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The Event Calculus on High-frequency Finance 
 
 

To understand financial markets and prevent unnecessary crises, markets 
should be studied scientifically. With event calculus, this paper formalizes 
market clearance dynamics under simple market models. The immediate future 
is determined by the present state plus the orders in the market. The purpose of 
this calculus is not to forecast orders, but to provide a means to reason with 
market dynamics and assess risk. Using logic reduces ambiguity and enables 
rigorous reasoning. An algorithm for assessing risk is proposed. Real markets 
are more complex than the models presented in this paper. However, this paper 
lays a solid foundation for studying market models. 

 
Keywords: high-frequency Finance, financial markets, event calculus. 

 

1. Introduction 

 
Financial markets are complex. Classical economics have been under serious 

challenge (e.g. see Olsen, 2005; Shleifer, 2000) to explain price action and volume 

flows in financial markets. One novel approach to market studies is to model the 

micro-behaviour of markets (Shleifer, 2000; Solomon, et al., 2000). The attempt is to 

observe micro-behaviour in the market with the aim to discover general dynamics 

(Acerbi and Scandolo, 2008; Glattfelder, et al., 2008). This approach is data-driven. 

Unlike classical economics, it does not depend on stringent assumptions, such as 

perfect rationality by the traders (Tsang, 2008). This new approach is still in its 

infancy. This paper looks at simple market models, and attempts to define the market 

dynamics formally.  

The market can be described by states. The state of the market can be changed 

by events. In this paper, we limit our attention to buy and sell events initiated by 

market participants. Even though behaviour of the market participants may in general 

be unpredictable, certain inferences can be made. Given a set of buy and sell orders, 

the calculus can define state transitions. We can draw analogy with weather forecast, 

where although we may not know the long term weather changes, we can predict the 



immediate future given the current state; e.g. air flows from high pressure to low 

pressure regions. 

Event calculus is useful for reasoning (Chen, 2009 ; Kowalski and Sergot, 1986; 

Mueller, 2009).  Shanahan states: “The event calculus is a logical mechanism that 

infers what’s true when given what happens when and what actions do” (Shanahan, 

1999). This paper formalises the components relevant to the calculus for market 

transitions. It highlights the fact that the consequences of an order can be complex: 

the consequences are dependent on the positions and margins held by market 

participants. With this analysis, one can determine, for example, sizes of orders which 

can cause market crashes. 

This paper formalises the obvious. But it is better to state the obvious with 

mathematical rigor rather than to leave it for potential ambiguity, which needs to be 

addressed repeatedly later in our research. Besides, what is obvious to some may not 

be obvious to others. Stating the obvious through event calculus enables us to study 

micro-behaviour rigorously. 

2. Market Models 

2.1 Model 1 

This model is defined under a double auction market. 

 
State + Orders  State 

 Where:  
State = Queue_Profile = (Bid_Queue, Offer_Queue) 
Bid_Queue = ((order1, price1, volume1), (order2, price2, volume2), 
               …, (ordern, pricebq, volumebq)) 
Where price1 > price2 > … pricebq 

Offer_Queue = ((order1, price1, volume1), (order2, price2, volume2),    
                           …, (ordern, priceoq, volumeoq)) 

Where price1 < price2 < … priceoq 

 
The Bid_Queue comprises the bids to buy. The Offer_Queue comprises offers to sell. 

Buy (sell) orders having the same price are not merged.  



Orders refer to a sequence of orders, where each order is either a bid or an 

offer, together with its volume. 

Orders = (Order1, Order2, …, Ordern) 
We assume that the orders are processed in sequence: 

State + (Order1, Order2,…, Ordern)  (State + Order1) + (Order2, …, Ordern) 
 

For simplicity, we assume only two types of orders. A market order is to buy or sell at 

the market price. A limit order is to buy a certain volume up to a price specified, or to 

sell a certain volume above a price specified. For notional convenience, we write a 

market buy order as a limit buy order with the price set at infinity; a market sell order 

sets its price to minus infinity. 

