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A Formalization of Double Auction Market Dynamics 
 
 

To understand financial markets and prevent crisis we need to analyze market 
microstructure. This paper formalizes the market process in the context of a 
simple double auction market. The purpose of this calculus is to analyze 
market dynamics and feedback loops of for example cascading margin calls 
with the objective to get a better understanding of risk scenarios, not to forecast 
exogenous order flow. The price trajectory is determined by the present market 
state and new orders arriving in the market. By studying the market 
microstructure, we can compute the impact of an order of any size, or how big 
a sell order has to be to cause the market to fall by a certain percentage. Using 
a definite formalism reduces ambiguity and enables rigorous reasoning. An 
algorithm for assessing risk is proposed. Real markets are more complex than 
the models presented in this paper and this paper is a step towards building a 
solid foundation for studying market models. 
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1. Introduction 

 
Financial markets are complex. Classical economics have been under serious 

challenge (e.g. see Olsen, 2005; Shleifer, 2000) to explain price action and volume 

flows in financial markets. One novel approach to market studies is to model the 

micro-behaviour of markets (Shleifer, 2000; Solomon, et al., 2000). The attempt is to 

observe micro-behaviour in the market with the aim to discover general dynamics 

(Acerbi and Scandolo, 2008; Glattfelder, et al., 2008). This approach is data-driven. 

Unlike classical economics, it does not depend on stringent assumptions, such as 

perfect rationality by the traders (Tsang, 2008). This new approach is still in its 

infancy. This paper looks at simple market models, and attempts to define the market 

dynamics formally. The intended contribution of this paper is not in modelling micro-

behaviour, but in formalizing such models and analyzing their properties, to examine 

what can be usefully inferred from market information.  

The market can be described by states. The state of the market can be changed 

by events. In this paper, we limit our attention to buy and sell events initiated by 



market participants. Even though behaviour of the market participants may in general 

be unpredictable, certain inferences can be made. Given a set of buy and sell orders, 

the calculus can define state transitions. We can make an analogy with weather 

forecasts, where we may not know the long term weather changes, but we can predict 

the immediate future given the current state; e.g. air flows from high pressure to low 

pressure regions. 

Event calculus is useful for reasoning (Chen, 2009; Kowalski and Sergot, 1986; 

Mueller, 2009).  Shanahan states: “The event calculus is a logical mechanism that 

infers what’s true when given what happens when and what actions do” (Shanahan, 

1999). Although we have not adopted conventional event calculus, this paper 

formalises the components relevant to the calculus of market transitions. It highlights 

the fact that the consequences of an order (orders are the only events considered in 

this paper) can be complex: the consequences are dependent on the positions and 

margins held by market participants. With this analysis, one can determine, for 

example, how big orders need to be to cause market crashes. 

This paper formalises the obvious. But it is better to state the obvious with 

mathematical rigor rather than allowing ambiguity, which needs repeated clarification 

later in our research. Besides, what is obvious to some may not be obvious to others. 

Stating the obvious through a formal description enables us to study micro-behaviour 

rigorously. 

2. Market Models 

2.1 Model 1 

This model is defined under a double auction market. 

 
State + Orders  State 

 Where:  
State = Queue_Profile = (Bid_Queue, Offer_Queue) 



Bid_Queue = ((order1, price1, volume1), (order2, price2, volume2), 
               …, (ordern, pricebq, volumebq)) 
Where price1 > price2 > … pricebq 

Offer_Queue = ((order1, price1, volume1), (order2, price2, volume2),    
                           …, (ordern, priceoq, volumeoq)) 

Where price1 < price2 < … priceoq 

 
The Bid_Queue comprises the bids to buy. The Offer_Queue comprises offers to sell. 

Buy (sell) orders having the same price are not merged.  

Orders refer to a sequence of orders, where each order is either a bid or an 

offer, together with its volume. 

Orders = (Order1, Order2, …, Ordern) 
We assume that the orders are processed in sequence: 

State + (Order1, Order2,…, Ordern)  (State + Order1) + (Order2, …, Ordern) 
 

For simplicity, we assume only two types of orders. A market order is to buy or sell at 

the market price. A limit order is to buy a certain volume up to a price specified, or to 

sell a certain volume above a price specified. For notional convenience, we write a 

market buy order as a limit buy order with the price set at infinity; a market sell order 

sets its price to minus infinity. 

