% tail
to obtain the VaR.

Over the last decade, VaR has become a standard tool for evaluating market

risk used by banks, trading firms and other financial institutions. The main

advantage of VaR as a risk measure is that it is very simple and easy to apply:

it can be used to summarise the risk of individual positions, or portfolios of

positions of large multinational financial institutions, such as the large dealer-

banks. VaR was adopted because of its simplicity for regulatory purposes.

Figure 1.3 shows the relationship between a risk management tool and a

regulation (Vasanta (2004)). VaR is commonly used to measure potential

losses, but can also be used as a regulatory measure to determine the capital

adequacy requirements, for example, by supervisory authorities.

Although VaR is a simple concept, the accuracy of its computation is a very
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Figure 1.3: The relationship between risk management and regulatory mea-
sures (adopted from: Vasanta (2004)).

important and challenging problem in risk management. The risk measures

from the various VaR methodologies on the same date could generate different

result of VaR and various degrees of accuracy for the same portfolio. If there

is an error in estimating the risk position, it may affect the whole investment

strategy, or, in extreme cases lead to bankruptcy. Many notable financial

disasters occurred in many large institutions due to the miscalculation of

risk, such as Orange County (1994), Baring Bank (1995), Long Term Capital

Management (1998), or Lehman Brothers (2008).

1.2.2 Limitations of VaR

As a risk measurement tool, VaR is subject to some common drawbacks, such

as lack of estimation accuracy and model risk. In this section, we address

some of the limitations of VaR.

1. The most distinctive limitation of VaR is that it only provides an es-

8



timation of the size of the loss at some confidence level and neglects

valuable information about the distribution. If an extreme event oc-

curs, VaR does not provide information on the size of the expected

loss.

2. VaR is not coherent. According to Artzner, Eber, and Heath (1999), a

coherent risk measure is a risk measure ρ(.) that satisfies the following

properties (see also Wilmott (2007)):

• Sub-additivity: ρ(Z1) + ρ(Z2) ≤ ρ(Z1 + Z2).

Sub-additivity means that the sum of individual risks is equal to

or greater than the overall risk.

• Homogeneity: ρ(aZ) = aρ(Z) if a ≥ 0.

Homogeneity implies that the position size does not influence the

risk measure.

• Monotonicity: ρ(Z1) ≥ ρ(Z2), if Z2 ≥ Z1.

Monotonicity means that the increased future payoff should lower

the downside risk of a position.

• Translation invariance: ρ(Z + a) = ρ(Z) + a, if a ∈ R (risk-free

condition).

Translation invariance ensures that the addition amount a to one’s

position will decrease the risk by the same amount.

Acerbi and Scandolo (2008) investigate liquidity risk and coherent mea-

sures of risk from a pure risk theoretical point of view. As a new axiom

9
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Figure 1.4: Comparison of Expected Tail Loss and VaR.

in the literature, the coherent portfolio risk measure is proposed based

on the the original coherent risk measures.

Artzner, Eber, and Heath (1999) have proven that the Expected Tail

Loss (ETL) is a coherent measure which overcomes the inadequacies of

VaR. ETL is the expected value of loss (L) given that the loss exceeds

the VaR level:

ETLα = E(L | L < V aRα). (1.2)

Figure 1.4 shows the ETL, based on daily data over two years (07/2007-

07/2009) on the FTSE100. The VaR is 0.0097 and the ETL is 0.0142

with a 95% confidence level. Both VaR and ETL depend on the distri-

bution of the underlying asset.

ETL is an alternative method to VaR which gives a more intuitive

10



view of extreme losses. We also present this method as a standard risk

measurement for performance comparison in Chapter 4.

Artzner, Eber, and Heath (1999) criticise VaR, because is not a co-

herent measurement as it fails to satisfy the sub-additivity condition.

The VaR only satisfies sub-additivity condition if price changes follow

the normal distribution assumption. If the risk measure does not sat-

isfy the sub-additivity condition, it will underestimate the combined

risk by adding the individual risk together. Furthermore, if a non-sub-

additivity risk measure is used by regulators to set capital requirement,

the financial institutions can set up subsidiaries to reduce their regula-

tory capital requirements (see Dowd (2002)).

3. The conventional VaR model measures the likelihood of losses on the

underlying asset subject to the market risk. This definition has two

flaws. First, most VaR research focuses on the left tail of the distri-

bution which neglects the “upside risk”. Second, most VaR measures

concentrate on the impact of price and disregard other risk factors (such

as impact of volume) when measuring the market risk. This will lead

to an underestimation of the risk. The best solution is to explore the

conventional VaR model by considering other related risk factors. This

issue is addressed in Chapter 3.

4. In the recent financial crisis, financial experts complained that VaR

is not a sufficient measure in a crisis. Nocera (2009) investigated the

performance of VaR in the financial crisis of 2007-2008 after interview-

ing top risk managers. The limited performance of VaR in a bearish

11



market is sometimes described as “an air bag that works all the time,

except when you have a car accident” (Nocera 2009). The VaR model

is suggested as a useful tool, but it is dangerous to rely on when an

extreme event happens. This problem is investigated in Chapter 4.

1.3 High Frequency Finance

For decades, researchers used low frequency and regularly spaced data in

financial analysis. Low frequency data misses valuable information between

the data points. This issue is addressed by Engle and Russell (2006): “Like

the view from the airplane above, classic asset pricing research assumes only

that prices eventually reach their equilibrium value, the route taken and speed

of achieving equilibrium is not specified ”. Analogous to watching the traffic

from a street (rather than from a plane), high frequency data can provide

more details on the price adjustment compared to analysing daily data.

High frequency data is time series data of events that includes every quote or

transaction price in real-time. These time series are inhomogeneous, which

means that the data series are irregularly spaced in time (see Dacorogna,

Gençay, Muller, Olsen, and Pictet (2001)). Table 1.1 shows a sequence of

time points t1, t2, ..., tN , where transactions occur with unequal time intervals

and occasionally several transactions occur simultaneously. High frequency

data (depending on the source) includes information such as time stamp,

trade-price and trade-size and have irregular time intervals.

Low frequency data is usually taken on a daily or weekly basis at equally

12



Table 1.1: Sample snap-shot of transaction high-frequency data for Glaxo
Smith Kline

Time Trade-price(in Pence) Trade size
01.03.2007 08:03:59 1417 21506
01.03.2007 08:03:59 1417 7104
01.03.2007 08:04:00 1416 2814
01.03.2007 08:04:00 1417 986
01.03.2007 08:04:00 1416 886
01.03.2007 08:04:00 1415 7455
01.03.2007 08:04:00 1417 4641
01.03.2007 08:04:00 1415 2814
01.03.2007 08:04:00 1415 2769
01.03.2007 08:04:01 1415 1622
01.03.2007 08:04:01 1417 2814
01.03.2007 08:04:03 1417 3019
01.03.2007 08:04:05 1417 4500
01.03.2007 08:04:06 1417 2955

spaced intervals in business time. Compared with low frequency data, the

time horizon of high frequency data can be as short as a few seconds, allowing

it to reveal more detailed information for the corresponding time window.

There are some key features associated with high-frequency data:

1. Strong intraday seasonality. For most stock markets, volatility, volume

and the frequency of trades all present an intraday “U-shape” pattern.

For example, the quantity of transactions is more numerous at the

open and close of every day and fewer at lunch time (see Goodhart and

O’Hara (1997)). Figure 1.5 shows the intraday volume pattern for 30

minute returns for the DSG International stock. The sample period

ranges from 1st March 2007 to 30th March 2007. We can observe that

the trading activity is not constant over the trading day and follows a

13
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Figure 1.5: Intraday U-shape pattern of trading volume. The graph shows
the intraday volume pattern for 30 minute returns for the DSG International
stock. The sample period ranges from 01 Mar, 2007 to 30 Mar, 2007.

“U-shape” pattern.

The plots of the intraday seasonal component for volatility for different

days of the week are shown in Figure 1.6, illustrating the day-of-the-

week effect4. The intraday volatility is computed by 10 minute returns

for the DSG International stock and the sample period is from 1st

March 2007 to 30th March 2007. Higher volatility and seasonality on

Mondays and Fridays are visible in the plots.

Andersen and Bollerslev (1999) investigated the relationship between

the seasonality and persistence of volatility, and proved that if the

seasonality of the data is removed, the persistence decreases.
4Day-of-the-week effect (also known as the Monday effect), refers to the tendency of

stocks to have a higher return and volatility on Mondays and Fridays (see Kiymaz and
Berument (2003) and Dacorogna, Gençay, Muller, Olsen, and Pictet (2001), page.160-170).
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Figure 1.6: Intraday seasonality pattern of volatility. The graph shows the
intraday seasonal component for volatility for different days of the week for
the DSG International stock and the sample period is from 1st March 2007
to 30th March 2007.
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2. Extreme high kurtosis is a typical fact of high frequency data. Andersen

and Bollerslev (1998) proved that the kurtosis of data increases with

the frequency level. For one minute frequency data, the kurtosis is

higher than normal.

High-frequency data (tick data) provide detailed information on aspects of

financial market activities recorded at a given time indicated by a “time

stamp”. It is challenging and complicated to analyse the high frequency

data sets which contain tens of thousands of transactions in a single day at

irregular time intervals.

According to the efficient market hypothesis, asset prices should either reflect

all known information or instantly change to reflect new information. In fact,

price evolution in financial communities is far more complex, and especially

in path dependent markets, it is important to track prices on a tick-by-tick

basis. Research on the data collected from the market is the best way to

understand the information behind the market.

Risk management previously was used to analyse the low-frequency (daily or

weekly) price data. Improvements in computer and information technologies

open up opportunities for new risk management methodologies. In the devel-

opment of financial markets, algorithmic trading and high-frequency trading

have acquired important roles in today’s financial trading system (see Kissell

and Malamut (2006) and Aldridge (2010)). It is no longer sufficient to only

rely on the risk control model based on low frequency data. New risk man-

agement techniques are needed, which can help us to get clear insight on

what it is telling us in real-time.
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1.4 Objectives and Contributions of the Thesis

The core task of this thesis is to develop reliable measures of market risk

using high frequency data. There are three main objectives in the rest of this

thesis:

1. The measurement for empirical intraday VaR using a non-parametric

model and five different parametric models.

2. Incorporating liquidity risk to compute the actual intraday VaR.

3. Applying a new empirical scaling law method based on ultra-high fre-

quency data to measure and forecast the market risk.

We will now briefly highlight the contributions of three core chapters in

this thesis. In Chapter 2, we quantify intraday market risk using one non-

parametric and five parametric models. The main findings are: firstly, our

results confirm that the Historical Simulation as a popular method for mea-

suring daily VaR, also has satisfied performance in intraday risk measure-

ments. Secondly, so far in the literature, the Student-t distribution is popular

and used to capture fat tails in empirical data. However, we find that the

GARCH models based on the normal distribution outperformed Student-t

distribution. Finally, our results show that the intraday volatility persis-

tence exists and the MRS-GARCH model is a good candidate for intraday

market risk measurement.
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Chapter 3 deals with the difficulty of incorporating both endogenous and

exogenous liquidity risk in to IVaR measurement.5 We estimate the one-

step-ahead liquidity adjusts IVaR of both market sides in order to quantify

their real risk position. Furthermore, our results show that there is an asym-

metry in up and down movements in liquidity adjustments of the equity

market. Downward movements typically have a higher magnitude than up-

ward movements.

Chapter 4 proceeds into the analysis based on multiple time scale analysis. In

this chapter, we propose three new scaling law methods in risk measuring and

forecasting. The empirical results provide evidence that the new exponential

moving average maximal price change (EMAMPC) scaling law outperform all

other models. Furthermore, the forecasting errors are smaller when shorter

in-sample data is used. The scaling law methods with one month data provide

good forecasting on the maximum loss within ten days.

5Endogenous and exogenous liquidity risk are introduced in Chapter 3, Section 2.2.
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1.5 Structure of the Thesis

The structure of the remaining four chapters of this thesis is briefly outlined

as follows. Chapter 2 investigates the market risk measurement by using

high-frequency data. The deseasonal high-frequency data used in the ex-

periments are for three stocks, namely Northern Rock (NR), Royal Bank of

Scotland (RBS) and Hong Kong and Shanghai Banking Corporation (HSBC).

All models are estimated on a sub-sample (estimation sample) and compared

the performance with the remaining data set (forecast sample). The intraday

Value at Risk (IVaR) analyse are based on three short sample intervals (1

minute, 5 minutes and 10 minutes), and estimated using Historical Simula-

tion with different rolling windows and five parametric models called normal

GARCH, Student-t GARCH, Normal EGARCH, Student-t EGARCH and

MRS-GARCH. Empirical estimation results for three stocks are presented

and the performance of different models are backtested by using Kupiec’s

test method.

The traditional VaR is a very popular tool for measuring market risk, but

it does not incorporate liquidity risk. In reality, the assumption of mid-

price execution which does not hold, in particular when investors execute

large trades. Chapter 3 proposes an extended VaR model to take account

of liquidity risk in intraday trading strategies when analysing high frequency

order book data. In this chapter, we address the importance of liquidity risk

and introduce the one-step-ahead liquidity adjusted intraday VaR (LAIVaR)

for both bid and ask positions, considering several threshold trading sizes.

The asymmetric liquidity risk premia are quantified by comparing our result
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with the standard VaR approach.

Chapter 4 introduces a multiple time scale based on scaling law methods for

risk measurement and forecasting. So far, the literature on the application

of scaling law methodology to risk measurement is very limited. A new em-

pirical framework for the measurement of financial risk is proposed where

empirical scaling laws based on the maximum price change are applied. The

empirical analysis is carried out on different time scales of ultra-high fre-

quency data for five FX pairs which considers all the dynamic information

of the market. The data sample covers the time interval from 1st January

2006 to 31st December 2008 which is provided by Olsen Financial Technol-

ogy. Traditional risk measurements and a comparison of their forecasting

performance are also presented.

Finally, Chapter 5 presents a summary of the work in previous chapters and

the conclusion of the whole thesis.
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Chapter 2

Intraday Value at Risk with High

Frequency Data

In this chapter, we quantify market risk with small intraday time horizons

(1 minute, 5 minutes and 10 minutes) using one nonparametric (Historical

Simulation (HS)) and five parametric models (Normal GARCH, Student-

t GARCH, Normal EGARCH, Student-t EGARCH and Markove regime

switching (MRS) GARCH models)1. The six existed models are applied

to deseaonalised intraday data for three stocks traded on the London Stock

Exchange (LSE). Moveover, the model performance comparisons are assessed

by two backtesting methods.

The empirical findings show that the Intraday VaR (IVaR) estimated by HS

provide an accurate performance for all stocks and time horizons. For condi-

tional VaR method, the GARCH type models based on normal distribution
1The details of the models are introduced in Section 2.2 and Section 2.3.
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are outperformed, especially for Normal GARCH and MRS-GARCH models.

The Student-t distribution is widely used to capture the fatness of the tails

of the distributions of stock return. Surprisingly, the models with Student-t

innovations perform poorly. This finding is different with many existing lit-

eratures we reference which recognised the important of the fat tails of daily

or intraday returns.

The chapter is organised in the following way. Section 2.1 motivates estimat-

ing intraday market risk with small time horizons. Section 2.2 reviews the

common VaR calculation methods. Sections 2.3 and 2.4 discuss the GARCH

type volatility models used in this chapter and the IVaR. Section 2.5 pro-

vides the empirical results of IVaR. Finally, Section 2.6 summarises the main

findings.

2.1 Introduction

In recent years, corporations are in the business of managing risks. Since the

1970s, due to the increased volatility of the financial market there has been

a growth in demand for the risk management industry. Some huge finan-

cial institutions and multinational companies have experienced bankruptcy,

disasters, and big losses have been caused as a result of ineffective risk man-

agement.

Risk management has truly experienced a revolution in the last few years.

Value at Risk (VaR) has become a standard tool for evaluating market risk

used by banks, trading firms and others. Due to the important status of VaR
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in the financial world, plenty of research has been explored in this field. One

of the most interesting and challenging developments is to evaluate intraday

VaR using high frequency data (see Dacorogna, Gençay, Muller, Olsen, and

Pictet (2001), Dionne, Duchesne, and Pacurar (2009)). In the financial lit-

erature most of the studies published have dealt only with “low-frequency”

and regularly spaced data such as monthly or daily data.

Nowadays intraday data, high frequency data for the stock prices and other

financial assets, are widely available. The conventional way of computing

VaR has been challenged by the current trading environment (Dionne, Duch-

esne, and Pacurar (2009)). In empirical finance, high-frequency finance has

become a very important field in recent years. However, analysis of risk mea-

surement based on high frequency data has only just begun fairly recently.

Andrea and Claudio (2001) compared the computation of VaR with daily

and with half hour high frequency data. Giot (2005) has provided market

risk models for intraday data and calculated intraday VaR (IVaR) using 15

minute and 30 minute intervals of three stocks. He also studied the perfor-

mance of the one-step-ahead Value at Risk predicted by normal GARCH,

Student-t GARCH, RiskMetrics and Log-ACD models and found that the

Student-t GARCH model performs best. Dionne, Duchesne, and Pacurar

(2009) proposed a method based on the Log-ACD-ARMA-EGARCH model

to estimate intraday VaR using tick-by-tick data.

The use of Markov-switching models to capture the volatility dynamics of

financial time series has grown considerably during the past few years, in

part because they give rise to a plausible interpretation of nonlinearities.
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So far in the literature, single regime GARCH type models are normally used

to model time-varying volatility which have priority of capturing the volatil-

ity clusters (see Akgiray (1989), McMillan, Speight, and Gwilym (2000) and

Poon and Granger (2003)). However, the high persistence of a standard

GARCH model and structural changes in the variance process are claimed

by Hamilton and Susmel (1994), Gray (1996), Klaassen (2002) and Abramson

and Cohen (2007). Researchers find that the volatility estimations based on

the standard single regime GARCH models suffer from an upward bias of pa-

rameters’ persistence which could end up with a conservative VaR evaluation.

To solve this problem, one possible way is using Markov Regime Switching

(MRS) GARCH models to capture the volatility dynamics of financial time

series depending on different regimes (high or low) of volatility persistence.

Marcucci (2005) compares the forecast ability of a set of GARCH models

within MRS-GARCH frameworks. The empirical results indicate that MRS-

GARCH models outperform standard GARCH models in forecasting volatil-

ity. However, this study only focuses on the a low frequency context. In

this chapter, we extend the current literature by applying the MRS-GARCH

model to measure IVaR with high frequency data.

The VaR model based on high frequency data is challenging and meaningful

for the following reasons:

1. The volatility model is an essential component influencing the accu-

racy of the VaR measurement. Using high frequency data to estimate

volatility has been demonstrated to provide much more accuracy (see

details in Giot (2000) and Koopman, Jungbacker, and Hol (2005)).

24



2. Today’s trading system forces firms to continuously build their own

strategies to beat the market. It is not sufficient enough to anal-

yse VaR based on daily data as was the conventional method (Ulrich

(2000)). High frequency data contains more information about the

market. We need to develop a better risk measurement method based

on high-frequency data to surpass the limitation of the conventional

method. IVaR is an effective tool of risk evaluation for short-term

traders.

3. Intraday price movement has been observed more and more frequently

nowadays. For daily traders, it is a normal day when the opening price

is fairly close to the closing price. However, there is a big difference for

short-term trader, if the stock price has some great variation during the

day. It is not sufficient that we use only one set of data to characterise

the market activity of an entire day. In the current trading environ-

ment, research on IVaR can benefit short-term traders and quantify

real-time market risk for people participating in algorithmic trading

and high frequency trading. VaR is a popular tool for risk manage-

ment, so we need to consider its practicability. The conventional stan-

dard daily data estimation assumes a long term time horizon, which

might be too long for some short-term traders. The IVaR can be used

to set limits for short-term traders and to assess the risks to different

financial products before decisions are made.

In this chapter high frequency data is used for risk measurement, which is

quite different from usual VaR models. In the empirical study, the Historical
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Simulation method and standard GARCH models are used to compute IVaR.

In order to capture the structure change in an intraday variance process, the

IVaR estimated by the MRS-GARCH model will also be provided. To our

best knowledge, the application that use MRS-GARCH model to estimate

IVaR, has never been addressed in the literature. The different models are

assessed by the forecasting performance with three short time horizons (1

minute, 5 minutes and 10 minutes). Illustrations of these techniques are

presented for three actively traded stocks of the London Stocks Exchange.

Backtesting results are also provided for performance comparison.

2.2 Review of VaR Calculation Methods

The calculation of VaR measures has become of paramount importance in

risk management. Existing conventional models for measuring VaR are based

on analysing daily or weekly data and they can be summarised in three com-

mon basic categories which calculate VaR based on correlations, distribution

patterns and volatilities. These three categories are: Historical Simulation

(non-parametric), Monte Carlo Simulation (parametric) and the Variance-

Covariance method (semi-parametric) (see Dowd (2002) and Jorion (2006)).

2.2.1 Historical Simulation

Historical Simulation is the most common and simplest estimation of VaR.2

The main advantage of the Historical Simulation approach is that it is non-
2The Historical Simulation performed in Section 2.5.2 is empirical.
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parametric which means the data does not have to follow a specific distribu-

tion. However, Historical Simulation assumes that the changes in the finan-

cial market conditions from today to tomorrow are the same as the changes

that took place some time ago in the past.

The Historical Simulation method can be applied in the following way (Dowd

(2002)):

1. Obtain the historical market price of a chosen time period.

2. Calculate the asset returns and then sort in ascending order.

3. Select the α-th quantile of the observation.

4. Estimate the VaR based on the current price.

The most important concept in the Historical Simulation method is the

rolling window. The size of the window can affect the estimation results

of the VaR. For example, Van Den Goorbergh and Vlaar (1999) use various

VaR techniques applied to the Dutch stock market index AEX and to the

Dow Jones Industrial Average. They use different lengths of rolling window

over a 15 year period to backtest the daily data on the AEX Dutch equity

index and they found that the failure rate3 often exceeds the corresponding

left tail probabilities. They found that the Historical Simulation produced

satisfactory results only when there is a large enough sample. Brooks and

Persand (2000) investigated the sensitivity of VaR models to changes in the

sample size and weighting methods. They used a set of national equity in-

dices, bond futures and FX rates and found strong evidence that VaR mod-
3The failure rate is the proportion of actual losses that exceed the VaR.
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els could provide very inaccurate estimates when the “wrong” historical data

sample length is selected.

An important limitation of the Historical Simulation method is the assump-

tion that the distribution of the portfolio returns within the rolling windows

does not change. In practice, however, this can cause a lot of problems.

On the one hand, the size of the window must be large enough to keep the

consistency of the empirical quantile estimator. For example, at least 100

observations are needed when estimating VaR at a 99% confidence level. On

the other hand, if the window size is too large, the observations could be

taken from outside the current volatility bunches, in other words, the VaR

will not be adequately responsive to the most recent returns (Jorion (2006)).

2.2.2 Monte Carlo Simulation

The Monte Carlo Simulation method covers a wide range of possible values

in financial variables and fully accounts for correlation. We can draw a large

number of scenarios randomly and price the portfolio for each one. Monte

Carlo Simulation is generally used to compute VaR for portfolios containing

securities with non-linear returns (e.g. options). The main difference between

Monte Carlo Simulation and Historical Simulation is that instead of using

historical observations, Monte Carlo Simulation chooses a statistical model

that is believed to adequately capture or approximate the possible changes

in the market (see Linsmeier and Pearson (1996)).

The general steps of the Monte Carlo method are as follows (Dowd 1998):
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1. Identify or select a suitable model for the changes in market factors.

2. Estimate the parameters (means, standard deviations and correlations).

3. Generate n random variables to obtain the simulated changes in market

factors over a time of horizon.

