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Abstract 

 

Directional change (DC) is a new concept for summarizing market dynamics. 

Instead of sampling the financial market at fixed intervals as in the traditional 

time series analysis, by contrast, DC is data-driven:  the price change itself 

dictates when a price is recorded. DC provides us with a complementary way to 

extract information from data. The data sampled at irregular time intervals in 

DC allows us to observe features that may not be recognized under time series. 

In this thesis we propose our new method for the summarizing of financial 

markets through the use of the DC framework. Firstly, we define what is the 

vocabulary needed for a DC market summary. The vocabulary includes DC 

indicators and metrics. DC indicators are used to build a DC market summary 

for a single market. DC metrics help us quantitatively measure the differences 

between two markets under the directional change method. We demonstrate 

how such metrics could quantitatively measure the differences between different 

DC market summaries. Then, with real financial market data studied using DC, 

we aim to demonstrate the practicability of DC market analysis, as a 

complementary method to that of time series, in the analysis of the financial 

market. 
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Chapter 1 Introduction 

This chapter is an introduction to the themes of the thesis. It provides a general overview of 

the research work that has been carried out and discusses its aims and main objectives. The 

structure of the thesis is described in detail. 

 

1.1 Overview 

The complex and difficult subject of how to understand the operational dynamics of financial 

markets has long been attempted by researchers. Firstly, the question arises what are 

markets? They can be broadly and straightforwardly defined as where buyers and sellers 

operate to both create and trade in financial assets, which can be stocks, bonds or 

commodities.  Market movement thus is a reflection of supply and demand, and therefore 

plays a crucial role in the outcome of local, national and international economies, which in 

turn impact on pretty much every feature of life. According to Johnson (2010), financial 

markets are an example of “complexity in action”:  a real world complex system whose 

evolution is dictated by the decisions of traders who are continually trying to win in a vast 

global ‘game.’ The long and complex operation and history of the financial markets also 

changes rapidly over time, linked as they are to continuous and rapid technological 

innovations and changes. This huge field of study is aptly summed up by Paul Krugman 

(2018), the Nobel prizewinning economist, in his view, studying such topics: “involved 

making assumptions about how unmeasurable things affected other unmeasurable things.”  

However, in the 21st century, with the development of high frequency trading, of 

computerisation, and the intricacies of electronic trading platforms in the modern financial 

market,  this offers the latest development of being able to study financial data from global, 

24 hour financial markets,  to be able to empirically and rationally analyse the market, and to 

gain new insights into its working, through computer based research, and consequently being 

able to handle large amounts of  data-based information. In our view, these rapidly evolving 

new technologies and techniques offer a chance to gain new insights from the data into the 

evolving market dynamics.  Modern market analysis is mainly based on time series analysis. 

It provides us with the basic tools to analyse the market using time series and to gain 

experience of financial market price movements (Harvey 1990, Tsay 2005). Using the data 

sampled from time series analysis, researchers have been able to study the impact of traders' 

psychology, heterogeneous expectations and technical trading on the market (Barberis 2003, 
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Menkhoff and Taylor 2007, Shleifer 2000, Subrahmanyam 2007), explore the market 

microstructure (Calamia 1999, Evans 2008, Hasbrouck 2007, Madhavan 2000, Osler 2008, 

Vitale 2007), and apply agent based modelling and artificial intelligence techniques 

(Hommes 2006, LeBaron 2001, LeBaron 2006, Samanidou 2007). All these are attempts to 

gain insights into the market and its dynamics. 

 

However, time series analysis is based on the samples in which the observer samples prices at 

fixed time intervals (Hamilton 1994). On the other hand, the concept of ‘directional changes’ 

(DC) was introduced as an alternative way to summarise price changes in the financial 

market (Guillaume 1997). In DC, by contrast to time series, the sample points are data-

driven, thus the observer lets the data determine when to sample the market. In DC, two 

decisions then have to be made by the researcher to achieve an effective DC result.  The first 

decision relates to what price-change threshold the observer considers to be of significance, 

e.g. 5%, 1% or 0.5%, etc. The next decision involves perception of the market as alternating 

between uptrends and downtrends. A change from a downtrend (uptrend) to an uptrend 

(downtrend) is accepted when the price data points are sampled, when the market changes 

direction by that of the chosen predefined threshold. Therefore, DC provides us a new way to 

sample prices from the financial market. By the data sampled through this method, 

researchers can develop trading strategies (Gypteau 2015), forecasting market price 

movements (Masry 2013). And also, it is eligible to help build a new methodology for 

analysing market dynamics, which is what this thesis is looking at.  

 

With most market research based on the use of time series, the question needs to be asked as 

to why DC should be introduced as a new way to analyse data? Researchers have developed 

useful indicators in time series analysis - e.g. return and volatility. We argue in our research 

that the DC-approach provides an insight into data, which is not revealed in using time series 

analysis. During our research, we have demonstrated that information extracted through DC-

based analysis is complementary to information extracted from time series in another 

published paper (Tsang et al 2015). In time series analysis, the researcher determines how 

often data is sampled, in other words the researcher determines the time-scale of the x-axis 

and observes price changes in the y-axis.  By contrast, in DC-based analysis, the researcher 

determines how large a change is considered significant, in other words the researcher is able 

to determine the price-scale of the y-axis and therefore lets the movement of the data dictate 

when to record price movements. With data sampled at irregular time intervals, most 
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statistical analysis is not applicable to DC-based sampling. Our research therefore firstly 

defines and introduces the indicators for DC-based sampling and builds a DC market profile. 

Then the second step is to define metrics to contrast DC profiles from different markets or 

different time periods. The DC indicators and metrics make up our DC vocabulary, which 

facilitates our DC market analysis. Through the application of DC market analysis in the 

currency and commodity markets, we aim to demonstrate how DC market information can be 

extracted through DC metrics based on empirical analysis. Time series and DC-based 

analysis both look at the data from two different angles and provide different perspectives of 

the same data. They both highlight different features of market analysis and complement each 

other in their ability to make effective use of market data information extraction. 

 

1.2 Research motivations and objectives  

The aim of this research is to introduce DC market analysis as a new approach in financial 

market information extraction and show its application and results in the financial market. In 

order to present a clear illustration for the whole process, this thesis comprises the following 

objectives: 

 

1. Introducing the definition of DC and showing its concept on how to sample data from 

the market. 

 

2. Defining our new indicators to build a DC market profile. We write our program to 

generate our DC profile from the market data. This profile contains all our DC 

indicators values for a single market in a certain time period, which can be used for 

analysing single market price movement. The DC profile, as a complement to time 

series analysis, can provide us a new angle to observe the market dynamics and 

extract useful market information.  

 

3. Defining DC metrics as an advanced way for market comparison through DC. We 

also write another program to generate metrics results through comparison. By 

comparing DC profiles from different markets or different time periods, DC metrics 

are able to provide us with a quantitative way to measure the differences between 

different financial markets in the same time period, or the same market in different 
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time periods. Thus, it can present us more useful information about the financial 

market. 

 

4. After defining DC indicators and metrics and proving its usefulness, we apply our DC 

approach to actual financial market data. We use minute-by-minute data from five 

main currency pairs in the currency market and four main commodities in the futures 

market. All of the data has been provided by Thomson Reuters and Kibot. Through 

profile comparisons between different assets in the same time period or the same 

assets in different time periods, we try to extract some useful information about these 

assets and the financial market, which can only be captured by DC.  

 

1.3 Thesis structure 

The thesis structure is based on the aims and objectives discussed in the previous section. It 

begins with a background and literature review in Chapter 2, describing the previous studies 

researchers have done in financial market data analysis. It also explains the concept of DC 

and its component events. 

 

Chapter 3 introduces the DC indicators we defined for extracting information from data under 

the DC framework. Compared with time series analysis indicators, DC indicators provide us 

a new perspective to observe the market dynamics. We wrote a program called TR1 to help 

us calculate these indicators values and to generate a DC market profile from the market data. 

Then we have given an example to show the process of TR1 from the currency markets. At 

the end of the chapter, we have shown the performance of our DC indicators and demonstrate 

its usefulness through the equity market data, which was provided by Thomson Reuters. 

 

Chapter 4 introduces our DC metrics for quantitative measurement of the differences between 

two DC market profiles. Similar to the time series analysis, which can measure the difference 

between two markets using correlation regression, DC market analysis also needs metrics to 

quantitatively measure the differences between two market states. We also have a program 

called TR2 to calculate metrics values in this chapter, and an example to show the process of 

TR2 using currency market data. The example demonstrates the practicality of DC metrics in 

market comparison. 
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Chapter 5 and 6 are empirical results of DC market analyses applications in information 

extraction from the financial market. We used minute-by-minute open prices between 2011 

and 2015 from the currency and the commodity market, which are provided by Kibot. The 

database includes five main currency pairs and four main commodities in the market. Chapter 

5 shows the application results of DC indicators, which are from single market data, for 

example, the gold market in a certain time period. Chapter 6 offers the results of market 

comparisons between different markets in the same time period or the same market in 

different time period. 

 

The thesis is concluded in Chapter 7. It summarizes the work we have done in the thesis, lists 

its main contributions, and discusses further work on DC as a new way to provide market 

information extraction. 
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Chapter 2 Background and Literature 

review 

 

In this chapter we present the introduction of financial market analysis and the work about 

DC that researchers have done before. After that we will explain the concept of DC and its 

component events. 

 

2.1 Introduction of market analysis 

The financial markets are marketplaces where traders buy or sell financial assets like stocks, 

futures and currencies. With the development of financial industries around the world, the 

financial market has grown rapidly and impacts on people’s daily lives. For example, the 

currency (foreign exchange) market, is open 24 hours a day, 5 days a week, and is the largest 

financial market worldwide, with a daily average turnover of 4 trillion USD and an average 

daily transaction volume for spot currencies of 1.4 trillion USD or equivalent of 10 per cent 

of the GDP of the US, according to the Bank for International Settlements (BIS) Triennial 

Survey in 2010 (BIS 2010). Analysing and understanding the financial market is therefore 

significant for market traders, observers and analysts because of its national and global reach. 

 

Financial market analysis is therefore concerned with accurately understanding what has 

happened, and what will happen in the future in that marketplace, and therefore to better 

estimate what positions that the traders should take in the market. Considering the large 

amount of trading data in the market, the first step for market analysis is to sample data that 

the researchers need. The traditional way to conduct financial market analysis is time series 

analysis (Blake 1990), which is analysing the market data sampled by fixed time intervals 

from the market data. Based on the time series analysis, researchers have made plenty of 

contributions in many aspects of financial markets. Roberts (1959) has defined some classical 

patterns about the stock market. Campbell et al (1997) and Alexander (2011) introduced 

several basic models for financial data analysis. Gabaix et al (2003) discovers power law 

distribution in financial market fluctuations. Pincus and Kalman (2004) and Los (2009) 

defined the financial market risks based on time series analysis. Bollerslev et al (1992), 

Francq (2011) and Brooks (2014) use time series to build models for market volatility 

forecasting in econometrics, for example, ARCH, GARCH and ARMA model. Time series 
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analysis, which uses samples collected by fixed time intervals, has become a basic tool for 

analysing and understanding market dynamics (Kirkpatrick 2010, Taylor 1992, Murphy 

1999). Some methods in time series analysis, like the ARMA and Fourier analysis, are widely 

used for forecasting future values based on the existing time series (Shumway 2010). Besides 

that, another significant application of time series analysis is for the comparison between 

different time series. The underlying aim of this kind of analysis is to uncover similarities and 

patterns that might exist in the data. For most of these activities it is necessary to compare 

time series using an appropriate similarity measure (Ye 2003). Similarity measures can be 

divided into metric or non-metric measures, which compare two time series objects and 

return a value that measures how similar the two objects are (Tapinos 2013). Distance metrics 

are commonly used similarity measures to define if two time series are similar (Keogh 2003). 

In those cases, it is more desirable to carry out the data mining analysis on shorter 

representations of the time series. Many methods exist for creating such representations and 

estimating the distance between pairs of time series approximations, such as discrete Fourier 

transform (Agrawal 1993), discrete wavelet transform (Chan 1999), piecewise aggregate 

approximation (Keogh 2001), or symbolic aggregate approximation (Lin 2007). These 

methods are widely used in the work of econometrics. 

 

2.2 Background of DC research 

This section will examine what is the available literature on the recent field of directional 

change (DC) and will then go on to examine what is directional change’s ability to offer a 

new perspective on summarizing the changing dynamics of the financial market.  

 

Given the rapid growth of advanced information technology and an increasingly global 24-

hour financial system, there is a huge amount of high frequency financial data available for 

analysis. Thus, the ability to correctly understand and interpret market data for both national 

and international markets has a growing importance for investors, traders and regulators. And 

what DC analysis can offer in the way of the ability to accurately extract information from 

the data is one of the central questions of this thesis, and then to go on to create our DC 

market indicators and metrics, in order to achieve effective and reliable market summaries.   
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 The traditional method used to do market summary has usually been that of the use of time 

series analysis, which has been able to both model the data and analyse it.  However, we try 

to demonstrate that DC is able to do this as effectively, as well as being able to bring a 

different perspective to such market analysis. The traditional time series analysis is based on 

the physical time interval. However, as Ye et al (2017) pointed out: ‘‘time is considered as an 

absolute entity, where the time ticks are independent of the events in the market.’’ The 

models in time series analysis are unable to characterize the nature of the price changes 

consistently across all time intervals. A time series model that explains the changes in the 

financial variable at low frequency time intervals is not successful at high frequency time 

intervals. Unlike low frequency market, in high frequency market like currency market, the 

transaction price is irregularly spaced. This is why Engle and Russell (1998) and Engle 

(2000) developed the ACD model to describe the transaction data movements in currency 

market. Besides that, for the time series analysis, the financial data is collected at regular time 

intervals. ‘‘But it is a well-known fact that the trading events (or price changes) are a 

sequence of irregularly time-distributed events and they need not be occurring at uniform 

time intervals. ” (Ye et al 2017).  In other words, market data is sampled by fixed time 

interval in time series analysis. For example, as Figure 1 shows, researchers can use fixed 

time interval every 10000 minutes to sample prices (green points in Figure 1) from the 

USD/CNY market in five years. Then some extreme points (red points in Figure 1) will not 

be captured by time series analysis. Thus, as Ye et al indicates, there is a difficulty with 

regular interval time series in that there is no guarantee that the events or price changes in the 

market fall in the regularly spaced time ticks of physical time, and thus the ignored details in 

between the time ticks are not necessarily significant enough.  (Ye et al 2017).   
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Figure 1: Example: Price movements of minute-by-minute market data for USD/CNY, 

spanning from 2011to 2016. Some market extreme points (red point) is missed if the 

researcher uses fixed time interval every 100000 minutes (green point) to sample a price from 

the market data.  

 

By contrast, directional change (DC) can therefore be described as being an empirical, data-

led system with the ability to sample price movements, fluctuations and volatility in the 

financial markets in an uneven time space, or in intrinsic time. In that case a time scale is 

irregularly spaced as it is an event-based timing.  The distinguishing feature of DC is that it 

has the ability to register movement of data only by the threshold chosen by the observer 

(Aloud et al. 2011). Therefore, it ignores insignificant price fluctuations, and has the ability to 

observe financial events over a significant period of time.  This is in comparison to time 

series, which, as indicated by Tsang (2016), if only the end of day financial prices had been 

recorded, the flash crash which took place on the 6th May 2010 would have gone unnoticed.  

Thus, time series is unable to characterise all significant market changes across all time 

periods, as financial movements are unevenly spaced across physical time.  

    

The concept of using DC to study the financial market was first introduced by Gillaume et al 

in 1997, and was used to study the currency data, and estimated the average number of 

directional price changes of a chosen threshold over the data sample to interpret an alternative 

measure of the risk.  However, the idea of following directional change in the market had also 
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been used earlier by financial traders under the name of zigzag (Sklarew 1980).  In fact, both 

Zigzag and DC can summarise the market price movements when a threshold is given. 

Zigzag focuses more on market technical patterns, while DC can summarise deeper market 

information for the price changes. Tsang (2011), went on to provide a formal definition of the 

workings of directional change. According to Tsang (2011), a DC event is confirmed by a 

fixed price changes and followed by an overshoot event. As the Figure 2 below shows, in the 

same market data, DC has its advantage to help researchers to catch the market extreme 

points. The details of the definition of DC will be illustrated in the next section. 

 

 

 

 

 

Figure 2: Example: Price movements of minute-by-minute market data for USD/CNY, 

spanning from 2011to 2016. Directional Changes(DC) has its advantage to help researchers 

to catch the market extreme points (black point). 
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The possible uses of DC were further developed by Glattfelder et al, (2011), who used a DC-

based summary to examine the 12 scaling laws, which are found in the foreign exchange 

markets.  The scaling laws measure the relationship between different types of events across 

13 currency exchange rates.  It was found that the length of the price curve coastline was 

surprisingly long under these scaling laws.  Kablan and Ng (2011) examined volatility in the 

financial market, using the event-driven approach of directional change within pre-specified 

thresholds. Aloud et al (2012), worked on the length of the price-curve coastline as revealed 

by directional change, and showed a long coastline of potential price changes. Other studies 

are looking into how to use the ideas of DC to further understand the operation of the 

financial markets.  Masry looked into currency markets based on using the ideas of DC and 

explored the idea that small differences in market activities can change price trends (Masry 

2013). Gypteau (2015) and Kampouridis (2017) used genetic programming to help generate 

DC-based trading strategies.  

 

Depuis and Olsen went on to examine how to use DC in High Frequency Trading models 

(HFT) (2011). Bisig et al (2012), proposed the concept of the Scale of Market Quakes 

(SMQ), based on DC research.  Their proposal, with SMQ, was that the currency market is 

affected and quantified by the declarations of political and economic significance (2012).  

Their work analysed the average overshoot event, to calculate the magnitude of the quake, 

similar to assessing an earthquake.  The authors claim that because the SMQ responds to 

compelling market events, the analyst can observe a larger size of SMQ when the market is in 

an unstable period, and a smaller magnitude of SMQ which corresponds to a stable period.  

The SNQ shows that the measurement of an overshoot event can be used to quantify the price 

behaviour that occurs in the financial market at periods of major economic and political 

periods (Bisig et al 2012).  This work led on us to developing the work further by creating a 

set of DC-based indicators for profiling the financial market (Tsang et al 2016).  

 

Therefore, using DC to sample data focuses on getting around the problem outlined by Tsang 

(2017), that using time series alone to summarize prices in the financial market means that 

the prices are sampled only at fixed time intervals, usually with the final transaction price 

recorded as the daily closing price.  However, Tsang (2017) also argues that time series and 

directional change are not competing ways to study the price dynamics, as in his view they 

complement each other, and offer different perspectives on the financial market.  This, 

according to Tsang (2017), can ensure that volatility observed under time series can be used 



 
28 

alongside the observed frequency and volatility values observed under directional change. 

‘By sampling different data points, DC sees price movement from an angle different from 

time series.  Under time series, one fixes time (in the x-axis) and measures changes in price 

(in the y-axis).  Under DC, one fixes the threshold in price change (in the y-axis), and let data 

determine when to sample the next extreme point, ie. Let data determine the next value on the 

x-axis.  This also determines the time at which the next data point is sampled.’  (Tsang, 

2017).  