Order = (Order_No, Order_Type, Price, Volume) 
Order_Type  = bid | offer 
Order_No = Oi 

 
We define a symbol Inf, which stands for both infinity and minus infinity. We write a 

market buy order as (buy, Inf, Volume), a market sell order as (sell, Inf, Volume).  

The calculus for clearance of a limit sell order can be defined below.  

 Let Bid_Queue1 = ((O1, P1, V1), (O2, P2, V2) …)  
Offer_Queue1 = ((O3, P3, V3), (O4 ,P4, V4), …) 

      Limit_Order = (On, sell, Pn, Vn). 
 
The calculus for a limit order is very simple. If the price of the sell order is less than 

or equal to at least the bid order at the head of the bid queue, the limit order can be 

fully or partially fulfilled. The sell order of volume Vn removes from the head of the 



Bid_Queue (P1, V1) the minimum of Vn or V1. If Vn is greater than V1, then the head 

of the Bid_Queue is removed. If the limit price is reached, clearing stops and the 

remaining unfulfilled sell order joins the offer queue. If the limit price is not yet 

reached, clearing continues with the remaining Bid_Queue until Vn is reduced to 0. If 

the price of the limit sell order is larger than the first bid order in the bid queue, then 

the sell limit order joins the offer queue. This can be formalised as follows. 

(((O1, P1, V1), (O2, P2, V2),…), ((O3, P3, V3), (O4 ,P4, V4), …)) + (On, sell, Pn, Vn)    
(((O1, P1, V1), (O2, P2, V2),…), ((O3, P3, V3), (O4 ,P4, V4), …)  (On, sell, Pn, Vn))          
 if P1 < Pn 

 (((O1, P1, V1(min(V1, Vn)), (O2, P2, V2), …), ((O3, P3, V3), (O4 ,P4, V4), …)) +  
    (On, sell, Pn, Vn (min(V1, Vn))); Transaction Price (TP) = Pn is defined if P1 ≥ Pn 

    
          
The + operation is recursive when P1≥Pn, in which case transaction takes place; it 

stops when P1<Pn or Vn is reduced to 0. Here  is the queue joining operator which 

simply put the orders in ascending order according to their prices.1  Cleared orders are 

removed from the bid queue: 

((O1, P1, 0), (O2, P2, V2),…)  ((O2, P2, V2), …) 
 
In the above rule, we highlight Transaction Price (TP) at the point where it is defined. 

We shall refer to it later. 

Limit buy orders are handled symmetrically.  

In the calculus above, the clearing of a market order is exactly the same as the 

limit order, except that market orders do not have limit prices and hence are always 

completely fulfilled as long as there are buyers (sellers). They do not join the bid or 

offer queues. Generally, the handling of unmatched large market orders depends on 

the order book configuration of the trading system. 
                                                 
1 In functional programming convention,  is defined below:  

((P1, V1), (P2, V2), …)  (sell, P, V)   
((P, V), (P1, V1), (P2, V2), …) if P < P1 
((P1, V1), ((P2, V2), …)  (sell, P, V))) if P ≥ P1 

 
 



2.2 Example 1 for Model 1 

With Model 1, the calculus for computing state transition is straight-forward. This 

example shows the state change for a given market order. 

State 1.1 = (Bid_Queue1.1, Offer_Queue1.1) 
Bid_Queue1.1 = ((O1, 1.60, 2500), (O2, 1.59, 2000), (O3, 1.58, 2500), (O4, 1.57, 1500), 

(O5, 1.56, 4000)) 
Offer_Queue1.1 = ((O6, 1.61, 3000), (O7, 1.62, 2000), (O8, 1.63, 1500)) 

 
Let  Order1.1 = (Order9, Order10, Order11), where  

Order9 = (O9, sell, Inf, 5000) 
Order10 = (O10, buy, 1.57, 1000) 
Order11 = (O11, buy, 1.62, 6000) 

 
With Order9, which is a market order, the following transactions ensue:  

2500 will be transacted at 1.60  

This will result in the Bid_Queue being reduced to: 

(O2, 1.59, 2000), (O3, 1.58, 2500), (O4, 1.57, 1500),  (O5, 1.56,    4000)) 
 