4. Select the α-th quantile of the observation.

5. Estimate the VaR based on the current price.

2.2.3 Variance-Covariance Method

The Variance-Covariance model (or delta-normal) is based on the assumption

that the returns are normally distributed and on a linear approximation of

the portfolio. The VaR is then given by

V aRα = Zα

√√√√ N∑
i=1

N∑
j=1

wiwjσi,j , (2.1)

where wi and wj denote the weight of assets i and j in the portfolio; σi,j

denotes the covariance and Zα denotes the one-side confidence level for cu-

mulative normal distribution of the portfolio returns. For example, under

the normal distribution, the quantile Zα = 1.65 if α = 95%.

The covariance between two assets is

σi,j = ρi,jσiσj , (2.2)

where ρi,j denotes the correlation and σi the volatility of asset i.
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One of the most famous Variance-Covariance models is RiskMetrics by J.P.

Morgan (1996). The advantage of the Variance-Covariance approach is that

it simplifies VaR calculations because all percentiles are assumed to be known

multiples of the standard deviation. However the assumption that the data

is normally distributed is not consistent with real-world observations, which

could lead to an underestimation of the VaR (see Hull and White (1997)).

After reviewing the three generous categories of method to compute VaR, we

will introduce volatility models in the next section.

2.3 Volatility Models

As a matter of fact, the volatility model is an essential component influencing

the accuracy of the VaR measurement. In this section, we will introduce

volatility models of single regime (in Section 2.3.1) and multiple regimes (in

Section 2.3.2).

2.3.1 Single Regime Models

Volatility models have been used in a wide variety of applications. Even

for the same financial asset, a remarkable difference in the computation of

VaR can be obtained according to different volatility models. Nowadays, a

number of research papers mainly focus on three kinds of volatility models.

The first type is the historical volatility model (HV) which is based on his-

torical return data for which the time scales are normally long (daily, weekly
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or monthly). Typical historical volatility models are the Autoregressive

Conditional Heteroskedastic (ARCH) model (Engle (1982)), the Generalised

Autoregressive Conditional Heteroskedasticity (GARCH) (Bollerslev (1986))

and the Stochastic Volatility model (Taylor (1986)).

The second type is the implied volatility model (IV) which is based on option

pricing data. Becker (1981) pointed out that the implied volatility is a good

predictor when compared with the historical standard deviation. Giot and

Laurent (2004) report a good predictive power of the implied volatility model.

The third type is the realised volatility (RV) model which was first intro-

duced in the literature by Taylor and Xu (1997) and Andersen and Bollerslev

(1998). The daily realised volatility is constructed as an aggregated measure

of volatility by intraday returns. Assuming that a day can be divided into n

equidistant periods and if yi,t denotes the intraday return of the ith interval

of day t, it follows that the daily volatility for day t can be written as

[
n∑

i=1

yi,t

]2
=

n∑
i=1

y2i,t + 2
n∑

i=1

n∑
j=1

yi,tyj−i,t (2.3)

(Andersen, Bollerslev, Diebold, and Ebens (2001)). Compared with the con-

ventional squared daily volatility, the RV model can dramatically decrease

the noise and error. Moreover, using high frequency data in the RV model

can lower the measurement error.

Does the RV model work well in forecasting market risk? There are no

consistent conclusions in the recent literature on realised volatility, however,

the broader literature indicates that the RV model can improve the accuracy
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of volatility measurement. Giot and Laurent (2004) measure VaR for two

stock indexes and two exchange rates using a daily ARCH type model (which

uses daily returns) and a model based on the daily realised volatility (which

uses intraday returns). Their results show that the performance of the two

models is equivalent. Koopman, Jungbacker, and Hol (2005) instead have a

totally different view. They compared the accuracy of volatility forecasting

using seven years of tick-by-tick data of the S&P100 and show that the

realised volatility models produce much more accurate volatility forecasts

compared to models based on daily returns.

The Autoregressive Conditional Heteroskedastic (ARCH) model was intro-

duced by Engle (1982) to accommodate the dynamics of conditional het-

eroskedasticity. The ARCH model defines the conditional variance σ2
t of

the return as a function of past innovations. Bollerslev (1986) proposed the

GARCH(p,q) (Generalised Auto Regressive Conditional Heteroskedasticity)

model:

σ2
t = α0 +

p∑
j=1

βpσ
2
t−p +

q∑
i=1

αiε
2
t−i , (2.4)

where the parameters p and q in parentheses are standard notations, p refers

to how many autoregressive lags appear in the variance equation, while the

parameter q refers to how many lags are included in the ARCH term.

The GARCH (1,1) is the simplest and most robust of the family of volatility
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models and is defined as

σ2
t = α0 + β1σ

2
t−1 + α1ε

2
t−1 , (2.5)

where εt | It ∼ N(0, 1) and It denotes the information set before time t,

α0 > 0, α1 > 0, and β1 > 0.

The parameters α1 and β find sum up close to 1 when GARCH model is

estimated using longer period samples or higher frequency data samples.

Empirical evidence has shown that the GARCH(p,q) model can capture sev-

eral stylised facts of financial time series such as volatility clusters. However,

the GARCH(p,q) model neglects leverage effect of stock market price which

is first discussed by Black (1976).4 In order to improve the original model,

Nelson (1991) introduced the Exponential GARCH process (EGARCH) to al-

low asymmetric volatility shocks in the innovation term. The EGARCH(1,1)

model without the volume term in its conditional variance can be written as

log(σ2
t ) = ω + α1εt−1 + γ

(
|εt−1|
σt−1

− E

(
|εt−1|
σt−1

))
+ β1log(σ

2
t−1), (2.6)

where β1 < 1 and

E

(
|εt−1|
σt−1

)
=


√

2
π
, Gaussian√

ν−2
π

Γ( ν−1
2

)

Γ( ν
2
)
, Student-t .

4The leverage effect is referred to as the negative correlation between the changes in
stock returns and changes in the returns’ volatility.
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Empirical studies conducted on daily data using Normal EGARCH spec-

ifications usually conclude that negative shocks have a greater impact on

volatility, i.e. that α is negative (Engle and Ng (1993)).

Maximum likelihood estimation is the most common method to estimate

GARCH type models. If we assume the εt term is normally distributed, the

parameter estimates can be obtained by maximising

Ln(θ) = Ln(y1, ...yn;σ
2
0; θ)

=
1

n

n∑
t=1

lt(θ);

= −n

2
ln(2π)− 1

2

n∑
i=1

(ln(σ2
t ) +

ε2t
σ2
t

). (2.7)

Here, n refers to the number of observations, and θ is the vector of parameters

to be estimated. Alternatively we take account for “fat tails” by using a

Student-t GARCH model with a different log likelihood function:

Ln(θ) = log

[
Γ(

ν + 1

2
)

]
− log

[
Γ(

ν

2
)
]
− 1

2
log[π(ν − 2)]− 1

2

−
n∑

t=1

[
logσ2

t + (1 + ν)log

(
1 +

ε2t
σ2
t (ν + 2)

)]
, (2.8)

where ν is the degree of freedom of the distribution and 2 < ν ≤ ∞, and

Γ(.) is the Gamma function. The lower the degree of freedom, the fatter the

tail is (Alberg, Shalit, and Yosef (2008)).
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2.3.2 Markov Regime Switching GARCH Models

Standard GARCH type models are widely used to model time-varying volatil-

ity. However, single regime GARCH type models are claimed that imply high

persistence of individual shocks in volatility (see Hamilton and Susmel (1994)

and Mikosch and Starica (2004)) for daily returns. In this chapter, we con-

sider to extend this issue into a high frequency context and use a two regime

switching model to capture high and low volatility persistence.

The standard GARCH models are unable to capture the structure changes

in the variance process and suffer from an upward bias of parameters which

could end up with a conservative VaR estimation (Sajjad, Coakley, and

Nankervis (2008)). In order to solve this problem, several models based

on combining Regime Switching (RS) models introduced by Hamilton and

Susmel (1994) and GARCH models have been proposed (see Gray (1996),

Klaassen (2002) and Abramson and Cohen (2007)). The main feature of

regime-switching models is to allow the process switches across different

regimes with certain transition probabilities, and the process of unobserv-

able state variable st follows a first-order Markov chain.

For a two states process, Hamilton (1994) assumes the existence of unob-

served variable st to have two regimes: st = 1 denotes low volatility persis-

tence and st = 2 denotes high volatility persistence. The matrix of Markov

transition probabilities between the two states P is expressed as:

P =

 p11 p21

p12 p22

 =

 p (1− q)

(1− p) q

 ,
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where the transition probability pij = Pr(St+1 = j|St = i) indicates the

probability that regime i at time t will be followed by regime j at time t+1.

In this chapter, we follow the MRS-GARCH model proposed by Klaassen

(2002). The main advantage of this model is the high flexibility to capture

the persistence of shocks to volatility (Marcucci (2005)). The conditional

deseasonal return of the MRS-GARCH model given by (Klaassen (2002)):

yt = µ
(i)
t + εt (2.9)

where µ(i)
t denotes the mean of return at time t with i = 1, 2. The conditional

variance of an MRS-GARCH(1,1) can be written as:

σ
(i)2
t = α

(i)
0 + α

(i)
1 ε2t−1 + β

(i)
1 Et−1

(
σ
(i)2
t−1|St

)
, (2.10)

where the expectation is

Et−1

(
σ
(i)2
t−1|St]

)
=

2∑
j=1

p̃ji,t−1

(
(µ

(j)
t−1)

2 + σ
(j)2
t−1

)
−

(
2∑

j=1

p̃ji,t−1µ
(j)
t−1

)2

,

(2.11)

and the probabilities are computed as

p̃ji,t−1 = Pr(st = j|st+1 = i, It−1) =
pjiPr(st = j|It−1)

Pr(st+1 = i|It−1)
=

pjipj,t
pi,t+1

(2.12)

with i, j = 1, 2. It−1 denotes the information set at time t− 1.
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The log-likelihood function is:

L(θ) =
∑T

t=1 log (p1,tf(rt|st = 1) + ((1− p1,t)f(rt|st = 2)) . (2.13)

where f(·|st = i) denotes the conditional distribution of state i at time t.

The MRS-GARCH model has multiple parameters across regimes in cap-

turing the persistence of jumps to volatility and allows the estimation of

multi-step-ahead volatility forecast (Sajjad, Coakley, and Nankervis (2008)).

Moreover, the MRS-GARCH model not only captures the volatility persis-

tence, but can also explain the pressure-relief effect of large shocks.5

2.4 Intraday VaR

As an important method for financial risk measurement, VaR has been widely

implemented by international financial institutions. In previous research, the

computation of VaR and the analysis of the persistence of VaR are based on

low-frequency data, which ignore the intraday volatility of the financial mar-

ket. High frequency data is increasingly available in the markets, which

pushes more and more economists to focus on intraday data in order to im-

prove the risk management system, especially for active market participants

such as high frequency traders and market makers. In this chapter, we focus

on the computation of Intraday VaR (IVaR) and the one-step-ahead IVaR is

defined as
5According to Klaassen (2002), some large shocks are followed by a period of low

volatility which is called as the pressure-relieve effect.
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Pr(yt < −IV aRt|It−1) = α, (2.14)

where yi is the asset log-return in resembled regular time space at time t.

It−1 denotes the information set before time t− 1.

Andrea and Claudio (2001) compared the computation of VaR with daily

and with high frequency data. They mainly focus on using the stochastic

volatility models (GARCH and FIGARCH) to estimate the VaR. But they

found the VaR computed using half-hour data is too conservative.

Giot (2005) introduced five parametric models ( Normal GARCH, Student-t

GARCH, RiskMetrics and Log-ACD) and two non-parametric models (em-

pirical quantile and extreme distribution models) for intraday VaR. Further-

more, Giot uses short time horizon (15 and 30 minute) data to compute the

intraday VaR which is different from traditional VaR models.

The ACD (Autoregressive Conditional Duration) model has previously been

reported as unsatisfactory for measuring IVaR with fixed time intervals or

shorter time intervals. Giot (2005) used an Log-ACD (Autoregressive Con-

ditional Duration) model applied to price duration to estimate 15 minutes

and 30 minutes IVaR and the backtesting results are not satisfied. Dionne,

Duchesne, and Pacurar (2009) proposed a method based on a Log-ACD-

ARMA-EGARCH model to estimate intraday VaR using tick-by-tick data.

The backtest interval length l (number of resampled intervals) are selected

as: 15, 25, 35, 45 and 90 (observations), instead of the calendar units.6 The
6The interval length l corresponds different time intervals for each stock, depending on

the trading intensity in sampling periods.
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model is rejected when l is small (or smaller time intervals) for all stocks

(for instance, the interval l = 15 is on average seven minutes minutes for

the Royal Bank of Canada (RY)). Colletaz, Hurlin, and Tokpavi (2007) use

ACD models and a non-parametric quantile estimation to quantify intraday

market risk. The difference with Giot (2005) and Dionne, Duchesne, and

Pacurar (2009), is that they proposed an irregularly spaced intraday VaR

(ISIVaR) model defined in price event time instead of calendar time. The

ISIVaR then corresponds to the maximum loss at a given confidence level at

the next price event. This chapter subjected to estimate the IVaR with a

short fixed-time horizon of ten minutes or less.

There is a mass of literatures investigating the comparison of parametric

models or non-parametric models separately. The comparison of historical

simulation with GARCH type models are discussed less. Aussenegg and Mi-

azhynskaia (2006) evaluates a set of non-parametric and parametric daily

VaR models. They report the non-parametric historical simulation models

have acceptable failure rates for all cases. The parametric Normal GARCH

and Student-t GARCH models have good performance in most cases, but

are rejected for several stocks. In order to extend the literature, we compare

the VaR in high frequency context with six different models: one of them

is a non-parametric IVaR model (Historical Simulation), and the others are

parametric IVaR models (three single regime and one two-regime GARCH

models). The empirical results discussed in the next section show the com-

parison of different models and their performance.
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2.5 Empirical Analysis

In this section, non-parametric and parametric models are applied to estimate

IVaR and the outline is as follows: Section 2.5.1 provides the data description.

Section 2.5.2 and Section 2.5.3 show the empirical result of IVaR by HS

and GARCH type models, respectively. The last subsection presents the

backtesting results.

2.5.1 Data Description

The empirical order book data is taken from the the London Stock Ex-

change’s “Stock Exchange Trading System” (SETS). The SETS is a modern

fully electronic market offering a trading platform for the constituents of the

FTSE All Share Index, Exchange Traded Funds and Exchange Traded Com-

modities. Order submission and execution in the SETS is continuous during

opening time and is following the rule of the so-called continuous double

auction concept. The trading system records all submitted orders and or-

der changes. The matching of buy and sell orders is entirely computerised,

based on the widely applied price-time order priority. The historical order

book data provides full market details recording all activities on the trading

platform (limit orders, market orders, iceberg orders, cancelations, changes,

full/partial executions) and their matching outcomes.

In this Section, we apply the proposed volatility models on three actively

traded stocks on the London Stock Exchange (LSE), Northern Rock (NR),

Royal Bank of Scotland (RBS) and Hong Kong and Shanghai Banking Cor-
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poration (HSBC). The daily trading begins after the opening auction at 8

am and finishes at 4.30 pm with the daily closing auction. The data sample

covers the period from 1st March 2007 to 30th March 2007, excluding the

weekends.7 The original data set contains several hundred thousand data

points of irregularly spaced trades and quotes. When the method of regular

time-spaced filtering is used, three total numbers of 11,220, 2,244 and 1,122

observations are selected as the high-frequency data whose time interval is 1

minute, 5 minutes and 10 minutes, respectively. Then, we split the selected

data set into two parts. The first period is from 1st March 2007 to 21st

March 2007 and is used for estimation (estimation sample). The second pe-

riod is from 22nd March 2007 to 31st March 2007 and is used for backtesting

purposes (forecasting sample).

1. The intraday return Yt is defined as a log return:

Yt = log(Pt)− log(Pt−1) , (2.15)

where Pt is the stock price.

2. Seasonal adjustment

As noted by Engle and Russell (1998), high frequency data displays very

strong intraday seasonality8. To remove the seasonal property of high fre-

quency data, Giot (2000) assumed a deterministic seasonality in the intraday

volatility, and defined the deseasonalised return yt as
7One month data is too short for day-to-day analysis, but it is acceptable from a short-

term trader’s point of view. For instance, we have 1,122 observations in a 10 minute data
sample which is roughly equivalent five years of daily data samples.

8The seasonality of intraday data has been explained in the Introduction, Chapter 1.
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yt =
Yt√
ϕ(td)

, (2.16)

where Yt is the raw intraday return and ϕ(td) is the intraday seasonal com-

ponent of the volatility.9 Following Giot (2000), the cubic spline method is

used to smooth the squared returns.

Table 2.1: Descriptive statistics for deseasonalised high-
frequency returns

1 minute NR RBS HSBC

Mean 1.3E-3 -1.6E-3 -4.3E-3
Standard deviation 1.4240 1.1267 1.2189
Skewness 0.9926 -0.6316 -0.0730
Kurtosis 49.0865 58.2823 93.5683
Q(20) 664.2073

(0.00)
432.4120

(0.00)
1377.8200

(0.00)

5 minutes

Mean 0.092 -0.0178 -0.0064
Standard deviation 1.2020 1.4983 1.1843
Skewness -0.8011 -1.2085 1.6207
Kurtosis 21.8729 46.3882 33.6623
Q(20) 122.9631

(0.00)
182.2299

(0.00)
376.7764

(0.00)

10 minutes

Mean 0.0166 -0.0183 -0.0157
Standard deviation 1.1762 1.2296 1.3249
Skewness -1.0101 -1.3703 0.9180
Kurtosis 16.9721 22.8280 8.5333
Q(20) 51.4876

(0.00)
41.4294

(0.00)
123.0578

(0.00)

Note: Q(20) denotes the Ljung-Box Q-statistic for the first
20 lags of autocorrelations (with the corresponding p-values
in the bracket.

9The component ϕ(td) is computed by averaging the square of raw return Y 2
t on half

hour time intervals for each day d of the week (Giot (2005)).
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Table 2.1 reports the descriptive statistics and Ljung-Box Q-statistic test

results of deseasonalised return. As shown in this table, the mean of the

intraday deseasonalised return is extremely small for all three stocks. More-

over, the kurtosis increases with the frequency of data sampling, because

higher kurtosis exhibits fat tails. The Ljung-Box Q-statistic test (Ljung and

Box (1978)) results are rejected, which means that there is still a significant

autocorrelation in the deseasonalised return sample.

2.5.2 Intraday VaR by Historical Simulation

The first method we are presenting here is Historical Simulation. Historical

Simulation is an unconditional method which can capture the features of the

market, regardless of whether the features are normal or not. As a most

common method to compute daily VaR, Historical Simulation method is

worth while to test its forecast ability in a high frequency context.

The sample of returns is split up into a number of different window lengths.

The window size is a very important factor of the historical method. If the

whole sample size is n, and the window size is n1, we construct (n− n1 + 1)

subsamples (rolling windows) and pick the confidence level of each subsample

(α = 1−confidence level). The IVaR is estimated for three different rolling

window sizes with α = 5%.

Table 2.2 gives the failure rates in an estimation sample of historical (95%)

IVaR with different window sizes for three different stocks. We can observe

that the selected window size n1 does effect the accuracy of the historical
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Table 2.2: The failure rate of historical IVaR in an estimation
sample

Stocks n1 1 minute n1 5 minutes n1 10 minutes

500 0.0483 100 0.0505 40 0.0477
NR 1000 0.0490* 300 0.0499* 100 0.0504*

3000 0.0470 600 0.0476 200 0.0488

500 0.0518 100 0.0517 40 0.0531
RBS 1000 0.0506* 300 0.0499* 100 0.0477*

3000 0.0486 600 0.0436 200 0.0445

500 0.0507 100 0.0517 40 0.0510
HSBC 1000 0.0502* 300 0.0516* 100 0.0466*

3000 0.0457 600 0.0459 200 0.0412

The table is presenting failure rates of HS within an estimation sample
period for three stocks. The corresponding IVaR is better when the
failure rate is closer to the theoretical counterpart. n1 denotes the
window size. A figure with [*] indicates the closest failure rate of IVaR
to the theoretical counterpart (5%).

IVaR result. If a larger window size had been chosen, the risk tends to

be overestimated. However, the historical IVaR tends to underestimate the

risk when a smaller window size is selected. For example, in the ten minute

frequency case, the failure rate is 0.0445 and 0.0531 for historical IVaR of RBS

with window size 200 and 40, respectively. Therefore, we select the proper

window size (marked with ∗) which seems to provide the closest result to the

theoretical counterpart (5%).

The deseasonal return series of an estimation sample and forecasted historical

IVaR for three stocks are shown in Figures 2.1, 2.2 and 2.3. We can observe

that the blue line (IVaR with smallest window size) fluctuated the most, and

the red line (IVaR with largest window size) is more stable. We can observe
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that the larger the window size the flatter the lines are which can lead to

sustained periods of constant IVaR predictions. On the other hand, using a

small window size for IVaR prediction gives more fluctuation in the results.

This indicates that using a smaller window size will obtain more sensitive

VaR prediction. So choosing a proper window size is quite important to get

the accurate historical IVaR estimation.
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Figure 2.1: Deseasonalised one minute return of estimation sample and his-
torical IVaR for three stocks with three different window sizes. The one
minute deseasonalised return (black line) of estimation sampling period is
plotted for three stocks. The corresponding historical one minute IVaR with
three representative window sizes are shown in three colours: 1. blue line
displays the IVaR with smallest window size; 2. green line displays the IVaR
with middle window size; 3. red line shows the largest window size.
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Figure 2.2: Deseasonalised five minute return of estimation sample and his-
torical IVaR for three stocks with three different window sizes. The five
minute deseasonalised return (black line) of estimation sampling period is
plotted for three stocks. The corresponding historical five minute IVaR with
three representative window sizes are shown in three colours: 1. blue line
displays the IVaR with smallest window size; 2. green line displays the IVaR
with middle window size; 3. red line shows the largest window size.
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Figure 2.3: Deseasonalised ten minute return of estimation sample and his-
torical IVaR for three stocks with three different window sizes. The ten
minute deseasonalised return (black line) of estimation sampling period is
plotted for three stocks. The corresponding historical ten minute IVaR with
three representative window sizes are shown in three colours: 1. blue line
displays the IVaR with smallest window size; 2. green line displays the IVaR
with middle window size; 3. red line shows the largest window size.
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2.5.3 Intraday VaR by GARCH Type Models

The main challenge of VaR computation is to obtain a good forecast of volatil-

ity for parametric models. In this section, the IVaR estimation with para-

metric volatility models are provided.

Single Regime IVaR

To take account of the correlation in returns, the conditional return of AR(1)-

GARCH(1,1) model given by:

yt = µ+ δy(t−1) + εt (2.17)

By assuming two different density functions for εt: the normal and Student-t,

we estimated the parameters by in-sample data in four conditional volatility

models with conditional mean (AR) which are AR(1)-GARCH(1,1), AR(1)-

GARCH-T(1,1), AR(1)-EGARCH(1,1) and AR(1)-EGARCH-T(1,1) for dif-

ferent frequencies. The estimated parameters of four selected models are

presented in Table A.1, Table A.2 and Table A.3 in the Appendix A.

For forecasting purposes, the one-step-ahead IVaR are generated recursively

by moving forward the estimation window, considering the dynamic time-

vary structure of data in different time horizons. The one-step-ahead con-

ditional variance is used in order to obtain the IVaR. In the case of the
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GARCH(1,1) model, the one-step-ahead conditional variance is

σ̂2
t = α0,t + α1,tε

2
t−1 + β1,tσ

2
t−1 , (2.18)

For the one minute frequency case, the number observations for each stock

is 11,880. The estimation sample data set has 9,480 data points and the rest

belong to the forecast sample set. For every parametric model the first 9,480

returns (in-sample) are used to obtain a one-step-ahead IVaR forecast for

the next minute. For the 9,482 minute one-step-ahead IVaR, we use the one

minute frequency return data from the second minute to 9,481 minute and

so on. Therefore, each model has to be re-estimated forward by the length

of time frequency till the end of the whole data set.