 

 

2.3 Definition of DC 

2.3.1 Directional Change (DC) event 

According to Tsang (2010), a DC event can take one of two forms - a downturn DC event or 

an upturn DC event. Besides that, there is a period called downward run which lies in the gap 

between a downturn DC event and the next upturn DC event, while an upward run lies 

between an upturn DC event and the next downturn DC event. A downturn DC event 

terminates an upward run, and starts a downward run, whereas an upturn DC event terminates 

a downward run and starts an upward run, as it is shown in Figure 3. 
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Figure 3: Uptrend DC event, upward run, downtrend DC event and downward run in 

Directional Changes (minute-by-minute data in USD/CNY market from 2011 to 2016, 

determined by a threshold 3%) 

 

During a downward run, a last low price Pl is continuously updated to the minimum of Pt (the 

current market price) and Pl (the last low price). Similarly, during an upward run, a last high 

price Ph is continuously updated to the maximum of Pt (the current market price) and Ph (the 

Last High price) (Tsang 2010). At the beginning of the sequence, the last high price Ph and 

last low price Pl are set to the initial market price Pt0 at the beginning of the sequence (Tsang 

2010). 

 

A downturn DC event is an event when the absolute price change between the current market 

price Pt and the last high price Ph is lower than a fixed threshold (a percentage) θ: 

Pt ≤ Ph × (1- θ)     (1) 

 

The starting point of a downturn DC event is a downturn point which is the point at which the 

price last peaked - Ph. The end of a downturn DC event is a downturn DC point which is the 
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point at which the price has dropped from the last downturn point by the threshold θ (Tsang 

2010).  

 

In a downward run, an upturn DC event is an event when the absolute price change between 

the current market price Pt and the last low price Pl is higher than a fixed threshold θ: 

Pt ≥ Pl × (1+ θ) (2)  

 

The starting point of an upturn DC event is an upturn point, which is the point at which the 

price last troughed - Pl. The end of an upturn DC event is an upturn DC point which is the 

point at which the price has risen from the last upturn point by the threshold θ. 

2.3.2 Overshoot (OS) Event 

A downturn DC event is followed by a downward overshoot event, which is ended by the 

next upturn DC event, which is itself followed by an upward overshoot event, which is ended 

by the next DC downturn event (Tsang 2010), as it is shown in Figure 4. The overshoot event 

(OS) therefore represents the time interval of price movement beyond the DC event. 

 

Under the DC framework, price movement is summarized in a four-events cycle: 

… → Downturn DC Event→  

Downward Overshoot Event →  

Upturn DC Event →  

Upward Overshoot Event →  

Downturn DC Event→ …  
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Pseudo-code: Defining directional change (DC) and overshoot (OS) events 

Require: Initial variables (event is Upturn Event, Ph = Pl = P(t0), θ > 0, tdc_0 = tdc_1 = tos_0 = 

tos_1 = t0) 

1. if event is Upturn Event then 

2.    if P(t) ≤ Ph * (1 - θ) then 

3.        Event ← Downturn Event 

4.        Pl ← P(t) 

5.        tdc_1 ← t    % End time for a Downturn DC Event  

6.        tos_0 ← t    % Start time for a Downward Overshoot Event 

7.    else 

8.        if Ph < P(t) then 

9.           Ph ← P(t) 

10.           tdc_0 ← t    % Start time for a Downturn DC Event 

11.           tos_1 ← t    % End time for an Upward Overshoot Evet 

12.        end if 

13.     end if 

14.   else 

15.      if P(t) ≥ Pl * (1 + θ) then 

16.          event ← Upturn Event 

17.          Ph ← P(t) 

18.          tdc_1 ← t    % End time for an Upturn DC Event 

19.          tos_0 ← t    % Start time for an Upward Overshoot Event 

20.       else 

21.           if Pl > P(t) then 

22.               Pl ← P(t) 

23.               tdc_0 ← t    % Start time for an Upturn DC Event 

24.               tos_1 ← t    % End time for a Downward Overshoot Event 

25.            end if 

26.        end if 

27.    end if 

 

2.3.3 Total Move (TM) 

A total price movement (TM) price movement is constituted by a downturn event and a 

downward overshoot event follows, or an upturn event and an upward overshoot event 

follows (Glattfelder et al, 2011). Or in other words, TM is the price movements between two 

consecutive market extreme points in DC, as shown in Figure 4. 

 



 
32 

 

Figure 4: Directional Changes in EUR/USD (threshold = 3%)  

 

 

 

 

 

 

 

 

 

 

 



 
33 

Chapter 3 DC market profiling 
 

In this chapter we will introduce the DC indicators we defined for extracting information 

from data under the DC framework. We write a program called TR1 to help us calculate these 

indicators values and generate a DC market profile from the market data. Then we have an 

example to show the process of TR1 from currency markets. At the end of the chapter, we 

show the performance of our DC indicators and demonstrate its usefulness through the equity 

market data which is provided by Thomson Reuters. 

 

3.1     Overview 

DC market profiling is the first step of DC market information extraction. It focuses on single 

market dynamics profiling. In this chapter, we defined our own DC indicators to help us build 

DC market profiles. Compared with time series analysis indicators, the indicators in DC 

market profiles can provide us some significant information in another angle. We applied 

them into real equity market and provide a comparison between the results from time series 

analysis and DC market profiles of the market. to demonstrate the usefulness of DC market 

profiling. 

 

It begins with an introduction of DC market summarizing in Section 3.2, including the 

definition of some key points in DC summarizing theory. In Section 3.3 we will continue to 

introduce the indicators we defined for DC market profiling. We write a program called TR1 

to help us calculate these indicators values and generate a DC market profile from the market 

data. The specification of TR1 is showed in Section 3.4. Then we have an example to show 

the process of TR1 from currency markets in Section 3.5. The comparison between DC 

indicators and time series analysis indicators is shown in Section 3.6. After the comparison, 

in Section 3.7 we show the performance of our DC indicators and demonstrate its usefulness 

through the equity market data which is provided by Thomson Reuters. The chapter is 

summarized in Section 3.8. 

 

3.2  Summarizing time series with DCs 

In this section, we shall propose a procedure for summarizing market price movements with 

DC. The first step for summarizing time series with DC theory is to locate the significant 
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points of each DC event: Directional Change Extreme Point (EXT), Directional Change 

Confirmation Point (DCC) and Theoretical Directional Change Confirmation Point (DCC*). 

As they are shown in Figure 5. 

 

Directional Change Extreme Point (EXT) is the starting point that is an Upturn Point or 

Downturn Point. It can be also seen as the end of one TM event (Figure 4). Directional 

Change Confirmation Point (DCC) is the point at which to confirm one DC event. For an 

Upturn Event, it is the first point that rises above at PEXT × (1+ θ). θ is the threshold we set 

before using DC. And for a Downturn Event, it is the first point that drops at PEXT × (1- θ) 

(Figure 4).  

 

The Theoretical Directional Change Confirmation Point (DCC*) is the minimal or maximum 

directional change confirmation price for an upturn or downturn directional change event. It 

does not really exist in the real market in most time. The reason we need DCC* apart from 

DCC is because in reality, the market price movement may rise or drop sharply in a short 

time period. Under this kind of circumstance, EXT point and DCC point can be the same 

point under a fixed threshold, just like the downturn event in Figure 5. We believe the use of 

DCC* may avoid some troubles for our indicator calculation in the next section. The price of 

DCC* is defined in the following way:  

In an uptrend: PDCC↑* = PEXT × (1+ θ) ≤ PDCC↑;  

In a downtrend: PDCC↓* = PEXT × (1+ θ) ≥ PDCC↓, 

 

Here PEXT is the price of directional change extreme point (EXT). PDCC is the price of 

directional change confirmation point (DCC), θ is the fixed threshold. ↑and ↓ here represents 

Upturn and Downturn event. Therefore PDCC↑* is the DCC* price of an upturn directional 

change event and PDCC↓* is the DCC* price of a downturn directional change event. 
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Figure 5: Stylised diagram of EXT, DCC and DCC* in DC. Black round dot represents the 

market price. Red triangle and square points represent EXT and DCC respectively. Blue 

triangle point represents DCC*. θ is the threshold. PDCC↑* = PEXT × (1+ θ). There is no such 

DCC* existing in a real market, so a DC event is only confirmed in an upturn DC run once it 

has passed the first DCC, which exists as a market price in real market. And, PDCC↑ will not 

be smaller than PDCC↑*. The example of definition of PDCC↓* in a downturn DC run is also 

shown in this figure.  

 

After the DCC, DCC* and EXT points have been located, the second step is to define useful 

indicators for directional change market summarizing. These indicators are all calculated 

from the value of the points and the time intervals. For instance, some indicators are to define 

the market trend, another indicator is used to measure the directional change trading 

volatility, or the risk. The introduction of these indicators will be described in the next 

section. All these indicators will be generated from our programme TR1, after the sample 
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data was introduced into it. The specification of TR1 will be presented in section 3.4 and 

appendix 8.1. 

 

The programme TR1 will generate two files: the DC-Data file and the Profile Summary File. 

The DC-Data file includes all details of every point and indicators of it, which is machine 

readable for testing the correctness of the Profile Summary File. The Profile Summary File is 

converted from the DC-Data file, while it only has a few indicators in it. These few indicators 

show the whole of the market price movements. Users will be able to obtain the 

characteristics of market in directional change terms through these indicators values. This is 

the whole process of summarizing time series with directional changes through TR1. 

 

3.3  DC market profile vocabulary (DC indicators) 

In order to analyse price dynamics, we need to extract useful information from DC 

summaries. In this section, we propose indicators which could be useful for extracting 

information. With these indicators, we aim to construct profiles for price changes 

summarized under the DC framework. 

 

3.3.1  Number of directional change events (NDC) 

NDC is the total number of DC events that happened over the profiled period, which measures 

the frequency, or volatility of DC events. For example, there may have 17 DC events in one 

market data under a fixed threshold. So NDC = 17. Based on the same threshold, the time 

period which has higher NDC value is more volatile than other time periods. By recording the 

NDC within the profiled period, DC provides us with another way to measure the volatility of 

market price movements. 

 

 

3.3.2 Overshoot Values at Extreme Points (OSVEXT) 

The magnitude of an overshoot is the price change from the last directional change 

confirmation price (DCC) to the current price. We define Overshoot Value (OSV) for 

measuring the magnitude of an overshoot. Instead of using the absolute value of the price 

change, we would like this measure to be relative to the threshold, θ. Therefore, we define 

OSV as follows: 
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OSV= ((Pc – PDCC) ÷ PDCC) ÷ θ (3) 

Here Pc is the current price, PDCC is the last directional change confirmation price, θ is the 

threshold. At DC confirmation, Pc = PDCC, so OSV = 0. 

 

Overshoot values at extreme points (OSVEXT) is an indicator for measuring the magnitude of 

an overshoot based on the price distance between fixed points. It measures how far the 

overshoot goes from the theoretical directional change confirmation point (DCC*) to the next 

extreme point (EXT). We define OSVEXT as follows: 

OSVEXT= ((PEXT – PDCC*) ÷ PDCC*) ÷ θ (4) 

Here PEXT is the price at the extreme point that ends the current trend, PDCC* is the price of the 

theoretical directional change confirmation point of the current trend, θ is the threshold. For 

example, in a downturn DC trend, PEXT_1 = 1.4629, PEXT_2 = 1.4521. then PDCC* = PEXT_1 × (1- 

θ) = 1.4629 × (1-0.4%) = 1.457048. So OSVEXT_1 = ((1.4521-1.457048) ÷ 1.457048) ÷ 0.004 

= - 0.84905. This means the magnitude of overshoot event in this trend is 0.84905 times of θ.  

 

In the calculations of OSV and OSVEXT, we normalised the indicator values by θ so we can 

avoid the effect of θ in our DC market summary. In other words, our calculations of OSV and 

OSVEXT are threshold-independent.  

 

As we emphasised in section 3.2, the reason we use DCC*, rather than DCC, to calculate 

OSVEXT is because in reality, EXT point and DCC point can be the same point under a fixed 

threshold. In other words, PEXT may be equal to PDCC. So OSVEXT will be equal to 0. 

Especially if the sample is in a low volatile period, OSVEXT can be a bunch of zero, which 

will make OSVEXT’s calculation meaningless, and therefore no useful information can be 

extracted through DC market profiling. 

 

3.3.3 Time for completion of a trend (T) 

DC is defined as being based on events, so it uses intrinsic, as opposed to physical, time 

(Glattfelder et al 2011). However, that does not mean that it ignores physical time. The 

amount of physical time that a trend takes to complete, or the frequency of price direction 

changes, is a significant piece of information for market volatility. We define an indicator 
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TDC as the time that it takes between the extreme points that begin and end a trend (Figure 6). 

For example, if the one trend takes six seconds to complete, and time unit for T is second, 

then T= 6. 

 

Figure 6: Example: T, PEXT and θ in EUR/USD, θ = 3%, PEXT is the price at directional 

change extreme point (solid black squares), PDCC is the last directional change confirmation 

price, TDC is the time that it takes between two consecutive directional change extreme 

points. 

 

3.3.4 Total Price Movements Value at Extreme Points (TMV)  

Total price movements value at extreme points (TMV) measures the price distance between 

the extreme points that begin and end a trend, normalized by θ, which is the threshold used 

for generating the directional change summary. It measures the maximum possible profit for 

each trend and the magnitude, or scale of price change in each trend. In other words, TMV 

measures the one aspect of market volatility in DC market summary.  Everything being equal, 
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the bigger the scale of changes, the more volatile one may consider the market to be. TMV is 

defined by: 

𝑇𝑀𝑉𝑖  = 
PEXT_i+1 – PEXT_i

PEXTi∗ θ
 (5) 

Here PEXT_i  represents the price at the i-th directional change extreme point, PEXT_i+1 

represents the price at the (i+1)-th directional change extreme point, θ is the threshold used 

(Figure 6). For example, in a downturn DC trend, PEXT_1 = 1.4629, PEXT_2 = 1.4521. Then 

TMV = ((1.4521-1.4629) ÷ 1.4629) ÷ 0.004 = - 1.84565. This means the scale of price 

changes in this trend is 1.84565 times θ. 

 

The calculation process of TMV also makes it a threshold-independent indicator, just like 

OSV and OSVEXT. 

 

3.3.5 Number of directional change events in Sub-threshold (Sub-NDC) 

NDC measures the volatility of market price movements over the profiled period. However, 

the price movement is not smooth from the last EXT point to next EXT point. There still exist 

some price fluctuations in every DC trend. These price fluctuations are also important 

information about the market which is not able to be observed by NDC. So here we introduced 

another indicator - Sub-NDC. By choosing another smaller threshold, Sub-NDC measures the 

total number of DC events that happened in each DC trend based on the smaller threshold. 

For example, as Figure 7 shows, compared with the threshold 3%, we set another smaller 

threshold, called sub-threshold, which is 1%.  Based on the same sub-threshold, the DC trend 

which has higher Sub-NDC value is more volatile than other DC trends.  
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Figure 7: Using sub-threshold 1%, we found 17 DC events between two EXT points. So Sub-

NDC is 17 in this DC trend.  

3.3.6 Undershoot Value at Extreme Points (USVEXT_s) 

Undershoot Value at Extreme Points (USVEXT_s) is also based on the sub-threshold. It 

measures the highest price change in each DC trend according to the sub-threshold. In a 

downward DC trend, USVEXT_s is defined by: 

USVEXT_s = {
PEXT_smax – PDCC∗

PDCC∗ × θ
, PEXTs_max–  PDCC ∗ >  0

0,  Otherwise 
  (6) 

Here PEXT_smax is the highest price after the DC confirmation point, which is based on sub-

threshold. As Figure 7 shows. PDCC* is the price of the theoretical directional change 

confirmation point of the current trend which is based on the threshold, θ is the threshold. 

 

In an upward DC trend, USVEXT_s is defined by: 
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USVEXT_s = {
PDCC∗ − PEXT_smin 

PDCC∗ × θ
, PDCC ∗  − PEXTs_min >  0

0, Otherwise  
  (7) 

Here PEXT_smin is the lowest price after the DC confirmation point, which is based on sub-

threshold. As Figure 7 shows. PDCC* is the price of the theoretical directional change 

confirmation point of the current trend which is based on the threshold, θ is the threshold. 

 

Compared with Sub-NDC which measures the frequency of price changes in each DC trend, 

USVEXT_s measures the magnitude of price changes in the trend. Trader may see Sub-NDC 

and USVEXT as measurements of risk in trading through DC. Based on the same sub-

threshold, the DC trend which has higher USVEXT_s value is more volatile than other DC 

trends. 

 

The calculation process of USVEXT_s also makes it a threshold-independent indicator, just 

like OSV and OSVEXT. 

 

3.3.7 Time independent Coastline (CDC) 

Since TMV represents the maximum possible profit of each TM event, we define the length 

of the price-curve coastline under DC (θ) as the sum of all absolute value of TMV over the 

profiling period: 

CDC =  ∑ |𝑇𝑀𝑉𝑖|
𝑁(θ)
𝑖=1                                                                                                 (8) 

Here θ is the threshold (in %), N (θ) is the total number of DC events over the profiling 

period under θ and TMV𝑖 is the Total Price Movements Value at each directional change 

extreme point.  

 

The calculation of CDC only pays attention to price changes; time is ignored. It shows us the 

maximum possible profit available from the profiled period. According to the definition of 

TMV, it measures the price distance between the extreme points that begin and end a trend, 

normalized by θ. So we can measure the maximum potential profit in %. For example, if CDC 

= 100, θ = 0.4%, then the maximum potential profit for the profiled time period is 100×0.4% 

= 40%. 
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3.3.8 Time-adjusted return of DC (RDC) 

We define time-adjusted return of DC (RDC) to measure the return in each upturn or downturn 

event, i.e. the ratio between each TM event and time interval (T). A high RDC means the 

profit can be earned in a short time period. Since TMV measures the number of thresholds in 

up/downtrend. We define RDC as: 

RDC = 
|𝑇𝑀𝑉| ∗ θ

𝑇
                                                                                                                (9) 

Here TMV is total price movement value at extreme points and T is the time interval between 

each EXT, θ is the threshold used. Here RDC measures the percentage of price rising/dropping 

per time unit. For example, TMV = -1.84565, T = 25740 seconds. Then RDC = |TMV| × 

threshold / T = 1.84565 × 0.004 ÷ 25740 = 2.87× 10 -7. In other words, the second return is 

0.0000287%  

 

One could define a coastline based on time-adjusted returns RDC. For example, one could take 

the accumulative returns to represent coastline. However, its equivalence in time series is 

unfamiliar to researchers. Therefore, while it is potentially useful, we leave this option open 

at this stage. 

 

3.3.9 Up and down trends asymmetry in time intervals (AT) 

In a DC profile, because of DC’s definition, the uptrend and down trend are always 

consecutive to each other (See Figure 2) and the amount of uptrend and downtrend are almost 

equal to each other. This is different from time series analysis. We argue that the difference 

between the u trend and the down trend are also significant information about the market. So 

in DC we have two indicators to measure the difference between the uptrend and the down 

trend. One is for measuring the differences in TDC between the uptrend and the down trend. 

We call it AT. We defined AT as: 

AT =  
𝑇𝑚↑−𝑇𝑚↓

𝑇𝑚↑+𝑇𝑚↓
                                                                                                                      (10) 

Here Where Tm represents the median values of TDC in up trends in each DC profile. Tm 

represents the median values of TDC in down trends in each DC profile. Here the reason we 

are using median value instead of average value is also to avoid the effects from extreme 

value in TDC series. For example, Tm↑ = 44389 seconds, Tm↓ = 25740 seconds. Then AT = 

(44389 - 25740) ÷ (44389 + 25740) = 0.2659. The range of AT is always between –1 and 1. 

The closer AT is to 0, the less differences between up and down trends in time intervals will 
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be. On the other hand, the closer AT is to -1 or 1, the more differences between up and down 

trends in time intervals will be. 