Order = (Order_No, Order_Type, Price, Volume) 
Order_Type  = bid | offer 
Order_No = Oi 

 
We define a symbol Inf, which stands for both infinity and minus infinity. We write a 

market buy order as (buy, Inf, Volume), a market sell order as (sell, Inf, Volume).  

The calculus for clearance of a limit sell order can be defined below.  

 Let Bid_Queue1 = ((O1, P1, V1), (O2, P2, V2) …)  
Offer_Queue1 = ((O3, P3, V3), (O4 ,P4, V4), …) 

      Limit_Order = (On, sell, Pn, Vn). 
 
The calculus for a limit order is very simple. If the price of the sell order is less than 

or equal to at least the bid order at the head of the bid queue, the limit order can be 

fully or partially fulfilled. The sell order of volume Vn removes from the head of the 

Bid_Queue (P1, V1) the minimum of Vn or V1. If Vn is greater than V1, then the head 

of the Bid_Queue is removed. If the limit price is reached, clearing stops and the 

remaining unfulfilled sell order joins the offer queue. If the limit price is not yet 

reached, clearing continues with the remaining Bid_Queue until V is reduced to 0. If 

the price of the limit sell order is larger than the first bid order in the bid queue, then 

the sell limit order joins the offer queue. This can be formalised as follows. 



(((O1, P1, V1), (O2, P2, V2),…), ((O3, P3, V3), (O4 ,P4, V4), …)) + (On, sell, Pn, Vn)    
(((O1, P1, V1), (O2, P2, V2),…), ((O3, P3, V3), (O4 ,P4, V4), …)  (On, sell, Pn, Vn))          
 if P1 < Pn 

 (((O1, P1, V1(min(V1, Vn)), (O2, P2, V2), …), ((O3, P3, V3), (O4 ,P4, V4), …)) +  
    (On, sell, Pn, Vn (min(V1, Vn))) if P1 ≥ Pn 

    
          
The + operation is recursive when P1≥Pn; it stops when P1<Pn or Vn is reduced to 0. 

Here  is the queue joining operator which simply put the orders in ascending order 

according to their prices.1  Cleared orders are removed from the bid queue: 

((O1, P1, 0), (O2, P2, V2),…)  ((O2, P2, V2), …) 
 
Limit buy orders are handled symmetrically.  

In the calculus above, the clearing of a market order is exactly the same as the 

limit order, except that market orders do not have limit prices and hence are always 

completely fulfilled. They do not join the bid or offer queues. 

2.2 Example 1 for Model 1 

With Model 1, the calculus for computing state transition is straight-forward. This 

example shows the state change for a given market order. 

State 1.1 = (Bid_Queue1.1, Offer_Queue1.1) 
Bid_Queue1.1 = ((O1, 1.60, 2500), (O2, 1.59, 2000), (O3, 1.58, 2500), (O4, 1.57, 1500), 

(O5, 1.56, 4000)) 
Offer_Queue1.1 = ((O6, 1.61, 3000), (O7, 1.62, 2000), (O8, 1.63, 1500)) 

 
Let  Order1.1 = (Order9, Order10, Order11), where  

Order9 = (O9, sell, Inf, 5000) 
Order10 = (O10, buy, 1.57, 1000) 
Order11 = (O11, buy, 1.62, 6000) 

 
With Order9, which is a market order, the following transactions ensue:  

2500 will be transacted at 1.60  

This will result in the Bid_Queue being reduced to: 
                                                 
1 In functional programming convention,  is defined below:  

((P1, V1), (P2, V2), …)  (sell, P, V)   
((P, V), (P1, V1), (P2, V2), …) if P < P1 
((P1, V1), ((P2, V2), …)  (sell, P, V))) if P ≥ P1 

 
 



(O2, 1.59, 2000), (O3, 1.58, 2500), (O4, 1.57, 1500),  (O5, 1.56,    4000)) 
 
Next, the following two transactions will take place: 

2000 will be transacted at 1.59 
500 will be transacted at 1.58 

 
The resulting state is: 

State 1.2 = (Bid_Queue1.2, Offer_Queue1.2) 
Bid_Queue1.2 = ((O3, 1.58, 2000), (O4, 1.57, 1500), (O5, 1.56, 4000)) 
Offer_Queue1.2 = Offer_Queue1.1 
 

With Limit_Order10, the offer queue is not changed as the price of the buy limit order 

is less than the price of the head of the offer queue. Since Limit_Order10 is not 

matched; it is added to the bid queue.  