Markov Regimes Switching IVaR

Apart from the single regime GARCH type model, we adopt the two regimes

switching model with Normal GARCH(1,1) to calculate the volatility as in

Equation 2.10, and the estimated parameters are presented in Table A.4

in Appendix A. Similar to Klaassen (2002), high and low volatility regimes

are assumed in the MRS-GARCH model to capture the volatility clusters of

intraday returns with three time frequencies. Table 2.3 reports the uncondi-

tional variances, Eσi, and the persistence p(i) for MRS-GARCH model. The

different unconditional variances indicate the existence of two regimes. The

difference of unconditional variances between high and low volatility regimes

is larger the one minute frequency case. The two regimes are also charac-
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terised by the persistence p(i) = α
(i)
1 + β

(i)
1 . In general, the low volatility

regimes generally manifest as a lower persistence of the shocks. Contrarily,

the high volatility regime reveals a higher volatility which is characterised

by a higher persistence. In Table 2.3, the persistence of the high volatility

regime p2 is always higher than 0.95 and the persistence of the low volatility

regime p1 is never higher than 0.8231.

Table 2.3: MRS-GARCH properties of three stocks.

Stock Parameters 1 minute 5 minutes 10 minutes

NR Eσ1 Eσ2 0.7705 8.9261 0.0308 2.4831 0.0141 2.4993
p1 p2 0.5514 0.9954 0.4466 0.9937 0.4584 0.9994

RBS Eσ1 Eσ2 0.1905 5.1646 0.1267 4.9489 0.1098 6.9657
p1 p2 0.6822 0.9631 0.5393 0.9998 0.4676 0.9998

HSBC Eσ1 Eσ2 0.2348 7.4337 0.0225 4.5950 0.0102 2.1519
p1 p2 0.8231 0.9997 0.6550 0.9582 0.8022 0.9997

Unconditional variances and the persistence for the MRS-GARCH model of
three stocks. Note: Eσi denotes the unconditional variances; and p(i) denotes
the persistence for the MRS-GARCH model.

2.5.4 Backtesting Results

Backtesting is a process which refers to applying a model or strategy to

historical data to evaluate the performance during the specified time pe-

riod (Kupiec (1995)). The main purpose of this section is to compare the

performance of six different IVaR models (Historical simulation, Normal

GARCH, Student-t GARCH, Normal EGARCH, Student-t EGARCH and

MRS-GARCH). The model performance is evaluated by using two common

backtesting approaches: failure rate and Kupiec’s test (Kupiec (1995)).
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Failure rate test examine the frequency of VaR exceptions, which is set up

as a regulatory backtesting method by the Basel Committee (1996).10 The

observed failure rate should be close to the confidence level. For example, if

VaR parameters are measured at 95% confidence level with 100 time horizons,

the expected VaR violations would be 5 within this period.

In this chapter, all methodologies of IVaR are tested with quantile α = 5%

and the performance is assessed by the failure rate for each single stock. If

the IVaR model is accurate or has good forecasting performance, the failure

rate should be equal to the present IVaR level. Table 2.4 reports the failure

rates of forecasting sample for different IVaR (95%) models and sampling

frequencies. Based on the results of failure rates, the Historical Simulation,

Normal GARCH, and MRS-GARCH models perform better. The Normal

EGARCH model has an acceptable performance of IVaR prediction, but

slightly overestimates the risk in most cases. We can also observe that the

single regime GARCH and EGARCH model with Student-t innovation did

not improve on the IVaR forecast performance. In fact, the failure rates of

IVaR estimated by the Student-t GARCH model and Student-t EGARCH

model are far less than the expected value at 5% which indicates that the

risk is consistently overestimated. The failure rate results of MRS-GARCH

IVaR for all three stocks are fairly close to the theoretical confidence level.

In addition, the overall failure rates are computed to investigate that how

a model performed subject to all stocks and sample frequencies.11 In Table
10Failure rate is the proportion of VaR violations of the return which equals V/N , where

V is the aggregated violation of stock and N is the size of sample.
11The overall failure rate equals:

∑n
a=1

∑m
b=1 Vab/

∑n
a=1

∑m
b=1 Nab, where Vab is the

aggregated violations of stock a and time frequency b; Nab is the size of forecast sample of
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Table 2.4: The failure rate result of backtesting for IVaR at 5% quantile
for the three stocks

Stocks Model 1 minute 5 minutes 10 minutes
NR HS 0.0493 0.0476 0.0532

Normal GARCH 0.0485 0.0463 0.0478
Student-t GARCH 0.0163 0.0266 0.0225
Normal EGARCH 0.0471 0.0415 0.0449
Student-t EGARCH 0.0266 0.0013 0.0197
MRS-GARCH 0.0504 0.0504 0.0503

RBS HS 0.0510 0.0504 0.0504
Normal GARCH 0.0437 0.0392 0.0421
Student-t GARCH 0.0180 0.0070 0.0197
Normal EGARCH 0.0429 0.0350 0.0421
Student-t EGARCH 0.0175 0.0089 0.0197
MRS-GARCH 0.0482 0.0478 0.0506

HSBC HS 0.0499 0.0448 0.0392
Normal GARCH 0.0479 0.0462 0.0449
Student-t GARCH 0.0202 0.0224 0.0225
Normal EGARCH 0.0424 0.0420 0.0393
Student-t EGARCH 0.0122 0.0168 0.0197
MRS-GARCH 0.0488 0.0462 0.0478

Overall failure rate

HS 0.0489 Normal GARCH 0.0465
Student-t GARCH 0.0187 Normal EGARCH 0.0427
Student-t EGARCH 0.0164 MRS-GARCH 0.0488

Failure rates and overall failure rates for HS, the normal GARCH, Student-t
GARCH, normal EGARCH, Student-t EGARCH and MRS-GARCH measures for
intraday VaR. Failure rate is the proportion of VaR violations of the return which
equals V/N , where V is the aggregated violation of stock and N is the size of
sample. The overall failure rate equals:

∑n
a=1

∑m
b=1 Vab/

∑n
a=1

∑m
b=1Nab, where

Vab is the aggregated violations of stock a and time frequency b; Nab is the size of
forecast sample of stock a and time frequency b; n is the number of stocks and m
is the number of different time frequencies.

2.4, the overall failure rates are 0.0489, 0.0465, and 0.0488 for HS model,

Normal GARCH model and MRS-GARCH model, respectively, suggesting

that those three models are good alternatives in modeling volatility and in

stock a and time frequency b; n is the number of stocks and m is the number of different
time frequencies.
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estimating IVaR.

Apart from the failure rate, the Kupiec’s test (Kupiec (1995)) is used to

further analyse the performance of all IVaR models. Kupiec’s test checks

whether the observed failure rate is consistent with the frequency of excep-

tions predicted by the IVaR model.

The hit sequence (Hitt) is defined as

Hitt =

 1, if Rt < −V aRt

0, if Rt ≥ −V aRt .
(2.19)

Under the null hypothesis that the model is ‘good’, Hitt follows a Bernoulli

distribution as with H0: Hitt ∼ Bernoulli(p). The Kupiec’s likelihood ratio

(LR) statistic is written as

LR = 2ln ((α̂m(1− α̂)n/(αm(1− α)n)) ∼ χ2(1); (2.20)

where m is the sum of number when Hitt = 1 and n is the sum of number

when Hitt = 0. Under the null hypothesis, the LR is distributed as a χ2(1).

The Kupiec test results for all methodologies are presented in Table 2.5.

The bold numbers (p-values) denote a failure of the IVaR models at a 95%

confidence level. The results indicate that the HS, Normal GARCH and

MRS-GARCH models lead to better forecast performance in general. Con-

sequently, the VaR models based on Student-t innovations have difficulties

in modeling high frequency returns and consistently overestimate the return

(risk) of all stocks in different time frequencies.
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Table 2.5: The Kupiec test result of IVaR at 5% quantile for the three
stocks (p-value)

Stocks Model 1 minute 5 minutes 10 minutes

NR
HS 0.8444 0.7686 0.7822

Normal GARCH 0.6740 0.6449 0.8446
Student-t GARCH 0.0000 0.0019 0.0078
Normal EGARCH 0.4178 0.0405 0.8119

Student-t EGARCH 0.0000 0.0000 0.0078
MRS-GARCH 0.9115 0.9521 0.9737

RBS
HS 0.7917 0.9590 0.9710

Normal GARCH 0.0783 0.1211 0.4845
Student-t GARCH 0.0000 0.0000 0.0029
Normal EGARCH 0.0547 0.0537 0.0824

Student-t EGARCH 0.0000 0.0000 0.0029
MRS-GARCH 0.6183 0.4142 0.9613

HSBC
HS 0.9663 0.5010 0.3320

Normal GARCH 0.5646 0.6449 0.8119
Student-t GARCH 0.0000 0.0002 0.0078
Normal EGARCH 0.4336 0.2383 0.2383

Student-t EGARCH 0.0000 0.0000 0.0029
MRS-GARCH 0.7315 0.7752 0.8446

Kupiec test results for HS, the normal GARCH, Student-t GARCH, normal
EGARCH, Student-t EGARCH and MRS-GARCH measures for intraday
VaR. A bold number (p-value) denotes that the IVaR model is rejected at
a 95% confidence level.
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Figures 2.4, 2.5 and 2.6 present the return of forecast sample and the 95%

IVaR from the Normal GARCH and MRS-GARCH models with three dif-

ferent time horizons. We can observe that the MRS-GARCH IVaR is less

fluctuative than Normal GARCH and the Normal GARCH model is more

sensitive when capturing the shocks in volatility. In a certain sense, this

could result from the averaging effect of two regimes shifting.

It can be concluded that the HS IVaR model, Normal GARCH model and

MRS-GARCH model uniformly perform better compared to the other three

models. Nevertheless, in general cases the MRS-GARCH model performs the

best under the p− value of the Kupiec test is never smaller than 0.4142.
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Figure 2.4: The one minute (95%) IVaR estimates from Normal GARCH
and MRS-GARCH models for three shocks. The blue line displays the one
minute return, the red line shows the IVaR of a normal GARCH model and
the green line displays the MRS-GARCH IVaR.
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Figure 2.5: The five minute (95%) IVaR estimates from Normal GARCH
and MRS-GARCH models for three shocks. The blue line displays the five
minute return, the red line shows the IVaR of a normal GARCH model and
the green line displays the MRS-GARCH IVaR.
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Figure 2.6: The ten minute (95%) IVaR estimates from Normal GARCH
and MRS-GARCH models for three shocks. The blue line displays the ten
minute return, the red line shows the IVaR of a normal GARCH model and
the green line displays the MRS-GARCH IVaR.
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2.6 Conclusion

This chapter compared the forecasting abilities of the Intraday VaR (IVaR)

models based on high-frequency measures of volatility. Six different mod-

els were applied for quantifying intraday market risk, namely the Historical

Simulation method, Normal GARCH, Student-t GARCH, Normal EGARCH,

Student-t EGARCH and MRS-GARCH model. Three stocks (Northern Rock

(NR), Royal Bank of Scotland (RBS) and Hong Kong and Shanghai Banking

Corporation (HSBC)) from the FTSE 100 were selected for application. The

time horizon of the empirical analysis is much shorter than the conventional

VaR method which is computed on a daily basis.

The main task is to measure the intraday VaR using six different models and

evaluate their performance in terms of the ability to forecast the IVaR for

three different short time frequencies. According to the backtesting results,

we can draw the following conclusions.

As a non-parametric model, the simple Historical Simulation method signif-

icantly outperforms at all different time horizons. For parametric models,

the GARCH type models based on normal innovation are superior to other

models in forecasting IVaR. The empirical failure rate of the Student-t dis-

tribution based IVaR model is too low and rejected. This finding is different

with many existing literatures in the reference which recognised the impor-

tance of the fat tails of daily or intraday returns. One cause for risk overesti-

mation for the models under the Student-t distribution innovations might be

that the tested period does not have as many significant losses as the estima-
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tion sample period. Furthermore, previous studies recognise the importance

of capturing the volatility persistence by using regime switching models on

daily VaR calculation. We applied a MRS-GARCH model (Klaassen (2002))

into intraday VaR context. The empirical backtesting results confirm that

the MRS-GARCH model with normal innovations is a good candidate for

forecasting IVaR.

In the evolving financial markets, algorithmic trading plays a very important

role in today’s trading world. Today’s trading system forces firms to contin-

uously build their own strategies to beat the market (Aldridge (2009)). As a

final remark, it would be useful to consider implementing an IVaR estimation

model into trading or regulation software as daily VaR. Daily risk reporting

does not give an accurate picture of the actual market risk for short-term

traders. The IVaR models in this chapter, can provide a real-time market

risk measurement which is beyond the conventional VaR. For instance, the

IVaR is a very important tool for high frequency hedge fund managers to

adjust their portfolios in a safer position before their trades get executed.
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Chapter 3

Liquidity Adjusted Intraday

Value at Risk

The traditional Value at Risk (VaR) is a very popular tool for measuring

market risk, but it does not incorporate liquidity risk. This chapter proposes

an extended intraday VaR model to integrate liquidity risk introduced in

Section 3.2. From a short-term trader’s perspective, we estimate the one-

step-ahead liquidity adjusted intraday VaR (LAIVaR) for both bid and ask

positions, subject to several operational threshold trading sizes over short

time horizons. We also extend existing approaches by investigating both the

upside (right tail) VaR and downside (left tail) VaR process. In particular, we

are interested in differentiating between both bid and ask sides since different

market sides have to face different price movements as well. However, the

method in this chapter heavily relies on the data based on limit order books.

The main findings in this chapter are as follows: firstly, our empirical results
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give a better understanding of the role played by liquidity risk components in

computing intraday VaR. Secondly, two methods (GARCH(1,1) and HS) are

used to estimate the one-step-ahead LAIVaR of both market sides in order to

quantify their real risk position. Last but not least, the results confirm that

there is an asymmetry in up and down movements in liquidity adjustments

with short time horizons (5 minutes and 10 minutes) of an equity market.

Downward movements typically have a higher magnitude than upward move-

ments which implies intraday liquidity risk is negatively skewed. Moreover,

in this chapter, we apply a dynamic bivariate GARCH model to analyse the

correlations of volatility between bid and ask side.

The outline of this chapter is as follows. Section 3.1 introduces the moti-

vations of our study. Section 3.2 provides a literature review on liquidity

risk and liquidity adjusted VaR models. Section 3.3 describes the methodol-

ogy and Section 3.4 presents the data and the empirical results. Section 3.5

summarises the main findings.
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3.1 Introduction

Risk management has gained much attention over the past two decades,

especially in the current financial crisis. Liquidity risk has been the leading

cause of many serious market crises (Matz and Neu (2007)). The infamous

disaster from the Long Term Capital Management (LTCM) in late 1998,

the Russian financial crisis in 1998 and the collapse of the credit market in

2008 highlight the dangers of ignoring the effects of liquidity (see Pastor and

Stambaugh (2003) and Brunnermeier (2009)). In September 2007, the British

retail bank Northern Rock could not refinance itself in the credit market and

faced bankruptcy due to lack of liquidity. These big lessons teach us that

liquidity plays a very important role in financial markets, in particular when

it comes to trading. Therefore, a good risk measurement has to take liquidity

risk into account. However, the definition of liquidity is ambiguous and has

many different interpretations. “A liquid market is a market in which a bid-

ask price is always quoted, its spread is small enough and small trades can

be immediately executed with minimal effect on price” (Black (1971), page

2). In contrast, Kyle (1985) proposes a more practical approach of defining

liquidity that includes the following three dimensions: (a) the amount by

which the transaction prices deviate from mid-market prices (tightness), (b)

the number of shares that can be traded with the observed transaction price

(depth), and (c) the pace with which the asset price recovers to the actual

fundamental price (resiliency).

A concept that is even more difficult to predict and measure is liquidity risk.

In a real “friction market”, investors hardly get the mid-price that is used in
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many risk applications, and a more rigorous approach to risk management is

needed. Bangia, Diebold, Schuermann, and Stroughair (1999) argue that the

liquidity risk is an important component in order to capture the overall risk.

Lawrence and Robinson (1997) stress that the failure to consider liquidity

may lead to an underestimation of the VaR by 30%.

More and more market practitioners have recognised that liquidity risk is

a very serious concern for firms, plenty of studies have analysed the VaR

and liquidity separately. Only a few studies incorporate liquidity into VaR,

not to speak of VaR at the intraday level (see, for example, Beltratti and

Morana (1999), Dionne, Duchesne, and Pacurar (2009), Colletaz, Hurlin, and

Tokpavi (2007), Acerbi (2010)). Incorporating liquidity risk in to intraday

VaR measurement is the main focus of this chapter.

The literature includes a few former studies where researchers have incorpo-

rated liquidity risk with conventional VaR. In general, there are two differ-

ent methods: the first one is the stochastic horizon method. Lawrence and

Robinson (1997) determine the holding period of VaR according to the size

of the position and the characteristics of the liquidity market. The second

method models market price changes induced by selling the underlying asset

within a fixed time horizon. For example, Glosten, Jagannathan, and Run-

kle (1997) use this method to derive the optimal strategy of liquidation that

maximises the value over a pre-specified period. They estimate the VaR of

the value under liquidation of the position, on the basis of the cost of liquidity

of the position over the predetermined period of execution. Bertsimas and Lo

(1998) use a similar method to determine the dynamic optimal strategy for
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minimising the cost of execution. Acerbi (2010) introduces a new framework

to quantify liquidity risk by distinguishing specific liquidity conditions and

liquidity policies.

The motivation for this chapter is as follows: Firstly, liquidity risk is a key

factor for the health of the financial system. Conventional VaR models do not

take liquidity risk into account but heavily rely on the implied assumption

that an asset can be traded at a certain price at any quantity within a fixed

period of time. This assumption is not realistic under real market conditions,

especially in intraday trading, as execution is not always guaranteed, i.e. the

conventional VaR models do not capture the liquidity risk that traders and

investors are exposed to.

Secondly, today’s trading system is characterised by a combination of high

volatility and intensify trading. High frequency traders have to continuously

build their own strategies to beat the market (Aldridge (2009)). It is not suf-

ficient for the short-term traders to evaluate their risk based just on downside

intraday VaR. The issue of distinguishing the liquidity risk for the long and

short positions for the bid and ask sides is not extensively discussed in the

literature.1

This chapter therefore attempts to measure additional risk due to liquidity

in the VaR using intraday data and extends the existing literature in the

following way: beside the exogenous risk factor, we consider the endogenous

liquidity risk, taking into account the volume effect to model the liquidity
1Traders have long positions when they expect the underlying asset will rise in value

and is contrasted with going short.
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adjusted intraday VaR (LAIVaR), which is measured on the basis of the

size of the investors’ position. We also differentiate between the upside risk

and downside risk on both bid and ask sides. The focus on LAIVaR as a

practical risk management tool allows short term traders to value the actual

risk level and to allocate long and short trading assets according to realistic

market trading conditions. In addition, we characterise the liquidity risk by

calculating the liquidity adjustments based on the individual trade size and

positions.
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3.2 Review on Liquidity Risk and Liquidity Ad-

justed VaR Models

3.2.1 Liquidity and Liquidity Risk

Liquidity plays a very important role in the financial market. However,

the definition of liquidity is ambiguous and has several versions (Berkowitz

(2000)). Generally speaking, liquidity is the ability for participants to execute

large trades rapidly with a small impact on prices (Committee on the Global

Financial System (CGFS), 2000). Market liquidity risk can be summarised

as the risk arising from the higher cost and difficulty of executing trade which

is caused by an illiquid market. According to Dowd (1998) “a market can

be very liquid most of the time, but lose its liquidity in a major crisis”. In

general, we can classify the liquidity risk into normal liquidity risk and crisis

liquidity risk. During a crisis period, liquidity risk should be taken more

seriously into account because the market loses its liquidity. Dowd (1998)

also points out the relationship between the liquidity position of VaR and

the holding period (see Figure 3.1).

Figure 3.1: The relationship between liquid and illiquid positions of VaR and
holding period (adopted from: Dowd (1998), page 198).
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In a highly liquid market the investors can settle the position quickly to get

the market price without any significant liquidation cost. But in an illiquid

market, the extra cost of liquidity for investors to close their position is

higher. Generally, the longer the investor waits, the lower the liquidity cost.

However, during the waiting period, the asset price can change for the worse.

Bangia, Diebold, Schuermann, and Stroughair (1999) divide the liquidity

risk into two components. Exogenous liquidity risk is similar to all market

participants, which is influenced by the characteristics of the whole market.

Also, exogenous liquidity risk which is connected with bid-ask spread, cannot

be affected by any behavior of an individual trader. On the other hand,

endogenous liquidity risk is unique for each market participant, which is

influenced by one’s trading volume (liquidated quantity) and positions. More

specifically, the effected of endogenous liquidity risk occurs after the volume

exceeds the level of quote depth. Figure 3.2 illustrates the effect of position

size on liquidation value. As it can be seen, the endogenous liquidity risk

becomes higher when the position size beyond the quote depth point, and

the ask-bid spread became larger. In this chapter, we take both endogenous

and exogenous components in to account for measuring the market risk.

3.2.2 Models of Liquidity Adjusted VaR

In this section, we provide an brief literature review on models to incorporate

liquidity risk to standard VaR frameworks. As shown in Figure 3.3, the

conventional VaR model like RiskMetrics (J.P. Morgan (1996)) measures the

uncertainty of asset returns and does not include the liquidity risk. So an
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Figure 3.2: The effect of position size on liquidation value (adopted from:
Bangia et al.(1999), page 5).

improved approach of modelling VaR should take the whole market risk into

account, including both exogenous and endogenous liquidity risk.

The existing models are introduced as three broad categories: (1) optimal

execution strategy adjusted models; (2) bid-ask spread adjusted models; (3)

intraday liquidity risk models.

Optimal Execution Strategy Adjusted Models

Former studies reported in the literature incorporate liquidity risk with con-

ventional VaR by using the optimal execution strategy. According to Ernst,

Stange, and Kaserer (2009), these models are more theoretical than empiri-

cally traceable. More specifically, there are two general methods of optimal

execution strategy adjusted model: one is the Stochastic Horizon method;

another is modelling the changing of market price induced by the selling off

with a fixed time horizon.
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Figure 3.3: Taxonomy of Market Risk and the VaR Models (adopted from:
Bangia et al.(1999), page 3).

In the first framework, Lawrence and Robinson (1997) determine the holding

period of VaR according to the size of the position and the characteristics

of the liquid market. The authors use the second kind of method which

derives the optimal strategy of liquidation that will maximise the value over

a fixed time horizon. Glosten, Jagannathan, and Runkle (1997) therefore

consider the impact of the size of the position and the period of execution

on the value of the position under liquidation. Bertsimas and Lo (1998) use

a similar method to derive the dynamic optimal strategy with the aim of

minimising the expected cost.

Hisata and Yamai (2000) propose a framework for the quantification of the

liquidity adjusted VaR (LAVaR) model that considers the market impact

induced by the trader’s own liquidation. They derive the optimal execution

strategy according to the level of market liquidity and the scale of the in-

vestor’s position. They choose the holding period as an endogenous variable
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and provide both a discrete and a continuous time model for the LAVaR

measurement.

Bid-ask Spread Adjusted Models

Bangia, Diebold, Schuermann, and Stroughair (1999) develop a liquidity risk

adjusted VaR model (named the BDSS model after the names of the au-

thors) which is a fundamental framework for integrating liquidity risk into

the standard VaR. They split the overall market risk into two components:

one is the pure price risk and the other is uncertainty of liquidity costs. Ban-

gia, Diebold, Schuermann, and Stroughair (1999) classify liquidity risk into

exogenous and endogenous risk.2 However, the BDSS model mainly focuses

on exogenous liquidity risk which takes the bid-ask spread into account. The

LAVaR simply represents the sum of conventional VaR (computed by mid-

price) and the liquidity risk adjusted part (computed by bid-ask spread).