 

3.3.10 Up and down trend asymmetry in returns (AR) 

Another indicator is AR. It is to measure the asymmetry in the returns (RDC) between the 

uptrend and the downtrend. We call it AR. We defined AR as: 

AR = 
𝑅𝐷𝐶_𝑚↑−𝑅𝐷𝐶𝑎_𝑚↓

𝑅𝐷𝐶_𝑚↑+𝑅𝐷𝐶𝑎_𝑚↓
                                                                                                                    (11) 

Where RDC_m represents the median values of RDC in up trends in a DC profile. RDC_m 

represents the median values of RDC in down trends in a DC profile. Here we use the median 

value instead of the average value also in order to avoid the effects from extreme values in 

the RDC series. For example, RDC_m↑ = 1.48×10-7, RDC_m↓ = 2.46×10-7. Then AR = (1.48×10-7 - 

2.46×10-7) ÷ (1.48×10-7 + 2.46×10-7) = -0.2589. The range of AR is always between –1 and 1. 

The closer AR is to 0, the less differences between up and down trends in returns will be. On 

the other hand, the closer AR is to -1 or 1, the more differences up and down trends in returns 

will be. 

 

 

3.4  Specification of TR1 

TR1 is a program that reads in time-stamped prices (which we call the Input Data File) and 

outputs a profile of the input data. The profile includes two parts. First, TR1 outputs a file 

that contains all the data points at extreme points and directional change confirmation points. 

We call this the DC-Data File. Secondly, TR1 outputs a summary of the profile. We call it the 

Profile Summary File. The full specification of TR1 is in Appendix 8.1.  

 

The Profile Summary File is summarized from the DC-Data file, which only has a few 

indicators in it. These indicators show the information of the whole market price movements, 

such as the market trend, and the price curve volatility. Combined with time series analysis, 

users are able to have a different understanding of the market price movements in directional 

change term as a complementary metric. 
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3.4.1 Input to TR1 

The Input file is a csv file with one record per data point, timed. 

 

3.4.2 Output of TR1 

The program will produce two files: (1) “DC-Data File” and (2) “Profile Summary File”. 

 

DC-Data file contains: 

Header: It contains information for reproducing the results, including the program 

version, input and output files and the threshold used for computing the DCs. The full 

specification of the Header and the Body (below) can be found in Appendix 8.1. 

 

Body: It contains a chronological report of all the trends in the whole period which 

has been summarized. This includes the extreme point, and directional change 

confirmation point of each trend, together with indicators OSVEXT, TMV, T, RDC, 

Sub-NDC and USVEXT_s as defined in Section 3.2.  

 

Profile Summary File contains:  

Header: It is the same one as the DC-Data file. 

 

Body: It contains market information that concludes from the indicators in the DC-

Data file. This includes the number of directional changes (NDC) and the median value 

of OSVEXT, TMV, T, RDC, Sub-NDC and USVEXT_s for DC uptrends, downtrends, and 

the whole trends.  

 

 

Snapshot profile – it only contains market information at the ending point in DC-

Data file. This includes the final time and price displayed in the Input Data File, 

together with the spot indicators OSV, TMV, T and RDC as defined in Section 3.2. 

 

3.5  Example of DC profiling 

The DC-Data file will be fully displayed in Appendix 8.2, which is used to check the 

correctness of Profile Summary File in Table 1. 
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Figure 8 shows the price movements of second-by-second Forex market data for 

EUR/USD, which spans from October 1, 2009 to October 30, 2009. The data is 

randomly chosen as an example for showing the process of DC profiling. Figure 8 also 

shows the highest and lowest price points. Figure 9 shows the one-month data is 

summarized that in the DC method, under a fixed threshold 0.4%. Table 1 is the DC 

Profile file, and Table 2 is the Snapshot file. 

 

 

Figure 8: Price movements of second-by-second market data for EUR/USD, spanning 

October 1, 2009 to October 30, 2009, which includes around 745,466 data points. 
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Figure 9: Price movements of second-by-second market data for EUR/USD, spanning 

October 1, 2009 to October 30, 2009, determined by a fixed threshold 0.4%. The total 

price movements between two consecutive extreme points are decomposed into 

directional change events (red lines) and an overshoot events (green lines). 
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Profile Summary File: 

Program_ID:TR1.3 

Author: Ran Tao 

Date 2016.03.03 22:20:37 

File_input EURUSD-Oct2009sec 

Threshold(Theta) 0.004 

Sub-Threshold 0.001 

Tstart 01/10/2009,00:00:00 

Tfinal 30/10/2009,16:58:58 

TL 745266 

NDC 43 

PC 1.015654 

MedianOSV_overall 0.669948 

MedianOSV_up 0.644839 

MedianOSV_down 0.695057 

MedianT_overall 37378 

MedianT_up 44389 

MedianT_down 25740 

MedianR_DC_overall 1.79E-07 

MedianR_DC_up 1.48E-07 

MedianR_DC_down 2.46E-07 

LenC 77.42177 

MeanLenC 1.843376 

MedianSub_NDC 13 

MedianUSV 0.166625 

Table 1: Profile Summary File of second-by-second market data for EUR/USD, 

spanning October 1, 2009 to October 30, 2009, determined by a fixed threshold 0.4% 

and sub-threshold 0.1%.  
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Snapshot  

Tfinal 30/10/2009,16:58:58 

Pfinal 1.4722 

SPC 1.006701 

SOSV -1.28396 

STMV -2.28833 

ST 38042 

SR_DC 6.02E-05 

 

Table 2: Snapshot at the final point of second-by-second market data for EUR/USD, 

spanning October 1, 2009 to October 30, 2009, determined by a fixed threshold 0.4%. 

 

Table 1 is an example of DC market summary. It summarizes the 745,266 seconds (TL) in 

the one-month period in the EUR/USD market under a threshold of 0.4%. The market price 

movement is going up as the price changes (PC) from first extreme point (EXT) to the last 

extreme point which is slightly greater than 1 (1.015654). It shows that there are 43 DC 

events (NDC). The median time that each trend takes is 37,378 seconds (MedianT_overall). The 

uptrends take more time, which is 44,389 seconds per trend (MedianT_up). While the 

downtrends only take 25,740 seconds (MedianT_down). Downtrends shows more frequency in 

price changes. 

 

The median range of price change (OSVEXT) is 0.669949 (MedianOSV_overall). The price 

change in up trends (MedianOSV_up = 0.644839) is smaller than down trends 

(MedianOSV_down = 0.695057). So the downtrends have more potential profit and less risk 

for the DC traders.  

 

The profile can also tell us about the time-adjusted return (RDC) in up and downtrends. 

MedianR_DC_up is 1.79 × 10 -7, or 0.0646% per second. MedianR_DC_up (1.48 × 10 -7) is 

smaller than MedianR_DC _down (2.46 × 10 -7). In other words, the price rises 0.053% 

(0.053% = 1.48 × 10 -7 × 3600) per hour while drops 0.089% (0.089% = 2.46 × 10 -7 × 3600) 

per hour in each trend. This profile shows that downtrends have higher potential return than 

uptrends in EUR/USD market. 
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The price-curve coastline (LenC) is 77.42177. According to the definition of coastline in DC, 

coastline is the sum of all absolute value of TMV over the profiling period. This means the 

profit that one can potentially make in the profiling period is 77.42177 × threshold (0.4%) = 

30.9687%. It represents the highest possible profit that one could make according to the DC 

profile. Furthermore, the profile shows that the MeanLenC is 1.843376. This means on 

average threshold (0.4%) × 1.843376 =0.7373504% of potential profit can be earned in each 

trend. 

 

The sub-threshold we choose for this DC profile is 0.1% for as a default quarter of the 

threshold. So the median DC events based on the sub-threshold that happened in each trend is 

13 (MedianSub_NDC). The median undershoot value at extreme points is 0.166625 

(MedianUSV). 

 

3.6  Comparison between time series analysis and DC market summary 

DC is still in its infancy. It is still limited in how we can use DC indicators to profile market 

dynamics. But useful information can be gained from the research so far. This has been 

explained in the above subsections. Here is a summary. 

 

The returns that time series look at are returns over fixed periods of time, chosen by the 

researcher, while by contrast, the returns that DC looks at (RDC) are returns over directional 

change events, recorded at a threshold decided by the researcher, so it is data-led. Given the 

same number of data points, DC coastlines are often longer than time series coastlines for the 

same period, because by definition, DC is able to capture the extreme points when they occur 

(Aloud et at 2012).   

 

Many researchers (Baillie 1991, Pictet 1997, Chang 1999, Osler 2008, Tsay 2010) have tried 

to model and forecasting the volatility of financial returns in time series analysis. The most 

frequently used indicator to measure market historical volatility in time series analysis is the 

standard deviation of the returns (Hull, 1998). The five indicators (NDC, TMV, T, Sub-NDC 

and USVEXT) introduced in DC provide five additional measures of volatility. The 

introduction of overshoot enabled Glattfelder et al (2011) to observe power laws in the 

foreign exchange market. Table 3 summarizes the indicators discussed so far. 
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 Time Series Indicators Directional Change Indicators 

Return: 

Different angles on returns 

Returns measured in 

each (fixed) period 

Percentage of price changes measured in 

each trend. Since they are sampled in 

irregular times, this percentage must be 

time adjusted for comparison 

Coastlines:  

DC coastlines are often 

longer than time series 

coastlines (Aloud et at 

2012) 

Accumulation of 

Returns 

CDC: maximum possible returns over the 

profiled period 

Volatility: 

Time series and DC 

provide different 

perspectives on volatility 

Standard deviation on 

Returns 

NDC: measures the frequency of DCs 

TMV: measures the scale of price changes 

T: measures the time that it takes to 

complete a trend 

Sub-NDC: measures the frequency of DCs 

in each DC trend 

USVEXT_s: measures the scale of price 

changes in each DC trend 

 

Up and down trend 

asymmetry 
N/a 

AT: measure the difference in TDC 

between up and down trend  

AR: measure the difference in RDC 

between up and down trend 

Statistical observations: 

Different observations 

made possible by different 

indicators 

Many observations, 

such as fat tails and 

volatility clustering 

Power law found on overshoot event, 

which is made possible by the 

introduction of overshoot value at extreme 

points (Glattfelder et al 2011) 

Table 3: Contrast between time series indicators and DC-based indicators (Source: 

modified from [Tsang et al 2016]) 
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3.7  Useful information extracted through DC indicators - Profiling high 

frequency price movements in equity markets 

 

In this section we explain how DC profiling could help us to observe price movements in four 

companies. These four companies were chosen to represent four sectors in the FTSE 100 

Index, which are shown in Table 4. 

3.7.1 Profiling four blue chip companies 

 

Key Company name Sector 

AZN AstraZeneca PLC Healthcare 

BT BT Group PLC Technology 

HSBA HSBC Holdings PLC Financial 

MKS Marks & Spencer Group PLC Services 

Table 4: Four companies and the four sectors which they represent (Source: modified from 

[Tsang et al 2016]) 

 

We used tick transaction prices in two time periods, September 2014 and February 2015, to 

profile each of the four equities. Since the value of threshold will affect the results of profiles, 

we applied the same threshold (1%) for these four equities. In DC profiles, we calculated the 

DC indicators which we presented in Section 3.5. The profiles also included some simple 

statistical analysis of the indicators, such as the median, mean and standard value of the 

indicators. We developed a program TR1 based on Matlab platform for producing DC 

profiles.  
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3.7.2 Profiles of the companies 

Time September 2014 February 2015 

Company AZN BT HSBA MKS AZN BT HSBA MKS 

NDC 82 37 43 57 138 126 81 46 

MedianTMV 1.74 1.53 1.66 2.14 1.76 1.67 1.74 1.5 

Standard deviation of 

TMV 
1.26 0.88 0.7 1.23 1.19 1.2 1.33 0.7 

Median T (minutes) 79.41 115.56 145.2 78.79 19.7 32.46 88.44 112.75 

Standard deviation of 

T 
178.77 391.37 381.85 290.07 129.61 148.9 162.61 307.93 

CDC (%) 171.84 65.28 80.84 132.28 304.69 261.72 176.78 75.27 

Table 5: Summarized DC Profiles with a threshold of 1% on AZN, BT, HSBA and MKS with 

second-by-second transaction prices, September 2014 and February 2015 (Source: modified 

from [Tsang et al 2016]) 

In Table 5, we included six significant indicators values, as shown in the first column. The 

last row of Table 5 and Figure 10 show the maximum potential profit for each company 

during the time periods. 

 

 

Figure 10: The coastline (CDC) from DC profiles for AZN, BT, HSBA and MKS in two 

different time periods. Blue column is for September 2014 and orange column is for February 

2015. (Source: modified from [Tsang et al 2016]) 
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The coastline (CDC) of AZN is 171.84% in September 2014 and 304.69% in February 2015. 

Compared with other three companies in the same time period, AZN always has longest 

coastline in DC profiles. That means there is the potential to generate more profit in AZN 

than in the other three companies. Besides, among these four companies, only the coastline of 

MKS drops from September 2014 to February 2015. It drops from 132.38% to 75.27%. Other 

three companies’ coastlines all rise substantially. For AZN, BT and HSBA, February 2015 

presented traders with more profit potentials. 

 

The volatility can be reflected by two indicators in the DC profiles: the frequency of DCs and 

the magnitude of price changes in each trend. The frequency of DCs is reflected by the time 

that it takes to complete a trend, T. The magnitude of price change is reflected by the total 

price movements in each trend, TMV.  

 

  

  Figure 11: The median and standard deviation of T from DC profiles for AZN, BT, HSBA 

and MKS in two different time periods. Blue and orange column represent median T. Black 

and yellow line stand for standard deviation of TDC. (Source: modified from [Tsang et al 

2016]) 

 

T is the physical time that an up or a down trend takes to complete. Everything being equal, 

the longer time one trend takes to complete, the less volatile one may consider a market to be. 

In Figure 11, we have reported the median TDC and its standard deviation.  
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Figure 11 shows that the median value of T for HSBA in February 2015 is 88.44 minutes, 

which is over four times of the median value of T for AZN in the same time period. HSBA 

has the second highest value of median TDC among the four companies during February 2015. 

Considering market volatility in T, we conclude that HSBA in February 2015 has small risks 

in trading comparatively. As far as T is concerned, HSBA has the lowest volatility in 

September 2014, and MKS has the lowest volatility in February 2015 among the four 

companies studied. 

 

 

  Figure 12: The median TMV and standard deviation of TMV from DC profiles for AZN, 

BT, HSBA and MKS in two different time periods. Blue and orange column represent 

median TMV. Black and yellow line stand for standard deviation of TMV. (Source: modified 

from [Tsang et al 2016]) 

 

T only tells half of the story about volatility. TMV tells the other. TMV measures the scale of 

price changes. Everything being equal, the bigger the scale of changes, the more volatile one 

may consider the market to be. In Figure 12, we reported the median value of TMV as well as 

their standard deviations. 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

0.5

1

1.5

2

2.5

AZN BT HSBA MKS

St
d

  T
M

V

M
ed

ia
n

 T
M

V

Median TMV & Std TMV

Sep-2014 Feb-2015 Sep-2014 Feb-2015



 
55 

Figure 12 shows that all the median TMV values are comparable to each other in the range 

between 1.5 and 1.76, apart from MKS in September 2014, which has a value of 2.14. This 

suggests that, as far as TMV is concerned, the profiled periods (apart from MKS in 

September 2014) have similar risks. That means we can rely on the other indicator, TDC, to 

measure volatility of the profiled periods.  

 

What we have shown in this section is that the coastline, frequency of directional changes and 

magnitude of directional changes enrich our analysis in studying return and risk in markets. 

As mentioned above, the new indicators introduced allow researchers to statistically observe 

the market, such as the power law (Glattfelder et al 2011), which discovered some significant 

characteristics of market movements. Glattfelder et al (2011) discovered 12 independent new 

empirical scaling laws in foreign exchange data, with three orders of magnitude and across 13 

currency exchange rates, resulting in the discovery of scaling laws giving an accurate 

estimation of the length of the price-curve coastline, which turned out to be surprisingly long.  

 

3.7.3 Contrast between time series and DC-based analyses 

Starting with the same data, one can study price changes with both time series and DC. They 

extract different information from the same data – in this case, tick data. Therefore, what they 

observe should be consistent with each other. However, they provide us with different 

perspectives. In this section, we use AZN February 2015 data to illustrate our point. 

 

We used a threshold of 1% to generate a DC profile from the tick-to-tick data for this period. 

This gives us 138 trends. We sample 138 points at fixed intervals within this period to form 

the time series. Then we extract the information from both time series and DC-based 

analyses. In Table 6 we summarize some of the indicators which can be extracted by both 

approaches. 
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 Time Series Indicators Directional Change 

Indicators 

Return: 

Time series and DC provide 

different angles on returns  

The mean and median 

absolute returns were 0.36% 

and 0.27%, respectively 

The mean and median 

absolute percentage price 

differences from beginning 

to end of trend were 2.22% 

and 1.76%, respectively 

Coastlines:  

It measures of maximum 

possible profit available 

Coastline as measured by 

Sum of absolute returns is 

49%  

Coastline as measured by 

CDC is 305% 

Table 6: Contrast between time series indicators and DC-based indicators (with 

threshold=1%) in AZN, February 2015; DC was summarized with a threshold of 1%, which 

resulted in 138 trends observed; to enable fair comparison, 138 data points were sampled 

from the high frequency data in the same period to form the time series. (Source: modified 

from [Tsang et al 2016])  

  

As explained in Section 3.6, “returns” from time series and “time-adjusted returns” from DC-

based analysis generated are not directly comparable with each other because the data is 

sampled in irregular intervals in DC profiling. Table 6 shows that mean return for time series 

was 0.36%, while mean time-adjusted return for DC-profiling is 2.22 %. The substantial 

difference is in fact partly explained by the way that DC sampled the data. The DC-based 

analysis used a threshold of 1% to generate results in Table 6. Therefore, every trend would 

see at least a 1% change in each trend (the rest is overshoot). The time-adjusted return in DC 

profiles tells us the magnitude of overshoot.  

 

Coastline is a useful indicator in DC profiles. By stipulation, DC captures extreme points in 

market trends. Therefore, DC coastlines should be at least as long as time series coastlines 

(Aloud et at 2012.  As Table 4 shows, coastline in DC is 305% in AZN, February 2015, 

which is over six times bigger than the coastline in time series analysis in the same time 

period (49%). So, everything being equal, there is more potential to gain from forecasting and 

trading using DC than in time series. This motivates us to develop DC indicators to forecast 

directional changes points. 
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In Section 3.7.2, we explained that there are two ways to measure volatility in DC profiling. 

Table 6 shows that the standard deviation of returns for time series was 0.51%. Volatility in 

DC profiling is measured by two dimensions: (a) the frequency of directional changes is 

measured by median time to complete a trend (TDC), which was 19.7 minutes. The smaller 

this number, the more frequent that direction changes; (b) the magnitude of price changes in 

the trends is measured by median return (TMV), for which 1.76% was recorded. All three 

numbers, 0.51% (for time series), 19.7 minutes and 1.76% (for DC profiling), are useful for 

assessing the volatility of the profiled period. None of them can be replaced by the other.  

 

 

3.8 Summary 

In this chapter, we introduced the theory of DC market profiling as the first step for the 

market information extraction process through DC. To build DC market profiles, we 

introduced the indicators that we defined and provided an example to show the way that these 

indicators work. After the example, we applied DC market profiling into the equity market 

and provided a comparison between DC indicators and time series analysis indicators. For 

instance, DC profile provides different ways to measure market volatility and captures more 

potential profit. All these results have demonstrated the usefulness of DC market profiling in 

real market data analysis.  
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Chapter 4 DC Market Profiles Comparison 

and DC metrics  

Chapter 4 introduces our DC metrics for quantitative measurement of the differences between 

two DC market profiles. We also have a program called TR2 to calculate metrics values in 

this chapter and an example to show the process of TR2 using currency market data. The 

example demonstrates the practicality of DC metrics in market comparison. 