The resulting state is: 

State 1.3 = (Bid_Queue1.3, Offer_Queue1.3) 
Bid_Queue1.3 = ((O3, 1.58, 2000), (O4, 1.57, 1500), (O10, 1.57, 1000), (O5, 1.56, 4000)) 
Offer_Queue1.3 = Offer_Queue1.2 

 
With Limit_Order11 (to buy 6000 with limit price 1.62), the offer queue is changed. 

Since the price 1.62 is greater than or equal to the first two orders in the offer queue, 

the following transactions will take place: 

3000 will be transacted at 1.61 
2000 will be transacted at 1.62 

 
The remaining 1000 units will join the bid queue. Therefore, the resulting state is: 

State 1.4 = (Bid_Queue1.4, Offer_Queue1.4) 
Bid_Queue1.4 = ((O11, 1.62, 1000), (O3, 1.58, 2000), (O4, 1.57, 1500), (O10, 1.57, 1000),  

 (O5, 1.56, 4000)) 
Offer_Queue1.4 = ((O8, 1.63, 1500)) 
 

2.4 Model 2: When Positions and Margins are considered 

The market dynamics will change when traders trade with margins. A trader with 

margin m, where 0<m≤1, will pay up only proportion m of the value that it trades. We 

make the following assumptions in our analysis: 



Assumption 2.1. For a trader with a short (long) position with margin m, its position 

is closed automatically when the price rises (falls) by more than m. 

Assumption 2.2. All consequences of an automatic position closure take place before 

any new event occurs. 

Assumption 2.32. We assume that a position cannot be adjusted and is only only 

opened by a market or limit order. Position closure takes place automatically through 

margin calls. The relaxation of this assumption does not affect the generality of the 

results shown in our paper.  

Under this model, the description of a state must include traders’ position profiles: 

State = (Queue_Profile, Position_Profile) 
Where: 

Queue_Profile = (Bid_Queue, Offer_Queue) 
Position_Profile = {Position | Position = (Position_Code, Position_Type, Volume,  
        Value, Price, Margin)} 
Position_No= P(Oi), where Oi is the Order_No of the order opening the position, given  

         Assumption 2.3 
Position_Type = long | short 
Value = the value of the order(s) against which the opening position order has been  

matched. Given:  
  Bid_Queue = ((O1, P1, V1), (O2, P2, V2), .., (On-1, Pn-1, Vn-1)) 

Order= (On, sell, Inf, Vn) 
P(On)Value = (P1* min(V1,Vn)) +  (P2* min(V2, (Vn-min(Vn,V2)))+... 
         + (Pn-1* min(Vn-1,Vn-min(….)))     

Price= Unit Price= Value/Volume 
 
The clearance calculus is exactly the same as in Model 1, except that new events, 

namely new orders, can be triggered by state transitions.  

Let TP = the last transaction price. Here, for simplicity, we assume that the 

last transaction price in “common sense”. A more rigorous formalism should have it 

included in the state description. The martin-triggered set of new orders is NO: 

NO = {(Oi, buy, Inf, V) | (P(Oi), short, Vol, Val P, m)  Position_Profile such that  
                          P× (1+m) < TP}  {(Oi, sell, Inf, V) | (P(Oi), long, Vol, Val P, m)     

                                                 
2 In a real market, a position is constructed via a set of orders. It can be opened, adjusted and 

closed by market and limit orders. Position closure takes place as a result of either a 
margin call or the trader’s decision. 



                          Position_Profile  such that P× (1m) > TP} 
Orders = Orders + NO 

 
Here we make no assumption on how the set of new orders (NO) join the Orders 

queue; i.e. the “+” operator is yet to be defined. This is left to future refinement of the 

model.  

2.5 Example 2 for Model 2: The effect of margin constraints 

 
The following example shows the state transitions and how new events (which are 

limited to market orders in this model) are triggered.  