Next, the following two transactions will take place: 

2000 will be transacted at 1.59 
500 will be transacted at 1.58 

 
The resulting state is: 

State 1.2 = (Bid_Queue1.2, Offer_Queue1.2) 
Bid_Queue1.2 = ((O3, 1.58, 2000), (O4, 1.57, 1500), (O5, 1.56, 4000)) 
Offer_Queue1.2 = Offer_Queue1.1 
 

With Limit_Order10, the offer queue is not changed as the price of the buy limit order 

is less than the price of the head of the offer queue. Since Limit_Order10 is not 

matched; it is added to the bid queue.  

The resulting state is: 

State 1.3 = (Bid_Queue1.3, Offer_Queue1.3) 
Bid_Queue1.3 = ((O3, 1.58, 2000), (O4, 1.57, 1500), (O10, 1.57, 1000), (O5, 1.56, 4000)) 
Offer_Queue1.3 = Offer_Queue1.2 

 



With Limit_Order11 (to buy 6000 with limit price 1.62), the offer queue is changed. 

Since the price 1.62 is greater than or equal to the first two orders in the offer queue, 

the following transactions will take place: 

3000 will be transacted at 1.61 
2000 will be transacted at 1.62 

 
The remaining 1000 units will join the bid queue. Therefore, the resulting state is: 

State 1.4 = (Bid_Queue1.4, Offer_Queue1.4) 
Bid_Queue1.4 = ((O11, 1.62, 1000), (O3, 1.58, 2000), (O4, 1.57, 1500), (O10, 1.57, 1000),  

 (O5, 1.56, 4000)) 
Offer_Queue1.4 = ((O8, 1.63, 1500)) 
 

2.4 Model 2: When Positions and Margins are considered 

The market dynamics will change when traders trade with margins. A trader with 

margin m, where 0<m≤1, will pay up only proportion m of the value that it trades. We 

make the following assumptions in our analysis: 

Assumption 2.1. For a trader with a short (long) position with margin m, its position 

is closed automatically when the price rises (falls) by more than m. 

For example, a trader who trades with a margin of 4% will have its short 

position closed automatically when the price rises by 4% or more. 

Assumption 2.2. All consequences of an automatic position closure take place before 

any new event occurs. 

Today, market orders are cleared by computer programs, which will typically 

handle one order at a time. A program must clearly specify how orders are processed 

even if they reach the computer simultaneously with parallel hardware. A calculus can 

be written down for every clearly defined clearing mechanism. Without loss of 

generality, we assume in this paper that the market clearing process cannot be 

interrupted. We assume that the recursive application of the rule will not be 

interrupted before the clearing mechanism handles new orders. 



Assumption 2.32. We assume that a position cannot be adjusted and is only opened 

by a market or limit order. Position closure takes place automatically through margin 

calls. The relaxation of this assumption does not affect the generality of the results 

shown in our paper.  

Assumption 2.4. We assume that the orders, positions and margins are available. 

Under this model, the description of a state must include traders’ position profiles: 

State = (Queue_Profile, Position_Profile) 
Where: 

Queue_Profile = (Bid_Queue, Offer_Queue) 
Position_Profile = {Position | Position = (Position_Code, Position_Type, Volume,  
        Value, Price, Margin)} 
Position_No= P(Oi), where Oi is the Order_No of the order opening the position, given  

         Assumption 2.3 
Position_Type = long | short 
Value = the value of the order(s) against which the opening position order has been  

matched. Given:  
  Bid_Queue = ((O1, P1, V1), (O2, P2, V2), .., (On-1, Pn-1, Vn-1)) 

Order= (On, sell, Inf, Vn) 
P(On)Value = (P1* min(V1,Vn)) +  (P2* min(V2, (Vn-min(Vn,V2)))+... 
         + (Pn-1* min(Vn-1,Vn-min(….)))     

Price= Unit Price= Value/Volume 
 
The clearance calculus is exactly the same as in Model 1, except that new events, 

namely new orders, can be triggered by state transitions.  

The last transaction price (TP) is defined by the order clearing rule described 

in Section 2.1. TP may trigger margin calls, which force some positions to be closed. 