4.1 Overview 

After defining and introducing DC market profiling in Chapter 3, Chapter 4 is the second step 

of DC market summarizing. In this chapter, we will continue develop our DC market 

information extraction method by introducing DC metrics, which are used for DC market 

comparison. DC indicators in DC profiles and DC metrics together constitute our DC 

vocabulary, which facilitates our DC market analysis. As the same way for DC indicators in 

last chapter, we applied these DC metrics into real currency market and extracted some useful 

market information and demonstrated the usefulness of these DC metrics. 

 

After this section, this chapter begins with an introduction of the reasons why we need these 

DC metrics in Section 4.2. We will include some examples in this section to demonstrate the 

necessary of DC metrics. In Section 4.3 we will continue to introduce the metrics we defined 

for DC market analysis. We write a program called TR2 to help us calculate these metrics 

values and generate a DC metrics file from the two DC market profiles. The specification of 

TR2 is showed in Section 4.4. Then we have an example to show the process of TR2 from 

currency markets in Section 4.5. After the comparison, in Section 4.6we discuss and show the 

performance of our DC metrics and demonstrate its usefulness through the currency market 

data which is provided by Kibot. The chapter is summarized in Section 4.7. 

 

4.2 Reasons for Comparing DC profiles 

The creation of DC metrics is aimed to help us define the distance between two DC market 

profiles. Our work has demonstrated that with the DC based indicators, DC market profiles 

can summarize price changes and market volatility under the DC framework (Tsang et al 

2016). However, compared with time series analysis, it is still difficult for researchers to 
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quantitatively define the differences, or in other words, the distance between two DC market 

profiles.  

For example, Table 7 and 8 are snapshots of two DC data files from same market in different 

time periods, determined by the same threshold. In time series analysis, the researcher can 

use methods like discrete wavelet transform (Chan 1999) as a quantitative way to measure the 

relationship between pairs of time series. However, in DC there is no quantitative way to 

measure the differences, or distance between these two DC market profiles, as the Figure 13 

shows. It is not easily visible for researchers to confirm the differences between these two DC 

market profiles and how different these two profiles are with each other. Even with the same 

threshold, the frequency of DC event and the magnitude of time intervals of DC trend (T) 

may vary in different markets. In that case, DC market analysis is lack of a quantitative way 

to measure differences between markets.  This is the reason we continue to define DC 

metrics, based on our previous work on DC indicators, to measure the distance between two 

DC profiles.  

 

TEXT PEXT TDCC PDCC TMV T RDC 

11/08/2014,03:22 102.02 08/09/2014,19:56 106.11 1.97 53394 0.77 

30/09/2014,22:18 110.07 15/10/2014,09:37 105.66 -1.10 15083 1.51 

15/10/2014,09:41 105.24 31/10/2014,00:45 109.88 3.94 53774 1.52 

07/12/2014,17:57 121.83 16/12/2014,03:31 116.96 -1.28 9424 2.82 

16/12/2014,07:01 115.59 23/12/2014,08:19 120.22 1.13 7723 3.02 

23/12/2014,15:44 120.80 15/01/2015,17:12 115.93 -1.02 20904 1.01 

15/01/2015,21:47 115.86 06/03/2015,08:32 120.61 2.15 144693 0.31 

Table 7: A snapshot of DC data file for minute by minute data USD/JPY spanning from 

August, 2014 to August, 2015, determined by a fixed threshold 4 %. It includes the indicators 

values of each trend 
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TEXT PEXT TDCC PDCC TMV T RDC 

12/08/2015,00:15 125.26 24/08/2015,06:24 120.20 -1.82 12052 3.14 

24/08/2015,09:12 116.12 27/08/2015,11:51 120.77 1.62 103873 0.32 

02/12/2015,12:28 123.66 04/01/2016,03:21 118.72 -1.55 46538 0.69 

20/01/2016,04:02 116.01 28/01/2016,22:39 120.75 1.22 10443 2.42 

29/01/2016,10:05 121.66 04/02/2016,10:02 116.75 -3.31 96102 0.71 

03/05/2016,04:03 105.56 18/05/2016,10:07 109.79 1.39 27332 1.05 

30/05/2016,03:38 111.42 03/06/2016,10:01 106.92 -2.80 27059 2.14 

23/06/2016,22:44 98.96 24/06/2016,03:48 103.04 2.15 27265 1.63 

Table 8: A snapshot of DC data file for minute by minute data USD/JPY spanning from 

August 2015 to August 2016, determined by a fixed threshold 4 %. 
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Figure 13 : The models of series of three indicator values from two DC profiles. 

 

Apart from the differences between two DC profiles, DC metrics are also able to measure the 

differences between two DC profiles in different aspects, for instance, the two T series in 
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Figure 13. In other words, the differences in time intervals of DC trends. As the same value 

of correlation coefficient in time series analysis, the range of our metrics is also limited 

between -1 and 1. The closer the metric value is to 0, the shorter the distance is between two 

DC profiles. By contrast, the closer the metric value is to 1 or -1, the longer distance the two 

DC profiles will have between each other. With DC metrics, DC market profiles are 

comparable with each other with a quantitative distance measurement. Apart from single DC 

market profiles, DC metrics are a significant complement to DC market analysis and to be 

able to help researchers to extract market information under the DC framework easily. In this 

section we will present our DC metrics and demonstrate how they measure the distance 

between two DC profiles.  

 

All our metrics values will be calculated from our program TR2. The specification of TR2 

will be presented in Section 4.4 and Appendix 8.3. The program TR2 will read two DC-Data 

files which are generated from TR1 in one time, based on the same threshold and then 

generate the DC Metrics file. The DC Metrics file includes all DC metrics values, which is 

machine readable. These metrics values show the differences, or distance between two DC 

profiles. By DC market comparison, users will be able to obtain the characteristics of 

different financial markets in directional change terms more easily. This is the whole process 

of summarizing time series with directional changes through TR2. 

 

4.3 DC metrics in profiles comparison  

The aim to define DC metrics is to quantitatively measure the differences between two DC 

profiles and the differences between two DC profiles in different aspects. We will introduce 

the six DC metrics we defined so far in this section. 

  

4.3.1 Majority of price changes (DP1) 

We defined a metric call DP1. It measures the differences between the median values in the 

two TMV series. Here we defined DP1 as: 

 

DP1 = (|(𝑎)𝑇𝑀𝑉𝐸𝑋𝑇_𝑚|  − |(𝑏)𝑇𝑀𝑉𝐸𝑋𝑇_𝑚|)/ (|(𝑎)𝑇𝑀𝑉𝐸𝑋𝑇_𝑚|  + |(𝑏)𝑇𝑀𝑉𝐸𝑋𝑇_𝑚|)         (12)                                                                                                       
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Where (a) TMV_m   and (b) TMV_m represent the median values of TMV series in each DC 

profile.  

 

DP1 focus on the differences in majority of price changes between two DC profiles (Figure 

14). We used median values to avoid the affect from extreme values in TMV series. The 

range of DP1 is always between –1 and 1. The closer DP1 is to 0, the less differences between 

two DC profiles in majority price changes will be. On the other hand, the closer DP1 is to -1 

or 1, the more differences between two DC profiles in majority price changes will be.  

 

Figure 14: Distribution of TMV values. DP1 focus on the difference in majority price changes. 

DP2 focus on the difference in extreme price changes. 

 

4.3.2 Extreme price changes (DP2) 

Metric DP2 is defined to measure the difference in extreme price changes between two DC 

profiles. Here we defined DP2 as: 

 

DP1 =(|(𝑎)𝑇𝑀𝑉𝐸𝑋𝑇_𝑒|  −  |(𝑏)𝑇𝑀𝑉𝐸𝑋𝑇_𝑒|)/ (|(𝑎)𝑇𝑀𝑉𝐸𝑋𝑇_𝑒|  +  |(𝑏)𝑇𝑀𝑉𝐸𝑋𝑇_𝑒|)              (13)  
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Where (a) TMV_e   and (b) TMV_e  represent the average of top n% values of TMV in each 

DC profile. n is a number that the user set to collect TMV values. 

 

DP2 focus on the differences in the extreme price changes between two DC profiles (Figure 

14). We used median values to avoid the affect from extreme values in TMV series. The 

range of DP2 is always between –1 and 1. The closer DP2 is to 0, the less differences between 

two DC profiles in extreme price changes will be. On the other hand, the closer DP2 is to -1 or 

1, the more differences between two DC profiles in extreme price changes will be. 

 

4.3.3 Time interval difference (DT) 

To compare two T series in two profiles, we define metric DT to measure the difference 

between two DC profiles in time intervals:  

 

            DT = (|(𝑎)𝑇_𝑚|  −  |(𝑏)𝑇_𝑚|)/ (|(𝑎)𝑇_𝑚|  +  |(𝑏)𝑇_𝑚|)                                             (14) 

 

Where (a) T_m   and (b) T_m represent the median values of time intervals in each DC profile. 

 

DT focus on the differences in the time intervals between two DC profiles. We used median 

values to avoid the affect from extreme values in T series. The range of DT is always between 

–1 and 1. The closer DT is to 0, the less differences between two DC profiles in time intervals 

will be. On the other hand, the closer DT is to -1 or 1, the more differences between two DC 

profiles in time intervals will be. 

 

4.3.4 Difference in time interval asymmetry (DTA) 

To compare two AT in two profiles, metric DTA here is to measure the asymmetry between 

the two DC profiles. We defined DTA as: 

 

DTA = (|(𝑎)𝐴𝑇|  − |(𝑏)𝐴𝑇|)/ (|(𝑎)𝐴𝑇|  +  |(𝑏)𝐴𝑇|)                                                 (15)                                               

 

Where (a) AT and (b)AT represents the up down trends time interval (TDC) asymmetry in each 

DC profile. They are introduced in Section 3.3. 
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DTA focus on the differences in the time intervals asymmetry between two DC profiles. The 

range of DTA is always between –1 and 1. The closer DTA is to 0, the less differences between 

two DC profiles in time intervals asymmetry will be. On the other hand, the closer DTA is to -

1 or 1, the more differences between two DC profiles in time intervals asymmetry will be. 

 

4.3.5 Return difference (DR) 

We define DR as the metric to compare and to measure the differences between the median 

values in the two RDC series. DR is defined as:  

 

DR = (|(𝑎)𝑅𝐷𝐶_𝑚|  −  |(𝑏)𝑅𝐷𝐶_𝑚|)/ (|(𝑎)𝑅𝐷𝐶_𝑚|  +  |𝑏)𝑅𝐷𝐶_𝑚|)                               (16) 

 

Where (a) RDC_m   and (b) RDC_m represent the median values of returns in each DC profile. 

 

DR focus on the differences in the returns between two DC profiles. We used median values 

to avoid the affect from extreme values in RDC series. The range of DR is always between –1 

and 1. The closer DR is to 0, the less differences between two DC profiles in returns will be. 

On the other hand, the closer DR is to -1 or 1, the more differences between two DC profiles 

in returns will be. 

 

4.3.6 Difference in return Asymmetry (DRA) 

As the similar reason to measure time intervals asymmetry in the TDC series is, we define DRA 

as the metric to compare and to measure the differences between up and down trend 

asymmetry for RDC in two DC profiles. DRA is defined as: 

 

DRA = (|(𝑎)𝐴𝑅|  −  |(𝑏)𝐴𝑅|)/ (|(𝑎)𝐴𝑅|  +  |(𝑏)𝐴𝑅|)                                                 (17) 

 

Where (a)AR and (b)ARb represents the up down trends returns (RDC) asymmetry in each DC 

profile. They are introduced in Section 3.3. 

 

DRA focus on the differences in the returns asymmetry between two DC profiles. The range of 

DRA is always between –1 and 1. The closer DRA is to 0, the less differences between two DC 
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profiles in returns asymmetry will be. On the other hand, the closer DRA is to -1 or 1, the 

more differences between two DC profiles in returns asymmetry will be. 

 

 

 

Table 9: Comparison in time series data distance measurement between time series analysis 

and DC metrics. The methods in time series analysis to measure the differences is based on 

time series data. While DC metrics is based on DC market profiles. Time series analysis and 

DC metrics are measure the market differences in two different angles. 

 

In order to generate enough DC events to make a precise DC market analysis in this thesis, 

the threshold we used was very small. This caused the problem in calculation of the 

indicators Sub-NDC and USVEXT_S, which we defined in Chapter 3. These two indicators will 

be generated by sub-threshold, which we set as a default as half of the threshold. In most of 

the experiments we conducted later in this thesis, the sub-threshold is too small to make the 

Time series analysis 

measurement 
DC metrics 

Covariance 

 

 

DP1: the differences in majority price changes between 

two DC profiles 

Discrete Fourier transform DP2: the differences in extreme price changes between 

two DC profiles 

Discrete wavelet transform DT: the differences in time intervals of DC trends 

between two DC profiles 

Piecewise aggregate 

approximation 

DTA: the differences in time intervals asymmetry of DC 

trends between two DC profiles 

Symbolic aggregate 

approximation 

DR: the differences in time adjusted returns of DC trends 

between two DC profiles 

…… DRA: the differences in time adjusted returns asymmetry 

of DC trends between two DC profiles 
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application of these two indicators in metrics meaningless. This is the reason we have not 

applied these two indicators values into the metrics calculation.   

 

4.4 Specification of TR2 

TR2 is the program that we used to calculate DC metrics value between two DC market 

profiles and quantitatively measure the market difference. The completed specification of 

TR2 is shown in the Appendix 8.3. 

4.4.1 Input to TR2 

The Input files are two csv files called DC Profile File which are generated from program 

TR1.  

 

4.4.2 Output of TR2 

The program will produce a csv file called ‘Metrics File’. 

Metrics File contains: 

Header: It contains information for reproducing the results, which include the program 

version, input and output files and the threshold used for computing the DCs.  

 

Body: It contains market information that concludes with the indicators in the DC-  Data file. 

This includes the majority of price changes (DP1), extreme price changes (DP2) and other 

metrics that we introduced in Section 4.3.  

 

 

4.5 Example of DC data comparison: comparing USD/AUD and USD/JPY 

markets  

 

This section will introduce an example of a DC metrics file. 

 

Figure 15 shows the price movements of minute-by-minute market data for USD/AUD and 

USD/JPY, spanning from September, 2009 to August, 2016, determined by a fixed threshold 

0.8%. Table 10 is the metrics file. 
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Figure 15:  Price movements of minute-by-minute market data for USD/AUD and USD/JPY, 

spanning from September, 2009, to August, 2016, determined by a fixed threshold 0.8%. The 

total price movements between two consecutive extreme points are decomposed into 

directional change events (red lines) and overshoot events (green lines). 
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Table 10: This is a metrics file of minute-by-minute market data for USD/AUD and 

USD/JPY, spanning from September, 2009, to August, 2016, determined by a fixed threshold 

0.8% and sub-threshold 0.2%. 

 

Program_ID:TR2.0 

Author: Ran Tao 

Date 2016.10.18 17:51:24 

File_input USDAUDmin(2009.09-2016.08) 
 

USDJPYmin(2009.09-2016.08) 

Threshold(Theta) 0.008 

Sub-Threshold 0.002 

Tstart 27/09/2009,17:00:0 

Tfinal 10/08/2016,03:59:0 

DP1 0.002761591 

DP2 0.071172589 

DT 0.196400813 

DTA 0.914524269 

DR 0.223340914 

DRA 0.074108509 

Table 10: Metrics file of USD/AUD and USD/JPY markets. 

 

 

Figure 16: Radar chart of six metrics of USD/AUD and USD/JPY markets. 
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Table 10 is an example of DC market metrics which measure the difference between two DC 

profiles. Our definition of these metrics limits them between -1 and 1. While to make them 

easily followed by the users in a radar chart, we opted for the absolute values of these 

metrics. This means these metrics output from TR2 are all between 0 and 1. The closer the 

metric to 0 means the more similarities in the aspect which the metric measures. However, 

the closer the metric to 1 means the more differences in the aspect which the metric 

measures.  

 

From Table 10, the majority of price changes (DP1) showed the smallest differences, which is 

0.002761591. Besides that, extreme price changes (DP2) also have shown small differences. 

In other words, there is not much difference in the magnitude of price between USD/AUD 

and USD/JPY markets. On the other hand, metrics measuring time intervals (DT) and time 

interval asymmetry difference (DTA) presented more differences. It is especially the case for 

time interval asymmetry difference (DTA), as it shows in Figure 16. This showed the biggest 

difference, 0.914524269, which means there is a large difference in asymmetry of the time 

intervals for up and down trends between USD/AUD and USD/JPY market.  

 

4.6  Discussion of DC metrics  

This section is a discussion for the application of DC metrics to capture market information, 

and an examination and explanation of the metrics we created in our Radar Figures. Based on 

the DC metrics, we tested eight years of minute by minute Forex currency data - AUD, 

CHF, JPY and CNY which were all against USD. The range of DC metrics values is between 

-1 and 1. The distance between two profiles is measured by the absolute values of the metrics 

in section 4.3. Therefore, the larger and the significantly visible grey area in Figure 17, the 

longer the distance will be between two DC profiles.  In our view, this demonstrates that the 

application of DC metrics makes the use of DC market analysis more effective. 

 

4.6.1 DC metrics in demonstration of the significant differences between two DC 

profiles 

For example, in Figure 17, USD/AUD and USD/CNY DC market profiles showed a long 

distance between each other through DC metrics. This is indicated by the large grey area in 

Figure 17. Although, DP1 and DP2 are both close to 0. In other words, these two DC market 

profiles showed shorter distances over the aspects of prices changes. However, these two 
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markets profiles are very different from each other in the other three aspects in which the 

three DC metrics are measured. In Figure 17, the values of DT, DTA and DR are all very close 

to 1. From section 4.3, DT measures the distance between two TDC series.  DTA measures the 

distance between two DC profiles in the asymmetry between up and down trend time 

intervals.  DR measures the distance between two DC profiles in the time adjusted returns in 

each trend.  

 

The significance of our DC metrics as illustrated in Figure 17 is that the DC metrics 

demonstrate three significant differences (DT, DTA and DR). In our view, this provides useful 

new market information. First of all, it shows the differences between two DC profiles in 

time intervals of each trend (DT). As we mentioned in Section 4.3, the amount of physical 

time that a DC trend takes to complete (T) represents the frequency of directional changes in 

the market, or in other words, the volatility of markets in DC. TDC is a significant piece of 

information for researchers. Volatility is a measure of risk. Traders with different risk 

appetite may choose to trade in different markets. By looking at a TDC value of a single 

market, a trader may not be able to appreciate how volatile the market is. If a trader is given 

two T values, he will be able to see the difference. However, DT tells the traders how big the 

difference in volatility between the two markets are, in terms of their TDC values in a metric 

form. In addition, in Figure 17, the values of DTA and DR are also both closer to 1. From 

section 4.3, DTA shows the differences between two DC profiles in TDC between up trends 

and down trends. DR shows the differences between two DC profiles in returns of every DC 

trends. These two DC metrics values are also significant information for the traders and 

market analysts. Using our information, traders may adopt different trading strategies in 

trading frequency. For instance, the hedging of risk and of arbitrage, because of the 

differences between USD/AUD and USD/CNY DC market profiles, as DT, DTA and DR 

shows. DC metrics therefore can help the traders and market analysts to quantitatively 

measure the differences and limit the difference of range between two DC market profiles, 

which can advance DC in market information extraction. 
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3  

Figure 17: The radar chart of six metrics (DP1, DP2, DT, DTA, DR and DRA) for measuring 

distances between USD/AUD and USD/CNY DC market profiles, spanning from 

September, 2009 to August, 2016, determined by a threshold 0.8%.  