Let State 2.1 = ((Bid_Queue2.1, Offer_Queue2.1), Positions2.1) 
BidQueue2.1 = ((O4, 1.60, 2500), (O5, 1.59, 2000), (O6, 1.58,  2500), (O7, 1.57, 1500),  

             (O8, 1.56, 4000)) 
Offer_Queue2.1= ((O9, 1.61, 3000), (O10, 1.62, 2000), (O11, 1.63, 1500)) 
Positions2.1 = ((P(O1), long, 4000, 6600, 1.65 4%), 

           (P(O2), long, 2000, 3280, 1.64, 4%), 
           (P(O3), long, 2000, 3280, 1.64, 5%)) 

 
For illustration purposes let us assume the following: 

(1) The position profile (Positions2.1) represents the current positions in the 

market created from previous orders. 

(2) Any new position in the market has a margin of 4% 

(3)  Only one market order in the queue: 

Order 2.1 = ((O12, sell, Inf, 5000)) 
 
This is the same order that we used in Example 1. When it is cleared, as explained 

above, the bid queue will be changed. The state will be changed to: 

State 2.2 = (Bid_Queue2.2, Offer_Queue2.2, Positions2.2) 
Bid_Queue2.2 = ((O6, 1.58, 2000), (O7, 1.57, 1500), (O8, 1.56,   4000)) 
Offer_Quene2.2 = Offer_Queue2.1 
Positions2.2 = ((P(O1), long, 4000, 6600, 1.65 4%), 

           (P(O2), long, 2000, 3280, 1.64, 4%), 
                   (P(O3), long, 2000, 3280, 1.64, 5%), 
                   (P(O4), long, 2500, 4000, 1.60, 4%),  

                                     (P(O5), long, 2000, 3180, 1.59, 4%), 
                                     (P(O6), long, 500, 790, 1.58, 4%), 
                                     (P(O12), short, 5000, 7970, 1.594, 4%)) 



Where: 
 P(O12) Value  = (1.6*2500)+(1.59*2000)+(1.58*500)= 7970 
 LastTP = 1.58 (the price of the last matched order in the Queue_Profile)  

 
At this point, the bid queue and the position P(O1) together will trigger a new market 

order. This is because 1.65×(14%) = 1.584, which is above the last transaction price, 

which was 1.580. Therefore, the margin is exceeded, and this position must be closed 

(Assumption 2.1). That means the order queue will be changed to: 

Order 2.2 = ((O13, sell, Inf, 4000)) 
The following transactions take place: 

2000 will be transacted at 1.58 
1500 will be transacted at 1.57 
500 will be transacted at 1.56 

 
This will change the state to: 

State 2.3 = ((Bid_Queue2.3, Offer_Queue2.3), Positions2.3) 
Bid_Queue2.3 = ((O8, 1.56, 3500)) 
Offer_Quene2.3 = Offer_Queue2.2 
Positions2.3 = ((P(O2), long, 2000, 3280, 1.64, 4%),  

           (P(O3), long, 2000, 3280, 1.64, 5%),  
            (P(O4), long, 2500, 4000, 1.60, 4%),  
            (P(O5), long, 2000, 3180, 1.59, 4%),  
            (P(O6), long, 2500, 3950, 1.58, 4%),  
            (P(O12),short, 5000, 7970, 1.594, 4%),  
            (P(O7), long, 1500, 2355, 1.57, 4%),  
            (P(O8), long, 500, 780, 1.56, 4%))            

Where: 
LastTP = 1.56 

                     
Note that order O6 has opened a new position P(O6) in State2.2. However, it was only 

partially matched. In State2.3, O6 is fully matched. Thus, we do not open a new 

position but we update the already opened position P(O6). 