The margin-triggered set of new orders is NO: 

NO = {(Oi, buy, Inf, V) | (P(Oi), short, Vol, Val P, m)  Position_Profile such that  
                          P× (1+m) < TP}  {(Oi, sell, Inf, V) | (P(Oi), long, Vol, Val P, m)     
                          Position_Profile  such that P× (1m) > TP} 

Orders = Orders + NO 
 

                                                 
2 In a real market, a position is constructed via a set of orders. It can be opened, adjusted and 

closed by market and limit orders. Position closure takes place as a result of either a 
margin call or the trader’s decision. 



Here we make no assumption on how the set of new orders (NO) join the Orders 

queue; i.e. the “+” operator between orders is yet to be defined. This is left to future 

refinement of the model.  

2.5 Example 2 for Model 2: The effect of margin constraints 

 
The following example shows the state transitions and how new events (which are 

limited to market orders in this model) are triggered.  

Let State 2.1 = ((Bid_Queue2.1, Offer_Queue2.1), Positions2.1) 
BidQueue2.1 = ((O4, 1.60, 2500), (O5, 1.59, 2000), (O6, 1.58,  2500), (O7, 1.57, 1500),  

             (O8, 1.56, 4000)) 
Offer_Queue2.1= ((O9, 1.61, 3000), (O10, 1.62, 2000), (O11, 1.63, 1500)) 
Positions2.1 = ((P(O1), long, 4000, 6600, 1.65 4%), 

           (P(O2), long, 2000, 3280, 1.64, 4%), 
           (P(O3), long, 2000, 3280, 1.64, 5%)) 

 
For illustration purposes let us assume the following: 

(1) The position profile (Positions2.1) represents the current positions in the 

market created from previous orders. 

(2) Any new position in the market has a margin of 4% 

(3)  Only one market order in the queue: 

Order 2.1 = ((O12, sell, Inf, 5000)) 
 
This is the same order that we used in Example 1. When it is cleared, as explained 

above, the bid queue will be changed. The state will be changed to: 

State 2.2 = (Bid_Queue2.2, Offer_Queue2.2, Positions2.2) 
Bid_Queue2.2 = ((O6, 1.58, 2000), (O7, 1.57, 1500), (O8, 1.56,   4000)) 
Offer_Quene2.2 = Offer_Queue2.1 
Positions2.2 = ((P(O1), long, 4000, 6600, 1.65 4%), 

           (P(O2), long, 2000, 3280, 1.64, 4%), 
                   (P(O3), long, 2000, 3280, 1.64, 5%), 
                   (P(O4), long, 2500, 4000, 1.60, 4%),  

                                     (P(O5), long, 2000, 3180, 1.59, 4%), 
                                     (P(O6), long, 500, 790, 1.58, 4%), 
                                     (P(O12), short, 5000, 7970, 1.594, 4%)) 

Where: 
 P(O12) Value  = (1.6*2500)+(1.59*2000)+(1.58*500)= 7970 
 LastTP = 1.58 (the price of the last matched order in the Queue_Profile)  



 
At this point, the bid queue and the position P(O1) together will trigger a new market 

order. This is because 1.65×(14%) = 1.584, which is above the last transaction price, 

which was 1.580. Therefore, the margin is exceeded, and this position must be closed 

(Assumption 2.1). That means the order queue will be changed to: 

Order 2.2 = ((O13, sell, Inf, 4000)) 
The following transactions take place: 

2000 will be transacted at 1.58 
1500 will be transacted at 1.57 
500 will be transacted at 1.56 

 
This will change the state to: 

State 2.3 = ((Bid_Queue2.3, Offer_Queue2.3), Positions2.3) 
Bid_Queue2.3 = ((O8, 1.56, 3500)) 
Offer_Quene2.3 = Offer_Queue2.2 
Positions2.3 = ((P(O2), long, 2000, 3280, 1.64, 4%),  

           (P(O3), long, 2000, 3280, 1.64, 5%),  
            (P(O4), long, 2500, 4000, 1.60, 4%),  
            (P(O5), long, 2000, 3180, 1.59, 4%),  
            (P(O6), long, 2500, 3950, 1.58, 4%),  
            (P(O12),short, 5000, 7970, 1.594, 4%),  
            (P(O7), long, 1500, 2355, 1.57, 4%),  
            (P(O8), long, 500, 780, 1.56, 4%))            

Where: 
LastTP = 1.56 

                     
Note that order O6 has opened a new position P(O6) in State2.2. However, it was only 

partially matched. In State2.3, O6 is fully matched. Thus, we do not open a new 

position but we update the already opened position P(O6). 