 

4.6.2 DC in extraction of different information from time series data 

 

Another significant and interesting feature is that, USD/CHF and USD/JPY DC market 

profiles showed the shortest distance between each other in general. This is shown by the 

grey area in Figure 18. If we look at the plot of the price movements of these two markets in 

Figure 19, the price movements of these two markets are very different from each other 

between 2009 and 2016. In time series, the standard deviation of the minute by minute 

returns in the USD/CHF market was 0.0610. While the standard deviation of the minute by 

minute returns in the USD/JPY market was 15.0376. The difference in the volatility of return 

between these two markets is very big. However, they showed the short distance between 

each other through all the six DC metrics. Even in the aspects of time intervals and returns, 

the values of DT, DTA, DR and DRA are all close to 0. The two time series are very different 

from each other in terms of volatility of their minute by minute returns. Therefore, traders 

may call for different trading strategies when trading in these two markets through time series 

analysis. However, by contrast, if the DC metrics show a short distance between two DC 

profiles (as in Figure 18), this indicates market similarities. Therefore traders may adopt 

similar trading strategies across these markets through DC market analysis. In other words, 

by looking at the markets from a different angle (using DC instead of using time series), 

researchers can extract different information from the market. Such information can then help 
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the traders to develop tailored trading strategies to take advantage of the information that has 

been extracted.  

 

 

 

Figure 18: The radar chart of six metrics (DP1, DP2, DT, DTA, DR and DRA) for measuring 

distances between USD/CHF and USD/JPY DC market profiles, spanning from September, 

2009 to August, 2016, determined by a threshold 0.8%. 
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Figure 19:  Price movements of minute-by-minute market data for USD/CHF and USD/JPY, 

spanning from September, 2009, to August, 2016, determined by a fixed threshold 0.8%. The 

total price movements between two consecutive extreme points are decomposed into 

directional change events (red lines) and overshoot events (green lines). 

 

In our view, the establishment of DC metrics provides us with a more effective understanding 

of different financial markets than just the DC indicators in Chapter 3. It leads to a more 

focused and targeted trading strategy for traders if they trade in two markets using our DC 

market analysis. 
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4.7 Summary 

In this chapter, we introduced the definition of DC metrics and build DC metrics file as the 

second step for the market information extraction process through DC. We provided an 

example to show the way that these metrics work. After the example, we applied DC metrics 

into the currency market and extracted useful market information through DC market profiles 

comparison, which provided us a more effective understanding of different financial markets 

dynamics. For instance, through DC metrics values, we found more similarities between 

USD/CHF and USD/JPY DC market profiles, compared with time series analysis results. All 

these results have demonstrated the usefulness of DC metrics in advancing DC vocabulary in 

DC market data analysis.  
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Chapter 5 Application and Discussion of 

DC profile in market information 

extraction 

 

This chapter is the application of DC market profiles in a large financial market data set.  

 

5.1 Overview 

After the introduction and demonstration of DC vocabulary for DC market information 

extraction in Chapter 3 and 4. In Chapter 5 we apply DC market profiling into a larger market 

data set. In this chapter we track and analyse the currency and commodity market activities 

from a microscopic perspective, using the minute-by-minute prices provided by Kibot. By 

applying DC market profiles to real market data, our study shows some useful information 

about the market price movements. All the information is extracted from an angle that is 

different from that of traditional time series analysis. 

 

5.2 DC market profiles analysis 

In this section we apply DC indicators and profiles in observing the single currency and 

commodity market. The financial assets we used are shown in table 11. 
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5.2.1 Single market analysis 

 

Key Asset name Sector 

AUD/USD Australian Dollar against US Dollar Currency 

GBP/USD British Pound against US Dollar Currency 

EUR/USD Euros against US Dollar Currency 

CHF/USD Swiss Francs against US Dollar Currency 

JPY/USD Japanese Yen against US Dollar Currency 

Gold Gold against US Dollar Commodity 

Oil Crude oil against US Dollar Commodity 

Copper Copper against US Dollar Commodity 

Gas Natural gas against US Dollar Commodity 

Table 11: Nine DC market analyses of assets and the sectors they represent 

 

We chose minute-by-minute open prices of five main currencies (BIS, 2016) in the currency 

market, and four representative commodity assets from the commodity market. The prices for 

nine assets are all between August, 2011, to August, 2015. Since the value of the threshold 

will affect the results of profiles, we applied the same threshold (0.4%) for these assets. They 

are shown in Table 11. To extract more specific market information that happened in each 

time period through DC analyzing work, we used a quarter of a year as a fixed time period to 

sample market data and applied DC analyzing on it. In other words, each part of the data 

includes three months’ market data. We also advanced our way in analyzing DC market 

profiles, which is shown in Chapter 3. As the example shows in Figure 20 and Figure 21, we 

refined our DC indicators and added the analyzing work of the uptrends and downtrends of 

DC events.  
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Figure 20: An example of the coastline and TMV values from AUD/USD DC profiles in 16 

continuous time periods. The yellow column represents the coastline and blue, orange and 

grey line stand for the median TMV value in all, uptrends and downtrends DC events. The 

left axis is for coastline and right axis is for TMV values. 

 

 

Figure 21: An example of the coastline and T values from AUD/USD DC profiles in 16 

continuous time periods. Yellow column represents the coastline and blue, orange and grey 

line stand for the median T value in all, uptrends and downtrends DC events. Left axis is for 

coastline and right axis is for T values.  
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The example market, AUD/USD, in Figure 20 showed stable value of TMV from May 2013 

to August 2013 and higher value of the coastline. TMV measures market volatility in the 

magnitude of price changes in DC market analysis. So we may conclude May 2013 to August 

2013 is a profitable time period for market traders with comparable lower market risk. Figure 

21 showed a comparable low value of T and coastline from November 2012 to May 2013. T 

measures the frequency of trends changes in DC market analysis. Low T value means higher 

frequency of trends changes and risks for trader. So November 2012 to May 2013 is not a 

recommended time period for market traders. 

 

5.2.2 Profiles of currency and commodity markets’ assets 

Average(Median) AUD/USD GBP/USD EUR/USD CHF/USD JPY/USD Gold Oil Copper Gas 

TMV 1.72 1.75 1.75 1.70 1.78 1.77 1.83 1.81 1.88 

TMV↑ 1.72 1.82 1.74 1.69 1.78 1.74 1.85 1.78 1.88 

TMV↓ 1.73 1.75 1.79 1.72 1.80 1.81 1.80 1.82 1.89 

T (minutes) 416.72 987.81 845.56 642.13 752.22 212.47 92.22 163.91 34.94 

T↑(minutes) 417.22 914.94 873.78 597.63 647.19 199.00 95.81 159.19 35.91 

T↓(minutes) 419.09 1043.56 819.03 646.25 803.22 225.75 90.22 165.63 34.19 

RDC (%) 77.06 51.46 6.65 13.89 6.68 26.12 69.97 37.13 142.68 

RDC↑(%) 77.63 115.34 6.44 14.00 7.22 27.65 69.88 37.68 139.72 

RDC↓(%) 76.70 41.30 6.95 13.93 6.28 24.81 70.17 37.18 146.44 

CDC (%) 353.49 150.07 213.03 321.17 205.98 680.46 1625.14 1081.80 2862.18 

Table 12: Summarized average median values of DC profiles with a threshold of 0.4% on 

nine assets from currency and commodity markets with minute-by-minute open prices, 2011 

to 2015.  

In Table 12, we included average median values of ten significant indicators, as shown in the 

first column. The last row of Table 12 and Figure 22 show the average maximum potential 

profit for each asset during the time periods. We also have a table to record the average 

standard deviation of the DC indicator values, which is shown in the Appendix 8.4. 
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Figure 22: The average coastline from DC profiles for nine assets from currency and 

commodity markets between 2011 and 2015. 

 

From Table 12 and Figure 20, DC profiles conclude that commodity markets tend to generate 

more potential profit than the currency market. Especially for the energy assets of, oil and 

gas, they have the longest coastline. The coastline of gas is 2862.18%. This is over 19 times 

the length of the coastline of GBP/USD in the same time period, which has the shortest 

coastline 150.07% among all the assets. In currency market, AUD/USD and CHF/USD 

showed the longer coastline against other three currencies. 
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Figure 23: The average median TMV and standard deviation of TMV from DC profiles for 

nine assets between 2011 to 2015. Blue and orange line represents the median and standard 

deviation of TMV. Grey column stands for the coastline. 

 

TMV measures the scale of price changes. It reminds us that everything being equal, the 

bigger the scale of changes, the more volatile one may consider the market to be. In Figure 

23, we reported the median value of TMV as well as their standard deviations.  

 

Figure 23 shows that all the median TMV values are comparable to each other in the range 

between 1.72 and 1.88. However, some assets show a lower standard deviation TMV values. 

For example, GBP/USD and JPY/USD markets in which the standard deviation TMV values 

are 1.02 and 1.09 respectively. This suggests that as far as TMV is concerned, the profiled 

periods showed similar volatilities and risks, except GBP/USD and JPY/USD markets, which 

showed a more volatile TMV values changes. 
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Figure 24: The average median T and standard deviation of T from DC profiles for nine 

assets between 2011 to 2015. Blue and orange line represents median and standard deviation 

of T. Grey column stands for the coastline. 

 

Besides TMV, T also tells about volatility. From Section 3.2.3, T is the physical time that an 

up or a down trend takes to complete. Everything being equal, the longer time one trend takes 

to complete, the less volatile one may consider a market to be. In Figure 24, we have reported 

the average median and standard deviation T values of the nine assets. It shows that 

EUR/USD market presents a comparative high average median T value and lower average 

standard deviation T value. In other words, as far as T is concerned, the EUR/USD market 

has a lower volatility and risks in the profiled time period among all the assets. On the other 

hand, gold market presents comparative low average median and high average standard 

deviation T values, which showed a higher volatility and risks among all the assets. 
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Figure 25: The average median TMV and standard deviation of TMV from DC profiles for 

nine assets between 2011, to 2015, which have been divided into uptrends and downtrends. 

Grey and yellow column represent average median values of TMV in uptrends and 

downtrends. Blue and orange line stands for average standard deviation of TMV in uptrends 

and downtrends. 

 

As we mentioned in Chapter 3, in DC market analysis, the uptrend and downtrend are always 

consecutive to each other, which is different from time series analysis. So it can help market 

observers and traders to extract some new and useful information when they are analysing the 

difference between uptrends and downtrends in DC profiles. In Figure 25, we reported the 

average median value of uptrend and downtrend TMV as well as their standard deviations.  

 

For average median TMV values, Figure 25 shows that all the average uptrend median TMV 

values are lower than the downtrend ones, except GBP/USD and the oil market. In other 

words, GBP/USD and the oil market are more volatile in the downtrends. Other assets are the 

opposite. Besides that, Figure 25 also shows that JPY/USD has big differences between 

uptrends and downtrends through the average standard deviation TMV values. JPY/USD 

market appears to be more volatile in the downtrends TMV values than uptrends. The 

volatility in the downtrends of JPY/USD fluctuates more than the uptrends. 
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Figure 26: The average median T and standard deviation of T from DC profiles for nine 

assets between 2011, to 2015, which have been divided into uptrends and downtrends. Grey 

and yellow column represent average values of T in uptrends and downtrends.   The blue and 

orange line stand for average standard deviation of T in uptrends and downtrends. 

 

In Figure 26, we demonstrated the average median value of uptrend and downtrend T as well 

as their standard deviations. For average median T values, Figure 26 shows that all the 

average uptrend median T values are not apparently higher than the downtrend ones, except 

the EUR/USD market. In other words, EUR/USD market is more volatile in the downtrends 

when analysing T in DC profile. Other assets are the opposite. Besides that, Figure 26 also 

shows that JPY/USD has big differences between uptrends and downtrends through the 

average standard deviation T values. The JPY/USD market appears to be more volatile in the 

downtrends T values than in the uptrends. The volatility in the downtrends of JPY/USD 

changes more than the uptrends when concerning T values. To summarize the results in 

Figure 25 and 26, the JPY/USD market appears to be more volatile in the downtrends than 

uptrends. Trading in the JPY/USD market in downtrend event has more risks. We also 

mentioned that the average standard deviation T values in uptrends is much higher than 

downtrends in gold market, which means the high volatility and risk in uptrends for gold 

market.  
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Figure 27: The average median RDC and standard deviation of RDC from DC profiles for the 

profiled assets between 2011 to 2015, which have been divided into uptrends and 

downtrends. Grey and yellow column represent average values of RDC in uptrend and 

downtrend events. Blue and orange line stand for average standard deviation of RDC in 

uptrends and downtrends. 

 

As Chapter 3 introduced, RDC is the time adjusted return of each DC event. The returns that 

DC looks at (RDC) are returns over directional change events, at irregular times.  Figure 27 

records the average median and standard deviation of RDC values from DC profiles. The 

details are also shown in Table 12 and Appendix 8.4.  

 

Figure 27 shows that there is a big difference between uptrend and downtrend in RDC in 

GBP/USD market. The average median RDC values in the uptrend is 115.34% while the 

downtrend events RDC values is 41.3%. Considering the average standard deviation of RDC 

values is almost the same in the uptrends and downtrends, trading in the uptrend events will 

generate more return for traders in GBP/USD market through DC. 

 

5.3 Summary 

In this chapter, we showed the results of DC market profiles’ applications in currency and 

commodity markets. To measure the potential profit through DC, we found that the energy 
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assets, oil and gas markets have the longest coastline among the nine markets. In currency 

market, AUD/USD and CHF/USD showed the longer coastline against other three currencies. 

For market volatility, TMV values showed that GBP/USD and JPY/USD markets are more 

volatile in the magnitude of price changes in every trend.  TDC values showed the gold market 

has a lower frequency of trend changes and risks in the profiled time period among all the 

assets.  

 

Besides the potential profit and volatility, DC profiles also provides some useful information 

between the uptrends and downtrends. Through comparisons in TMV values between 

uptrends and downtrends, GBP/USD and the oil markets are more volatile in the downtrends. 

On the other hand, through comparisons in T values between uptrends and downtrends, 

EUR/USD market is more volatile in the downtrends than uptrends, which is different from 

other markets. TMV and T values also both showed that the volatility in the downtrends of 

JPY/USD fluctuates more than the uptrends. Trading in the JPY/USD market in downtrend 

event has more risks than uptrend event. What’s more, in considering the returns (RDC)in 

uptrends and downtrends, trading in the uptrend events will generate more return for traders 

in GBP/USD market. 
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Chapter 6 Application and Discussion of 

DC profile comparisons in market 

information extraction  

This chapter is the application of DC metrics in DC market profiles comparison.  

6.1 Overview 

After the application of DC profiling for DC market information extraction in Chapter 5. In 

Chapter 6 we apply DC market profiles comparison into a larger market data set. In this 

chapter we compare and analyse the DC currency and commodity market profiles from 

Chapter 5. In this chapter, we not only make comparisons between currency profiles or 

commodity profiles, but also make comparisons between different currency profiles and 

commodity profiles. Besides that, our comparisons are not limited in the same time period. 

We have also added comparisons between adjacent time period, for example, profiles of May 

2012 to August 2012 and August 2012 to November 2012. On the other hand, we included 

comparisons between DC profiles year on year. For instance, there is a comparison of profiles 

between May 2012 to August 2012 and May 2013 to August 2013. By applying our DC 

metrics into more DC market profiles comparisons, our study shows some useful information 

about the differences between two markets profiles.  

 

After this section, this chapter begins with the currency market profiles comparison in 

Section 6.2. We will include some comparisons between market profiles from the same time 

period, or same market from different time periods. In Section 6.3 we will continue to apply 

profile comparisons between different commodity market profiles. Section 6.4 will show the 

comparison results between different currency and commodity profiles. Then the chapter is 

summarized in Section 6.5. 

 

 

6.2 Currency market comparison 

We have five currency assets in our experiment tests. In DC metrics application, we used DC 

profiles of every three months for market comparison. Each of currency asset has been 
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divided into 16 consecutive time periods. In this section, we present our DC metrics results of 

the assets in the currency market. The comparison pairs are shown in Table 13. 

File name Comparison asset profiles 

AUD&GBP Profile comparison between AUD/USD and GBP/USD market 

AUD&EUR Profile comparison between AUD/USD and EUR/USD market 

AUD&CHF Profile comparison between AUD/USD and CHF/USD market 

AUD&JPY Profile comparison between AUD/USD and JPY/USD market 

GBP&EUR Profile comparison between GBP/USD and EUR/USD market 

GBP&CHF Profile comparison between GBP/USD and CHF/USD market 

GBP&JPY Profile comparison between GBP/USD and JPY/USD market 

EUR&CHF Profile comparison between EUR/USD and CHF/USD market 

EUR&JPY Profile comparison between EUR/USD and JPY/USD market 

CHF&JPY Profile comparison between CHF/USD and JPY/USD market 

Table 13: Ten DC profile comparison pairs for the same time period in currency market 

 

6.2.1 Market comparison between different currency markets in the same time period 

Comparison between different DC currency market profiles in the same time period in four 

years generates more than one hundred metrics files. We recorded the summarized results in 

Table 18 in the Appendix 8.5. 

 

As we introduced in Chapter 4, DP1 measures the differences in majority price changes 

between two DC profiles. DP2 measures the differences in extreme price changes between 

two DC profiles. DT and DR measure the differences in time intervals and time adjusted 

returns of DC trends between two DC profiles respectively. DTA and DRA measure the 

differences in asymmetry of DC trends between two DC profiles respectively. We have 

demonstrated the results of average metric values for ten pairs of currency profile 

comparisons in Figure 28. The complete results are shown in Table 19 in the Appendix 8.5. 

 



 
89 

 

Figure 28: Average metric values for ten pairs of currency profiles comparisons. Blue and 

orange columns represent average DP1 and DP2 values. Grey and yellow columns stand for 

average DT and DTA values. Purple and green columns are for average DR and DRA values. 

Black line stands for the average metrics overall and red line is for average standard deviation 

metric values overall. 

 

From the average metrics overall in Figure 28, EUR/USD and CHF/USD markets (category 

EUR&CHF in Figure 28) showed the smallest differences from each other among all the 

comparisons, especially for DT and DR values. This means that EUR/USD and CHF/USD 

markets showed the most similarities in time intervals, and time adjusted returns of DC trends 

between each other. In other words, trading in DC events in these two markets may face 

similar risk and returns. 

 

6.2.2 Market comparison in the same currency market between adjacent time periods 

Apart from comparisons between currency market assets at the same time period, we also 

conducted comparisons in the same currency between different time periods. In Figure 29, we 

showed the comparisons results between adjacent time periods for the same currency market. 

The complete results are shown in Table 20 and Table 21 in Appendix 8.6. 
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Figure 29: Average metric values for currency profiles comparisons between adjacent times 

in four years. Blue and orange columns represent average DP1 and DP2 values. Grey and 

yellow columns stand for average DT and DTA values. Purple and green columns are for 

average DR and DRA values. Black line stands for the average metrics overall and red line is 

for average standard deviation metric values overall. 

 

From Figure 29, EUR/USD market shows the smallest value in DP1, DP2, DT and DR in 

average overall metrics. It also shows the lowest average standard deviation metric values. In 

other words, the EUR/USD market has a comparable steady performance in volatility 

changes among all the five currencies. However, EUR/USD market contains big values in 

DTA and DRA, which means the differences between uptrends and downtrends changed a lot. 

In our view, traders in EUR/USD market may adopt similar trading strategies across the time 

but the asymmetry between uptrends and downtrends is worthy of attention. On the other 

hand, CHF/USD market shows the smallest value in DTA and DRA and the lowest average 

overall metrics value at the same time. So CHF/USD market may be a less risky market for 

the traders who adopt similar trading strategies season over season in DC market analysis. 

