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1 Use the force

Constraints shield solutions from a problem solver. However, in the hands of
trained constraint problem solvers, the same constraints that create the prob-
lems in the first place can also guide problem solvers to solutions. Constraint
satisfaction is all about learning how to flow with the force of the constraints.

Examples of using constraints to guide one’s search are abundant in complete
search methods (e.g. see [1, 2]). Lookahead algorithms propagate constraints in
order to (a) reduce the remaining problem to smaller problems and (b) de-
tect dead-ends. Dependency-directed backtracking algorithms use constraints to
identify potential culprits in dead-ends. This helps the search to avoid examining
(in vain) combinations of variables assignments that do not matter.

Constraint-directed search is used in stochastic search too. Constraints were
used in Guided Local Search (GLS) [3] and Guided Genetic Algorithm (GGA) [4]
to guide the search to promising areas of the search space. In stochastic methods,
a constraint satisfaction problem is handled as an optimization problem, where
the goal is to minimize the number of constraints violated. The approach in
GLS is to use constraints to augment the objective function. This helps local
search to escape local optima. GGA uses the GLS penalty scheme to change the
behaviour of genetic algorithms. This results in a more robust algorithm which
finds quality results consistently. GLS and GGA have been applied to many
optimization problems, including the well-known travelling salesman problem
and quadric assignment problem.

The GLS idea was generalized to “penalties” and “incentives” in evolutionary
computation. This paper explains how such ideas were applied to two applica-
tions in finance and economics: financial forecasting and automated bargaining.

2 Constraints in financial forecasting

In forecasting, the goal is to predict the value of a variable, which defines the
target. The challenge in forecasting is (i) to find a set of variables, and (ii) to
find a function that maps these variables to the target. There is no limit in
the format of this function. It can be a mathematical function. It can also be a
program procedure.
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There is no guarantee that such functions exist. If they do, then finding the
relevant variables is essential for their discovery. EDDIE (which stands for Evo-
lutionary Dynamic Data Investment Evaluator) is a framework for finding such
functions [5]. Experts channel their financial expertise into the system through
the suggestion of variables. EDDIE attempts to find functions that map these
variables to the target.

EDDIE attempts to predict a particular form of patterns: whether prices
will go up by r% or more within the next n days. (Here r could be a negative
number). In that case, the target can be represented by a Boolean variable T.
If T is true, it means prices will go up by r% or more within the next n days,
which represents an investment opportunity. For example, domain experts may
suggest that the current price, the “50 days moving average” and “volatility”
(which could be measured by the normalized standard deviation of the previous,
say, 25 days) are indicators of the future price. An example of a function is:

IF the current price is 6.24% above the 50 days moving average
THEN IF volatility is above 1.85,

THEN T is True;
ELSE T is False;

ELSE IF the current price is 12.49% below the 50 days moving average
THEN T is False;

ELSE T is True;

In this example, the function is represented by a tree. EDDIE is responsible
for finding the structure of the tree, as well as the thresholds such as 6.24%,
1.85.

The search for variables is crucial to the success of forecasting. This is the
job of the finance experts, which will not be discussed here. (This job can be
helped by EDDIE, see [6]). Faced by EDDIE is a huge search space of tree
structures and thresholds. EDDIE searches the space with genetic programming.
Pretty standard genetic programming techniques were adopted, except the use
of constraints, which is described below.

In EDDIE, precision refers to the percentage of “True” predictions that turn
out to be correct in reality. Recall refers to the percentage of investment oppor-
tunities that were correctly predicted “True” by EDDIE. Failure in picking an
opportunity is not as serious as making a wrong decision to invest, because the
latter could lead to losses. That means precision is more important than recall in
financial forecasting. Having said that, if a forecasting tool fails to pick up any
investment opportunities at all (i.e. recall=0), then this tool is useless. There-
fore, one would like to have a handle to balance between precision and recall.
This is attempted by FGP2, a version of EDDIE. Following is a brief summary
of FGP2; details can be found in [7].

FGP2 aims to concentrate the search on areas of the space where trees have
higher precision. To achieve that, FGP2 augmented the objective function with
a constraint. The augmented objective function encouraged trees that make a
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certain percentage of their predictions “True”. If the percentage of “True” pre-
dictions by a tree is not within a range constrained by the user, its fitness is
significantly reduced. This range constraint is set by the user; it typically re-
flects conditions of the current market.