The long position P(O2) must be closed when the last transaction price (1.56 in 

this case) falls below its margin, which is 1.64×(14%) = 1.574. This means the order 

queue will be updated by the new market order: 

Order 2.3 = (O14 sell, Inf, 2000) 
 
When the order (sell, Inf, 2000) is matched, 2000 will be transacted at 1.56. This will 

reduce the state to: 

State 2.4 = ((Bid_Queue2.4, Offer_Queue2.4), Positions2.4) 



Bid_Queue2.4 = ((O8, 1.56, 1500)) 
Offer_Queue2.4 = Offer_Queue2.3 
Positions2.4 = ((P(O3), long, 2000, 3280, 1.64, 5%),  

            (P(O4), long, 2500, 4000, 1.60, 4%),  
            (P(O5), long, 2000, 3180, 1.59, 4%),  
           (P(O6), long, 2500, 3950, 1.58, 4%),  
           (P(O12),short, 5000, 7970, 1.594, 4%),  
           (P(O7), long, 1500, 2355, 1.57, 4%),  
           (P(O8), long, 2500, 3900, 1.56, 4%)) 

                                    
Where: 
LastTP = 1.56 

                       
Note that order O8 has opened a new position P(O8) in State2.3. However, O8 was 

only partially matched. In State2.4, O8 is fully cleared. Thus, we update the already 

opened position P(O8). The position P(O3) will only be closed when the last 

transaction price falls below 1.64×(15%) = 1.558.  

To summarize, a single market order of 5000 units led to the closure of two 

positions, which led to a total clearance of 11000 units, and a drop of 2.5% (from 

≥1.60 to 1.56) in the market. It should be useful to compute, given a particular state of 

the market, how big an order is needed to drop the price by, say, 10%.  

Besides, what would happen if the (P(O3), long, 2000, 3280, 1.64, 5%)  position 

has a 4% margin, instead of 5%? This will mean that this position has to be closed, 

but only 1500 of the 2000 will be bought (by the last bid in the queue); the remaining 

500 units will not be cleared. The analysis of these properties goes beyond the scope 

of this simple calculus 

3. Consequential Closure 

One can compute the consequential closure with respect to margin constraints. By 

doing so, one can evaluate the final state of any given event. For example, one would 

be able to say that “a market order to sell 6 million will lead to a price drop of 4%”. 

One may also compute the condition for minimum price changes, e.g. “What is the 

minimum size of a market sell order to lead to a price drop of r%?” Answering 



questions like this would help to assess the stability of the market and value at risk. It 

could provide early warnings. 

An algorithm as outlined below returns the volume of a market sell order that would 

lead the price to drop to or below price Pdrop. This function traverses the bid queue and 

examines the effect of hypothetical market sell orders on the underlying market state, 

with respect to traders' positions and their margin constraints. The function takes three 

inputs; the Queue_Profile and the Positions_Profile of the underlying market state and 

the desired Pdrop.  In each iteration of the function, a new market sell order is placed to 

walk through the bid queue. This continues until Pdrop is reached.   

 
Function MinDrop(Queue_Profile, Position_Profile, Pdrop) 
 

/* Let Queue_Profile = (Bid_Queue, Offer_Queue) 
   If Bid_Queue is not empty, let it be ((P1, V1), (P2, V2), …, (Pbq, Vbq)) */ 
 
i ← 1; Volume ← 0; 
Bid_Queue’ ← Bid_Queue; 
/* Bid_Queue’ is a working structure; if it is not empty, then let its head be (P1’, V1’) */ 
 
While P1’ > Pdrop and Bid_Queue’ is not empty 

If Vi ≤ V1’  /* Vi is the volume at index i of Bid_Queue*/ 
Then {Volume ← Volume + Vi; i ← i + 1} 
Else Volume ← Volume + V1’; /* See if incrementing Volume by V1’ makes any difference */ 
Queue_Profile’ ← closure(Queue_Profile, Position_Profile, (offer, Inf, Volume)); 
(P1’, V1’) ← Head of the bid queue in Queue_Profile’ 