 

6.2.3 Market year-on-year comparison in the same currency market  

In addition, to make comparisons between adjacent time periods of DC profiles in the same 

currency market, we also added comparisons between seasonal DC profiles year on year. The 
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results are displayed in Figure 30 and Figure 31. The complete results are shown in Table 22 

and Table 23 in Appendix 8.7. 

 

 

Figure 30: Average metric values for currency profiles comparisons between year-on-year 

seasonal time in four years. Blue and orange columns represent average DP1 and DP2 values. 

Grey and yellow columns stand for average DT and DTA values. Purple and green columns are 

for average DR and DRA values. Black line stands for the average metrics overall and red line 

is for average standard deviation metric values overall. 
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Figure 31: Average overall metric values for currency profiles comparisons between year-on-

year seasonal times in four years. Blue and orange columns represent average overall 

AUD/USD and GBP/USD metrics values. Grey and yellow columns stand for average overall 

EUR/USD and CHF/USD metrics values. Purple column is for average overall JPY/USD 

metrics values. Black line stands for the average metrics among all currencies. 

 

Figure 30 demonstrated the average metric values for currency profile comparisons between 

year-on-year seasonal time in four years in six metrics factors. GBP/USD market has the 

lowest average metrics value among all, as the black line in Figure 30 showed. Figure 31 is 

another angle to show the comparison results. It demonstrated the average overall metric 

values for currency profile comparisons between year-on-year seasonal time in four years in 

five currencies factors. From Figure 31, GBP/USD market also showed the lowest average 

overall metrics values among all, except the second quarter of the year. In other words, 

GBP/USD market may be a less risky market for the traders who adopt similar trading 

strategies year on year in most time periods. Another interesting phenomenon for market 

observers is the second quarter in Figure 31, which is November to February in next year, 

shows a significant difference among all. The average overall metrics value in GBP/USD, 

CHF/USD and JPY/USD markets all rise significantly. While AUD/USD and EUR/USD 

markets shows a more stable performance year on year. 
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6.2.4 Summary of currency market comparison 

The comparison results in Section 6.2 can be divided into three parts. For comparisons 

between different market profiles in the same time period, EUR/USD and CHF/USD markets 

showed the most similarities in time intervals, and time adjusted returns of DC trends 

between each other, which means trading in DC events in these two markets may face similar 

risk and returns. For comparisons between adjacent time periods in same market, CHF/USD 

market shows the smallest value in DTA and DRA and the lowest average overall metrics value 

at the same time. CHF/USD market may be a less risky market for the traders who adopt 

similar trading strategies season over season in DC market analysis. For year-on-year profiles 

comparisons in the same market, GBP/USD market may be a less risky market for the traders 

who adopt similar trading strategies year on year in most time periods.d 

 

6.3 Commodity market comparison 

We have four commodity assets in our experiment tests. In DC metrics application, we used 

DC profiles of every three months for market comparison. Since each commodity asset lasts 

four years, each of them has been divided into 16 consecutive time periods. In this section, 

we present our DC metrics results of the assets in commodity market. The comparison pairs 

are shown in Table 14. 

 

File name Comparison asset profiles 

Gold&Oil Profile comparison between Gold and Oil market 

Gold&Copper Profile comparison between Gold and Copper market 

Gold&Gas Profile comparison between Gold and Gas market 

Oil&Copper Profile comparison between Oil and Copper market 

Oil&Gas Profile comparison between Oil and Gas market 

Copper&Gas Profile comparison between Copper and Gas market 

Table 14: Ten DC profile comparison pairs for the same time period in commodity market 

 

6.3.1 Market comparison between different commodity markets in the same time 

period 

Comparison between different DC commodity market profiles in the same time period in four 

years generates more than one hundred metrics files. We recorded the summarized results in 

Table 24 in the Appendix 8.8.  
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As the same way we introduced currency market DC profiles comparison in Section 6.2.1, we 

have demonstrated the results of average metric values for six pairs of currency profiles 

comparisons in Figure 32. The complete results are shown in Table 25 in Appendix 8.8. 

 

 

Figure 32: Average metric values for six pairs of commodity profiles comparisons. Blue and 

orange columns represent average DP1 and DP2 values. Grey and yellow columns stand for 

average DT and DTA values. Purple and green columns are for average DR and DRA values. 

Black line stands for the average metrics overall and red line is for average standard deviation 

metric values overall. 

 

From the average metrics overall in Figure 32, gold and copper markets showed the smallest 

differences from each other among all the comparisons, especially for DT and DR values. This 

means that gold and copper markets showed the most similarities in time intervals, and time 

adjusted returns of DC trends between each other. These two markets also have the lowest 

standard deviation values for the metrics. In other words, trading in DC events in these two 

markets may face similar risk and returns. On the other hand, DT and DR values between gold 

and gas market are markedly higher than others, which reflects the significant difference in 

volatility and returns between these two markets. 
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6.3.2 Market comparison in the same commodity market between adjacent time 

periods 

As the same way in currency market profiles comparison in Section 6.2.2, apart from 

comparisons between commodity market assets at the same time period, we also conducted 

comparisons in the same commodity between different time periods. In Figure 33, we showed 

the comparison results between adjacent time periods for the same commodity market. The 

complete results are shown in Table 26 and Table 27 in Appendix 8.9. 

 

 

Figure 33: Average metric values for commodity profiles comparisons between adjacent 

times in four years. Blue and orange columns represent average DP1 and DP2 values. Grey and 

yellow columns stand for average DT and DTA values. Purple and green columns are for 

average DR and DRA values. Black line stands for the average metrics overall and red line is 

for average standard deviation metric values overall. 

 

From Figure 33, the gas market shows the smallest value in DP1, DT, DTA and DR in average 

overall metrics. It also shows the lowest average standard deviation metric values. In other 

words, the gas market has a comparable steady performance in volatility changes among all 

the four commodities. In our view, traders in the gas market may adopt similar trading 

strategies across time. On the other hand, the oil market shows comparatively small values in 

DP1, DP2, DT and DR in average overall metrics but contains big values in DTA and DRA, which 
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means the differences between uptrends and downtrends changed a lot. In our view, traders in 

the oil market may adopt similar trading strategies across the time but the asymmetry 

between uptrends and downtrends is worthy of attention. 

 

6.3.3 Market year-on-year comparison in the same commodity market  

In addition, to make comparisons between adjacent time periods of DC profiles in the same 

commodity market, we also added comparisons between seasonal DC profiles year on year. 

The results are displayed in Figure 34 and Figure 35. The complete results are shown in 

Table 28 and Table 29 in Appendix 8.10. 

 

 

Figure 34: Average metric values for commodity profiles comparisons between year-on-year 

seasonal times in four years. Blue and orange columns represent average DP1 and DP2 values. 

Grey and yellow columns stand for average DT and DTA values. Purple and green columns are 

for average DR and DRA values. Black line stands for the average metrics overall and red line 

is for average standard deviation metric values overall. 
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Figure 35: Average overall metric values for commodity profiles comparisons between year-

on-year seasonal times in four years. Blue and orange columns represent average overall 

Gold and Oil metrics values. Grey and yellow columns stand for average overall Copper and 

Gas metrics values. Black line stands for the average metrics among all currencies. 

 

Figure 34 demonstrated the average metric values for commodity profile comparisons 

between year-on-year seasonal time in four years in six metrics factors. The gas market has 

the lowest average metrics value among all, as the black line in Figure 34 showed. Figure 35 

demonstrated the average overall metric values for commodity profile comparisons between 

year-on-year seasonal time in four years in four commodities factors. From Figure 35, the gas 

market also showed the lowest average overall metrics values among all. In other words, the 

gas market may be a less risky market for the traders who adopt similar trading strategies 

year on year in most time periods.  

 

On the other hand, the oil market presents a more volatile performance. In Figure 34, the oil 

market shows the highest average metrics value among all, especially in DTA and DRA values, 

or in other words, the asymmetry between uptrends and downtrends. From Figure 35, the oil 

market also has great changes in the average metrics values in four quarters time periods. So 

we conclude that compared with other three commodity assets, trading in the oil market using 

similar trading strategy year-on-year is riskier for market traders.  
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6.3.4 Summary of commodity market comparisons 

The comparison results in Section 6.3 can also be divided into three parts. For comparisons 

between different market profiles in the same time period, gold and copper markets showed 

the most similarities in time intervals, and time adjusted returns of DC trends between each 

other. These two markets also have the lowest standard deviation values for the metrics. 

Trading in DC events in these two markets may face similar risk and returns. For 

comparisons between adjacent time periods in the same market, gas market shows the 

smallest value in DP1, DT, DTA and DR in average overall metrics. It also shows the lowest 

average standard deviation metric values. So the gas market has a comparable steady 

performance in volatility changes among all the four commodities. Traders in the gas market 

may adopt similar trading strategies across time. For year-on-year comparisons in the same 

market, gas market has the lowest average and median metrics value among all. So gas 

market may be a less risky market for the traders who adopt similar trading strategies year on 

year in most time periods. On the other hand, the oil market presents a more volatile 

performance. Trading in the oil market using similar trading strategy year-on-year is riskier 

for market traders. 

 

6.4 Contrast between currency market and commodity market  

We have presented our DC profile comparison results in currency and commodity market 

respectively in last two sections. However, currency and commodity markets are related with 

each other (Agrawal 2010, Change 1999, Shenbagaraman 2003, Wang 2007). In this section, 

we apply DC metrics to make contrast between Currency market and commodity market in 

the same time period and try to extract some new information about the relations between 

currency and commodity market. As the same in the last two sections, we used DC profiles of 

every three months for market comparison. In this section, we present our DC metrics results 

of between currency and commodity market. The comparison pairs are shown in Table 15. 
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File name Comparison asset profiles 

AUD&Gold Profile comparison between AUD/USD and Gold market 

AUD&Oil Profile comparison between AUD/USD and Oil market 

AUD&Copper Profile comparison between AUD/USD and Copper market 

AUD&Gas Profile comparison between AUD/USD and Gas market 

GBP&Gold Profile comparison between GBP/USD and Gold market 

GBP&Oil Profile comparison between GBP/USD and Oil market 

GBP&Copper Profile comparison between GBP/USD and Copper market 

GBP&Gas Profile comparison between GBP/USD and Gas market 

EUR&Gold Profile comparison between EUR/USD and Gold market 

EUR&Oil Profile comparison between EUR/USD and Oil market 

EUR&Copper Profile comparison between EUR/USD and Copper market 

EUR&Gas Profile comparison between EUR/USD and Gas market 

CHF&Gold Profile comparison between CHF/USD and Gold market 

CHF&Oil Profile comparison between CHF/USD and Oil market 

CHF&Copper Profile comparison between CHF/USD and Copper market 

CHF&Gas Profile comparison between CHF/USD and Gas market 

JPY&Gold Profile comparison between JPY/USD and Gold market 

JPY&Oil Profile comparison between JPY/USD and Oil market 

JPY&Copper Profile comparison between JPY/USD and Copper market 

JPY&Gas Profile comparison between JPY/USD and Gas market 

Table 15: Twenty DC profile comparison pairs for the same time period between currency 

and commodity market 

 

Comparison between different DC commodity market profiles in the same time period in four 

years generates more than one hundred metrics files. We recorded summarized results in 

Table 30 in the Appendix 8.11 to 8.15.  

 

In the same way we introduced DC market profiles comparisons in the last two sections, we 

have demonstrated the results of average metric values for twenty pairs of profile 

comparisons between five currencies and commodity market in Figure 36. The complete 

results are shown in tables in Appendix 8.11 to 8.15. 
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Figure 36: Average metric values for profile comparisons between five currencies and 

commodities in the same time period in four years. Blue and orange columns represent 

average DP1 and DP2 values. Grey and yellow columns stand for average DT and DTA values. 

Purple and green columns are for average DR and DRA values. Black line stands for the 

average metrics overall and red line is for average standard deviation metric values overall. 
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By comparing the average metrics value overall (black line) in Figure 36, we found there was 

some interesting information in common. Firstly, the overall average metrics value is always 

lower than another two when comparing gold and copper with any currencies. In other words, 

gold and copper markets showed less differences with the five currency assets. If we see gold 

and copper market as representatives of metal assets in commodity market, we may conclude 

that metal assets show more similarities with five currency markets than energy assets in the 

same time period through DC market analysis.  

 

  

  

Figure 37: Average metric values for profiles comparisons between four commodities and 

currency in the same time period in four years. Blue and orange columns represent average 

DP1 and DP2 values. Grey and yellow columns stand for average DT and DTA values. Purple 

and green columns are for average DR and DRA values. Black line stands for the average 

metrics overall and red line is for average standard deviation metric values overall. 
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Figure 36 looks at differences between commodities and each currency. Figure 37 provides 

us another angle, which looks at differences between currencies and each commodity. The 

four Figures in Figure 37 shows that AUD/USD market always presents the smallest 

differences between four commodity assets. As the black lines in Figure 36 show. AUD/USD 

market and the gold market showed the smallest average overall metrics values among all. 

Traders may adopt similar trading strategies when trading in these two markets through DC 

market analysis.  

 

In addition, amongst all of the metrics values in four figures in Figure 36 and 37, gas always 

shows the greatest difference with five currencies, especially GBP/USD market. DT and DR 

values both close to 1 between Gas and GBP/USD market, which means a significant 

difference in time interval and time adjusted return, or in other words, volatility and trend 

return, between these two markets in the same time period. Therefore, the performance of the 

gas market can be a significant signal for traders who are trading in the five currency 

markets, especially for GBP/USD market.  

 

6.5 Summary 

In this chapter, we showed the results of DC market profiles comparisons in currency and 

commodity markets. For the comparisons between different market profiles in the same time 

period, EUR/USD and CHF/USD markets showed the most similarities in time intervals, and 

time adjusted returns of DC trends between each other, which means trading in DC events in 

these two markets may face similar risk and returns. For commodity market, comparison 

results between gold and copper market profiles also showed the same conclusion. On the 

other hand, we should mention that the differences in time intervals and time adjusted returns 

between gold and gas market are markedly higher than others, which reflects the significant 

difference in volatility between these two markets. In addition, for comparison between 

currency and commodity market profiles, gold and copper markets showed less differences 

than the other two commodity markets with the five currency assets. If we see gold and 

copper market as representatives of metal assets in commodity market, we may conclude that 

metal assets show more similarities with currency market than energy assets in the same time 

period.  
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For the comparisons between same market profiles in different time periods, we divided them 

into two kinds of comparisons. One is comparisons between profiles from adjacent time 

periods. For example, CHF/USD market shows the smallest value in DTA and DRA and the 

lowest average overall metrics value at the same time. So CHF/USD market may be a less 

risky market for the traders who adopt similar trading strategies season over season in 

currency market. It may lead the same conclusion for gas market after analysing the 

comparison results among the commodity markets. Another way of comparison is between 

year-on-year market profiles. We found that GBP/USD and gas markets may be less risky 

markets for the traders who adopt similar trading strategies year on year among the currency 

and commodity markets in most time periods. On the other hand, compared with other three 

commodity assets, trading in the oil market using similar trading strategy year on year is 

riskier for market traders. We have also found another interesting phenomenon for market 

observers. The market profiles in time period from November to February in next year shows 

a significant difference among all. The average overall metrics value in GBP/USD, 

CHF/USD and JPY/USD markets all rise significantly. While AUD/USD and EUR/USD 

markets shows a more stable performance year on year. 
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Chapter 7 Conclusions 

This chapter provides a summary of the thesis, points out the contributions being made, and 

  goes on to discuss possible future direction of the research work. 

 

 

7.1 Summary 
As the thesis title implied, our work is concerned with introducing directional change (DC) as 

a new way for information extraction and analysis from financial market data. The changing 

nature of the financial market has led to the need for new and different ways to analyse data, 

and the trend is for market efficiency to rely on being informationally efficient. The survey of 

the literature in Chapter 2, revealed that financial researchers have begun searching for 

different ways of analysing market behaviour, rather than using that of the usual method of 

time series, because of the drawbacks associated with market data being recorded at fixed 

time intervals. As, in time series, using sampled data from a fixed time interval has the 

disadvantage that it can miss the moment of extreme points in market price movement.  And 

it is these extreme points that can provide significant market information for market 

observers and traders. On the other hand, as compared to traditional time series analysis, DC 

uses fixed price change intervals, called thresholds, to sample market data points. Some 

researchers have also applied DC in defining scaling laws and analysing market patterns. As 

an empirical, data-driven approach, DC shows its advantages in capturing market extreme 

points and maximizing potential profit, compared with time series analysis. Therefore, DC 

provides market researchers with a new way to understand market dynamics and brings an 

insight into the market price movement. 

 

Based on this idea, we carried out three steps in this thesis aimed at building a new approach 

to data analysis, using DC to help us extract useful information from the financial market. 

The first step, which was presented in Chapter 3, is to define our DC indicators for describing 

DC-based market summaries. These indicators made up the first part of the vocabulary to 

help us establish DC market profiles to extract different market information. We have written 

our own program called TR1 to help us produce these indicators and profiles. The profiles 

give us insight into the market, such as a different angle to see the market volatility and the 
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potential profit of trading within a certain time period. This useful information is not 

observable with time series analysis but is a complement to it. 

 

After the invention of DC indicators and establishment of DC market profiles, our second 

step in the research is to create DC metrics for comparison of different aspects between two 

DC market profiles. The detailed description of DC metrics is in Chapter 4. These DC 

metrics advanced DC indicators and profiles in market information extraction. Since they 

made DC profiles from different market data comparable with each other and built a 

quantitative measurement to measure the differences between them. They made up the rest of 

the part of our vocabulary of DC market summaries. In this step, we have also written a 

program called TR2 to help us batch processing the metrics results. By comparing DC 

profiles between different markets in the same time period, or DC profiles between two time 

periods of the same market, we can extract significant new market information, which has not 

been captured before.  

 

Since this vocabulary has been created, we applied it to real financial markets data in our 

third step of research. This part of work is presented in Chapter 5. The database in this thesis 

has been provided by Thomson Reuters and Kibot. Because of the limitation of data and the 

purpose of profile comparisons, we used minute-by-minute open price data from five main 

currencies and four representative commodities from 2011 to 2015. In this step, DC 

indicators and profiles helped us demonstrate the high volatile time period and the assets 

which contain the maximum potential profit. They also showed the volatile assets and trends 

among all. For example, as far as T is concerned, the gold market has a high volatility and 

risks in the profiled time period among all the assets.  The JPY/USD market appears to be 

more volatile in the downtrends than in uptrends. Thus, trading in JPY/USD market in the 

downtrend event has more risks.  

 

Apart from DC indicators and profiles, DC metrics have been applied as well. In our 

research, we made comparisons between different markets in the same time period, or the 

same markets between different time periods, which generated almost one thousand 

comparison pairs. DC metrics helped us extract significant market information through DC 

profile contrasts. Some markets showed a great similarity between each other through DC 

metrics in certain time periods, or in certain aspects. For example, gold and copper markets 

showed the most similarities in time intervals, and time adjusted returns of DC trends 



 
106 

between each other. On the other hand, DT and DR values between gold and gas market are 

markedly higher than others, which reflects the significant difference in volatility between 

these two markets. We may also conclude that metal assets show more similarities with the 

currency market than with energy assets in the same time period, through comparisons 

between currency and commodity DC markets profiles. DC market analysis not only defined 

volatility in a new way, but also revealed the asymmetry between uptrends and downtrends 

events. This information is not observable through time series analysis, but through DC 

market analysis only.  