Mathematically, the BDSS model is specified as:

LAV aR = Midt[(1− eµ−ασ) +
1

2
(S + α′σ̃)], (3.1)

where Midt is the mid-price of the asset at time t; µ is expected return; α

is the quantile of the return of mid price; σ is the standard deviation of the

return of mid price; S = (Ask − Bid)/Mid is the average relative spread; σ̃

is the volatility of the relative spread and α′ is the quantile of the relative

spread distribution.
2The details for exogenous and endogenous risk are introduced in Section 3.1.1.
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The BDSS approach is simple and easy to implement. However, the BDSS

model has several drawbacks: firstly, the model is based on the normal dis-

tribution which differs from reality. Secondly, the method ignores the en-

dogenous liquidity risk which is also important.3 Thirdly, the assumption of

perfect correlation between liquidity risk and VaR would lead to an overes-

timation of LAVaR.

Erwan (2001) extends the BDSS model by using the weighted average spread

which incorporates the endogenous risk effect instead of the ask-bid spread.

He also points out that for illiquid stocks, the endogenous liquidity risk rep-

resents half of the total market risk and must not be neglected.

Agnelidis and Benos (2006) investigated the risk component of bid-ask spread

in the Athens Stock Exchange with electronic order book data data. They

extended the model from Madhavan, Richardson, and Roomans (1997) by

taking both endogenous and exogenous liquidity risk into account. Further-

more, they adjusted the standard VaR with the risk component of high and

low capitalisation stocks.

Ernst, Stange, and Kaserer (2008) suggested a liquidity risk adjusted model of

VaR with future time variation of prices and spread. This model extends the

BDSS model by using non-normal distribution for price and spread instead

of normal distribution and historical distribution. However, this model fails

to cover endogenous risk.
3The endogenous liquidity risk is mainly arisen by the size of trading volume.
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Intraday Liquidity Risk Models

In spite of the increasingly important intraday trading in financial market,

there is limited published research on how to evaluate market risk accounting

for liquidity risk in the intraday context.

Following the BDSS model, Francois-Heude and Van Wynendaele (2001) pro-

posed a new parametric IVaR account for liquidity risk. The advantage of

this model is that it incorporates both the exogenous and endogenous liq-

uidity risks. However, the liquidity cost function from the five best limits of

the order book of the Paris Stock Exchange and the other hidden quantities

listed in the order book are not considered in their research. Furthermore,

the intraday data which has strong seasonality is not being filtered or desea-

sonalised in their analysis.

Giot and Gramming (2006) introduce a GARCH model to derive LAVaR in

an automated auction market and quantify the liquidity risk by calculating

the weighted average bid price from the real order book data. They incor-

porate the endogenous risk impact corresponding to the trading volume size

and provide evidence that liquidity does affect the intraday VaR estimation.

However, the research focuses on downside risk only.

After reviewing several models in the literature, we propose a liquidity risk

adjusted IVaR to take account of both endogenous and endogenous impacts.

Furthermore, we differentiate between the asymmetric effect of liquidity risk

for long and short positions.4

4The details of our model is introduced in Section 3.3.
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3.3 Methodology

3.3.1 Liquidity Adjusted Intraday VaR

Researchers normally use daily time series data to analyse financial prob-

lems. Compared with low frequency data, the shorter time horizon of high

frequency data can provide more detailed information about the market be-

haviour.

Ernst, Stange, and Kaserer (2009) test most existing and traceable liquidity

risk models based on daily risk estimation. According to their results, models

based on limit order book data are outperformed according to the Kupiec

(1995) test, including the model from Giot and Gramming (2006).

Previous studies suggested using the top of order book (best bid and ask)

information to decide the trading strategies. Recently, researchers found that

the activities beyond the top of limit order books contain valuable informa-

tion (see Kaniel and Liu (2006), Hall and Hautsch (2007), Cao, Hansch, and

Wang (2008) and Cao and Wang (2009)). In this chapter, we estimate the

liquidity adjusted intraday VaR (LAIVaR) by using the limit order book

information instead of the best bid and ask price.

The focus on LAIVaR as the appropriate measure of actual risk faced by

short-term traders with fixed limit liquidity horizon and different trade po-

sitions according to realistic market trading conditions. In this sense, we

assume that different positions face different risks. Based on the limit order

book, we investigate the relationship between the midpoint of the best bid
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and ask and volume weighted average price. Developing the discussed BDSS

model further, we estimate the LAIVaR model with different trading volume

for the bid side (which is for the investor who wants to buy), as well as for

the ask side (which is for the investor who wants to sell).

Let vi,t denote the corresponding volume of orders queuing in the book at

time t at positions i = 1, ..., n (i denotes each individual trade at time t). We

first define the volume-weighted average prices (VWAP) Bt(v) and At(v) for

both the bid (B) and ask (A) sides as follows:

Bt(v) =

∑
j Bi,tv

BID
j,t

v

At(v) =

∑
j Ai,tv

ASK
j,t

v
(3.2)

where Bi,t and Ai,t are the individual bid and ask prices at time t of position

i; v denotes a pre-specified threshold volume to be traded against several

limit orders when executing at least the first i queuing orders on the bid

or ask side, such that v ≤
∑

min(n) vi,t; vBID
j,t and vASK

j,t are the individual

limit orders of bid and ask side that adds up to v:
∑

vBID
j,t =

∑
vASK
j,t = v.

For example, Table 3.1 gives a snapshot of order book data for RBS on 1st

March 2007 at 8:01 am. We consider the threshold volume v = 2000, in

this case, vBID
i,t = (1321, 170, 392, 1042), vASK

i,t = (346, 346, 10242), vBID
j,t =

(1321, 170, 392, 117) and vASK
j,t = (346, 346, 1308).

The VWAP is an ex-ante measure of liquidity which indicates an immediate

execution trading cost. With a given volume v (inside the depth), we can

compute the impact of price (exogenous liquidity risk component) and volume
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Table 3.1: Example of order book data for RBS at 8:01 am (01/03/2007)

Bid Ask

i Price Volume vBID
j,t Price Volume vASK

j,t

1 1128 1321 1321 1131 346 346
2 1128 170 170 1134 346 346
3 1128 392 392 1137 10242 1308
4 1123 10242 1042 1145 117
5 1122 1503 1147 1339
6 1120 10000 1150 870
7 1118 1414 1151 1172
8 1116 1208 1157 800
9 1111 1363 1158 870
. . . . . . . . . . . . . . .

VWAP
Bt(v = 2000) = 1127.7075
At(v = 2000) = 1135.4430

(endogenous liquidity risk component) by using the information of the full

limited order book data.

In order to capture the liquidity risk between bid and ask side, we adopt the

model by Giot (2005) and define two log ratio return processes instead of the

return based on the weighted spread as

rBID
t (v) = ln

Bt(v)

Bt−1(v)

rASK
t (v) = ln

At(v)

At−1(v)
(3.3)

representing the VWAP returns.

As mentioned in Chapter 1, the seasonality generally existed in high fre-

quency return. It is reported in former studies (see Goodhart and O’Hara

(1997), Andersen and Bollerslev (1999) and Giot (2000)) that financial in-
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traday data have a consistent diurnal pattern of trading activities over the

course of a trading day, due to certain institutional characteristics of or-

ganised financial markets, such as opening and closing hours or lunch time.

Since it is necessary to take the daily deterministic seasonality into account

(Andersen and Bollerslev 1999), smoothing techniques are required to obtain

deseasonalised observations. To remove the seasonality property of high fre-

quency data, Giot and Gramming (2006) assumed a deterministic seasonality

in the intraday volatility, and defined the deseasonalised return as

yBID
t =

rBID
t (v)√
ϕBID
t

yASK
t =

rASK
t (v)√
ϕASK
t

(3.4)

where rBID
t (v) and rASK

t (v) denote the raw log VWAP-returns for bid and

ask side. The ϕBID
t and ϕASK

t are the deterministic seasonality pattern of

intraday volatility for bid and ask side returns.

Following the same approach in Chapter 2, we first choose raw return at 30

minute intervals as nodes for the whole trading day and then use cubic splines

to smooth the average squared sample returns in order to get the intraday

seasonal volatility components ϕBID
t and ϕASK

t for bid and ask side (see also

(Giot 2000) and (Giot 2005)).

Having computed the deseasonalized VWAP return process yt, we apply a
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GARCH(1,1) model5

yt = µt +
√
htεt (3.5)

ht = α0 +

q∑
i=1

αiε
2
t−i +

p∑
i=1

βiht−i (3.6)

for both market sides with ht as the conditional variance for the (desea-

sonalized) VWAP-returns and εt as normally distributed innovations. The

LAIVaR at time t for the two return processes given the confidence level α

can be modelled as

LAIVaRt = µt + Zασt (3.7)

with σt as the volatility component. Based on the estimated conditional

variance, the standard deviation of the raw return at time t is σt =
√
htϕt.

With DBID
t and DASK

t (Equation 3.4), we can estimate the LAIVaR for both

bid and ask sides which can be displayed as LAIVaRBID
t and LAIVaRASK

t ,

respectively.

In the “frictionless” market, the frictionless VaR is computed by the mid-

price. In order to quantify the liquidity risk adjustment, we also need to

compute the intraday VaR based on the mid-price (IV aRMID) as a bench-

mark and compare it with the LAIVaR. We define the log ratio return of
5The GARCH(1,1) model based on normal distribution has been proved to have robust

results for IVaR estimation. Moreover, the parameters of the GARCH(1,1) model will be
used in the DCC model of Section 3.3.3 to obtain the correlations of volatility between
bid and ask side.
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mid-price rmid,t as

rMID
t = ln

PMID
t

PMID
t−1

, (3.8)

where PMID
t is the mid-price at time t and model the mid-price return process

using a GARCH(1,1) volatility process. Similarly, the IVaR of mid-price

returns at time t− 1 is given by:

IV aRMID
t = µMID

t + Zασ
MID
t . (3.9)

3.3.2 Liquidity Risk Adjustment

Most studies in the literature ignore upside risk and only focus on the down-

side risk, however in this chapter the upside risk is a measure for traders

who have a short position on their asset. A higher upside risk also means a

higher cost. In order to compare the actual liquidity cost of different trading

volume and positions intuitively, we first introduce the intraday VaR of price

(PIVaR), which is the worst α% predicted price (P ) if one were to trade the

asset at time t:

PIV aRt = IV aRt ∗ Pt−1 (3.10)

Then, we define the liquidity risk adjustment λt as the difference between

mid-price PIVaR and LAPIVaR. The liquidity risk adjustment λt quantified

the actual liquidity cost for traders with different trading strategies. In other

words, λt measures the additional value for liquidity effect not taken in to
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account by frictionless VaR.

λt =


1
T

∑T
t=1(PIV aRMID

(t) − LaPIV aRBID
(t) ) (DownsideRisk)

1
T

∑T
t=1(LaPIV aRASK

(t) − PIV aRMID
(t) ) (UpsideRisk)

(3.11)

To summarise, the liquidity risk adjustments provide detailed predictions of

liquidity risk for different trading positions. Moreover, the concept of liquid-

ity risk adjustment studied here abstracts an intuitive measure of liquidity

risk for upper level managers, who may not be familiar with the statistical

analysis. In this work, it is recommended that the intraday risk management

method should be considered in asymmetric liquidity risk adjustments and

adapt to the specific needs that correspond to different market participants.

The asymmetric effect of upside and downside liquidity risk adjustments will

be examined in Section 3.4.3.

3.3.3 Dynamic Correlation Analysis

We are also interested in the relative cost of liquidity risk and the differ-

ence of the LAIVaR between the bid and ask side. To our knowledge, there

is no literature discussing the dynamic correlation of volatility between bid

and ask side. To understand the time-varying correlation behind the return

of VWAP on both the bid and ask side of the order book jointly, we ap-

ply the dynamic conditional correlation (DCC) multivariate GARCH model

proposed by Engle (2002).
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Consider the bivariate filtrated normally distributed return process

rt | It−1 ∼ N(0, Ht) (3.12)

with the covariance matrix

Ht = DtRtDt, (3.13)

where Rt represents the correlation matrix of the returns on both market

sides. Further, Engle (2002) assumes that

Dt = diag(
√

ht) (3.14)

Q = (1− a− b)Q+ aεt−1ε
′
t−1 + bQt−1 (3.15)

Rt = (diag(Qt))
− 1

2Qt(diag(Qt))
− 1

2 , (3.16)

where

Q = T−1

T∑
t=1

εtε
′
t . (3.17)

The residuals are assumed to be

εit = rit/
√

hit (3.18)

with hi,t = α0+αiε
2
i,t−1+βihi,t−1, where i stand for the i-th asset. Following
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Engle (2002), the log-likelihood function can be written as

L(θ, φ) =
T∑
t=1

Lt(θ, φ)

= −1

2

T∑
t=1

(log|DtRtDt|+ r′tD
−1R−1

t D−1rt)

= −1

2

T∑
t=1

(2log|Dt|+ r′tD
−1rt︸ ︷︷ ︸

Lv(θ)

− ε′tεt + log|Rt|+ ε′tRtεt︸ ︷︷ ︸
Lc(θ,φ)

) ,

allowing a two-step-estimation approach as it can be decomposed into a

volatility part

Lv(θ) = −1

2

T∑
t=1

(2log|Dt|+ r′tD
−2rt) (3.19)

=
1

2

T∑
t=1

n∑
i=1

(log(hi,t +
r2i,t
hi,t

)) (3.20)

and a correlation part

Lc(θ, φ) = −1

2

T∑
t=1

(log|Rt|+ ε′tRtεt − ε′tεt) . (3.21)

Hence, we first estimate the parameters θ̂ = (α0, αi, β) in (3.20) in the uni-

variate GARCH models, and then substitute θ̂ into (3.21) to estimate the

parameter vector φ = (a, b).
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3.4 Empirical Analysis

3.4.1 Data Description

In this chapter, we use the same three stocks of SETS limit order books as in

Chapter 2, which are Northern Rock (NR), Royal Bank of Scotland (RBS)

and Hong Kong and Shanghai Banking Corporation (HSBC).6 Moveover, we

use the extra volume information in order book for the empirical analysis

in this chapter. The different volume sizes executed have different liquidity

risk effects. For illustration purposes, we present three thresholds of liquidity

executions in this chapter which are based on small, medium and large sizes

of volume. Executing big volume orders has a bigger liquidity risk than

executing small volume. We measure the investor’s risk on both the downside

and upside risk which depends on the investors’ trading strategy (short or

long position). Table 3.2 provides a list of several average volumes which

reflect the liquidity activity for the three selected stocks and shows that

HSBC have the largest trade size in every category. If we compare the average

cumulated volume of total ask and bid, NR has the smallest size. According

to these facts we choose several different representative threshold volume

sizes to reflect different liquidity positions for each stock indicated in the last

three rows of Table 3.2.

The data sample covers the period from 1st March 2007 to 30th March 2007,

excluding the weekends. We use five minute equally sampling data (as in

Chapter 2) and split the selected data set into two parts, the first three
6Details of the data are introduced in Chapter 2, Section 2.5.1.

84



Table 3.2: Data description

Average volume of ... NR RBS HSBC

Best ask 2979 2038 28386
Best bid 2802 2039 18450
Best three ask orders 7504 8762 57074
Best three bid orders 6654 9015 41743
Total ask side 345420 1077160 3939042
Total bid side 346030 1116740 4348526
Threshold Size (small) 2000 10000 50000
Threshold Size (medium) 10000 50000 100000
Threshold Size (large) 20000 100000 200000

weeks are used for estimation (estimation sample) and the others (forecasting

sample) for backtesting purposes. Then the procedure is also repeated for

ten minute frequency data.

In Figure 3.4 the mid-price time series of NR with the whole sample period

is showed in panel (a). In order to illustrate the difference between VWAP

and mid-price more clearly, we take a close look at the first 100 observations

as plotted in panel (b). As illustrated, the difference of VWAP and mid-

price between ask and bid sides exhibits asymmetric behaviour. In addition,

the bid-ask spread of different threshold volumes is presented in panel (c).

We can observe that the spread is bigger when the threshold volume size is

larger.
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Figure 3.4: (a) The blue line denotes the mid-price (5 minutes) of NR for the
whole sample period. (b) The red dotted line represents the VWAP of bid
side (BP) with small volume (SV); the red line represents the VWAP of ask
side (AP) with small volume (SV); the black dots represents VWAP of the
bid side (BP) with large volume (LV) and the black line represents VWAP
of the ask side (BP) with large volume (LV). (c) The red circles indicate the
bid-ask spread of NR with small volume and the black squares indicate the
bid-ask spread for large volume.
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Figure 3.5: The bid-ask spread and spread between bid and ask for NR
(SV=small volume; LV=large volume). Figure (a) and (b) show spreads for
the whole sample period. The zoom in sub-plots (c) and (d) show spreads
for the first 100 observations.

Figure 3.5 illustrates the bid-ask spread based on different trading volume

(small and large) for NR. The bid-ask spreads are bigger for larger volume

sizes. Furthermore, we are more interested in the asymmetric information

between the bid and the ask side7. Figure 3.5 also shows the spread between

bid and ask side. As it can be seen from the figure, the higher volume size has

a positive impact on the asymmetric behaviour between the bid and the ask
7Bid-ask spread= VWAPASK − VWAPBID; Bid-half-spread= VWAPBID − Pmid

and Ask-half-spread= VWAPASK − Pmid.
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side. For clearer scope, we show two sub-plots with the first 100 observations.

The figures of bid-ask spread for the other two stocks are shown in Figure

B.1 and B.2 in Appendix B.

3.4.2 Estimation of GARCH Parameters

We filter every five minute and ten minute snapshot of the order book to

get equally spaced time series data. Table B.1 presents the GARCH model

parameter estimates (with the standard errors in brackets) based on the

VWAP returns for the three stocks with different threshold volume values.

For the stock of NR and HSBC, all α parameters are, as expected, smaller

than β which means that the updated variance is mainly based on the past

variance and less affected by “news”. However for the stock of the RBS on

the bid side, the past variance is mainly dependent on the “innovation” part.

Based on the estimated parameters, we compute the frictionless IVaR and

LAIVaR for both upside and downside at α = 5% with a different sampling

period.

3.4.3 LAPIVaR and Liquidity Risk Adjustment

For the purpose of studying the measurement of intraday liquidity risk, we

estimate the frictionless PIVaR and LAPIVaR through Formula 3.10. In

addition, Historical Simulation (HS) 8 is also used to quantify LAPIVaR.

As we already pointed out, there is an asymmetric intraday price behaviour
8Historical Simulation method has been proved to have robust results for estimating

IVaR in Chapter 2.
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between bid and ask side. Therefore, it is necessary to estimate the upside

risk and downside risk respectively.

In this Section, we first estimate the LAPIVaR by using GARCH(1,1) and

HS methods. Figure 3.6 and Figure 3.7 display both the upside and downside

LAPIVaR (with α=5%) for NR and compares this with the frictionless PI-

VaR, based on a five minute and ten minute sampling frequency. In order to

illustrate the price impact, three representative threshold volume sizes (large,

medium and small volume) to reflect different liquidity positions are shown

in Table 3.2. From the figures, we can observe that when executing a huge

volume size, the LAPIVaR is always above the frictionless PIVaR for upside

risk and lower for downside risk, and the difference is obvious. The LAPI-

VaR also displays asymmetric behaviour between the upside and downside

position. The results for other two stocks are shown in Appendix B.

For the algorithmic trader who always adjusts their position over a short

time period, it is important to take liquidity risk into account. For instance,

a trader who needs to close his position in very short time has to pay extra

for liquidity cost. We assumed that the liquidity cost depends not only on

the volume size, but also on the positions. The upside and downside LAIVaR

allow traders to know exactly how large the risk of a long and short position

is. As shown in Figure 3.6 and Figure 3.7, huge volume entails more liquidity

risk and higher cost. Hence, the conventional method which uses mid-price

to measure IVaR underestimates this risk.

Next, we examine the effect of our liquidity risk by the liquidity risk adjust-

ment λ (Equation 3.11 in Section 3.3.2). Figure 3.8 displays the forecasted
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Figure 3.6: Sample subset of GARCH PIVaR and HS PIVaR (α=5%) for the
three companies with 5 minutes sampling frequency. In the figures, upside
denotes upside risk and downside denotes downside risk; SV=small volume;
MV=medium volume; LV=large volume and MP= mid-price.
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Figure 3.7: Sample subset with PIVaR (α=5%) for the three companies
with 10 minutes sampling frequency. In the figures, upside denotes upside
risk and downside denotes downside risk; SV=small volume; MV=medium
volume; LV=large volume and MP= mid-price.
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risk adjustment λ of large and small trading volumes for both the upside

and downside risk. Liquidity risk is higher when the volume size is bigger

for both upside and downside risk which is exactly the same as the theory

predicts. For a larger volume size there are more big jumps in the risk ad-

justment which can affect traders who plan to execute large volumes within

a short time period. The risk adjustments with the same trading volume but

different trading positions exhibit different behaviours. This means traders

face different risk with long or short trading positions. These considerations

are especially relevant for individual investors who may apply active trading

strategies within a short time horizon. A full set of figures of risk adjustments

for other stocks are included in Appendix B.

The BDSS model based on the bid-ask spread only considers the price impact.

For improvement, we propose using the LAIVaR model to adjust the conven-

tional VaR by incorporating simultaneously the exogenous liquidity risk and

the endogenous liquidity risk. In order to see whether the conventional VaR

methods heavily underestimate the risk, we propose to compute the average

liquidity risk adjustment: λ̄ =
∑T

t=1 λt/T . The results for three stocks with

two different frequencies (5 minutes and 10 minutes) are presented in Table

3.3. The liquidity risk adjustment indicates a significant impact on the entire

risk profile, especially in the case of large volume size. In general, we can

observed the similar results of λ̄ which are estimated by GARCH and HS.

The liquidity risk are higher for a larger size of threshold volume, since λ̄ is

bigger. In other words, volume is positively related to the intraday liquidity

risk. The results also indicate that the liquidity risk should not be ignored,
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Figure 3.8: Risk adjustment for NR with 5 and 10 minutes sampling fre-
quency. The blue line displays risk adjustment for small volume and the
red line is for large volume (SV=small volume; LV=large volume). The four
subplots on the left are for upside risk and the other four on the right are for
downside risk.
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even for the smallest λ̄ = 0.2229.9

For the sake of comparison of the risk adjustments with different relative

price P , the mean of percentage liquidity risk adjustment is proposed as:

λ̄(%) =
∑T

t=1
λt

Pt
/T . And the values of λ̄(%) are provided as figures in bracket

in Table 3.3.

Furthermore, in contrast to Giot and Gramming (2006), who investigate

the downside liquidity risk adjustment, we are interested in the asymmetric

effect of liquidity risk on both the ask and bid side, because the asymmetric

information of two sides and also the ask side risk is important, especially

for investors who are in the short position. For example in Table 3.3, the

average liquidity risk adjustment of different volumes for the NR and RBS

stocks are larger on the bid side in both the five minute and ten minute cases.

This implies that the downside liquidity risk is bigger than for the upside.

For HSBC, the liquidity risk adjustment is roughly the same on both sides.

The results also show that liquidity risk adjustment computed by GARCH

and HS for all stocks are similar.

In additional, we also provide the backtesting results in Table B.2 of Ap-

pendix B. The failure rates of conventional VaR (computed by mid-price)

are compared with our two LAIVaR measures (HS and GARCH). The back-

testing results give further evidence of that how large is the conventional

VaR measure underestimated the market risk, especially for large volume

execution.