The long position P(O2) must be closed when the last transaction price (1.56 in 

this case) falls below its margin, which is 1.64×(14%) = 1.574. This means the order 

queue will be updated by the new market order: 

Order 2.3 = (O14 sell, Inf, 2000) 
 



When the order (sell, Inf, 2000) is matched, 2000 will be transacted at 1.56. This will 

reduce the state to: 

State 2.4 = ((Bid_Queue2.4, Offer_Queue2.4), Positions2.4) 
Bid_Queue2.4 = ((O8, 1.56, 1500)) 
Offer_Queue2.4 = Offer_Queue2.3 
Positions2.4 = ((P(O3), long, 2000, 3280, 1.64, 5%),  

            (P(O4), long, 2500, 4000, 1.60, 4%),  
            (P(O5), long, 2000, 3180, 1.59, 4%),  
           (P(O6), long, 2500, 3950, 1.58, 4%),  
           (P(O12),short, 5000, 7970, 1.594, 4%),  
           (P(O7), long, 1500, 2355, 1.57, 4%),  
           (P(O8), long, 2500, 3900, 1.56, 4%)) 

                                    
Where: 
LastTP = 1.56 

                       
Note that order O8 has opened a new position P(O8) in State2.3. However, O8 was 

only partially matched. In State2.4, O8 is fully cleared. Thus, we update the already 

opened position P(O8). The position P(O3) will only be closed when the last 

transaction price falls below 1.64×(15%) = 1.558.  

To summarize, a single market order of 5000 units led to the closure of two 

positions, which led to a total clearance of 11000 units, and a drop of 2.5% (from 

≥1.60 to 1.56) in the market. It should be useful to compute, given a particular state of 

the market, how big an order is needed to drop the price by, say, 10%.  

Besides, what would happen if the (P(O3), long, 2000, 3280, 1.64, 5%)  position 

has a 4% margin, instead of 5%? This will mean that this position has to be closed, 

but only 1500 of the 2000 will be bought (by the last bid in the queue); the remaining 

500 units will not be cleared. The analysis of these properties goes beyond the scope 

of this simple calculus 

3. Consequential Closure 

One can compute the consequential closure with respect to margin constraints. By 

doing so, one can evaluate the final state of any given event. For example, one would 



be able to say that “a market order to sell 6 million will lead to a price drop of 4%”. 

One may also compute the condition for minimum price changes, e.g. “What is the 

minimum size of a market sell order to lead to a price drop of r%?” Answering 

questions like this would help to assess the stability of the market and value at risk. It 

could provide early warnings. 

An algorithm as outlined below returns the volume of a market sell order that 

would lead the price to drop to or below price Pdrop.  

Function MinDrop(Queue_Profile, Position_Profile, Pdrop); 
/* Let Queue_Profile = (Bid_Queue, Offer_Queue) 

Bid_Queue = ((P1, V1), (P2, V2), …, (Pbq, Vbq)) */ 
i ← 1; Volume = 0;  
Repeat 

Queue_Profile’ ← closure(Queue_Profile, Position_Profile, (offer, Inf, Volume)); 
/* Let the bid queue for Queue_Profile’ be ((P1’, V1’), …) */ 
If Vi < V1’  
Then {Volume ←  Volume + Vi; i ←  i + 1} 
Else Volume ← Volume + V1’; 

Until P1’ ≤ Pdrop 

Return Volume; 
 
The procedure closure (Queue_Profile, Position_Profile, Order) computes the resulting 

Queue_Profile’ after consequential closure is maintained using the calculus shown in 

the Model 2 Section.3  

There exists a minimum k such that, for all the orders (Pi, Vi) at the front of the 

Bid_Queue, Pdrop ≤ Pi and Volume ≤ V1+V2+...+Vk. In the worst case, Function MinDrop has 

to go through all such (Pi, Vi)s.4 Volume increases monotonically in Function MinDrop. 

Therefore this function must terminate.  

                                                 
3 Strictly speaking, the termination condition P1’ ≤ Pdrop should be replaced by LTP ≤ Pdrop, 

where LTP is the Last transaction price which could be returned by the closure function. 
This is simplified for clarity.  When the head of the queue in Queue_Profile’ is below 
Pdrop, any market order to sell will drop the price below Pdrop.  Therefore, the Volume 
returned is correct, which is our justification for the compromise. 