 

 

7.2 Contributions 

The major contributions of this thesis are as follows: 

1. We have proposed DC as a new method to help us extract useful market information 

by defining DC indicators and build DC market profiles. We invented ten DC 

indicators to help us analyse market volatility in DC. Compared with the standard 

deviation used in time series analysis, DC market analysis can summarize market 

volatility by looking at the magnitude of price change in every DC trend and the 

frequency of price changes. Besides that, DC also provides insight into volatility in 

every DC trend, which indicates the trading risks in every DC trend. What’s more, in 

a DC profile, the uptrend and downtrend are always consecutive to each other, which 

is different from time series analysis. DC profile provides us with indicators to 

analyse the asymmetry between uptrends and downtrends. The production of the DC 

indicators is a major contribution for future research in DC market information 

extraction. 

 

2. We have proposed a method to quantitatively measure the differences between two 

markets summarized in DC profiles. We introduced DC metrics as a quantitative way 

to measure the differences between two DC profiles in different aspects. The value of 

DC metrics is always between 0 and 1, which makes DC metrics results comparable 

with each other. To the best of our knowledge, no one has been able to make 

comparisons between different markets in the same time period, or the same markets 

between different time periods in DC. In Chapter 4, we demonstrated that DC metrics 

is an advanced way to help us extract some useful information that time series 
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analysis cannot capture. For instance, USD/CHF market and USD/JPY market 

showed great similarity between each other in DC metrics values but performs 

differently through time series analysis. The information can lead to different trading 

strategies for traders. 

 

3. We have provided empirical evidence for DC indicators application in real financial 

markets in Chapter 5. By looking at DC profiles of nine financial assets, we 

concluded that there was a highly volatile time from November 2012 to May 2013. 

The energy assets, oil and gas, have the longest coastline. And in currency market, 

AUD/USD and CHF/USD markets showed the longer coastline against the other three 

currencies. Besides that, by looking at the difference between uptrends and 

downtrends, it is possible to conclude that the EUR/USD market is more volatile in 

the downtrends when analysing T in DC profile. Trading in JPY/USD market in the 

downtrend event has more risks.  

 

4. We have also provided empirical evidence for DC metrics application in the real 

financial market in Chapter 6. By making contrasts in the same markets between 

different time periods, Trading in DC events in EUR/USD and CHF/USD markets 

may face similar risk and returns. 

 

 

7.3 Future work 

This thesis adopts DC as a new approach for financial market information extraction. Unlike 

time series analysis, DC market analysis is based on the market points sampled at irregular 

time intervals, which provides a new angle for market observers and traders. The ways to 

measure market volatility and potential profit in DC market analysis can provide extra market 

information for traders, in addition to the traditional time series analysis, and help them to 

make better decisions. These two approaches will complement each other. By combining the 

market information extracted through these two approaches to explore synergy, they may 

provide complementary market information for the researchers.   

 

DC market analysis is in its infancy. We may revise our current DC indicators and metrics to 

define some new ones in the future according to continuing research. For example, to 
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simplify the DC metrics application process, we have not applied all the indicators in DC 

profiles in profile comparisons, such as Sub-NDC. The more useful are the indicators to be 

applied in profile comparisons, the more accurate market information we may then extract 

from it. Besides that, a richer data set may also bring us more insight and information about 

the financial market. 
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Appendix 

 

8.1 Specification of TR1 
TR1 is a program that reads in time-stamped prices (which we call the Input Data File) and 

output a profile of the input data. The profile includes two parts. First, TR1 outputs a file that 

contains all the data points at extreme points and directional change confirmation points. We 

call this the DC-Data File. Secondly, TR1 outputs a summary of the profile. We call it the 

Profile Summary File. In reality the threshold that user used may be too big or too small, 

which may affect the effectiveness of DC profiling. So, the program will warn the user under 

these situations. 

Following is the specification of TR1.  

 

Input Data File   

This is a csv file with one record per data point, where each record comprises the 

following fields: 

• TimeStamp: Time stamp, which could include the date and time of a Trade 

• TradePrice: Price of a trade 

• Threshold: The program will ask user the threshold to be used. The sub-threshold 

used in the program equals to a quarter of the threshold.  

 

Output: The program will produce two files: (1) “DC-Data File” and (2) “Profile Summary 

File”. 

    Output 1: DC-Data File  

This is a csv file with two parts:  

(Header, Body) 

Header: it contains information that enables other researchers to reproduce the 

results: 

• Program_ID: Program and version: e.g. TR1.0 v.1.0 

• Author: Ran Tao 

• Date on which the DC-Data File was produced 

• File_input: Name of the Input Data File  

• Theta: Threshold used to run the program 
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• Sub-Threshold: A quarter of the Threshold 

• Tstart: First TTrade displayed in the Input Data File; i.e. start of the data series 

• Tfinal: Final TTrade displayed in the Input Data File; i.e. end of the data series 

• Link to the Working Paper <Edward will give you a link> 

 

Body: it is a table with one record per extreme point; each record comprises the 

following fields: 

• T_EXT: Date_Time at extreme point 

• PEXT: Price at extreme point 

• TDCC: Date_Time at DC Confirmation (DCC) point 

• PDCC: Price at DCC point  

• DCC*:  Minimum price at DCC point 

• OSVEXT: The OSV at extreme point TEXT 

• T: The time taken by the current trend, i.e. the difference between the current 

T_EXT and the next T_EXT (If T = 1, which means that PDCC and PEXT become the 

same spot, then the program will warn the user “Warning: The threshold is too 

small”) 

• TMV: Total Price movements value at extreme point T_EXT 

• RDC: (= TMV EXT ÷ T ) the time-adjusted return of the trend 

• Sub-NDC: The total number of directional changes in each TM event based on the 

sub-threshold 

• USVEXT: The USV at extreme point TEXT 

 

    Output 2: Profile Summary File 

This is a csv file with name-value pairs. It contains three parts: (1) Header, (2) Profile 

for the whole period; and (3) Snapshot Profile. 

 

Part 1: Header: it contains information that provides information for reproducing the 

results: 

• Program and version: e.g. TR1.4 

• Author: Ran Tao 

• Date on which the DC-Data File was produced 

• File_input: Name of the Input Data File 
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• Threshold: Theta 

• Sub-Threshold: A quarter of the Threshold 

• Tstart: First TTrade displayed in the Input Data File; i.e. start of the data series 

• Tfinal: Final TTrade displayed in the Input Data File; i.e. end of the data series 

 

Part 2: Profile for the whole period:  

• TL: Length of the time period covered by the Input Data File, also represents the 

time units in total, e.g. minutes. 

• NDC: The total number of directional changes over the profiled period (If NDC is 

smaller than 30, which may affect the effectiveness of the indicators in the profile, 

then the program will warn the user “Warning: The threshold is too big”) 

• PC:  Price change – the spot percentage increase/decrease in price at the last 

extreme point (EXT) from the first extreme point in the DC-Data File 

• MedianOSV = (MedianOSV_overall, MedianOSV_up, MedianOSV_down) 

o MedianOSVoverall: median of absolute value of OSVEXT collected in the 

DC-Data File 

o MedianOSVup: median value of OSVEXT collected for the up-trends only 

o MedianOSVdown: median of absolute value of OSVEXT collected for the 

down-trends only 

• MedianTDC = (MedianT_overall, MedianT_up, MedianT_down) 

o The median value of TDC collected, the median value of TDC in the up 

trends and in the down trends  

• MedianRDC = (MedianRDC_overall, MedianRDC_up, MedianRDC_down) 

o The median value of RDC collected, the median value of RDC in the up 

trends and in the down trends 

• CDC = Length of Coastline defined by directional change events (∑ 𝑇𝑀𝑉𝐸𝑋𝑇𝑖

𝑁(θ)
𝑖=1   ) 

o the median value of TMV collected in the DC-Data File 

• MedianSub-NDC: The median value of Sub-NDC collected in the DC-Data File 

• MedianUSVEXT:  The median of absolute value of USVEXT collected in the DC-

Data File 

 

Part 3: Snapshot profile: information at T_final 
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• Tfinal: Final TimeStamp displayed in the Input Data File; i.e. the date and time at 

the end of the data series 

• Pfinal: Final TradePrice displayed in the Input Data File; i.e. price at the end of the 

data series 

• SPC: Price change – the spot percentage increase/decrease in price at the current 

point from the beginning of the period covered by the Input Data File 

• SOSV: The Spot OSV at the final trend of the period 

• STMV: The Spot TMV at the final trend of the period 

• ST: The Spot time taken in the current trend 

• SRDC: The Spot RDC at the current point 

 

8.2 Example: DC-Data File 
DC-Data file is a file that contains all the data points at extreme points and directional change 

confirmation points. It also includes the indicators, such as OSVEXT, which is calculated from 

the data points. The DC-Data file is machine readable for testing the correctness of the 

Summary Profile and calculating new indicators if needed. 

 

Table 16 shows a sample DC-Data File. This file contains two parts: the Header and the 

Body.  The Header starts from the beginning to end of the row that starts with “Tfinal” (the 

first eight lines in Table 16). It contains sufficient information to reproduce the results. Table 

16 it shows the version of the program run (which is TR1.3) and the date and time 

(2016.03.03 22:20:37, which reads 3rd March 2016 at time 22:22:37) at which the program 

was executed. It shows the name of the Input Data File (“EURUSD-Oct2009sec”) and the 

threshold being used (0.004, i.e. 0.4%, as shown in row 5 column 2). The sub-threshold is 

0.001. i.e. 0.1% (row 6 column 2). It also shows the time of the first transaction and the final 

transaction recorded in the Input Data File (01/10/2009,00:00:00and 30/10/2009,16:58:58, 

respectively). 

 

The Body is the table that starts with “T_EXT” (row 10 in this example) and finishes at the 

end of the file. Each row records a Directional Change event. For example, the first extreme 

point recorded is at “01/10/2009, 01:24:56”. The transaction price recorded was 

1.4629(column 2). At “01/10/2009, 01:49:28” (row 10, column 3), the transaction price was 

1.457 (column 4). Since this price is 0.4% higher than the extreme price (1.4629), it 
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confirmed an upward directional change from the extreme point. The table also records the 

minimum price that must be reached before one could confirm an upward directional change. 

This is called PDCC* (column 5). In the first event (row 11), PDCC* is 1.4629× (1-0.4%) = 

1.457048.  

 

With PEXT and PDCC*, we calculate overshoot value at extreme points. OSVEXT = ((1.4521-

1.457048) ÷ 1.457048) ÷ 0.004 = - 0.84905 (column 6, row 11). With PEXT and PDCC, we 

calculate total price movements at extreme points. TMV = ((1.4521-1.4629) ÷ 1.4629) ÷ 

0.004 = - 1.84565 (column7, row 11). Time interval (column 8) records the time units 

between each T_EXT, such as 25740 (column 8, row 11). The next column is RDC, which 

measures the time-adjusted return of upturn/downturn trend. RDC = |TMV| × threshold / TDC = 

1.84565 × 0.004 ÷ 25740 = 2.87× 10 -7 (column 10, row 11). Sub_NDC (column 11, row 11) 

records that there are 23 DC events happened in first trend based on sub-threshold 0.1% (row 

6 column 2). The last column records the undershoot value at extreme points (USVEXT) in 

each trend. 

 

Program_ID:TR1.3 
         

Author: Ran Tao 
         

Date 2016.03.03 22:20:37 
        

File_input EURUSD-Oct2009sec 
        

Threshold(Theta) 0.004 
         

Sub-Threshold 0.001 
         

Tstart 01/10/2009,00:00:00 
        

Tfinal 30/10/2009,16:58:58 
        

           

T_EXT PEXT T_DCC PDCC PDCC* OSVEXT TMV T R_DC sub_NDC USV 

01/10/2009,01:24:56 1.4629 01/10/2009,01:49:28 1.457 1.457048 -0.84905 -1.84565 25740 2.87E-07 23 0 

01/10/2009,08:33:56 1.4521 01/10/2009,10:55:30 1.4582 1.457908 0.084299 1.084636 8496 5.11E-07 3 0.257218 

01/10/2009,10:55:32 1.4584 01/10/2009,11:35:24 1.4525 1.452566 -0.40728 -1.40565 33300 1.69E-07 19 0 

01/10/2009,20:10:32 1.4502 02/10/2009,02:21:42 1.4561 1.456001 0.051374 1.051579 31129 1.35E-07 13 0.154533 

02/10/2009,04:49:22 1.4563 02/10/2009,08:32:52 1.4504 1.450475 -0.39208 -1.39051 13484 4.12E-07 9 0.12065 

02/10/2009,08:34:06 1.4482 02/10/2009,09:03:04 1.454 1.453993 1.858194 2.865626 7320 1.57E-06 13 0.481433 

02/10/2009,10:36:06 1.4648 02/10/2009,11:21:52 1.4589 1.458941 -0.40111 -1.39951 19054 2.94E-07 15 0.222764 

02/10/2009,15:53:40 1.4566 04/10/2009,20:34:46 1.4625 1.462426 0.525428 1.52753 37650 1.62E-07 17 0.153854 

05/10/2009,02:22:24 1.4655 05/10/2009,08:54:52 1.4596 1.459638 -0.05789 -1.05766 24070 1.76E-07 7 0.13702 

05/10/2009,09:03:34 1.4593 05/10/2009,12:02:24 1.4652 1.465137 1.887673 2.895224 94725 1.22E-07 43 0.085316 

06/10/2009,11:22:20 1.4762 06/10/2009,20:26:22 1.4702 1.470295 -0.88336 -1.87983 96693 7.78E-08 35 0.289058 

07/10/2009,14:14:04 1.4651 07/10/2009,19:29:18 1.471 1.47096 1.553339 2.559552 67407 1.52E-07 23 0.152961 

08/10/2009,08:57:34 1.4801 08/10/2009,09:21:12 1.4741 1.47418 -0.36963 -1.36815 4180 1.31E-06 7 0.152627 
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08/10/2009,10:07:14 1.472 08/10/2009,11:10:18 1.4779 1.477888 0.644839 1.647418 8710 7.57E-07 17 0.16916 

08/10/2009,12:32:24 1.4817 08/10/2009,20:05:32 1.4757 1.475773 -0.89329 -1.88972 37106 2.04E-07 13 0.118582 

08/10/2009,22:50:50 1.4705 09/10/2009,07:28:40 1.4764 1.476382 0.155448 1.156069 31249 1.48E-07 1 0.304799 

09/10/2009,07:31:42 1.4773 09/10/2009,09:04:50 1.4713 1.471391 -0.69506 -1.69228 17996 3.76E-07 13 0.067963 

09/10/2009,12:31:38 1.4673 11/10/2009,17:28:26 1.4732 1.473169 0.174929 1.175629 22843 2.06E-07 7 0.220613 

11/10/2009,18:53:30 1.4742 11/10/2009,21:17:10 1.4683 1.468303 -0.11973 -1.11925 8822 5.07E-07 9 0.204317 

11/10/2009,21:20:32 1.4676 12/10/2009,05:02:40 1.4736 1.47347 2.397334 3.406923 124182 1.1E-07 33 0.0509 

13/10/2009,07:50:28 1.4876 13/10/2009,09:30:16 1.4816 1.48165 -0.31208 -1.31084 9276 5.65E-07 9 0.21935 

13/10/2009,10:25:04 1.4798 13/10/2009,13:46:58 1.4858 1.485719 1.847725 2.855116 143276 7.97E-08 49 0.168269 

15/10/2009,02:13:04 1.4967 15/10/2009,05:46:58 1.4907 1.490713 -1.05875 -2.05452 21322 3.85E-07 7 0.268328 

15/10/2009,08:08:26 1.4844 15/10/2009,09:36:26 1.4906 1.490338 1.067275 2.071544 46296 1.79E-07 19 0.419368 

15/10/2009,21:00:02 1.4967 16/10/2009,02:30:54 1.4907 1.490713 -0.99167 -1.98771 41007 1.94E-07 25 0.134164 

16/10/2009,08:23:38 1.4848 16/10/2009,11:06:00 1.4908 1.490739 0.194669 1.195447 38227 1.25E-07 9 0.218013 

18/10/2009,19:02:10 1.4919 18/10/2009,20:16:58 1.4859 1.485932 -0.49336 -1.49139 5612 1.06E-06 3 0.504734 

18/10/2009,20:35:42 1.483 19/10/2009,01:30:48 1.489 1.488932 1.757636 2.764666 92893 1.19E-07 55 0.100743 

19/10/2009,22:24:00 1.4994 20/10/2009,10:17:12 1.4933 1.493402 -0.85416 -1.85074 48119 1.54E-07 9 0.133922 

20/10/2009,11:46:04 1.4883 20/10/2009,16:56:20 1.4943 1.494253 1.731099 2.738023 94421 1.16E-07 39 0.200769 

21/10/2009,13:59:58 1.5046 21/10/2009,23:37:22 1.4985 1.498582 -0.69759 -1.6948 53215 1.27E-07 15 0.13346 

22/10/2009,04:46:54 1.4944 22/10/2009,08:18:00 1.5006 1.500378 0.920168 1.923849 55998 1.37E-07 17 0.166625 

22/10/2009,20:20:12 1.5059 23/10/2009,02:34:38 1.4998 1.499876 -0.12941 -1.12889 22561 2E-07 7 0.16668 

23/10/2009,02:36:14 1.4991 23/10/2009,05:48:48 1.5051 1.505096 0.000598 1.0006 11554 3.46E-07 13 0.099661 

23/10/2009,05:48:48 1.5051 23/10/2009,15:39:06 1.499 1.49908 -0.16337 -1.16271 51565 9.02E-08 5 0.033354 

25/10/2009,20:14:40 1.4981 25/10/2009,22:00:18 1.5041 1.504092 0.350311 1.351712 7464 7.24E-07 13 0.232698 

25/10/2009,22:19:04 1.5062 26/10/2009,10:53:08 1.5001 1.500175 -2.62889 -3.61838 58753 2.46E-07 17 0.099988 

26/10/2009,14:38:18 1.4844 27/10/2009,02:06:56 1.4904 1.490338 0.396286 1.397871 44389 1.26E-07 7 0.301945 

27/10/2009,02:58:10 1.4927 27/10/2009,05:11:10 1.4867 1.486729 -1.61919 -2.61272 38186 2.74E-07 39 0.100893 

27/10/2009,13:34:36 1.4771 28/10/2009,02:53:28 1.4831 1.483008 0.184018 1.184754 48033 9.87E-08 7 0.370868 

28/10/2009,02:55:16 1.4841 28/10/2009,05:34:02 1.4781 1.478164 -1.65131 -2.6447 62842 1.68E-07 37 0.033826 

28/10/2009,20:22:38 1.4684 29/10/2009,03:48:18 1.4743 1.474274 1.95459 2.962408 65891 1.8E-07 43 0.237405 

29/10/2009,14:40:52 1.4858 30/10/2009,07:54:40 1.4798 1.479857 
     

0.219616 

 

Table 16: DC Data File produced by TR1 (see specification in Chapter 3 section 3 or 

Appendix 8.1) based on second-by–second data in EUR/USD market from October 1, 2009 

to October 30, 2009 (Threshold 0.4%, Sub-Threshold 0.1%) 

 

8.3 Specification of TR2 
 

TR2 is a program that reads two DC data files (a DC data file could be the result from TR1, 

which is the profile of a period in a market summarized under DC (Tsang 2016)) and outputs 

a metrics file about their similarities and differences. The metrics file includes six metrics we 

defined so far. The value of each metric is always between 0 and 1. The closer to 0 means the 
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less differences between two DC data files. These six DC metrics are able to quantitatively 

measure six different aspects between two DC data files. 

Following is the specification of TR2.  

 

Input DC-Data File   

DC-Data File 1, DC-Data File 2 

These are csv files that produced from TR1. 