9The liquidity impact of the smallest λ̄ equals to λ̄ ∗ V = 0.2229 ∗ 50000 = 11145 for
HSBC with ten minute frequency.
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Table 3.3: The Average Liquidity Adjustment (λ̄)

Data sample 5 minutes
volume SV MV LV
NR GARCH HS GARCH HS GARCH HS
Ask 0.3370 0.5749 1.0938 1.1711 1.6755 1.6778
(%) (0.0005) (0.0006) (0.0010) (0.0010) (0.0014) (0.0015)
Bid 0.8781 0.9702 1.3210 1.4625 2.9364 2.2125
(%) (0.0008) (0.0008) (0.0012) (0.0013) (0.0025) (0.0019)

RBS GARCH HS GARCH HS GARCH HS
Ask 1.3305 0.9309 3.9213 2.3007 9.4878 5.4600
(%) (0.0007) (0.0005) (0.0029) (0.0018) (0.0048) (0.0027)
Bid 1.9241 1.2605 6.7812 4.5538 11.9636 7.9802
(%) (0.00011) (0.0006) (0.0032) (0.0024) (0.0054) (0.0040)

HSBC GARCH HS GARCH HS GARCH HS
Ask 0.9624 0.3234 1.0362 0.4708 1.4567 0.6970
(%) (0.0010) (0.0004) (0.0013) (0.0005) (0.0017) (0.0008)
Bid 0.7133 0.4708 0.07982 0.5038 1.4827 0.8956
(%) (0.0008) (0.0005) (0.0009) (0.0006) (0.0017) (0.0010)

Data sample 10 minutes
volume SV MV LV
NR GARCH HS GARCH HS GARCH HS
Ask 0.4063 0.7481 1.2894 1.1715 1.8695 1.6648
(%) (0.0004) (0.0007) (0.0011) (0.0010) (0.0016) 0.0015
Bid 0.6982 0.8846 1.1995 1.3158 2.4876 2.3458
(%) (0.0007) (0.0008) (0.0010) (0.0012) (0.0021) (0.0021)

RBS GARCH HS GARCH HS GARCH HS
Ask 0.8963 0.9431 1.6382 1.0192 7.0120 5.3423
(%) (0.0006) (0.0005) (0.0009) (0.0007) (0.0048) (0.0027)
Bid 1.1095 1.4929 3.7678 3.8439 9.5969 7.8016
(%) (0.0008) (0.0007) (0.0019) (0.0019) (0.0048) (0.0039)

HSBC GARCH HS GARCH HS GARCH HS
Ask 0.2229 0.3360 0.4780 0.4610 0.6150 0.6965
(%) (0.0003) (0.0004) (0.0005) (0.0005) (0.0007) (0.0007)
Bid 0.3769 0.3401 0.5975 0.4896 0.6471 0.7262
(%) (0.0004) (0.0004) (0.0007) (0.0005) (0.0007) (0.0008)

The Average Liquidity Adjustment (λ̄) with corresponding percentage liquidity
risk adjustment (in the bracket) are computed by two models (GARCH and HS).
Three representative threshold volume sizes are small volume (SV), medium vol-
ume (MV) and large volume (LV).
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In general, by examining the liquidity risk adjustment, one can reveal the liq-

uidity risk component when measuring the VaR model. An increase in trade

size produces a positive impact on liquidity risk adjustment. An investor,

especially one who has to execute a large volume of assets, must take into

account the effect of liquidity in order to trade more rationally.

3.4.4 The Study of Dynamic Correlation

The empirical study of the dynamic correlation behind bid and ask side can

help to better understand the bid-ask spread structure and liquidity risk. In

the dynamic correlation model the correlation parameter varies over time.

The DCC model is normally used to calculate the volatility of a portfolio,

but we apply it into capture the dynamic correlation of volatility between

bid and ask side in this chapter. According to the DCC parameters, we can

get the correlations between two GARCH(1,1) volatility processes. Figures

3.9 show the dynamic conditional correlation and the conditional variance for

bid and ask positions of NR with five and ten minute sampling frequencies

. The dynamic correlation between bid and ask volatility is linked to each

other. For each asset, there are results for two different volumes and two

different sampling frequencies. The correlation is more fluctuant for five

minutes volatility. In the five minutes case, for example, the correlation of

volatility ranges from −0.7 to 1 for the small volume size of sample of NR.

The correlation results for the other two stocks are shown in Appendix B.
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Figure 3.9: Variance and correlation for NR with different volume sizes
(SV=small trading volume, LV=large trading volume)
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3.5 Conclusion

This chapter extends the conventional VaR measurement methodology by

introducing the notion of liquidity adjusted intraday VaR (LAIVaR) which

incorporates the liquidity risk of asset trading and the trading positions of

the market participators. The limited order book data is used to quantify

the liquidity risk and the asymmetric risk effect for short time intervals.

In this chapter, we proposed a new practical empirical technique which can

help the algorithmic trader to quantify their risk depending on their market

position. This approach extends the famous BDSS model (Bangia, Diebold,

Schuermann, and Stroughair (1999)) by integrating the endogenous liquidity

risk effect instead of the ask-bid spread. We establish the liquidity risk ad-

justment to quantify the liquidity risk between different volume sizes which

provides a specified structure of liquidity risk. Compared with Giot and

Gramming (2006), we use both bid and ask side real-return processes which

can reflect the real market information to measure. Furthermore, we em-

phasise the role of potential price impact and position impact on the value

incurred by the liquidation.

The model presented in this chapter focuses on three main aspects. Firstly,

we estimate the LAIVaR more precisely by taking into account the price im-

pact of hidden quantities in limited order book data. Secondly, the liquidity

risk is quantified by liquidity risk adjustment λ. The empirical results show

that an increase in trade size produces a positive impact on liquidity risk

adjustment λ. This indicates that the endogenous liquidity risk is a crucial
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factor in estimating VaR. Negligence of liquidity costs as in a conventional

VaR model will lead to an underestimation of risk. Thirdly, we further study

the patterns of LAPIVaR and liquidity risk adjustment between the bid and

ask side of an order driven stock market. The asymmetric behaviours are

observed and highlighted in our analysis. The method of using VWAP data

of the bid and ask side for deriving the LAIVaR gives some understanding

of intraday liquidity risks in the stock market.

Finally, our model is flexible and practical so that the investors can quantify

the LAIVaR by setting the parameters of volume for a long or short position

according to their unique need. Therefore, the modelling of the LAIVaR

could be valuable for short-term traders in setting trading limits, hedging

decisions and overall risk evaluation. However, this model heavily relies on

the data based on limit order books.
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Chapter 4

Forecasting Market Risk in the

High Frequency FX Market with

Scaling Laws

Chapters 2 and 3 investigated the issue of risk measurement on a single time

scale method basis. In this chapter, a new multiple time scale based empirical

framework for the measurement of financial risk is proposed. Ultra-high

frequency data is used in the empirical analysis to estimate the parameters

of empirical scaling laws which gives a better understanding of the dynamic

nature of the FX market. We introduce three new scaling laws based on

the original mean maximal price change (MPC) scaling law by Glattfelder,

Dupuisy, and Olsen (2011) in Section 4.3. Two experiments are run to check

for robustness for the results from the MPC scaling law method. Moreover,

a comparison of risk forecasting performance between the traditional risk
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measurements and scaling law methods during the crisis period of 2008 are

also presented.

The advantage of the new scaling law method in this chapter is its robustness,

flexibility and the multiple time scales incorporating all information available

in the market. The traditional method to measure daily VaR by extracting

only one asset price per day has the disadvantages that (a) it needs an ad-

equately long period data set to collect enough in-sample data points and

(b) it neglects the dynamic nature of financial markets during the day. In-

stead, real-time ultra-high frequency data is used to estimate the parameters

of the maximal price change (MPC) scaling law that take full information of

the market into account, not just one arbitrarily chosen number per trading

day.1 It is a challenging computation task to analyse this huge amount of

data. The proposed scaling laws would enable both traders and investors

with different investment horizons to better understand and predict market

price movements.

The main finding is that the new scaling law method is more accurate and

flexible compared to traditional VaR method. Among the scaling law meth-

ods, the new exponential moving average maximal price change (EMAMPC)

scaling law performs the best for all five currencies. Furthermore, the fore-

casting errors are smaller when shorter in-sample data is used. The scaling

law methods with one month data provide good forecasting on the maximum

loss within 10 days.
1In this chapter, we will analyse all the tick data with different time scales, instead of

equally spaced sampling high frequency data.
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The outline of this chapter is as follows. Section 4.1 motivates the application

of scaling law method in market risk measuring and forecasting. Section

4.2 provides a literature review of power law applications in economics and

finance. Section 4.3 describes the scaling law methodology and Section 4.4

presents the data and the empirical results. The last section discusses the

main results.

4.1 Introduction

On 19th October, 1987, the S&P 500 index fell about twice as much as any

day recorded throughout all of its history. About $500 billion were lost in

one day while major stock markets around the world crashed as well. “The

crash of October 1987 and its Black Monday on October 19 remains one of

the most striking drops ever seen in stock markets, both by its overwhelming

amplitude and its encompassing sweep over most markets worldwide” (Sor-

nette, Malevergne, and Muzy (2003)). In 1989, the price bubble of Japanese

stock started to deflate and three years later, the Nikkei index dropped to

17,000 from 39,000, leading to an financial crisis in Japan. In December 1994,

Orange County declared bankruptcy by announcing that the investment pool

of interest rates had suffered losses around $1.6 billion. This was the largest

financial failure ever recorded by a local government in US history. For banks

and financial institutions, risk management plays a very important role, be-

cause if there is an error in estimating the risk level, then it may affect a

bank’s whole investment strategy.
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In 2008, economic storms were rife all over the world. Merrill Lynch and AIG

which were supposed to be “too big to fail” finally went wrong under the heavy

weight of leverage, liquidity problems and poor risk management. Since the

1960s the flexible exchange rate has led to more volatility in the FX market.

The reality is challenging the whole financial theoretic system because of the

increasing volatility. To manage the risks, a robust risk measurement model

is needed to prevent the major crises and send advanced warning signals.

There are several existing standard risk measurement models discussed in the

literature. Value-at-Risk (VaR) is one of the most widely used tools for mea-

suring the market risk of financial assets. According to the Basel Committee,

banks have to report the 10-day VaR of portfolios. The common way to fore-

cast the 10-day VaR is to use the square-root-of-time method which scales the

short-term horizon VaR to a longer-term horizon VaR, implicitly assuming

that the quantile of the distribution scales like the variance (Fama (1965)).

However, this method is doubted by many researchers as it is not valid when

the underlying asset return distribution is not Gaussian. The stylised facts

of empirical financial asset returns violating the normality assumption have

been documented by many authors (see, e.g., Cont (2001)). In particular,

Danielsson and Zigrand (2004) analyse the behaviour of the square root rule

when the underlying stochastic process has a jump diffusion component, with

the conclusion that the resulting VaR measure underestimates the risk (see

also Menkens (2008)).

The key motivation of this chapter is to suggest a more flexible and robust

approach to forecast the market risk, based on the power law framework that
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recently has gained much attention for its flexibility and scale free mathemat-

ical properties. The traditional methodology is to build a model first based

on some assumptions, then to draw the conjecture. The scaling law methods

in this chapter analyse all tick-by-tick market data, then develop models to

explain the patten based on the observed events and the statistical properties

of the data. Modelling financial time series using the scaling law method can

overcome the limits of return distribution assumptions. For example, the

stylised facts of financial returns have been first documented to violate the

log-normality assumption (Fama (1965)). Also, fat-tails and asymmetry are

commonly found in financial return distributions. Glattfelder, Dupuisy, and

Olsen (2011), recently found statistical relationships of different features of

tick data in the FX market, namely scaling laws. Among the 12 different

scaling laws, we link the maximal price change scaling laws to predict the

market risk. We further extend their method and propose innovative scal-

ing law models for risk management. In the rest of this chapter, we will

present three new scaling laws based on the positive or negative maximal

price change within a given period of time. The new scaling laws can give a

better forecast of the market risk (10 day losses), even in crisis periods.
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4.2 Literature Review

4.2.1 Concept of Power Laws

Power laws are found in many fields, such as physics, computer science,

bionomics, population statistics, economics and finance. Over a half century,

power law theory has gained much attention due to its special mathematical

properties, which sometimes brings on marvelous consequences.

Power laws are scaling functions2, which propose a special mathematic rela-

tionship between two scalar quantities. Mathematically, a power law function

can be written as:

f(x) = cxk

with c > 0 and k ∈ R ,

where k is a scaling parameter or power law index. On logarithmic scales,

power laws are straight lines, and the relationships become linear,

lnf(x) = lnc+ klnx

with c > 0 and k ∈ R ,

where k is the slope of the straight line.

A so-called power-law distribution implies that small occurrences are ex-
2Power laws have the same meaning as scaling laws. We use different names in this

chapter with respect to the original authors and works.
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tremely common, whereas large instances are extremely rare. “ Power law

distributions are scale invariant in the sense that the relative probability to

observe an event of a given size and an event ten times larger is independent

of the reference scale ” ( Bauhaus (2001), page 2).

The most important property of power laws is scale invariance which means a

power law does not change for any scale. Several famous power laws observed

in many science areas give us a preliminary understanding of scale invariance

(see details in Mitzenmacher (2003)). The most fundamental and famous

two power law distributions are the Pareto distribution Pareto (1896) and

the Zipf distribution (Zipf (1949)).

In the nineteenth century, Pareto (1896) discovered the “80-20 rule” in in-

come distribution which means 80% of the wealth is owned by 20% of the

population as a whole. He created a mathematical formula of a power law

distribution as P (W ) ∼= (Wµ
0 )

(W (1+µ))
, where P (W ) is the individual wealth distri-

bution density; W0 is the minimum possible value of W and µ represent the

large W’s decay factor of distribution: a smaller value of µ denotes a slower

decay and a larger poverty gap.

The well known Zipf’s law named after the Harvard linguistic professor

George Kingsley Zipf (1949) for the probability of occurrence of words or

income and other items. The general form of the Zipf law is

P (r) = Kr−q with P (r) > P (r + 1), (4.1)

where P (r) is probability of an event (such as: the frequency of word will oc-
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cur in English language) which is related to its’s rank; K is a scaling constant;

r is its rank in descending order and q is some parameter of the distribution.

Shiode and Batty (2000) gives a normal way to fit Zipf’s distributions to

data which is to perform a linear regression of log(P (r)) on log(r) where the

parameters log(K) and q are the intercept and slope of the relationship

log(P (r)) = log(K)− qlog(r), (4.2)

respectively.

Vandewalle, Briscois, and Lefebvre (2000) apply a new Zipf-like method to

find patterns and correlations in the world trading systems. They emphasise

that the n-Zipf analysis is very useful for abnormal correlations in financial

data or cross-correlations between different markets.

Newman (2005) gives plenty of examples of different power laws, such as the

distributions of earthquakes, the sizes of cities, solar flares, people’s invest-

ments and people’s personal fortunes all appear to follow power laws. Power

laws as an important modelling clue are also useful in the financial data anal-

ysis. Gabaix (2009) presents a detailed survey on empirical power laws in

economics and finance with many empirical examples.

The discussion surrounding the concept of power laws, thus far has both

defined power laws and subsequently identified two valuable laws. However

has only done so from a theoretical viewpoint. Therefore, the next section

will now introduce and discuss the real-world applications of power laws in

relation to financial risk management.
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4.2.2 Power Law Applications in Financial Risk Man-

agement

Academic research on power law scaling in financial time series is fairly recent.

Müller, Dacorogna, Olsen, Pictet, and Morgenegg (1990) find an empirical

scaling law of the mean absolute changes of logarithmic prices against the

time interval. Bauhaus (2001) claims that the effort of research in power law

in financial areas is insufficient. Furthermore, he presents several models of

power-law distributions and power-law correlations in a financial time series.

His active study gives many motivations and ideas to people who intend to

dedicate themselves to this area.

The power law concept has also been applied to risk management and volatil-

ity modelling. Generally speaking, there are two method categories which are

volatility scaling and scaling of quantiles. Barndorff-Nielsen (1998) analyses

the empirical scaling law on volatility at different time scales. He defines the

standard deviation in high frequency data as the average of absolute loga-

rithmic price changes which is the same as Müller, Dacorogna, Olsen, Pictet,

and Morgenegg (1990). The authors also find a power law relationship be-

tween volatility and time interval. Alentorn and Markose (2008) find two

empirical scaling laws for Economic VaR (E-VaR) and implied volatility. By

using the scaling law, they can remove the maturity dependence to compute

E-VaR values at any time horizon.

The regulators commonly use the square-root-of-time (SQRT) rule to get 10-

day VaR. The idea of SQRT is using the daily VaR to scale up to get d-day
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VaR (like 10-day VaR) and the formula can be written as (see Danielsson

and Zigrand (2004)):

V aRaP
d =

√
dV aRa(P

1).

However, this method is not valid when the underlying asset return is non-

normal distribution. Danielsson and Zigrand (2004) analyse the behaviour

of the SQRT rule when the underlying stochastic process is a jump diffusion

process. They point out that the VaR estimated by using the SQRT rule

tend to underestimate the market risk. Menkens (2008) applies the Hurst

coefficient to extend the common method to compute d days VaR from one

day VaR for several quantiles. Menkens transforms the formula as

V aRaP
d = dHV aRa(P

1)

where H is the Hurst coefficient. From his results, we can calculate how

much the risk will be over-or-underestimated.

In risk management areas, most of the literature related to power law appli-

cations deal with the issue of converting 1-day volatility (or VaR) to d-days

volatility (or VaR). However, those works are all done within single time scale

analysis. In this chapter, we contribute new knowledge to the current body

of literature. The new scaling law method proposed is based on multiple time

scale analysis and can be a promising way to gain new insights into the risk

measurement. The details of the scaling law methodology will be introduced

in the next section.
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4.3 Scaling (or Power) Law Methodology

The most common sampling method in traditional time series analysis is only

to record the last observation at equally spaced time intervals. The equal

time sampling method ignores excessive dynamic price movements during

the sampling period if the window chosen is too wide. In contrast, the em-

pirical scaling law method applied in this chapter is based on a multiple time

scale analysis. The advantage of multiple time scale study is that all data

points observed in different sampling frequencies are accounted for analysing

purposes.

Glattfelder, Dupuisy, and Olsen (2011) discover 12 new scaling law relation-

ships, which capture different stylise facts in FX data. Among the 12 scaling

law relationships in Glattfelder, Dupuisy, and Olsen (2011), the maximal

price change (MPC) scaling law is the one we might expect to contribute to

risk management. In this section, we will introduce the MPC scaling law

first, and then present three new scaling laws. The core message of this

study is that the scaling laws can be used to capture the volatility of the

fundamental asset and its dynamic nature across time.

4.3.1 The MPC Scaling Law

Consider an electronic trading platform recording all market activities in real-

time and let X denote the mid-price of the quote with Xt = (bidt + askt)/2.

Define the maximal price change (MPC) as the difference between the highest

and the lowest observed price X within a certain time interval ∆t, i.e.
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∆max
X (∆t) = max(X(t−∆t, t))−min(X(t−∆t, t)) . (4.3)

where ∆max
X (∆t) denotes the MPC ; max(X(t−∆t, t)) and min(X(t−∆t, t))

are the highest and lowest observed price during a time horizon.

t−1 t

1.4589

1.4589

1.459

1.4591

1.4591

1.4591

1.4592

1.4592

1.4593

1.4593

1.4594

time

E
U

R
−

U
S

D

10 minutes time interval

lowest
value

highest
value

MPC

Xt−1 Xt

Figure 4.1: An illustration for calculation of the maximal price change (MPC)
in a 10 minute interval. In the figure, the MPC is the difference between the
highest value and the lowest value of the FX within 10 minute time intervals.
The 10 minutes price difference with equally spaced time is calculated by
Xt −Xt−1.

Figure 4.1 illustrates that the price change event is captured by a total price

move between the highest and lowest price in a 10 minute time interval.

The common price change ∆X(∆t) with ∆t = 10 (minute), is computed by

conventional equal-time sampling method ∆X(∆t) = Xt − Xt−1, which is

very close to 0 in this case. However, the magnitude of MPC in 10 minutes

is: ∆max
X (∆t)= 0.04%. This indicates that the conventional method ignores

the dynamic change of events during the time interval.

We apply the original MPC scaling law (L) by Glattfelder, Dupuisy, and

Olsen (2011) that describes

111



L : ⟨∆max
X (∆t)⟩p = c(∆t)k (4.4)

where ∆max
X (∆t) denotes average maximal price change within a certain time

interval ∆t; c is a constant and k is called the scaling exponent. ⟨x⟩p denotes

the average operator which is defined as: ⟨x⟩p = (1/n
∑n

j=1 x
p
j)

1/p where n

the number of the observations and p = 1, 2, which is the arithmetic mean

when p = 1 and the standard variance when p = 2.

This scaling law L investigates the relationship between the average maximal

price movement within a time interval (which is a random variable) and the

size of that time interval (which can be pre-specified). If the scaling-law L

exists, the quantity ∆t should satisfy

⟨∆max
X (∆t)⟩p ∝ ∆tk (4.5)

which means that ⟨∆max
X (∆t)⟩p is directly proportional to ∆tk (see, e.g.,

Clauset, Shalizi, and Newman (2008)). If we simply take the logarithm of

both sides of equation (4.4), then the power law relationship changes to

L∗ : log(⟨∆max
X (∆t)⟩p) = log(c) + k · log(∆t) . (4.6)

The transformed scaling-law L∗ now describes a linear relationship con-

trolled by the slope k and the intercept log(c). We chose many different

threshold time intervals ∆t = {0.5, 1, 2, 4, 8, 16, 32, 63, 128, 256, 512} (hours)
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to obtain the respective average MPC for the individual sampling window,

E(∆max
X (∆t)). Then, we used simple linear OLS regression to estimate the

MPC scaling law parameters in equation 4.6 (see also Arnold (1983)). Fig-

ure 4.2 shows an example of the obtained regression line for the FX pair

EUR-USD using data from 2007.
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Figure 4.2: An example of the estimated scaling law regression line L∗ for
the FX pair EUR-USD using data observed in 2007
Note: The x-axis shows the time interval ∆t and the y-axis is the average MPC for the chosen
time interval.

In practice, comparing dips and peaks are important information for traders,

which is hard to visualize in real time. The biggest challenge is that you never

know when the dips and peaks started and ended. To solve this problem,

the MPC in L catches every peaks and low point due to the properties of

multi-timescale analysis. Furthermore, we also can calculate how large of the

price depth is based on the relationship from L. In the next section, we will

propose three new extended scaling laws which can be used to capture the

volatility of the fundamental asset and its dynamic nature across time.
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4.3.2 New Extended Scaling Laws

Extending the maximal price change event paradigm by Glattfelder, Dupuisy,

and Olsen (2011), we further observe new, stable patterns of scaling laws by

replacing E(∆max
X (∆t)) in equation 4.4 with three new modified measures,

which are the positive (or negative) MPC scaling law (L1), the exponential

moving average MPC scaling law (L2) and the expected tail loss MPC scaling

law (L3).

The Positive or Negative MPC Scaling Law

In the first model extension L1, we differentiate between the positive and

negative maximal price change (PMPC and NMPC) within a certain time

horizon. The aim is to separate the different dynamic volatility components

generating a profit or a loss:

L1 : E(∆max±
X (∆t)) = c(∆t)k (4.7)

where

∆max+
X (∆t) = max(Xs −Xr) (4.8)

∆max−
X (∆t) = min(Xs −Xr) (4.9)

Xs (or Xt) is the observed price at time s (or t) and ∀s, r ∈ {t−∆t, t} with

s > r.
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Figure 4.3 illustrates how to obtain the positive and the negative MPC during

a 10 minute time interval. In the previous example (see Figure4.1), the MPC

∆max
X (∆t)= 0.04% and ∆X(∆t) ∼= 0.00%. For the new scaling law L1,

we observed two extremal price change events (with ∆t = 10 (minute)):

∆max+
X (∆t) = 0.02%(PMPC) and ∆max−

X (∆t) = 0.04% (NMPC). The new

scaling law (L1) also reflects the the asymmetric price impact between gain

and loss. As shown in Figure 4.3, the new law L1 captures two observed

extreme events: Positive MPC and negative MPC. Within the the selected

10 minutes, the magnitude of price change is larger in loss than gain.

1.4589

1.4589

1.459

1.4591

1.4591

1.4591

1.4592

1.4592

1.4593

1.4593

1.4594

time

E
U

R
−

U
S

D

10 minutes time interval

Positive MPC

Negative MPC

Figure 4.3: An illustration for calculation of the positive and negative max-
imal price change in a 10 minute interval.