4 This is an upper-bound because any margin calls that might be triggered will absorb some of 
the volume. 



Let M be the list of positions in the Position_Profile which margin calls are 

above Pdrop. In the worst case, the procedure has to go through all of them. So each 

cycle of the Repeat loop will have complexity of |M|.  Each “Then” part in each cycle 

of the Repeat loop would increase Volume to include one (Pi, Vi) pair. It is more 

complex to analyse the number of times that the “Else” part could be entered. In the 

worst case, each of the positions could bring the loop into the Else part through a 

margin call. Therefore, the complexity of the algorithm is bounded by O(k×|M|2). 

4. Market Making 

The market maker absorbs a substantial amount of complexity (hence being 

rewarded). The market maker sets the “bid” and “ask” prices. The bid price is the 

price at which the market maker offers to buy; the ask price is the price at which the 

market maker offers to sell. 

 State = (Bid_price, Ask_price, MaxVol, Queue_Profile, Position_Profile) 
 
Where: 

Bid_price and Ask_price are the bid and ask prices quoted by the market maker; 

MaxVol is the maximum volume that the market maker is willing to deal per 

order; 

Queue_Profile and Position_Profile are the same as those defined in Model 2. 

 
Here we assume that the clearing mechanism is completely automated. The key to the 

clearing mechanism is in the way that the market maker updates its bid and ask prices. 

In this paper, we make no assumption on f, which could vary from market maker to 

market maker; f should be a complex function. 

Let Bid_price and Ask_price be the bid and ask prices in the current state, and 

Bid_price' and Ask_price' be the bid and ask prices in the next state. We generalize that 

the market maker sets the Bid_price' and Ask_price' with a function f, without specifying 



exactly what f is. f is a function that involves Bid_price, Ask_price, Queue_Profile, 

Position_Profile and many other factors, which may include the market maker’s own 

position, bid and ask prices by the other market makers, the balance of payment 

between countries, interest rates, news and other economic indicators of the countries 

involved. 

 (Bid_price, Ask_price, MaxVol, (Bid_Queue, Offer_Queue), Positions) + (sell, P, V)   
  (Bid_price', Ask_price', MaxVol, (Bid_Queue, Offer_Queue), Positions)   
              if P ≤ Bid_price & V ≤ MaxVol 
       
         (Bid_price', Ask_price', MaxVol, (Bid_Queue, Offer_Queue), Positions)  
   + (sell, P, VMaxVol)                                
                         if P ≤ Bid_price & V > MaxVol 

               (Bid_price', Ask_price', MaxVol, (Bid_Queue, Offer_Queue (sell, P, V)), Positions)  
                          if P > Bid_price 

 

The queue joining operator  is defined in the Model 1 Section. If f could be written 

down mathematically, we would be able to define the event calculus in market 

making. 

5. Liquidity 

Artzner, et al. (1999) proposed coherent measures of risk. This was challenged by 

Acerbi and Scandolo (2008), for not taking full consideration of liquidity risk. Acerbi 

and Scandolo (2008) introduced the marginal supply-demand curves (MSDCs), which 

defines at any time instance the available prices of a given asset in the market. The 

attractiveness of their formalism is that liquidity risk is measured by market data; no 

assumptions are required. MSDCs are basically defined by queue profiles as defined 

above.  Fig. 1 shows the MSDC in State 2.1. After clearing of Order 2.1, the market 

loses a certain amount of liquidity. This is shown by MSDC in Fig. 2.  

The queue profile defines how liquid an asset is at any given time. Liquidity of 

an asset is therefore determined by how steep one ascends or descends in the MSDC. 

Following the above example, suppose at State 2.1, two traders bid 1.60 for 500 



shares, and 1.59 for another 500 shares. Although the highest bid price is still 1.60, 

the new MSDC is actually steeper than the one shown in Fig. 1. This means, to sell 

over 1000 shares in this market (as opposed to the market shown in Fig. 1) , the seller 

must be prepared to accept lower bids.  

Unfortunately, the ordinary investors/traders who have no access to order 

books have no means of assessing their liquidity risk.5 Therefore, market making 

provides investors/traders with market liquidity up to a certain limit (MaxVol in the 

Market Making Section). It also offers transparency in market liquidity. The MSDC 

under market making is shown in Fig. 3. 