The format of each file contains these series of indicators below:  

• T_EXT: Date and time at each DC extreme point  

• PEXT: Price at the time of each DC extreme point (T_EXT)  

• TDCC: Date and time at each DC Confirmation (DCC) point 

• PDCC: Price at each DCC point  

• TDC: The time taken by the current trend, i.e. the time intervals between the 

current TEXT and the next TEXT  

• TMV: Total Price movements value at extreme point TEXT  

• RDC: Annualised return of each DC event 

 

Output: The program will produce a DC metrics file. 

This is a csv file with name-value pairs. It contains two parts: (1) Header, (2) metrics 

of the DC profiles. 

 

Part 1: Header – it contains information that provides information for reproducing 

the results: 

• Program and version: e.g. TR2.0  

• Author: Ran Tao 

• Date on which the DC-Data File was produced 

• File_input: Name of the Input Data File 

• Theta: Threshold  

• Tstart: First TTrade displayed in the Input Data File; i.e. start of the data series 

• Tfinal: Final TTrade displayed in the Input Data File; i.e. end of the data series 

 

Part 2: DC metric: 



 
125 

This part of the csv file contains the metrics values of the two DC-Data Files. There 

are six metrics now. These six metrics values are quantitative ways to measure six 

different aspects between two DC data files. The value of each metric is always 

between 0 and 1. The closer to 0 means the less differences between two DC data files 

in the certain aspect.  

 

• DP1: measure the difference in majority prices changes (e.g. the median value of 

the TMV series). 

• DP2: measure the difference in extreme prices changes (e.g. the average value of 

the top 5% of the TMV series).  

• DT:  measure the difference in time intervals of trends. (e.g. the median value of 

the TDC series)  

• DTA: measure the difference in time intervals asymmetry between up and down 

trends. (e.g. the median values of the uptrend TDC series and downtrend TDC 

series)  

• DR: measure the difference in annualised returns of trends (e.g. the median value 

of the RDC series). 

• DRA: measure the difference in in annualised returns asymmetry between up and 

down trends. (e.g. the median values of the uptrend RDC series and downtrend RDC 

series) 
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8.4 Profiles of currency and commodity markets’ assets (average standard 

deviation) 
 

Average(Std) AUD/USD GBP/USD EUR/USD CHF/USD JPY/USD Gold Oil Copper Gas 

TMV 1.10 1.02 1.06 1.22 1.09 1.21 1.24 1.19 1.43 

TMV↑ 1.06 1.04 1.04 1.20 0.98 1.21 1.23 1.21 1.46 

TMV↓ 1.12 0.99 1.07 1.21 1.16 1.20 1.24 1.17 1.39 

TDC 790.64 1166.07 818.29 780.27 993.25 851.09 247.54 569.63 380.32 

TDC↑ 924.65 1229.76 848.54 832.19 922.95 1065.04 248.32 273.06 247.74 

TDC↓ 553.57 983.07 787.02 702.44 1060.03 380.38 245.09 703.47 431.85 

RDC 233.63 124.27 56.19 338.57 71.97 130.68 145.13 102.26 389.74 

RDC↑ 216.22 118.84 45.24 363.53 81.45 121.00 139.85 100.85 384.98 

RDC↓ 235.22 126.53 52.22 301.19 52.24 134.46 146.73 100.61 379.41 

CDC 353.49 150.07 213.03 321.17 205.98 680.46 1625.14 1081.80 2862.18 

Table 17: Summarized average standard deviation values of DC profiles with a 

threshold of 0.4% on nine assets from currency and commodity markets with minute-

by-minute open prices, 2011 to 2015. 

 

8.5 Market comparison between different currency markets in the same time 

period 
 

 

Average AUD&GBP AUD&EUR AUD&CHF AUD&JPY GBP&EUR GBP&CHF GBP&JPY EUR&CHF EUR&JPY CHF&JPY 

DP1 0.0563 0.0479 0.0445 0.0477 0.0277 0.0429 0.0254 0.0377 0.0369 0.0405 

DP2 0.0872 0.0861 0.1101 0.0924 0.0699 0.0836 0.083 0.073 0.0785 0.0948 

DT 0.4149 0.3587 0.319 0.3327 0.2646 0.3861 0.3199 0.1953 0.3168 0.3392 

DTA 0.4336 0.5116 0.4913 0.4864 0.366 0.4142 0.4621 0.2807 0.4951 0.4566 

DR 0.4168 0.3642 0.3136 0.3626 0.2533 0.3746 0.3071 0.1847 0.3186 0.3451 

DRA 0.4299 0.4183 0.2946 0.4074 0.4054 0.4752 0.4923 0.409 0.34 0.4229 

Table 18: Summarized average median DC metrics values between DC profiles from five 

currency market assets in the same time period (every three months), 2011 to 2015. 
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Std AUD&GBP AUD&EUR AUD&CHF AUD&JPY GBP&EUR GBP&CHF GBP&JPY EUR&CHF EUR&JPY CHF&JPY 

DP1 0.069 0.0602 0.052 0.0671 0.0248 0.0246 0.0231 0.024 0.0282 0.0282 

DP2 0.0947 0.0957 0.1341 0.1042 0.0526 0.1135 0.052 0.1143 0.0474 0.1196 

DT 0.195 0.2957 0.3143 0.321 0.2414 0.2744 0.2466 0.2039 0.1751 0.2198 

DTA 0.2935 0.2947 0.2772 0.3232 0.2886 0.2757 0.3111 0.2375 0.2824 0.2781 

DR 0.2 0.2852 0.311 0.306 0.2423 0.271 0.2484 0.2033 0.1716 0.2119 

DRA 0.2769 0.2734 0.2115 0.2673 0.252 0.2466 0.3004 0.2544 0.313 0.2386 

Table 19: Summarized average standard deviation DC metrics values between DC profiles 

from five currency market assets in the same time period (three months), 2011 to 2015. 

 

8.6 Market comparison in the same currency market between adjacent time 

periods 
 

Average AUD/USD GBP/USD EUR/USD CHF/USD JPY/USD 

DP1 0.0438 0.0364 0.0319 0.0292 0.0459 

DP2 0.0821 0.0341 0.0751 0.1135 0.0774 

DT 0.323 0.3578 0.1876 0.2959 0.3031 

DTA 0.4825 0.3867 0.4996 0.3542 0.5975 

DR 0.3127 0.3561 0.2076 0.2847 0.3288 

DRA 0.3964 0.4662 0.504 0.3826 0.3775 

Average metrics overall 0.2734 0.2729 0.2510 0.2434 0.2884 

Table 20: Summarized average DC metrics values between DC profiles from five currency 

market assets in adjacent time periods (every three months), 2011 to 2015. 

 

Average std AUD/USD GBP/USD EUR/USD CHF/USD JPY/USD 

DP1 0.0718 0.0233 0.0225 0.0155 0.0345 

DP2 0.1283 0.0347 0.0481 0.1695 0.0588 

DT 0.3069 0.2916 0.1446 0.2556 0.1712 

DTA 0.3538 0.2212 0.2726 0.2223 0.2658 

DR 0.3051 0.2961 0.1436 0.2643 0.1737 

DRA 0.2227 0.2749 0.2802 0.274 0.2752 

Average std metrics overall 0.2314 0.1903 0.1519 0.2002 0.1632 
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Table 21: Summarized average standard deviation DC metrics values between DC profiles 

from five currency market assets in adjacent time periods (every three months), 2011 to 2015. 

 

 

 

 

 

 

 

8.7 Market year-on-year comparison in the same currency market  
 

Average AUD/USD GBP/USD EUR/USD CHF/USD JPY/USD 

DP1 0.0353 0.0355 0.0335 0.0307 0.0357 

DP2 0.0762 0.0655 0.0852 0.1121 0.0881 

DT 0.2911 0.3880 0.3795 0.4638 0.3307 

DTA 0.4308 0.2774 0.3990 0.3857 0.5389 

DR 0.2903 0.4060 0.4017 0.4559 0.3398 

DRA 0.4373 0.3412 0.4765 0.4182 0.5159 

Average metrics overall 0.2602 0.2522 0.2959 0.3111 0.3082 

Table 22: Summarized average DC metrics values between DC profiles from five currency 

market assets in the same quarter year time periods (every three months), 2011 to 2015. 

 

Average metrics values Aug-Nov Nov-Feb Feb-May May-Aug 

AUD/USD 0.2734 0.2729 0.2510 0.2434 

GBP/USD 0.2134 0.3994 0.2135 0.1827 

EUR/USD 0.2738 0.2754 0.3088 0.3256 

CHF/USD 0.2418 0.4203 0.2761 0.3062 

JPY/USD 0.2529 0.3525 0.3103 0.3170 

Average overall 0.2511 0.3441 0.2719 0.2750 

Table 23: Summarized average overall DC metrics values between DC profiles from five 

currency market assets in four quarters year on year (every three months), 2011 to 2015. 
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8.8 Market comparison between different commodity markets in the same time 

period 
 

 

Average Gold&Oil Gold&Copper Gold&Gas Oil&Copper Oil&Gas Copper&Gas 

DP1 0.0300 0.0216 0.0383 0.0142 0.0168 0.0216 

DP2 0.0350 0.0432 0.0708 0.0404 0.0621 0.0755 

DT 0.3854 0.2368 0.6553 0.2674 0.3906 0.5930 

DTA 0.3677 0.4116 0.4092 0.4135 0.4449 0.4156 

DR 0.3995 0.2442 0.6736 0.2829 0.3970 0.6097 

DRA 0.4359 0.3655 0.3926 0.3575 0.5209 0.3892 

Table 24: Summarized average median DC metrics values between DC profiles from four 

commodity market assets in the same time period (every three months), 2011 to 2015. 

 

Average Std Gold&Oil Gold&Copper Gold&Gas Oil&Copper Oil&Gas Copper&Gas 

DP1 0.0189 0.0186 0.0271 0.0122 0.0150 0.0194 

DP2 0.0264 0.0266 0.0490 0.0283 0.0381 0.0387 

DT 0.2530 0.1277 0.2248 0.2026 0.2348 0.1926 

DTA 0.3364 0.2289 0.2578 0.3056 0.3357 0.2552 

DR 0.2621 0.1387 0.2238 0.2118 0.2460 0.1915 

DRA 0.2686 0.2337 0.2588 0.2518 0.2420 0.2855 

Table 25: Summarized average standard deviation DC metrics values between DC profiles 

from four commodity market assets in the same time period (three months), 2011 to 2015. 

 

8.9 Market comparison in the same commodity market between adjacent time 

periods 
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Average Gold Oil Copper Gas 

DP1 0.0287 0.0182 0.0177 0.0152 

DP2 0.0224 0.0299 0.0381 0.0328 

DT 0.2447 0.1971 0.2371 0.1956 

DTA 0.3739 0.5142 0.5298 0.3568 

DR 0.2383 0.2137 0.2478 0.1919 

DRA 0.3523 0.5643 0.3524 0.4246 

Average metrics overall 0.2101 0.2562 0.2372 0.2028 

Table 26: Summarized average DC metrics values between DC profiles from four commodity 

market assets in adjacent time periods (every three months), 2011 to 2015. 

 

Average std Gold Oil Copper Gas 

DP1 0.0186 0.0115 0.0135 0.0107 

DP2 0.0162 0.0205 0.0402 0.03 

DT 0.1619 0.1528 0.1554 0.1369 

DTA 0.2105 0.3599 0.2495 0.3161 

DR 0.1599 0.16 0.1567 0.1465 

DRA 0.2625 0.2467 0.222 0.1826 

Average std metrics overall 0.1383 0.1586 0.1396 0.1371 
Table 27: Summarized average standard deviation DC metrics values between DC profiles 

from four commodity market assets in adjacent time periods (every three months), 2011 to 

2015. 

 

8.10 Market year-on-year comparison in the same commodity market  
 

Average Gold Oil Copper Gas 

DP1 0.0282 0.0202 0.0201 0.0146 

DP2 0.0247 0.0398 0.0475 0.0365 

DT 0.3700 0.3922 0.3300 0.2190 

DTA 0.3809 0.5543 0.5215 0.3803 

DR 0.3667 0.4205 0.3390 0.2183 

DRA 0.4158 0.5340 0.4460 0.3247 

Average metrics overall 0.2644 0.3268 0.2840 0.1989 

Table 28: Summarized average DC metrics values between DC profiles from four commodity 

market assets in the same quarter year time periods (every three months), 2011 to 2015. 
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Average metrics values Aug-Nov Nov-Feb Feb-May May-Aug 

Gold 0.2377 0.2593 0.2518 0.3089 

Oil 0.2307 0.3920 0.3422 0.3424 

Copper 0.3401 0.2774 0.2329 0.2857 

Gas 0.2062 0.2217 0.1566 0.2111 

Average overall 0.2536 0.2876 0.2458 0.2870 

Table 29: Summarized average overall DC metrics values between DC profiles from four 

commodity market assets in four quarters year on year (every three months), 2011 to 2015. 

 

8.11 Contrast between AUD/USD market and commodity market  

 

Average AUD&Gold AUD&Oil AUD&Copper AUD&Gas 

DP1 0.0497 0.0431 0.0432 0.0515 

DP2 0.0933 0.1017 0.0909 0.1492 

DT 0.4399 0.7024 0.5532 0.8297 

DTA 0.3922 0.5091 0.4051 0.5308 

DR 0.4398 0.7138 0.5619 0.8229 

DRA 0.368 0.4984 0.4651 0.3858 

Average overall 0.2972 0.4281 0.3532 0.4617 

Table 30: Summarized average DC metrics values between AUD/USD market profiles and 

four commodity market assets in the same time periods (every three months), 2011 to 2015. 

 

Average std AUD&Gold AUD&Oil AUD&Copper AUD&Gas 

DP1 0.0688 0.0680 0.0707 0.0696 

DP2 0.0776 0.0617 0.0794 0.0556 

DT 0.2345 0.1608 0.2098 0.1070 

DTA 0.2649 0.3022 0.3069 0.2507 

DR 0.2152 0.1498 0.2035 0.1276 

DRA 0.2583 0.3170 0.2076 0.2659 

Average std overall 0.1865 0.1766 0.1797 0.1461 
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Table 31: Summarized average standard deviation DC metrics values between AUD/USD 

market profiles and four commodity market assets in the same time periods (every three 

months), 2011 to 2015. 

 

 

 

 

8.12 Contrast between GBP/USD market and commodity market  

 

Average GBP&Gold GBP&Oil GBP&Copper GBP&Gas 

DP1 0.0336 0.0321 0.0255 0.0377 

DP2 0.0983 0.1116 0.0997 0.1666 

DT 0.6886 0.8444 0.7530 0.9163 

DTA 0.4216 0.6303 0.5179 0.5819 

DR 0.7011 0.8614 0.7717 0.9207 

DRA 0.3563 0.5083 0.5319 0.4877 

Average overall 0.3833 0.4980 0.4500 0.5185 

Table 32: Summarized average DC metrics values between GBP/USD market profiles and 

four commodity market assets in the same time periods (every three months), 2011 to 2015. 

 

 

Average std GBP&Gold GBP&Oil GBP&Copper GBP&Gas 

DP1 0.0322 0.0228 0.0198 0.0295 

DP2 0.0497 0.0520 0.0542 0.0750 

DT 0.1660 0.0677 0.1429 0.0526 

DTA 0.2308 0.2860 0.3179 0.2536 

DR 0.1557 0.0589 0.1189 0.0616 

DRA 0.2781 0.3008 0.2597 0.3165 

Average std overall 0.1521 0.1314 0.1522 0.1315 

Table 33: Summarized average standard deviation DC metrics values between GBP/USD 

market profiles and four commodity market assets in the same time periods (every three 

months), 2011 to 2015. 
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8.13 Contrast between EUR/USD market and commodity market  

 

Average EUR&Gold EUR&Oil EUR&Copper EUR&Gas 

DP1 0.027 0.0256 0.0259 0.0413 

DP2 0.0846 0.0997 0.0826 0.1504 

DT 0.5608 0.7986 0.6611 0.899 

DTA 0.4975 0.6604 0.5425 0.5224 

DR 0.5741 0.817 0.6808 0.9079 

DRA 0.4994 0.5388 0.4959 0.4983 

Average overall 0.3739 0.4900 0.4148 0.5032 

Table 34: Summarized average DC metrics values between EUR/USD market profiles and 

four commodity market assets in the same time periods (every three months), 2011 to 2015. 

 

 

Average std EUR&Gold EUR&Oil EUR&Copper EUR&Gas 

DP1 0.0254 0.0222 0.0168 0.0284 

DP2 0.0737 0.0689 0.0596 0.0844 

DT 0.2237 0.0510 0.1232 0.0569 

DTA 0.2792 0.2479 0.2838 0.3099 

DR 0.2152 0.0453 0.1091 0.0576 

DRA 0.2162 0.3111 0.2450 0.2910 

Average std overall 0.1722 0.1244 0.1396 0.1381 

Table 35: Summarized average standard deviation DC metrics values between EUR/USD 

market profiles and four commodity market assets in the same time periods (every three 

months), 2011 to 2015. 
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8.14 Contrast between CHF/USD market and commodity market  

 

Average CHF&Gold CHF&Oil CHF&Copper CHF&Gas 

DP1 0.0342 0.0406 0.0357 0.0517 

DP2 0.1061 0.1154 0.0933 0.1611 

DT 0.5005 0.6997 0.5624 0.8253 

DTA 0.5404 0.6353 0.5673 0.5097 

DR 0.4985 0.7263 0.5746 0.8444 

DRA 0.4374 0.4269 0.3865 0.4427 

Average overall 0.3529 0.4407 0.3700 0.4725 

Table 36: Summarized average DC metrics values between CHF/USD market profiles and 

four commodity market assets in the same time periods (every three months), 2011 to 2015. 

 

 

Average std CHF&Gold CHF&Oil CHF&Copper CHF&Gas 

DP1 0.0232 0.0311 0.0287 0.0290 

DP2 0.0936 0.0862 0.0968 0.0840 

DT 0.1872 0.1429 0.1407 0.1648 

DTA 0.2713 0.3064 0.2813 0.3463 

DR 0.2081 0.1214 0.1498 0.1464 

DRA 0.2070 0.3623 0.2684 0.2380 

Average std overall 0.1651 0.1751 0.1610 0.1681 

Table 37: Summarized average standard deviation DC metrics values between CHF/USD 

market profiles and four commodity market assets in the same time periods (every three 

months), 2011 to 2015. 
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8.15 Contrast between JPY/USD market and commodity market  

 

Average JPY&Gold JPY&Oil JPY&Copper JPY&Gas 

DP1 0.0394 0.0291 0.0292 0.0341 

DP2 0.0744 0.0919 0.0783 0.1359 

DT 0.5249 0.7423 0.5954 0.8801 

DTA 0.4287 0.6683 0.4413 0.5775 

DR 0.5630 0.7724 0.6317 0.8983 

DRA 0.4831 0.6028 0.4081 0.5096 

Average overall 0.3523 0.4845 0.3640 0.5059 

Table 38: Summarized average DC metrics values between JPY/USD market profiles and 

four commodity market assets in the same time periods (every three months), 2011 to 2015. 

 

Average std JPY&Gold JPY&Oil JPY&Copper JPY&Gas 

DP1 0.0309 0.0205 0.0242 0.0230 

DP2 0.0607 0.0714 0.0563 0.0713 

DT 0.1855 0.1694 0.2271 0.0870 

DTA 0.2828 0.1956 0.2153 0.2397 

DR 0.1742 0.1601 0.2250 0.0792 

DRA 0.2761 0.2565 0.2458 0.3138 

Average std overall 0.1684 0.1456 0.1656 0.1357 

Table 39: Summarized average standard deviation DC metrics values between JPY/USD 

market profiles and four commodity market assets in the same time periods (every three 

months), 2011 to 2015. 

 

 

 

 

 

 

 

 