The Exponential Moving Average MPC Scaling Law

In the second new scaling law (L2), the exponential moving average maximal

price change (EMAMPC) is used instead of the MPC to examine the expo-

nential decay impact in consecutive time intervals. The idea behind the EMA

method is to treat recent data as more relevant and more important com-
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pared to the historical data. Similar to the other models, the entire in-sample

time span T is again divided into n equally-spaced sub-intervals. However,

the EMAMPC approach employs the exponentially decreasing weights which

give the least weight to the oldest MPC and increase weights for more recent

ones, i.e.

EMAMPC(∆t) =
n∑

i=1

wi(∆
max±
Xn−i

(∆t)) (4.10)

where wi is the weight factors of PMPC (or NMPC) which decrease expo-

nentially as: wi =
δ×(1−δ)(i−1)∑n
i=1 δ×(1−δ)(i−1) with property Σn

i=1wi = 1 and δ = 2
n+1

.

This yields

L2 : EMAMPC(∆t) = c(∆t)k . (4.11)

Compared with L1, the EMAMPC scaling law L2 applies weighting factors

which decrease exponentially and moving forward. In other words, we treat

the recent MPC events more valuable. In investing, traders are alwasys

waiting for the signal to buy or sell. The EMAMPC scaling law places more

emphasis on recent events which can give the trader more clear signals faster.

Expected Tail Loss MPC Saling Law

The demand for extreme risk analysis is growing in the wake of financial crisis.

The last new scaling law (L3) focuses on the extreme tail loss distribution of

E(∆max
X (∆t)) for a given ∆t (defined as Formula 4.12). The biggest problem

of extreme risk analysis is inadequate data for robust quantification. The

new L3 is based on a multiple time scale analysis and filtered the valuable
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information from every price change event. This method which focus on the

worst losses, has sufficient data for estimation to tackle this problem.

The expected tail loss scaling law (ETLMPC) L3 evolves from the standard

expected tail loss (ETL) definition. First, we defined the ETLMPC as the

mean of the q-tail distribution of MPC and depends on both q and ∆t as

ETLMPC(q,∆t) = E(∆max±
X (∆t)|∆max±

X (∆t) < ∆max±
X (∆t)q)

where q is the probability of the quantile ∆max±
X (∆t)q.

Accordingly, the ETLMPC scaling law L3 is depend on the size of the poten-

tial mean PMPC or NMPC (defined in equation 4.7) beyond a given quantile

∆max±
X (∆t)q. Then we can derive

L3 : ETLMPC(q,∆t) = c(∆t)k (4.12)

The L3 measures the expected MPC in the worst q% of the cases, which

is more sensitive to the shape of the tail of the MPC distribution. The

study of ETLMPC scaling law has led to important research on extreme risk

management. In the worst scenario cases, we can use L3 to measure and

monitor the extreme market risk.

In this section, we introduced four scaling laws which are suggested for po-

tential application in risk management. In the next section, we focus on the

empirical application.
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4.4 Empirical Analysis

The scaling law analysis in this chapter heavily relies on the price change

event-driven process of empirical time series. The first main experiment

in Section 4.3.2 shows the estimation of parameters for the standard MPC

scaling law model (L) and the robustness check (Section 4.3.2). The second

main results exhibit the risk forecasting performance of different proposed

models (Section 4.3.3).

4.4.1 Data Description

The empirical experiment uses tick-by-tick data for five currency pairs which

are EUR-USD (Euros - United States Dollars), AUD-EUR (Australian Dol-

lars - Euros), SGD-USD (Singapore Dollars - United States Dollars), HKD-

USD (Hong Kong Dollars - United States Dollars) and AUD-USD (Australian

Dollars - United States Dollars). The data set is provided by Olsen Finan-

cial Technology and the sampling period is from 1st January, 2005 to 31st

December, 2008. It covers the financial crisis in this period.

4.4.2 Estimation of MPC Scaling Law Parameters and

Robustness Check

Experiments are run to check for the stability of the original MPC scaling

law parameters. We assume a linear relationship between the mean of log

MPC and log (∆t) as defined in equation 4.6. Estimation of the scaling laws
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Table 4.1: The window sizes of the two experiments

In sample data Out of sample data Rolling window size
Experiment 1 6 months 6 months 6 months
Experiment 2 1 year 6 months 6 months

is done by simple OLS regression with different in-sample window sizes.

In this section, the first step is to estimate the MPC scaling law parameters

with different window sizes to forecast the MPC value. The second step is

the performance test with different out-of-sample data sets. Details of two

empirical experiments are shown in Table 4.1. The only difference between

the two experiments is the size of the in-sample data. For example, when

the out-of-sample period is from 01/07 to 06/07, the in-sample period for

experiment 1 (E1) is from 07/06 to 12/06 and for experiment 2 (E2) from

01/06 to 12/06. We set the same period for the out-of-sample size as 6

months for reasons of better comparison.

Parameters Estimation

The power law distribution is fit by the given data set, with the assumption

that the law parameters depend on the time horizon thresholds and the mean

of the MPC value. First, 11 threshold time periods are chosen with regular

steps ∆t = [0.5; 1; 2; 4; 8; 16; 32; 64; 128; 256; 512](hours). Because of the

scale invariance property of scaling law, the law should hold for any chosen

set of thresholds. Then we calculate the mean of MPC in equation (4.3) with
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different threshold periods.3

Table 4.2: Estimated MPC scaling law parameter
values

Experiment1 (E1) Experiment2 (E2)

AUD-EUR

In-sample k log(c) In-sample k log(c)

07/06-12/06 0.4409 -5.6643 01/06-12/06 0.4428 -5.5692
01/07-06/07 0.4506 -5.6117 07/06-06/07 0.4459 -5.6375
07/07-12/07 0.4805 -4.9972 01/07-12/07 0.4698 -5.2575
01/08-06/08 0.4565 -5.2179 07/07-06/08 0.4698 -5.1011

AUD-USD

In-sample k log(c) In-sample k log(c)

07/06-12/06 0.4202 -5.1686 01/06-12/06 0.4346 -5.0881
01/07-06/07 0.4386 -5.0755 07/06-06/07 0.4301 -5.1204
07/07-12/07 0.4656 -4.4874 01/07-12/07 0.4558 -4.7384
01/08-06/08 0.4539 -4.5896 07/07-06/08 0.4600 -4.5371

EUR-USD

In-sample k log(c) In-sample k log(c)

07/06-12/06 0.4522 -5.6665 01/06-12/06 0.4451 -5.5847
01/07-06/07 0.4351 -5.4984 07/06-06/07 0.4431 -5.5783
07/07-12/07 0.4595 -4.9188 01/07-12/07 0.4506 -5.1666
01/08-06/08 0.4778 -4.3757 07/07-06/08 0.4713 -4.6098

HKD-USD

In-sample k log(c) In-sample k log(c)

07/06-12/06 0.4170 -9.7988 01/06-12/06 0.4469 -9.6871
01/07-06/07 0.4877 -9.4021 07/06-06/07 0.4585 -9.5776
07/07-12/07 0.4423 -9.3153 01/07-12/07 0.4623 -9.3548
01/08-06/08 0.4739 -9.6828 07/07-06/08 0.4541 -9.4812

SGD-USD

In-sample k log(c) In-sample k log(c)

07/06-12/06 0.4611 -6.3379 01/06-12/06 0.4662 -6.3104
01/07-06/07 0.5060 -6.0699 07/06-06/07 0.4862 -6.1939
07/07-12/07 0.4899 -5.9666 01/07-12/07 0.4968 -6.0157
01/08-06/08 0.5192 -5.8162 07/07-06/08 0.5052 -5.8878

Note: log(c) denotes the slope and k denotes the inter-
cept of the linear relationship of MPC scaling law (see
equation (4.6)).

The MPC parameters are estimated with a rolling time window with a fixed

size of in-sample data. Table 4.2 presents the estimated MPC scaling law
3We only imply the mean MPC scaling law with p = 1 for better comparison with other

scaling laws.
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parameters for five currency pairs of data which are EUR-USD, AUD-EUR,

SGD-USD, HKD-USD and AUD-USD. The MPC scaling law parameters

log(c) and k are the estimated slope and intercept, respectively. For example,

the estimated parameters k = 0.4409 and log(c) = −5.6643 are shown on the

first row left-hand side of Table 4.2 and the in-sample data period covers

from June 2006 to December 2006 for AUD-EUR. Then we can get a linear

relationship as : log(⟨∆max
X (∆t)⟩1) = −5.6643 + 0.4409 ∗ log(△t).

Generally speaking, the exponents k for all pairs of currencies are around

0.45, which indicates the effect of a one-unit change in variable log(∆t) on

variable log(⟨△(Xmax)⟩p=1. In other words, if time increases by a logarithm

of one hour, the MPC value would increase around half a unit and the es-

timated parameters would change in different time periods. However, the

differences are relatively small except for the parameters in 2008 (see Table

4.1). Basically, the increase in value of the parameters means a higher volatil-

ity. The main reason for this is the crash of the financial market in 2008 and

the higher extreme price movements led to the increase of the MPC scal-

ing law parameters. According to the estimated results we can distinguish

the stylised facts of the normal and abnormal market. For example, we can

set a benchmark of risky signals with the MPC scaling law parameters in

2008. In the next section, modified scaling laws with different time lengths

of in-sample data size are used to forecast the risk in 2008.
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Robustness Check for MPC scaling Law

Due to the scale invariance property of scaling law method, we can use the es-

timated parameters to predict the expected maximal price change within any

time interval. The MPC scaling law performance test starts with several dif-

ferent threshold time intervals namely ∆t =[3; 6; 12; 24; 48; 96; 192](hours).

We choose these time thresholds that are different to those time thresholds

for estimating the scaling law on purpose. Then we calculate the forecasted

MPC value using the estimated MPC scaling law parameters and compare

this with the real mean MPC movement. The objective of the “backtesting” is

to test the forecasting ability of the MPC scaling law. We use the prediction

error terms MPCp
SL−MPCp

ob to check the forecasting performance of MPC,

where MPCp
SL is the estimated value and MPCp

ob is the MPC observed in

the out-of-sample data.

Figure 4.4 plot the estimated MPC scaling laws (in-sample) and correspond-

ing forecasting errors (out-of-sample) for AUD-EUR, and the z-axis shows

the different in-sample time horizon. For the scaling law 3D-plots (a1 and

a2 in Figure 4.4), the x-axis indicates the threshold ticks; y-axis shows the

mean MPC thresholds of the observations. The error terms are plotted,

where the x-axis shows the selected time interval thresholds of the obser-

vations and y-axis shows the prediction errors. The bias tends to increase

with the threshold time horizon. The 3D plots show the scaling relationship

of in-sample log mean MPC within different threshold time intervals. The

prediction errors are presented in four sub figures which express the differ-

ent out-of sample period. The results for the other four currency pairs are
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provided in Figure C.1 to C.4 in Appendix C.

The forecasting errors for all five currency pairs are quite small and exhibit

similar patten, except in the out-of-sample period of year 2008. For sub-

figures b1 to b4 in Figure 4.4, the error terms are negative when the MPC

scaling law of the experiment underestimated the risk, especially in the pe-

riod of 07/2008 to 12/2008 (sub-figure b4). During the crash period, more

big jumps of the price influence the value of mean MPC. The estimated pa-

rameters are not satisfied anymore when the whole market risk level change

too much4. Furthermore, we also can observe that both experiment 1 and

experiment 2 have similar forecasting results for the period of 2007. How-

ever, for 2008, the errors of experiment 1 (red dots) are smaller which means

that the MPC scaling law computed with half year in-sample data performed

better than using one year in-sample data. This lead us to shorten the in-

sample period to get better results on the empirical experiment in the next

subsection.

In general, we find the self-similarity of the relationship between the MPC

and certain time intervals of the underlying process. In other words, the

MPC scaling law reveals the self-similarity property which is an important

characteristic of fractals. The scaling relationships will repeat themselves in

time. By examining the MPC scaling law, one can get better forecasts of the

market risk. Moreover, the flexibility of the MPC scaling law model allows

users to choose any period according to their requirement to track market

risk sentiment.

4To solve this problem, the rolling window size is chosen as 1 day instead of 6 month
in the next section.
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Figure 4.4: The scaling law plot and prediction error plot of out-of-sample
data for AUD-EUR. Note: E1: experiment 1 (6 month in-sample data); E2:
experiment 2 (1 year in-sample data).

124



4.4.3 Application of Scaling Laws to Financial Risk As-

sessment

In the following study, we compare the performance of the risk forecasts of

the four proposed scaling laws L1-L3 with conventional VaR measures and

orignal MPC scaling law L. The conventional VaR measures include the

5%-VaR (V 1), the 5%-ETL, (i.e. the expected tail loss of the 5% tail loss

distribution (V 2)), the 1%-VaR (V 3) and the 1%-ETL (V 4). A backtesting

procedure is introduced to compare the quality of different models.

Design of the Experiment

We conduct an empirical experiment to analyse the performance of proposed

market risk forecasting models. The data used for estimation and forecasting

are the daily prices and tick-by-tick data of five currency pairs which are

EUR-USD, AUD-EUR , SGD-USD, HKD-USD and AUD-USD. Figure 4.5

plots the daily prices for the five different currency pairs from January 2007

to December 2008. Interestingly, the trend of the price curves is similar,

except for HKD-USD.

According to the regulation of Basel III, banks are required to report their

maximum loss over 10 trading days with a 99% quantile. We fit the scaling

laws with tick data with different lengths of in-sample windows to get the

parameters of scaling laws. We compute the daily VaR and ETL using the

previous three years’ daily data (from January 2005 to December 2007). The

criterion to assess the model performance is the daily prediction error of
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Figure 4.5: The daily price of five currency pairs in 2008.

the 10 day actual occurring maximum loss (Basel III), that is the biggest

negative change of daily prices occurred within a 10 day time window. The

whole out-of-sample period is from 1st January 2008 to 31st December 2008.

We take every 10 days maximum loss to be the out-of-sample data from 1st

January 2008 and roll forward by one day.

The first predicted maximum loss will be compared against the actual “max-

imum loss in the next 10 days”, which can be observed at the earliest on 10th
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January 2008, that is the first “realised” maximum loss within the (last) 10

days. The first prediction error is then simply defined as:

first realised maximum loss - first predicted maximum loss ,

expressed in the respective monetary currency units of the FX rates. And

the detailed procedure is as follows:

First, we forecast the daily VaR and ETL (Expected Tail Loss) by us-

ing historical simulation method with daily prices. The square-root-of-time

(SQRT) rule is applied to obtain the 10-days VaR and ETL, i.e. V aRaP
10 =

√
dV aRa(P

1). As the risk forecast for the next 10 days usually has to be

provided on a daily basis, the in-sample windows keep moving forward day

by day, more specifically, dropping one of the oldest data out and taking one

of the newest data in.

Then we forecast 10-days’ market risk with scaling law methods by using tick

data. The first prediction for the “maximum loss in the next 10 days” is made

on 1st January 2008. The obtained number is the first predicted maximum

loss. The scaling law parameters are estimated with five different in-sample

data windows which are 1 year, 6 months 3 months, 2 months and 1 month,

and the time window moves forward with a step size of one day. In other

words, the parameters are re-estimated day by day with updated in-sample

tick-by-tick data sets. The scaling laws state that there is a fixed relationship

between some kinds of average price changes and the time interval . With

estimated parameters, it is straightforward to obtain a linear relationship

between two variables of scaling law. Due to the scale invariance property
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of scaling law method, one can choose any length of the time variable to

estimate the other variable. In this study, the time variable is set as 10-days

for model comparison purposes.

Finally, the whole crash year of 2008 is selected to be the out-of-sample data

period when most risk management tools were claimed failed. We compare

the forecast errors for the five currency pairs as it is more important for

a bank’s risk manager to see whether the necessary capital requirement is

actually achieved or violated. We compare the standard sample moments of

both prediction errors and relative prediction errors for all forecast models.

The forecast errors are the difference between the 10 day actual maximum

loss in the out-of-sample and the predicted maximum loss by the models.

Forecasting Performance Results

As mentioned in the last subsection, the parameters of scaling laws are es-

timated by simple linear OLS regression with five different in-sample data

windows and move forward by one day.5

Figure 4.6 shows the estimated scaling law parameters of EUR-USD with 1

month in-sample data. For comparison purpose, the plot of MPC (L) scaling

law parameters (black line) in the figure are replicated in different sub-figures.

Basically, the different shapes of PMPC and NMPC scaling law parameters

show the asymmetric effect. We can observe that the parameters of NMPC

(red line) for new proposed scaling laws tend to more volatile patterns. The

slope parameters of different scaling laws are shown in sub-figures a2, b2, c2
5For our approach, one day rolling window means large volumes of tick-by-tick data.
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Figure 4.6: The estimated parameters of scaling laws for EUR-USD with
1 month in-sample data (Out-of-sample period is from 01/01/2008 to
31/12/2008). The black lines in the figure display the parameters from the
original MPC scaling law (L). The blue and red lines display the parameters
of positive MPC and negative MPC, respectively, which are used in the new
scaling laws (L1-L3).
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and d2. We can observe that the slope of new scaling laws are more sensitive

than the original scaling law (L). In the sub-figure d1, the intercept of L is

smaller than the intercept of L3 with q=10% in most of cases. Graphs of the

other results are shown in full in Appendix B.

The performance criteria are calculated by prediction errors for all models.

We compared the results of the four scaling law models with different in-

sample data windows and compare them with the benchmarks V 1-V 4 . The

full table of the sample moments of the forecast errors for all five curren-

cies are showed in Tables B1-B4 in the Appendix B. Table 4.3 shows one

currency example, which describe the descriptive statistics of forecast errors

(for the entire out-of-sample) for EUR-USD. Generally speaking, the forecast

errors of new L1 and L2 have a smaller absolute mean than standard meth-

ods. Furthermore, the absolute mean of the forecast errors for same scaling

law method decrease when in-sample period is shorten. The standard devi-

ation changes with a smaller range. The smaller the kurtosis, the less likely

we are to overestimate or underestimate the risk. Significant negative or

positive skewness implies asymmetry of the error’s distribution, which here

corresponds to under-or-overestimation of risk. Generally, kurtosis value are

smaller with the decreasing size of in-sample window.
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Table 4.3: Sample moments of the forecast errors for the VaR
and scaling laws models for EUR-USD.

EUR-USD
Standard methods Mean Std Skewness Kurtosis

V1: VaR (5%) -0.0207 0.0227 1.2733 4.7533
V2: ETL (5%) -0.0542 0.0080 0.4187 3.2199
V3: VaR (1%) -0.0443 0.0235 1.2884 4.7530
V4: ETL (1%) -0.0699 0.0099 -0.5934 4.4132

1 year Mean Std Skewness Kurtosis

L: MPC -0.0142 0.0228 1.1147 4.4674
L1: NMPC -0.0048 0.0227 1.1469 4.4771
L2: EMAMPC -0.0037 0.0227 1.3613 4.9643
L3a: ETLMPC (50%) -0.0169 0.0234 0.7347 3.8628
L3b: ETLMPC (10%) -0.0381 0.0264 -0.1120 3.1835

6 month Mean Std Skewness Kurtosis

L: MPC -0.0298 0.0274 -0.2766 3.2112
L1: NMPC -0.0213 0.0284 -0.4627 3.0587
L2: EMAMPC -0.0251 0.0308 -0.6727 2.9690
L3a: ETLMPC (50%) -0.0399 0.0358 -0.9024 2.9502
L3b: ETLMPC (10%) -0.0749 0.0558 -0.9183 2.4541

3 month Mean Std Sskewness Kurtosis

L: MPC -0.0304 0.0261 0.4314 3.8657
L1: NMPC -0.0217 0.0260 0.3041 3.6495
L2: EMAMPC -0.0239 0.0266 0.1317 3.6062
L3a: ETLMPC (50%) -0.0375 0.0292 -0.1707 3.4069
L3b: ETLMPC (10%) -0.0640 0.0380 -0.7254 3.0580

2 month Mean Std Skewness Kurtosis

L: MPC -0.0277 0.0263 0.3043 3.2957
L1: NMPC -0.0183 0.0253 0.2118 3.3467
L2: EMAMPC -0.0186 0.0241 0.2632 3.3783
L3a: ETLMPC (50%) -0.0355 0.0278 -0.1263 3.1494
L3b: ETLMPC (10%) -0.0581 0.0302 -0.7138 3.2662

1 month Mean Std Skewness Kurtosis

L: MPC -0.0293 0.0255 0.2449 3.3726
L1:NMPC -0.0187 0.0244 0.3385 3.3058
L2:EMAMPC -0.0185 0.0242 0.2618 3.4404
L3a:ETLMPC (50%) -0.0262 0.0247 0.1092 3.1189
L3b:ETLMPC (10%) -0.0395 0.0279 -0.1792 3.008
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For conventional data sampling, one month data means around 30 daily data

sets for the FX market and 22 daily data sets for the stock market which

is too short to analyse. We found a remarkable feature of our scaling law

method was that only one month tick-by-tick data is required to achieve

better forecast. To highlight this feature, Figure 4.7 summarises the four

standard moments of forecast errors between the benchmarks V 1-V 4 (5%-

VaR (V 1), the 5%-ETL, (V 2)), the 1%-VaR (V 3) and the 1%-ETL (V 4))

and the scaling law method with 1 month in-sample data. From the five

graphs in the first left-hand column of Figure 4.7, we can observe that the

mean of forecast error is smaller for L2 with one month in-sample data. For

example, the absolute value of mean forecast error of EUR-USD for V 1 to

V 4 is 0.0207, 0.0542, 0.0443, 0.0699 respectively, but the mean error for L2 is

0.0185. The standard deviation of forecast errors for the common VaR with

quantile (α = 1%) is higher than other methods. Significant negative or

positive skewness implies asymmetry of the error’s distribution, which here

corresponds to under-or-overestimation of risk. From the bar chart (Figure

4.7), one can observe that the new scaling law methods perform better even

with a short data sample. The EMAMPC (L2) is found to be robust, as

it produces more accurate forecasts that exhibit stable results for all five

currencies.
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Our basic criterion for choosing the best performance model is minimising

the forecast errors subject to the 10-days maximum loss under the Basel

III Accord. Additionally, we consider the closest movement of maximum risk

which is more important for investors to have a clear picture of future market

risk.