It is worth noting the obvious that, as a Queue Profile does not have to be 

symmetric, an asset could be highly liquid when one wants to buy, but illiquid when 

one wants to sell (and vice versa). 

6. Conclusion 

In this paper, we have defined a calculus for describing state changes in a market as a 

consequence of new orders coming in. We base our analysis on simple market 

models. This is no attempt to predict what new orders will arrive. The purpose of this 

paper is to lay the foundation for analyzing market states. We show that even with the 

simple calculus defined, we can ask important questions such as “how big a sell order 

would push the price down by 10%?” This research also supports Acerbi and 

Scandolo’s call to measure liquidity risks with market data.  

We acknowledge the fact that state changes in real markets are far more 

complex than what is described in this paper. It is up to the participants, including 

governing bodies, market makers and traders, to define the rules in an unambiguous 

                                                 
5 OANDA provides information on trader positions 0. This could help conjecturing (with low 

confidence) marginal supply and demands (because eventually those in long positions 
have to sell, and those in short positions have to buy).  



mathematical and mechanical way. The aim is to create markets with properties that 

can be studied scientifically. Eliminating black boxes and enabling scientific studies 

may be the best way to ensure stability and prevent financial crises. We intend to 

extend the calculus to cover more sophisticated market mechanisms and trading 

strategies. 

 

Acknowledgements 

The authors wish to thank Monira Aloud for providing us with feedback and formatting the 
paper for us. 
 
 
References 

 

Acerbi, C. and Scandolo, G., 2008.  Liquidity Risk Theory and Coherent Measures of 
Risk, Quantitative Finance, 8(7), pp.681-692. 
 
Acerbi, C., 2008. Portfolio Theory in Illiquid Markets. In: Resti, A. (ed.), Pillar II in 
the new Basel Accord, Riskbooks, pp. 241-272 
 
Artzner,P., Delbaen,F. Eber, J-M. and Heath, D., 1999.  Coherent measures of risk, 
Math. Fin., 9(3), pp. 203-228. 
 
Chen, C-C., 2009. Complex Event Types for Agent-Based Simulation. PhD, College of 
London University. 
 
Dacorogna, M.M., Gencay, Muller, R.U., Olsen, R.B. and Picktet, O.V., 2001. An 
Introduction to High Frequency Finance. Academic Press.  
 
Glattfelder, J.B., Dupuis, A. and Olsen R., 2008.  An Extensive Set of Scaling Laws 
and the FX Coastline”, Working Paper WP025-08, Centre for Computational Finance 
and Economic Agents (CCFEA), University of Essex. 
 
Kowalski, R. and Sergot, M., 1986. A Logic-Based Calculus of Events, New 
Generation Computing, 4(1), pp. 67-95. 
 
Mueller, E.T., 2009. Aumated Commonsense Reasoning Using The Event Calculus”, 
Communications of the ACM, 52(1), pp. 113-117. 
 
OANDA FxTrade. OANDA Forex Order Book [online] Available at: 
http://fxtrade.oanda.com/tools/statistical_information/fx_open_position_summary 
[Accessed 9 March 2011]. 
 
Olsen, R., 2005 Classical Economics: An Emperor with No Clothes, Wilmott 



Magazine, 15, pp. 84-85. 
 
Shanahan, M.P., 1999. The Event Calculus Explained, in Artificial Intelligence 
Today, ed. M.J.Wooldridge and M.Veloso, Springer Lecture Notes in Artificial 
Intelligence, 1600, pp. 409-430. 
 
Shleifer, A.,2000. Inefficient Markets: An Introduction to Behavioral Finance. Oxford 
University Press. 
 
Solomon, S., Levy, H. and Levy, M., 2000. Microscopic Simulation of Financial 
Markets from Investor Behaviour to Market Phenomena. Academic Press  
 
Tsang, E.P.K., 2008. Computational Intelligence Determines Effective Rationality”, 
International Journal on Automation and Control, 5(1), pp. 63-66. 
 
 
Figure 1. The Marginal Supply-Demand Curve defined by the Queue Profile at State 
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Figure 2. The Marginal Supply-Demand Curve defined by the Queue Profile at State 
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Figure 3. The Marginal Supply-Demand Curve under market making 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