Trees capture patterns in the data. The EDDIE experience was that, even
with variables drawn from text-books (namely technical trading indicators), pat-
terns could be found in some of the stocks [7]. With variables of better quality,
patterns with extremely high precision could be found [8]. Patterns do not ap-
pear in all stocks. Besides, the market is changing very fast in recent years (with
the significant growth of algorithmic trading), which hinders learning. Neverthe-
less, one does not have to find all patterns to benefit from forecasting. A single
opportunity, if detected, could provide a trader with valuable reward. Whenever
patterns exist, having a forecasting tool like EDDIE is better than not.

3 Constraints in automated bargaining

Game theory is often used in a political or military context to explain conflicts
between countries. More recently it has been used to map trends in the business
world, ranging from how cartels set prices to how companies can better sell their
goods and services in new markets. It has become an important area in eco-
nomics, for which Nobel Prizes have been awarded (e.g. Aumann and Schelling
in 2005).

Bargaining is a main subject in game theory. One of the fundamental bargain-
ing models was Rubinstein’s 1982 model. Under this model, two players bargain
to share a pie. They make alternative offers. For example, the first player may
offer to take 65% of the pie. The second player may either accept it or reject the
35% offerred. If he rejects this offer, he will have to give a counter offer, e.g. he
may ask for 51%. However, both players’ utilities drop exponentially over time.
That means getting 51% in the second round may not worth as much as accept-
ing 35% in the first round. This motivates both players to accept an offer as
soon as possible. It is worth pointing out that the two players may have different
utility discount rates. The value of the discount rate determines their bargaining
power. A player with a higher discount rate is in a weaker position to bargain.

A players optimal strategy depends on the other players strategy. Subgame
equilibrium is the optimal strategy by both players, given their belief of their
opponents strategies. To derive the subgame equilibrium, Rubinstein assumed
complete information, i.e. each player knows both discount rates, and know
that the opponent knows such. Rubinstein also assumed perfect rationality by
both players [9]. Subgame equilibrium was derived recursively by Rubinstein: to
calculate the first players optimal strategy, one has to solve the subproblem of
the second players strategy. This in turn can be calculated by the first players
optimal strategy in the third round should the second player make a counter
offer in the previous round. The subproblems can be solved recursively till both
players utilities drop to a fix point.
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In game theory, subgame equilibrium is typically derived mathematically.
There are two serious drawbacks in this approach. Firstly, it assumes perfect
rationality in decision making. In practice, decision making often involves com-
putation (chess is a good example). Therefore, computational intelligence deter-
mines the effective rationality (I call this the CIDER theory, see [10]). Secondly,
mathematical derivation of subgame equilibrium is laborious. A slight change of
the bargaining model (for example, when a player has an outside option which
guarantees him, say, 36% of the pie) would typically require complete revision
of the derivation.

The above drawbacks of the mathematical approach motivate a co-evolutionary
approach, where each of the two players is modelled by a population of strategies
[11]. A strategys fitness is evaluated through playing it with strategies by the
opponent. In evolutionary computation, a strategy’s chance of survival depends
on its fitness. That means under this approach, the perfect rationality assump-
tion is replaced by reinforcement learning, which is closer to reality. Besides,
this approach is robust: it can easily cope with slight changes to the bargaining
model. It can easily capture asymmetric information or asymmetric ability by
the two players.

Jin et al used genetic programming to approximate subgame equilibrium
[11]. Bidding strategies were represented by functions. Under this approach,
each player searches in the space of functions. Unfortunately, the search space is
huge. Besides, only a very small proportion of the functions in the search space
are sensible. For example, a random strategy would typically return a bid of
below 0% or above 100% of the pie. Standard genetic programming failed to
find sensible strategies consistently.

Following EDDIE’s experience, Jin and Tsang used constraints to guide
the search. To do so, desirable attributes were identified for bidding strategies.
Firstly, a strategy should return a value between 0 and 1. Secondly, the value that
a bidding strategy returns should ideally be inversely proportional to the player’s
own utility discount rate. Thirdly, the value that a strategy returns should ide-
ally be proportional to the opponent’s discount rate. These desirable attributes
were translated into incentives, which augmented the objective function.

With the help of incentives, the majority of the populations contained usable
bidding strategies (which demand a value between 0% and 100%). The subgame
equilibrium found by co-evolution was very close to the theoretical solutions
in Robinsteins 1982 bargaining model. With minor modifications, the programs
were applicable to variations of Rubinstein’s bargaining model [9]. For these sim-
ple bargaining models, the subgame equilibrium found by co-evolution approx-
imated the theoretical solutions. These results suggest that constraint-directed
co-evolutionary is a useful approach to approximate subgame equilibrium in
bargaining.
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