Figures 4.8 to 4.12 present the graphic results of 10-days’ risk forecasts using

different models (VaR, ETL and scaling laws), where the vertical axis repre-

sents returns, and the horizontal axis represents the period from 1st January

2008 to 31st December 2008. In all figures, the blue line reports for a partic-

ular day the observed maximum loss within the last 10 days. The forecasting

performance in the conventional VaR method is shown in the top left panels

in Figures 4.8 to 4.12, which is neither stable nor acceptable. For 10-days

VaR method, the backtesting numerical results for EUR-USD has violation

rates of magnitude 10.90 % and 5.07 % for 5% VaR and 1% VaR, respec-

tively, which are underestimating the market risk. For HKD-USD, the VaR

method totally overestimates the risk. The other panels in the figures also

show the forecasted mean MPC estimated by the MPC scaling law (L: light

blue line), the NMPC scaling law (L1: green line), the EMAMPC scaling law

(L2: black line) and the ETLMPC scaling law (L3: red line and purple line)

with five different sizes of in-sample data.
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Figure 4.8: The 10-day VaR, scaling laws forecasting results and expected
tail loss for EUR-USD (Out-of-sample period is from Jan 1, 2008 to Dec
31, 2008). The forecasting performance of the conventional VaR methods
are shown in Figure (a), which are VaR (orange line) and ETL (dark blue
line). The other sub-figures (b) to (f) show the forecasting results for five
scaling law methods using different in-sample length, which are MPC scaling
law L (light blue line), the NMPC scaling law L1(green line), the EMAMPC
scaling law L2 (black line) and the ETLMPC scaling law L3 with q = 50%
and q = 10% (red line and purple line).
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Figure 4.9: The 10-day VaR, scaling laws forecasting results and expected
tail loss for AUD-EUR (Out-of-sample period is from Jan 1, 2008 to Dec
31, 2008). The forecasting performance of the conventional VaR methods
are shown in Figure (a), which are VaR (orange line) and ETL (dark blue
line). The other sub-figures (b) to (f) show the forecasting results for five
scaling law methods using different in-sample length, which are MPC scaling
law L (light blue line), the NMPC scaling law L1(green line), the EMAMPC
scaling law L2 (black line) and the ETLMPC scaling law L3 with q = 50%
and q = 10% (red line and purple line).
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Figure 4.10: The 10-day VaR, scaling laws forecasting results and expected
tail loss for SGD-USD (Out-of-sample period is from Jan 1, 2008 to Dec 31,
2008). The forecasting performance of the conventional VaR methods are
shown in Figure (a), which are VaR (orange line) and ETL (dark blue line).
The other sub-figures (b) to (f) show the forecasting results for five scaling
law methods using different in-sample length, which are MPC scaling law
L (light blue line), the NMPC scaling law L1(green line), the EMAMPC
scaling law L2 (black line) and the ETLMPC scaling law L3 with q = 50%
and q = 10% (red line and purple line).
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Figure 4.11: The 10-day VaR, scaling laws forecasting results and expected
tail loss for SGD-USD (Out-of-sample period is from Jan 1, 2008 to Dec
31, 2008). The forecasting performance of the conventional VaR methods
are shown in Figure (a), which are VaR (orange line) and ETL (dark blue
line). The other sub-figures (b) to (f) show the forecasting results for five
scaling law methods using different in-sample length,which are MPC scaling
law L (light blue line), the NMPC scaling law L1(green line), the EMAMPC
scaling law L2 (black line) and the ETLMPC scaling law L3 with q = 50%
and q = 10% (red line and purple line).
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Figure 4.12: The 10-day VaR, scaling laws forecasting results and expected
tail loss for AUD-USD (Out-of-sample period is from Jan 1, 2008 to Dec
31, 2008). The forecasting performance of the conventional VaR methods
are shown in Figure (a), which are VaR (orange line) and ETL (dark blue
line). The other sub-figures (b) to (f) show the forecasting results for five
scaling law methods using different in-sample length, which are MPC scaling
law L (light blue line), the NMPC scaling law L1(green line), the EMAMPC
scaling law L2 (black line) and the ETLMPC scaling law L3 with q = 50%
and q = 10% (red line and purple line).
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In general, the VaR and ETL models tend to respond weakly to new data.

Surprisingly, we can observe that the scaling law methods have more “sen-

sitive” responses to the new data, especially for the smallest in-sample (1

month) window case (sub-figure (f) in Figures 4.8 to 4.12). Furthermore,

we find that sometimes shortening the length of the in-sample window gives

better results. The forecast results with 1 month in-sample show the most

volatile movements but are also closest to the dynamic trend of the maxi-

mum loss. From the graphical results we can also observe that our model

is better able to predict the dynamic movement of risk and volatility than

the conventional VaR model and expected tail loss model. For all series, the

maximum loss has some big jumps from June 2008 to October 2008, but after

that period, the maximum loss shrinks. This trend is coincidental with the

forecasting result of scaling law models with 3 months, 2 months and 1 month

in-sample data (sub-figure (d), (e) and (f) in Figures 4.8 to 4.12). However,

the conventional risk measures all fail to forecast the extreme losses. Overall,

the shape of the curve for 1 month in-sample data is closest to the real loss

movement.

The ETLMPC scaling laws L3 turned out to overestimate the risk in most

cases, especially under the quantile α=10%. However, L3 can be used to

forecast the extreme event risk for some future time interval. As shown in

the graphs, the risk curves (red line) forecasted by L3 with q=50% are closer

to every big jump of maximum loss in 10 days. The users can obtain the

optimal model by changing different quantile constraint.

The empirical results obtained by the MPC scaling law methods show that
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the new method with multiple time scales can forecast the market risk better

and use a data set of a much shorter time period. The most striking feature of

our methods is that ‘intraday’ proportionality is the same as that of longer-

term data of days, weeks, months and even years. This self-similarity of

scaling law allows financial analysts to check the maximum loss in any time

interval, not only for traders with very short investment horizons (of probably

less than 1 day) but also investors with long holding periods.
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4.5 Conclusion

The objective of this chapter is to provide alternative robust risk manage-

ment tools based on multi-time scale analysis. The principal advantage of

embedding the multi-time scale method into risk management. Following

an approach by Glattfelder, Dupuisy, and Olsen (2011), we propose a new

empirical framework for measurement of risk to obtain a robust risk manage-

ment strategy. According to Basel III, all banks are required to report the

10-day VaR, and the conventional method is to scale the 1-day VaR to the

10-day VaR which is not valid as the return of underlying assets are usually

not normally distributed. However, scaling law methods are distribution free.

The widely applied method of sampling daily return in the common VaR

framework ignores dynamic price changes during the trading day. The em-

pirical scaling law method in this chapter is based on the multiple time scale

analysis. Ultra-high frequency data sets contain all time scales like the foot-

print of traders which comprises all information of the market. The principle

advantage of such models is the ability to capture a full picture of possible

loss scenarios of different time scales which gives a better understanding of

the dynamic nature of the FX market.

Our first contribution is to propose three new scaling law methods in risk

measuring and forecasting. Three modified MPC scaling law methods were

compared with the general MPC scaling law and normal VaR method for

the period from January 2008 to December 2008. The backtesting results

provide evidence that the modified MPC scaling law methods are robust, in

142



that it minimises the forecast errors and is closer to the real loss movement,

including the tail event in a crisis.

Furthermore, the attraction for researchers in using the scaling law method

is that they do not need to worry about the shortage of the data. Our second

contribution is that we only use one month of in-sample high frequency data

which can already provide good predictions, whereas for the conventional

VaR at least two years of data is needed to obtain a reasonable result as

the conventional risk measurement method requires regularly spaced time

series which samples data with particular time horizons (usually daily). In

contrast, the scaling law method incorporates all the information for different

time scales.

Furthermore, larger window length may also contain the old data which has

become irrelevant, especially in a financial crisis period. A financial crisis

is like an earthquake; it is very dangerous and costs a lot if the likelihood

or the size of a major crash is underestimated. Hence, we need to think

more carefully when we measure the risk during a crisis. One reason for

conventional risk measurement failing is that it is based on a single time

scale data set. Longer time horizon data sets which include before, during or

after the crisis period is needed to forecast risk. Extreme events may occur by

extremely small changes during the long time horizon. In other words, when

in a crisis, we measure VaR with a confidence level equal to 95% or 99%. It

is equivalent to the framework for the short term data set but does not hold

for the long term data set. For example, over a ten year data term, the 2008

crisis event is the 99.9999% tail event, not the 99% event. When the model
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is estimated using a long term data set, we need to incorporate the correct

factor for that. Due to the scale invariance and short term data properties

needed, this chapter suggests using the scaling law method to measure and

forecast risk during a crisis period. When we use short term data within a

crisis to analyse extreme event risk, it is much like the chance of being hit by

lightning during a storm compared to a clear sunny day (long term data).

Therefore, the approach based on the MPC scaling law should be considered

as a new standard measurement of risk. Also, this study is just a starting

point, more efforts need to be put into the scaling laws research in financial

risk management in order to improve the understanding of the market be-

haviour. For example, incorporating the relationship between volume and

price impact could evaluate the liquidity risk of the asset.
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Chapter 5

Summary

This thesis has investigated the risk measurement applications using high-

frequency data. The aim was to address three important issues: the intraday

Value at Risk (IVaR) forecasting performance, the asymmetric effects of liq-

uidity risk adjustment in long and short position VaR, and using scaling laws

to measure market risk. The first part of the study, comprising of chapters

2 and 3, investigated the issue of risk measurement on a single time scale

method basis. The second part of the study, the analysis in Chapter 4, is

extended to a multiple time scale framework by using an empirical scaling

law method.

Today’s trading system forces firms to continuously build their own strategies

to beat the market. In Chapter 2, we explored the market risk measurement

based on high-frequency measures of volatility with selected stocks in three

different sectors. The conventional VaR is a rudimentary measure of risk and

needs to be improved. IVaR can provide a real-time market risk measure-
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ment which is beyond the common daily calculated conventional VaR model.

Parametric as well as non-parametric procedures are discussed. Beyond the

results by Giot (2005), we quantify intraday market risk with much shorter

time intervals. So far, popular approaches of computing IVaR mainly con-

centrate on single regime analysis. This chapter further contributes towards

a more accurate IVaR based on a Markov Regime Switch (MRS) GARCH

model. Nevertheless, the MRS-GARCH model can capture the structure

changes in high-frequency return.

Chapter 2 has also provided the backtesting results for comparing the risk

forecasting performance of different risk measurements. The proposed histor-

ical simulation method provided a really good performance considering the

observed failure rates and results of the Kupiec test. According to results of

the failure rate and Kupiec’s test, the GARCH type models based on nor-

mal innovation are superior to the models with Student-t innovations. The

IVaR results are too conservative for the models that rely on the Student-t

distribution, especially in the 1 minute frequency case. The empirical re-

sults confirm that the MRS-GARCH model with normal innovations lead

to considerable improvement in forecasting IVaR for all three different time

frequencies. The empirical findings for MRS-GARCH IVaR, in the high fre-

quency context, are new to the literature. The chapter therefore provided a

practical application of intraday VaR measures for high-frequency traders to

quantify the risk before the end of the business day.

Chapter 3 proceeds into the analysis of liquidity risk in high-frequency trad-

ing. The assumption of conventional VaR measures is that the asset can be
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executed at mid-price. However, this assumption does not hold in reality, in

particular when investors execute large trades. The motivation of this chap-

ter was to provide a new practical empirical technique which can help users

to quantify their risk level as a function of the trading size and positions. We

proposed an extended VaR measurement by incorporating the liquidity risk

in intraday trading strategies when analysing limit order book data. The

focus is on the integration of asymmetric information, upward or downward

risks, into the input factors of forecast variables.

Chapter 3 also suggests to analyse bid spread and ask spread instead of the

common bid-ask spread. We find that there exists an asymmetric behaviour

of bid spread and ask spread between different trading volume. By taking

account of the actual liquidity risk faced by investors with different trading

size and positions, we proposed a liquidity adjusted intraday VaR (LAIVaR).

Our approach improves the BDSS model by incorporating the endogenous

liquidity risk effect instead of the bid-ask spread. In contrast to Giot and

Gramming (2006), the study in Chapter 3 focuses on the asymmetric be-

haviour of both upside and downside LAIVaR and provides liquidity risk

adjustments to specify the proportion of liquidity risk. The liquidity adjust-

ments provides significant and specific information for short-term investors

who want to go long or short. Therefore, the modelling of the LAIVaR

allows traders to adjust positions with a benchmark for the optimal order

scheduling. Furthermore, we apply the bivariate analysis to investigate the

asymmetric effect of the bid and ask side. The results of liquidity adjustment

show that the liquidity risk is a crucial factor in estimating VaR. Neglect-
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ing liquidity cost will lead to underestimation of risk in a conventional VaR

model.

In the second part of this thesis, we extended the research by introducing a

multiple time scale method based on scaling law for risk measurement and

forecasting in the FX market. The multiple time scale analysis has the ad-

vantage that it incorporates information about the footprint of traders using

different time horizons and gives a better understanding of the dynamic na-

ture of the financial market. In Chapter 4, the 10-day VaR is calculated

as a benchmark of performance comparison which is required by regulatory

authorities. The conventional measurement is to scale the 1-day VaR to the

10-day VaR which is not appropriate, given that the return of financial as-

sets are usually not normally distributed. This chapter proposed three new

empirical scaling laws based on the original maximal price change (MPC)

scaling law by Glattfelder, Dupuisy, and Olsen (2011). The most valuable

property is the scale invariance which allows financial analysts to assess the

maximum loss for any time interval. The strong evidence of the effectiveness

of the new scaling law methods are provided in the model performance sec-

tion. The out-of-sample data covers the special crisis period in 2008 when

most risk measurement tools failed. The forecasting performance of three

modified MPC scaling law methods with the general MPC scaling law and

normal VaR method are provided. The empirical results show that the 10-

day maximum loss calculated by using a modified MPC scaling law exponent

performs better and is closer to the real loss, including the tail event in the

crisis.
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Furthermore, using a high frequency data set provides the fundamental sta-

tistical properties and full information of the market. The scaling law method

with only one month in-sample data can already provide a good prediction

of risk, whereas for the conventional VaR at least ten years worth of data is

needed to obtain a reasonable result.

Overall, this thesis has presented a very practical and comprehensive study

of the risk measurement based on high-frequency data. Subject to today’s

trading environment, a detailed empirical analysis is proposed to overcome

the limitations of current popular risk assessment models. In terms of future

research, some suggestions are highlighted. As a most widely used risk mea-

surement, the VaR model has to be more sophisticated. The main volatility

forecasted model used in this thesis is based on the GARCH family. The

extended VaR model should go beyond market risks to take other risk fac-

tors into account. Secondly, the multiple time scale analysis in this thesis

is based on the different empirical scaling laws. The empirical results of the

scaling laws method show that modified model specifications for forecasting

the market risk perform better and use a much shorter time period data

set. It would be interesting to develop new scaling laws. Additional research

could also attempt to incorporate the relationship between volume and price

impact which can capture liquidity risk more accurately.
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Appendix A

A.1 Estimated Parameters for AR-GARCH Type

Models
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Table A.1: Estimated parameters for NR (In-sample)

NR
1 minute 5 minutes 10 minutes

AR-GARCH µ 0.0233
(0.0124)

0.0131
(0.0258)

0.0540
(0.0363)

δ 0.0125
(0.0155)

0.0551
(0.0381)

−0.1361
(0.0471)

a0 0.0440
(0.0017)

0.5048
(0.0502)

0.4234
(0.0498)

a1 0.1173
(0.0031)

0.3960
(0.0332)

0.3211
(0.0773)

β1 0.8749
(0.0038)

0.2200
(0.0237)

0.4536
(0.0393)

AR-GARCH-T µ 2.9E − 6
(6.2E−4)

0.0066
(0.0314)

0.0217
(0.0370)

δ −0.0083
(0.0073)

−0.0882
(0.0257)

−0.0542
(0.0442)

a0 2.0E − 5
(1.7E−8)

0.3547
(0.1068)

0.3152
(0.1202)

a1 0.8485
(0.00858)

0.4237
(0.0427)

0.3152
(0.1066)

β1 0.1015
(0.0015)

0.5734
(0.0636)

0.5858
(0.0978)

ν 2.1326
(0.0116)

2.8388
(0.2740)

3.2088
(0.5310)

AR-EGARCH µ 0.0027
(0.0073)

0.0499
(0.0285)

0.0748
(0.0446)

δ 0.0102
(0.0130)

−0.0370
(0.0328)

−0.1718
(0.0561)

a0 0.0636
(0.0020)

0.2335
(0.0350)

0.1354
(0.0269)

a1 0.1849
(0.0041)

0.5399
(0.0152)

0.5771
(0.0421)

β1 0.9692
(0.0010)

0.6634
(0.0311)

0.7306
(0.0477)

γ 0.0477
(0.0026)

0.1984
(0.0290)

0.0855
(0.0289)

AR-EGARCH-T µ 0.0013
(0.0058)

−6.0E − 9
(1.0E−8)

0.0139
(0.0364)

δ −0.0068
(0.0086)

−0.0840
(0.0259)

−0.0556
(0.0447)

a0 0.0101
(0.0036)

0.2140
(0.0873)

0.0924
(0.0606)

a1 0.9527
(0.0055)

0.8031
(0.0027)

0.5245
(0.1038)

β1 0.7269
(0.0032)

0.8307
0.0320)

0.7895
(0.0678)

γ 0.0612
(0.0542)

0.0743
(0.0630)

0.0580
(0.0664)

ν 2.0165
(0.0058)

2.6326
(0.3171)

3.2943
(0.5541)
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Table A.2: Estimated parameters for RBS (In-sample)

RBS
1 minute 5 minutes 10 minutes

AR-GARCH µ −0.0327
(0.0312)

−0.0102
(0.0371)

−0.0720
(0.0464)

δ 0.0099
(0.0340)

0.0131
(0.0293)

−0.0603
(0.0121)

a0 0.3403
(0.0449)

0.0453
(0.0083)

0.5309
(0.0728)

a1 0.3099
(0.0449)

0.0534
(0.0084)

0.5123
(0.0426)

β1 0.5050
(0.0572)

0.9208
(0.0077)

0.2267
(0.0081)

AR-GARCH-T µ −0.0015
(0.0268)

−0.0025
(0.0270)

−0.0078
(0.0046)

δ −0.0018
(0.0296)

−0.0022
(0.0240)

−0.1030
(0.0081)

a0 0.2326
(0.0943)

0.2558
(0.0299)

0.5457
(0.0814)

a1 0.3851
(0.0124)

0.3635
(0.0785)

0.6501
(0.0590)

β1 0.5815
(0.0583)

0.6184
(0.0562)

0.3183
(0.0137)

ν 2.8868
(0.0939)

3.0431
(0.3553)

3.6109
(0.8818)

AR-EGARCH µ −0.0461
(0.0417)

−0.0242
(0.0377)

−0.0335
(0.0051)

δ 0.0496
(0.0359)

0.0134
(0.0283)

−0.0670
(0.0091)

a0 0.1312
(0.0163)

0.0239
(0.0040)

0.1503
(0.0568)

a1 0.2611
(0.0239)

0.1155
(0.0124)

0.6762
(0.0067)

β1 0.8369
(0.0242)

0.9741
(0.0041)

0.5659
(0.0069)

γ 0.0084
(0.0150)

0.0211
(0.0130)

0.1791
(0.0312)

AR-EGARCH-T µ −0.0060
(0.0001)

−0.0011
(0.0269)

−0.0018
(0.0047)

δ −0.0034
(0.0279)

−0.0033
(0.0289)

−0.1055
(0.0097)

a0 0.0807
(0.0341)

0.0822
(0.0365)

0.1505
(0.0631)

a1 0.4185
(0.0426)

0.4643
(0.0498)

0.7078
(0.0386)

β1 0.8983
(0.0267)

0.8825
(0.0292)

0.7235
(0.0411)

γ 0.0391
(0.0034)

0.0131
(0.0319)

0.1517
(0.0518)

ν 2.8577
(0.2931)

3.0504
(0.3609)

3.5558
(0.9001)
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Table A.3: Estimated parameters for HSBC (In-sample)

HSBC
1 minute 5 minutes 10 minutes

AR-GARCH µ −0.0159
(0.0140)

0.0014
(0.0282)

0.0327
(0.0373)

δ −0.0752
(0.0145)

−0.1363
(0.0327)

0.0540
(0.0470)

a0 0.0631
(0.0029)

0.0424
(0.0056)

0.0645
(0.0137)

a1 0.0710
(0.0037)

0.1155
(0.0061)

0.2174
(0.0326)

β1 0.8848
(0.0050)

0.8611
(0.0086)

0.7550
(0.0345)

AR-GARCH-T µ −0.0007
(0.0003)

−0.0139
(0.0230)

−0.0223
(0.0307)

δ −0.0201
(0.0119)

−0.1438
(0.0257)

−0.0685
(0.0409)

a0 0.0002
(0.0001)

0.0189
(0.0077)

0.0391
(0.0169)

a1 0.1540
(0.0050)

0.1210
(0.0257)

0.2117
(0.0503)

β1 0.8239
(0.0161)

0.8789
(0.0207)

0.7811
(0.0328)

ν 2.1799
0.0728

3.8704
(0.4502)

4.1301
(0.0478)

AR-EGARCH µ −0.0363
(0.0121)

0.0552
(0.0262)

0.0478
(0.0301)

δ −0.0624
(0.0137)

−0.1179
(0.0328)

−0.0593
(0.0452)

a0 0.0443
(0.0023)

0.0407
(0.0049)

0.0268
(0.0155)

a1 0.1449
(0.0056)

0.2722
(0.0145)

0.3748
(0.0329)

β1 0.9438
(0.0027)

0.9377
(0.0075)

0.8962
(0.0225)

γ 0.0155
(0.0038)

0.0273
(0.0128)

0.1285
(0.0417)

AR-EGARCH-T µ 0.0018
(0.0087)

−0.0092
(0.0211)

−0.0282
(0.0287)

δ −0.0168
(0.0127)

−0.1464
(0.0277)

−0.0717
(0.0407)

a0 0.0241
(0.0080)

0.0077
(0.0081)

0.0085
(0.0187)

a1 0.5926
(0.0358)

0.3717
(0.0372)

0.4161
(0.0826)

β1 0.9404
(0.0024)

0.9795
0.0080)

0.9538
(0.0207)

γ 0.1993
(0.0219)

0.0131
(0.0293)

0.0526
(0.0564)

ν 2.0273
(0.0917)

3.4752
(0.3730)

3.8102
(0.6715)
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A.2 Estimated Parameters for MRS-GARCH

Model

Table A.4: Estimated parameters of MRS-GARCH model

Stocks Parameters 1 minute 5 minutes 10 minutes

NR µ(1) −0.0236
(0.0133)

−0.0147
(0.0081)

0.0110
(0.0070)

µ(2) 0.1398
(0.0844)

0.1118
(0.0124)

−0.0273
(0.0130)

a
(1)
0 0.2955

(0.0534)
0.0005
(0.0001)

0.0108
(0.0027)

a
(2)
0 0.7968

(0.8323)
0.0388
(0.1356)

0.0037
(0.0004)

a
(1)
1 0.0023

(0.0285)
0.0618
(0.0019)

0.0034
(0.0007)

a
(2)
1 0.3405

(0.1389)
0.7131
(0.0778)

0.5503
(0.2447)

β
(1)
1 0.5491

(0.0398)
0.3848
(0.0086)

0.4550
(0.0773)

β
(2)
1 0.6549

(0.0464)
0.2809
(0.0356)

0.4491
(0.0761)

p 0.9447
(0.0127)

0.7560
(0.2840)

0.7525
(0.0421)

q 0.1710
(0.0851)

0.1703
(0.0254)

0.1120
(0.0342)

RBS µ(1) 0.0010
(0.0170)

0.0058
(0.0278)

−0.0205
(0.0170)

µ(2) −0.0657
(0.0479)

−0.0274
(0.0126)

0.0384
(0.0313)

a
(1)
0 0.0115

(0.0009)
0.0074
(0.0006)

0.0064
(0.0021)

a
(2)
0 0.9842

(0.0502)
0.0094
(0.0012)

0.0097
(0.0031)

cont
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Stocks Parameters 1 minute 5 minutes 10 minutes

a
(1)
1 0.0375

(0.0099)
0.0987
(0.0266)

0.0135
(0.0422)

a
(2)
1 0.0511

(0.0573)
0.0173
(0.046)

0.0550
(0.0677)

β
(1)
1 0.6447

(0.0150)
0.3406
(0.0774)

0.3541
(0.0749)

β
(2)
1 0.9120

(0.2750)
0.9644
(0.0546)

0.9448
(0.1552)

p 0.9846
(0.0007)

0.8215
(0.1627)

0.8459
(0.0171)

q 0.3940
(0.0356)

0.1044
(0.0147)

0.1180
(0.0482)

HSBC µ(1) −0.0255
(0.0081)

−0.0151
(0.0196)

0.0056
(0.0383)

µ(2) −0.8377
(0.0287)

0.1595
(0.1289)

−0.0802
(0.0283)

a
(1)
0 0.0098

(0.0017)
0.0002
(0.0001)

0.0000
(0.0000)

a
(2)
0 0.0166

(0.0042)
0.8826
(0.0320)

2.1519
(0.0182)

a
(1)
1 0.0183

(0.0218)
0.0841
(0.0414)

0.0004
(0.0001)

a
(2)
1 0.0141

(0.7702)
0.0000
(0.0000)

0.0014
(0.0007)

β
(1)
1 0.6401

(0.0446)
0.5809
(0.0631)

0.6598
(0.0342)

β
(2)
1 0.9856

(0.0773)
0.9582
(0.645)

0.9354
(0.0277)

p 0.1069
(0.0865)

0.9203
(0.0270)

0.7550
(0.0345)

q 0.9705
(0.0062)

0.0644
(0.0100)

0.7550
(0.0345)
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Appendix B

B.1 Multivariate GARCH Models

Multivariate GARCH models were initially developed in the late 1980s. Ba-

sically the models study the moving process both of variance and covariances

which is different with univariate GARCH models. There are three impor-

tant classes of multivariate models, namely (a) the VECH model, (b) the

diagonal VECH model (Bollerslev, Engle, and Wooldridge (1998)) and (c)

the BEKK model (Engle and Kroner (1995)).