End While 
 
If P1’ > Pdrop Then report that Pdrop cannot be reached in this market as Bid_Queue is 
exhausted 

 
Return Volume; 
 
 
The market sell order is fed into to the procedure closure (Queue_Profile, 

Position_Profile,Order). The only variable input to closure is the market order, as it 

has a different volume in each iteration. The procedure computes the resulting 

Queue_Profile’ after consequential closure is maintained using the calculus shown in 



the Model 2 Section3. This involves matching the market sell order with the bid 

queue; updating the market positions profile; updating and sorting the queue profile; 

checking for margin calls and its consequential forced positions closures while 

keeping record of the last transaction price.  The Queue_Profile’ is a working 

structure, which is discarded on exit. It is used to define the potential price  P1' (head 

of the bid queue in Queue_Profile'),  the market would reach after executing the 

market sell order.  If P1'> Pdrop, the colure procedure is called again to evaluate the 

impact of a bigger market sell order. The algorithm increments i (which has the effect 

of increasing volume) until enough volume is accumulated to see the price drop to 

Pdrop. The function will terminate when Pdrop is reached or when the bid queue is 

completely cleared. Once terminated, the function returns the Volume required to 

reach Pdrop., giving  a preview of the potential multiplied effect on the underlying 

market once a market sell order of a specific volume is placed. 

If the market does not have enough depth, all the buy orders will be exhausted 

before Pdrop is reached. Otherwise, there exists a minimum k such that, for all the 

orders (Pi, Vi) at the front of the Bid_Queue, Pdrop ≤ Pi and Volume ≤ V1+V2+...+Vk. In the 

worst case, Function MinDrop has to go through all such (Pi, Vi)s4. Volume increases 

monotonically in Function MinDrop. Therefore this function must terminate.  

Let M be the list of positions in the Position_Profile which margin calls are 

above Pdrop. In the worst case, the procedure has to go through all of them. So each 

cycle of the Repeat loop will have complexity of |M|.  Each “Then” part in each cycle 

                                                 
3Strictly speaking, the termination condition P1’ ≤ Pdrop should be replaced by LTP ≤ Pdrop, 

where LTP is the Last transaction price which could be returned by the closure function. 
This is simplified for clarity.  When the head of the queue in Queue_Profile’ is below 
Pdrop, any market order to sell will drop the price below Pdrop.  Therefore, the Volume 
returned is correct, which is our justification for the compromise. 

 
4 This is an upper-bound because any margin calls that might be triggered will absorb some of 

the volume. 
 



of the Repeat loop would increase Volume to include one (Pi, Vi) pair. It is more 

complex to analyse the number of times that the “Else” part could be entered. In the 

worst case, each of the positions could bring the loop into the Else part through a 

margin call. Therefore, the complexity of the algorithm is bounded by O(k×|M|2). 

4. Market Making 

The market maker is an aggregator who nets the flow of buyers and sellers. His profit 

is a reward for managing the uncertainty of this process. He manages the flow by 

dynamically skewing bid and ask prices. The market maker sets the “bid” and “ask” 

price on a tick by tick basis. The bid price is the price at which the market maker 

offers to buy; the ask price is the price at which the market maker offers to sell. 

 State = (Bid_price, Ask_price, MaxVol, Queue_Profile, Position_Profile) 
 
Where: 

Bid_price and Ask_price are the bid and ask prices quoted by the market maker; 

MaxVol is the maximum volume that the market maker is willing to deal per 

order; 

Queue_Profile and Position_Profile are the same as those defined in Model 2. 

 
Here we assume that the clearing mechanism is completely automated. The key to the 

clearing mechanism is in the way that the market maker updates its bid and ask prices. 

In this paper, we make no assumption on f, which could vary from market maker to 

market maker; f should be a complex function. 

Let Bid_price and Ask_price be the bid and ask prices in the current state, and 

Bid_price' and Ask_price' be the bid and ask prices in the next state. We generalize that 

the market maker sets the Bid_price' and Ask_price' with a function f, without specifying 

exactly what f is. f is a function that involves Bid_price, Ask_price, Queue_Profile, 

Position_Profile and many other factors, which may include the market maker’s own 



position, bid and ask prices by the other market makers, the balance of payment 

between countries, interest rates, news and other economic indicators of the countries 

involved. 