The VECH model which is the original version of the multivariate GARCH

model, is proposed by Bollerslev, Engle, and Wooldridge (1998):

Yt = µt + εt (B.1)

with εt | Ψt−1 ∼ N(0, Ht), and

V ech(Ht) = C +

q∑
i=1

AiV ech(εt−iε
′
t−i) +

p∑
j=1

BjV ech(Ht−j) (B.2)
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where Yt is an N × 1 vector which denotes the return at time t; µt is the

conditional mean of Yt; εt is the innovation vector; Ψt−1 is the set of infor-

mation available at time t − 1; C is a N(N + 1)/2 × 1 vector, Ai and Bj

are N(N +1)/2×N(N +1)/2 matrices V ech(.) denotes the column-stacking

operator applied to the lower portion of an N ×N symmetrical matrix.

The number of parameters in the VECH model equals: (2N(N+1)+N2(N+

1)2(p+ q))/4. For example, if we assume the simple GARCH(1,1) model and

N = 2, then there are 21 parameters that need to be estimated; for N = 3,

there are 78 parameters that need to be estimated. Thus, the estimation of

VECH model is very complex. Therefore, Bollerslev, Engle, and Wooldridge

(1998) develop the diagonal VECH model in order to reduce the parameters

that need to be estimated. The VECH model is written as

hij,t = ωij + αijεi,t−1εj,t−1 + bijhij,t−1 , (B.3)

where ωij, αij and bij are parameters.

Later, Engle and Kroner (1995) present the BEKK model which imposes

positive definiteness restrictions to ensure the H matrix being positive. The

general format of the conditional covariance matrix can be represented as

Ht = CC ′ + ΣK
k=1Σ

q
i=1Aikεt−iε

′
t−iA

′
ik + ΣK

k=1Σ
p
i=1BikHt−iB

′
ik , (B.4)

where C is a lower triangular parameter matrix, Aik and Bik are N × N

matrices. As long as C is definitely positive, the conditional covariance ma-

trix is also definitely positive because the other terms in (4) are expressed in
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quadratic form. For example, we assume K = 1 and apply a GARCH(1,1)

model,

Ht = CC ′ + A11εt−1ε
′
t−1A

′
11 +B11Ht−1B

′
11 . (B.5)

In the bivariate case, the BEKK becomes

Ht = CC ′ +

 a11 a12

a21 a22


 ε21t−1 ε1t−1ε2t−1

ε2t−1ε1t−1 ε22t−1


 a11 a12

a21 a22


′

+

 b11 b12

b21 b22


 h11t−1 h12t−1

h21t−1 h22t−1


 b11 b12

b21 b22


′

. (B.6)

The common method for estimating a multivariate GARCH model is the

conditional log likelihood function, which has the form

L(θ) = −TN

2
ln2π − 1

2

T∑
t=1

(ln|Ht|+ εtH
−1
t εt) , (B.7)

where θ denotes the parameter vector, and Ht = (σijt)N×N . Numerical maxi-

mization yields the maximum likelihood estimates with asymptotic standard

errors.
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B.2 GARCH Model Parameters for LAIVaR

Table B.1: Estimated parameters of GARCH model

Stocks Volume Parameters 5 minute 10 minute

Ask Bid Ask Bid

NR v=2000 a0 2.8E − 7
(3.6E−8)

2.6E − 7
(3.5E−8)

1.8E − 6
(7.8E−5)

2.2E − 6
(5.7E−5)

a1 0.2367
(0.0121)

0.2013
(0.0100)

0.1817
(0.0218)

0.1136
(0.0143)

β1 0.7202
(0.0193)

0.7570
(0.0169)

0.5255
(0.0088)

0.5499
(0.0087)

v=10000 a0 3.6E − 7
(4.5E−8)

4.7E − 7
(7.5E−8)

2.1E − 6
(7.3E−5)

2.3E − 6
(5.8E−5)

a1 0.2609
(0.0105)

0.1585
(0.0131)

0.0961
(0.0230)

0.1867
(0.0526)

β1 0.6924
(0.0187)

0.73557
(0.0298)

0.5601
(0.0940)

0.5200
(0.0701)

v=20000 a0 2.6E − 7
(2.6E−8)

4.3E − 7
(5.0E−8)

2.2E − 6
(5.5E−5)

3.9E − 6
(4.1E−5)

a1 0.2631
(0.0087)

0.1564
(0.0103)

0.1641
(0.0103)

0.1836
(0.0204)

β1 0.7148
(0.0128)

0.7630
(0.0189)

0.4838
(0.0082)

0.4796
(0.0068)

RBS v=10000 a0 7.6E − 7
(3.6E−8)

1.2E − 6
(4.7E−8)

4.7E − 6
(4.8E−6)

4.4E − 6
(4.3E−6)

a1 0.2706
(0.0102)

0.4580
(0.0264)

0.3543
(0.0016)

0.5556
(0.0163)

β1 0.5710
(0.0168)

0.3041
(0.0204)

0.4001
(0.0214)

0.0012
(0.0211)

v=50000 a0 1.9E − 7
(1.4E−8)

1.4E − 6
(4.6E−8)

5.1E − 6
(1.8E−7)

4.4E − 6
(1.6E−7)

a1 0.3472
(0.0164)

0.6126
(0.0226)

0.5928
(0.0125)

0.77175
(0.0258)

β1 0.5736
(0.0164)

0.3041
(0.0204)

0.0231
(0.0168)

0.064
(0.0243)

v=100000 a0 1.3E − 6
(1.9E−5)

1.5E − 6
(4.0E−8)

4.8E − 6
(4.8E−6)

5.9E − 6
(5.0E−6)

a1 0.4953
(0.0142)

0.2300
(0.0201)

0.5622
(0.0142)

0.5763
(0.0136)

cont
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Stocks Volume Parameters 5 minute 10 minute

Ask Bid Ask Bid

β1 0.5046
(0.0106)

0.2318
(0.0132)

0.3017
(0.0213)

0.012
(0.0332)

HSBC v=50000 a0 1.3E − 7
(7.0E−9)

1.5E − 7
(7.2E−9)

2.3E − 7
(5.0E−7)

2.3E − 7
(5.2E−7)

a1 0.3012
(0.0168)

0.2579
(0.0157)

0.4032
(0.0213)

0.4255
(0.0221)

β1 0.6371
(0.0124)

0.6429
(0.0171)

0.5344
(0.0246)

0.5526
(0.0165)

v=100000 a0 1.0E − 7
(7.0E−9)

1.6E − 7
(7.7E−9)

5.1E − 7
(3.0E−8)

3.7E − 7
(2.0E−8)

a1 0.2383
(0.0146)

0.2953
(0.0152)

0.5839
(0.0323)

0.4229
(0.0234)

β1 0.7131
(0.0182)

0.6201
(0.0121)

0.4090
(0.0190)

0.5630
(0.0273)

v=200000 a0 1.3E − 7
(7.5E−9)

1.4E − 7
(5.9E−9)

2.3E − 7
(5.8E−7)

2.4E − 7
(5.9E−7)

a1 0.2781
(0.0164)

0.2932
(0.0126)

0.4871
(0.0244)

0.4332
(0.0216)

β1 0.6429
(0.0161)

0.6381
(0.0126)

0.5002
(0.0192)

0.5582
(0.0298)
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B.3 Figures of Spreads
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Figure B.1: The bid-ask spread and spread between bid and ask for NR
(SV=small volume; LV=large volume).
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Figure B.2: The bid-ask spread and spread between bid and ask for HSBC
(SV=small volume; LV=large volume).
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B.4 Figures of PIVaR
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Figure B.3: Sample subset of GARCH PIVaR and HS PIVaR (α=5%) for the
three companies with 5 minutes sampling frequency. In the figures, upside
denotes upside risk and downside denotes downside risk; SV=small volume;
MV=medium volume; LV=large volume and MP= mid-price.
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Figure B.4: Sample subset with PIVaR (α=5%) for the three companies
with 10 minutes sampling frequency. In the figures, upside denotes upside
risk and downside denotes downside risk; SV=small volume; MV=medium
volume; LV=large volume and MP= mid-price.
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Figure B.5: Sample subset of GARCH PIVaR and HS PIVaR (α=5%) for the
three companies with 5 minutes sampling frequency. In the figures, upside
denotes upside risk and downside denotes downside risk; SV=small volume;
MV=medium volume; LV=large volume and MP= mid-price.
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Figure B.6: Sample subset with PIVaR (α=5%) for the three companies
with 10 minutes sampling frequency. In the figures, upside denotes upside
risk and downside denotes downside risk; SV=small volume; MV=medium
volume; LV=large volume and MP= mid-price.
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B.5 Figures of Risk Adjustment
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Figure B.7: Risk adjustment for RBS with 5 and 10 minutes sampling fre-
quency. The blue line displays risk adjustment for small volume and the
red line is for large volume (SV=small volume; LV=large volume). The four
subplots on the left are for upside risk and other four on the right are for
downside risk.
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Figure B.8: Risk adjustment for HSBC with 5 and 10 minutes sampling
frequency. The blue line displays risk adjustment for small volume and the
red line is for large volume (SV=small volume; LV=large volume). The four
subplots on the left are for upside risk and other four on the right are for
downside risk.
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B.6 Backtesting Results

Table B.2: Failure rates for conventional VaR, and two LAIVaR
measures (with HS and GARCH models) at 5% quantile.

5 minutes Backtesting Results (failure rates)
Models VaR GARCH-LAIVaR HS-LAIVaR
NR Ask Bid Ask Bid Ask Bid

SV 0.1175 0.1225 0.0525 0.0450 0.0425 0.0475
LV 0.2000 0.2075 0.0475 0.0475 0.0575 0.0450

RBS Ask Bid Ask Bid Ask Bid

SV 0.1575 0.1775 0.0425 0.0475 0.0525 0.0575
LV 0.2950 0.2975 0.0475 0.0450 0.0500 0.0525

HSBC Ask Bid Ask Bid Ask Bid

SV 0.0850 0.8750 0.0525 0.0450 0.0425 0.0475
LV 0.1475 0.1525 0.0475 0.0475 0.0575 0.0450
10 minutes
NR Ask Bid Ask Bid Ask Bid

SV 0.1450 0.1550 0.0450 0.0550 0.0450 0.0450
LV 0.1850 0.1950 0.0450 0.0500 0.0550 0.0600

RBS Ask Bid Ask Bid Ask Bid

SV 0.1300 0.1450 0.0500 0.0450 0.0450 0.0600
LV 0.1650 0.1800 0.0550 0.0550 0.0500 0.0550

HSBC Ask Bid Ask Bid Ask Bid

SV 0.0750 0.0900 0.0350 0.0450 0.0450 0.0350
LV 0.1150 0.1300 0.0450 0.0550 0.0500 0.0450

Failure rates for conventional VaR, and two LAIVaR measures (with
HS and GARCH models). Failure rate is the proportion of VaR vi-
olations of the return which equals V/N , where V is the aggregated
violation of stock and N is the size of sample. If the VaR model is
accurate or has good forecasting performance, the failure rate should
be equal to the present VaR level (a = 5%).
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B.7 Figures of Correlation
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Figure B.9: Variance and correlation for RBS with different volume sizes
(SV=small trading volume, LV=large trading volume)
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Figure B.10: Variance and correlation for HSBC with different volume sizes
(SV=small trading volume, LV=large trading volume)

184



Appendix C

C.1 The Figure Outputs for MPC Scaling Law

C.2 Sample Moments of Forecast Errors
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Figure C.1: The scaling law plot and error plot of out-of-sample data for
EUR-USD. Note: E1: experiment 1 (6 month in-sample data); E2: experi-
ment 2 (1 year in-sample data).
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Figure C.2: The scaling law plot and prediction error plot of out-of-sample
data for HKD-USD. Note: E1: experiment 1 (6 month in-sample data); E2:
experiment 2 (1 year in-sample data).
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Figure C.3: The scaling law plot and prediction error plot of out-of-sample
data for SGD-USD. Note: E1: experiment 1 (6 month in-sample data); E2:
experiment 2 (1 year in-sample data).

188



10
0

01/07−06/07

07/07−12/07

01/08−06/08

07/08−12/08

10
−2

log(∆ t) 

MPC scaling law (E1)

log
(m

ea
n 

M
PC

)

10
0

07/06−06/07

01/07−12/07

07/07−06/08

01/08−12/08

10
−2

 

log(∆ t) 

MPX scaling law (E2)

 

log
(m

ea
n 

M
PC

)

MPC

MPC SL

AUD−USD

0 50 100 150 200
−0.01

0

0.01

0.02

∆ t

er
ro

r

01/07−06/07

 

 

0 50 100 150 200
−0.01

0

0.01

0.02

∆ t

er
ro

r
07/07−12/07

0 50 100 150 200
−0.01

0

0.01

0.02

∆ t

er
ro

r

01/08−06/08

 

 

0 50 100 150 200
−0.01

0

0.01

0.02

∆ t

er
ro

r

07/08−12/08

 

 

E1 E2

AUD−USD

Figure C.4: The scaling law plot and prediction error plot of out-of-sample
data for AUR-USD. Note: E1: experiment 1 (6 month in-sample data); E2:
experiment 2 (1 year in-sample data).
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C.3 The Estimated MPC Scaling Law Param-

eters
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Figure C.5: The estimated parameters of scaling laws for EUR-USD with 10
day time intervals with 1 year in-sample data (Out-of-sample period is from
Jan 1, 2008 to Dec 31, 2008).
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Figure C.6: The estimated parameters of scaling laws for EUR-USD with
10 day time intervals with 6 month in-sample data (Out-of-sample period is
from Jan 1, 2008 to Dec 31, 2008).
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Figure C.7: The estimated parameters of scaling laws for EUR-USD with
10 day time intervals with 3 month in-sample data (Out-of-sample period is
from Jan 1, 2008 to Dec 31, 2008).

200



Jan08 Apr08 Jul08 Oct08 Jan09
−5

−4.5

−4

−3.5

In
te

rc
ep

t

L1: intercept parameters

Jan08 Apr08 Jul08 Oct08 Jan09

0.4

0.5

0.6

0.7

S
lo

pe

L1: slope parameters

Jan08 Apr08 Jul08 Oct08 Jan09
−5

−4.5

−4

−3.5

In
te

rc
ep

t

L2: intercept parameters

Jan08 Apr08 Jul08 Oct08 Jan09

0.4

0.5

0.6

0.7

S
lo

pe

L2: slope parameters

Jan08 Apr08 Jul08 Oct08 Jan09
−5

−4.5

−4

−3.5

−3

In
te

rc
ep

t

L3 (q=50%): intercept parameters

Jan08 Apr08 Jul08 Oct08 Jan09

0.4

0.5

0.6

0.7

S
lo

pe

L3 (q=50%): slope  parameters

Jan08 Apr08 Jul08 Oct08 Jan09
−5

−4

−3

−2

In
te

rc
ep

t

L3 (q=10%): intercept parameters

Jan08 Apr08 Jul08 Oct08 Jan09
0.2

0.4

0.6

0.8

S
lo

pe

M4: ETMPC (10%) scaling law parameters

 

 

Positive MPC
Neigative MPC
MPC

EUR−USD ( 2 month in−sample)

Figure C.8: The estimated parameters of scaling laws for EUR-USD with
10 day time intervals with 2 month in-sample data (Out-of-sample period is
from Jan 1, 2008 to Dec 31, 2008).

201



Jan08 Apr08 Jul08 Oct08 Jan09
−5.6

−5.4

−5.2

−5

−4.8

In
te

rc
ep

t

L1: intercept parameters

Jan08 Apr08 Jul08 Oct08 Jan09
0.4

0.45

0.5

S
lo

pe

L1: slope parameters

Jan08 Apr08 Jul08 Oct08 Jan09
−5.6

−5.4

−5.2

−5

−4.8

In
te

rc
ep

t

L2: intercept parameters

Jan08 Apr08 Jul08 Oct08 Jan09
0.4

0.45

0.5
S

lo
pe

L2: slope parameters

Jan08 Apr08 Jul08 Oct08 Jan09
−5.4

−5.2

−5

−4.8

−4.6

In
te

rc
ep

t

L3 (q=50%): intercept parameters

Jan08 Apr08 Jul08 Oct08 Jan09
0.4

0.45

0.5

0.55

0.6

S
lo

pe

L3 (q=50%): slope  parameters

Jan08 Apr08 Jul08 Oct08 Jan09
−5.5

−5

−4.5

−4

−3.5

In
te

rc
ep

t

L3 (q=10%): intercept parameters

Jan08 Apr08 Jul08 Oct08 Jan09
0.35

0.4

0.45

0.5

0.55

S
lo

pe

L3 (q=10%): slope  parameters

 

 

Positive MPC
Neigative MPC
MPC

AUD−EUR (1 year in−sample)

Figure C.9: The estimated parameters of scaling laws for AUD-EUR with 10
day time intervals with 1 year in-sample data (Out-of-sample period is from
Jan 1, 2008 to Dec 31, 2008).
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Figure C.10: The estimated parameters of scaling laws for AUD-EUR with
10 day time intervals with 6 month in-sample data (Out-of-sample period is
from Jan 1, 2008 to Dec 31, 2008).
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Figure C.11: The estimated parameters of scaling laws for AUD-EUR with
10 day time intervals with 3 month in-sample data (Out-of-sample period is
from Jan 1, 2008 to Dec 31, 2008).
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Figure C.12: The estimated parameters of scaling laws for AUD-EUR with
10 day time intervals with 2 month in-sample data (Out-of-sample period is
from Jan 1, 2008 to Dec 31, 2008).
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Figure C.13: The estimated parameters of scaling laws for AUD-EUR with
10 day time intervals with 1 month in-sample data (Out-of-sample period is
from Jan 1, 2008 to Dec 31, 2008).
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Figure C.14: The estimated parameters of scaling laws for SGD-USD with
10 day time intervals with 1 year in-sample data (Out-of-sample period is
from Jan 1, 2008 to Dec 31, 2008).
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Figure C.15: The estimated parameters of scaling laws for SGD-USD with
10 day time intervals with 6 month in-sample data (Out-of-sample period is
from Jan 1, 2008 to Dec 31, 2008).
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Figure C.16: The estimated parameters of scaling laws for SGD-USD with
10 day time intervals with 3 month in-sample data (Out-of-sample period is
from Jan 1, 2008 to Dec 31, 2008).

209



Jan08 Apr08 Jul08 Oct08 Jan09
−7

−6.5

−6

−5.5

−5

In
te

rc
ep

t

L1: intercept parameters

Jan08 Apr08 Jul08 Oct08 Jan09
0.2

0.4

0.6

0.8

1

S
lo

pe

L1: slope parameters

Jan08 Apr08 Jul08 Oct08 Jan09
−7

−6.5

−6

−5.5

−5

In
te

rc
ep

t

L2: intercept parameters

Jan08 Apr08 Jul08 Oct08 Jan09
0.2

0.4

0.6

0.8

1

S
lo

pe

L2: slope parameters

Jan08 Apr08 Jul08 Oct08 Jan09
−6.5

−6

−5.5

−5

−4.5

In
te

rc
ep

t

L3 (q=50%): intercept parameters

Jan08 Apr08 Jul08 Oct08 Jan09
0.2

0.4

0.6

0.8

1

S
lo

pe

L3 (q=50%): slope  parameters

Jan08 Apr08 Jul08 Oct08 Jan09
−7

−6

−5

−4

In
te

rc
ep

t

L3 (q=10%): intercept parameters

Jan08 Apr08 Jul08 Oct08 Jan09

0.4

0.5

0.6

0.7

S
lo

pe

L3 (q=10%): slope  parameters

 

 

Positive MPC
Neigative MPC
MPC

SGD−USD (2 month in−sample)

Figure C.17: The estimated parameters of scaling laws for SGD-USD with
10 day time intervals with 2 month in-sample data (Out-of-sample period is
from Jan 1, 2008 to Dec 31, 2008).
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Figure C.18: The estimated parameters of scaling laws for SGD-USD with
10 day time intervals with 1 month in-sample data (Out-of-sample period is
from Jan 1, 2008 to Dec 31, 2008).
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Figure C.19: The estimated parameters of scaling laws for HKD-USD with
10 day time intervals with 1 year in-sample data (Out-of-sample period is
from Jan 1, 2008 to Dec 31, 2008).
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Figure C.20: The estimated parameters of scaling laws for HKD-USD with
10 day time intervals with 6 month in-sample data (Out-of-sample period is
from Jan 1, 2008 to Dec 31, 2008).
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Figure C.21: The estimated parameters of scaling laws for HKD-USD with
10 day time intervals with 3 month in-sample data (Out-of-sample period is
from Jan 1, 2008 to Dec 31, 2008).
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Figure C.22: The estimated parameters of scaling laws for HKD-USD with
10 day time intervals with 2 month in-sample data (Out-of-sample period is
from Jan 1, 2008 to Dec 31, 2008).
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Figure C.23: The estimated parameters of scaling laws for HKD-USD with
10 day time intervals with 1 month in-sample data (Out-of-sample period is
from Jan 1, 2008 to Dec 31, 2008).
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Figure C.24: The estimated parameters of scaling laws for AUD-USD with
10 day time intervals with 1 year in-sample data (Out-of-sample period is
from Jan 1, 2008 to Dec 31, 2008).
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Figure C.25: The estimated parameters of scaling laws for AUD-USD with
10 day time intervals with 6 month in-sample data (Out-of-sample period is
from Jan 1, 2008 to Dec 31, 2008).

218



Jan08 Apr08 Jul08 Oct08 Jan09
−5.5

−5

−4.5

−4

−3.5

In
te

rc
ep

t

L1: intercept parameters

Jan08 Apr08 Jul08 Oct08 Jan09
0.35

0.4

0.45

0.5

0.55

S
lo

pe

L1: slope parameters

Jan08 Apr08 Jul08 Oct08 Jan09
−5.5

−5

−4.5

−4

−3.5

In
te

rc
ep

t

L2: intercept parameters

Jan08 Apr08 Jul08 Oct08 Jan09

0.4

0.5

0.6

0.7

S
lo

pe

L2: slope parameters

Jan08 Apr08 Jul08 Oct08 Jan09
−5

−4.5

−4

−3.5

In
te

rc
ep

t

L3 (q=50%): intercept parameters

Jan08 Apr08 Jul08 Oct08 Jan09
0.4

0.45

0.5

0.55

0.6

S
lo

pe

L3 (q=50%): slope parameters 

Jan08 Apr08 Jul08 Oct08 Jan09
−5

−4

−3

−2

In
te

rc
ep

t

L3 (q=10%): intercept parameters

Jan08 Apr08 Jul08 Oct08 Jan09

0.4

0.5

0.6

0.7

S
lo

pe

L3 (q=10%): slope parameters 

 

 

Positive MPC
Neigative MPC
MPC

AUD−USD (3 month in−sample)

Figure C.26: The estimated parameters of scaling laws for AUD-USD with
10 day time intervals with 3 month in-sample data (Out-of-sample period is
from Jan 1, 2008 to Dec 31, 2008).
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Figure C.27: The estimated parameters of scaling laws for AUD-USD with
10 day time intervals with 2 month in-sample data (Out-of-sample period is
from Jan 1, 2008 to Dec 31, 2008).
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Figure C.28: The estimated parameters of scaling laws for AUD-USD with
10 day time intervals with 1 month in-sample data (Out-of-sample period is
from Jan 1, 2008 to Dec 31, 2008).
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