 (Bid_price, Ask_price, MaxVol, (Bid_Queue, Offer_Queue), Positions) + (sell, P, V)   
  (Bid_price', Ask_price', MaxVol, (Bid_Queue, Offer_Queue), Positions)   
              if P ≤ Bid_price & V ≤ MaxVol 
       
         (Bid_price', Ask_price', MaxVol, (Bid_Queue, Offer_Queue), Positions)  
   + (sell, P, VMaxVol)                                
                         if P ≤ Bid_price & V > MaxVol 

               (Bid_price', Ask_price', MaxVol, (Bid_Queue, Offer_Queue (sell, P, V)), Positions)  
                          if P > Bid_price 

 

The queue joining operator  is defined in the Model 1 Section. For any well 

specified f, we should be able to formalize market making. 

5. Liquidity 

Artzner, et al. (1999) proposed coherent measures of risk. This was scrutinized by 

Acerbi and Scandolo (2008), for not taking full consideration of liquidity risk. Acerbi 

and Scandolo (2008) introduced the marginal supply-demand curves (MSDCs), which 

defines at any time instance the available prices of a given asset in the market. The 

attractiveness of their formalism is that liquidity risk is measured by market data; no 

assumptions are required. Fig. 1 shows the MSDC in State 2.1. After clearing of 

Order 2.1, the market loses a certain amount of liquidity. This is shown by MSDC in 

Fig. 2. Like Acerbi and Scandolo (2008), we are looking at the microstructure of 

illiquid markets, and free from hypotheses on the dynamics of the market. 

The work by Acerbi and Scandolo (2008) is based on the concept of mark-to-

market. When position and margin information are not considered (Model 1 above), 

the shape of the MSDC curve depends on queue profiles alone. When position and 

margin information are available, the mark-to-market values are changed. In fact, the 



shape of the MSDC could be changed by the orders processing procedure above. 

Therefore, this paper complements Acerbi and Scandolo’s work. 

The queue profile defines how liquid an asset is at any given time. Liquidity of 

an asset is therefore determined by how steep one ascends or descends in the MSDC. 

Following the above example, suppose at State 2.1, two traders bid 1.60 for 500 

shares, and 1.59 for another 500 shares. Although the highest bid price is still 1.60, 

the new MSDC is actually steeper than the one shown in Fig. 1. This means, to sell 

over 1000 shares in this market (as opposed to the market shown in Fig. 1) , the seller 

must be prepared to accept lower bids.  

Unfortunately, the ordinary investors/traders who have no access to order 

books have no means of fully assessing their liquidity risk.5 Therefore, market making 

provides investors/traders with market liquidity up to a certain limit (MaxVol in the 

Market Making Section). It also offers transparency in market liquidity. The MSDC 

under market making is shown in Fig. 3. 

It is worth noting the obvious that, as a Queue Profile does not have to be 

symmetric, an asset could be highly liquid when one wants to buy, but illiquid when 

one wants to sell (and vice versa). 

6. Conclusion 

In this paper, we have defined a calculus for describing state changes in a market as a 

consequence of new orders being posted. We base our analysis on simple market 

models. This is no attempt to predict what new exogenous orders will arrive. The 

purpose of this paper is to lay the foundation for analyzing market states. We show 

that even with the simple calculus defined, we can ask important questions such as 

                                                 
5 OANDA provides information on trader positions 0. This could help conjecturing (with low 

confidence) marginal supply and demands (because eventually those in long positions 
have to sell, and those in short positions have to buy).  



“how big a sell order would push the price down by 10%?” This research also 

supports Acerbi and Scandolo’s call to measure liquidity risks with market data.  

We acknowledge the fact that state changes in real markets are far more 

complex than what is described in this paper. It is up to the participants, including 

governing bodies, market makers and traders, to define the rules in an unambiguous 

mathematical and mechanical way. The aim is to create markets with properties that 

can be studied formally as well as extensively in simulations and validated 

empirically. Eliminating black boxes and laying the foundations for extensive 

scientific analysis may be the best way to ensure stability and prevent financial crises. 

We intend to extend the calculus to cover more sophisticated market mechanisms and 

trading strategies. 
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