
A Formalization of Double Auction Market Dynamics

Edward Tsang
Centre for Computational Finance and Economic Agents (CCFEA), University of
Essex

Richard Olsen
 Olsen Ltd. and Centre for Computational Finance and Economic Agents (CCFEA),
University of Essex

Shaimaa Masry
Centre for Computational Finance and Economic Agents (CCFEA), University of
Essex

Correspondence:
Edward Tsang, CCFEA, University of Essex, Colchester, Essex, CO4 3SQ UK;
edward@essex.ac.uk

Biographical notes on contributors:

Edward Tsang has a first degree in Business Administration (Major in Finance) and a PhD in
Computer Science. He has broad interest in applied artificial intelligence, in particularly
computational finance, heuristic search, constraint satisfaction and scheduling. He is currently
a professor in computer science at the University of Essex where he leads the Computational
Finance Group and Constraint Satisfaction and Optimization Group. He is also the Director of
the Centre for Computational Finance and Economic Agents (CCFEA), an interdisciplinary
centre. He founded and chaired the Technical Committee for Computational Finance under
the IEEE Computational Intelligence Society in 2004-2005.

Richard Olsen has a Master in Economics from Oxford University and a PhD in law from
the University of Zurich. He has specialized in high frequency finance and has been a pioneer
of this discipline. In 1995, he co-organized the first conference in the field. In 2001, he and
his team published a book, ‘Introduction to High Frequency Finance’, Academic Press. He is
CEO of Olsen Ltd, a systematic asset management company based in Zurich and co-founder
of OANDA, an Internet market maker of foreign exchange. He is Visiting Professor at the
Centre for Computational Finance and Economic Agents (CCFEA) since 2007.

Shaimaa Masry has a first degree in Management Information Systems and an MBA (Major
IT). She is currently a PhD student in Computational Finance at the Centre for Computational
Finance and Economic Agents (CCFEA) at University of Essex. She is working on the High
Frequency Finance Project. She has wide interest in computational finance, artificial
intelligence and business intelligence.

edward
Typewritten Text
Submission to Quantitative Finance, 20 November 2012

edward
Typewritten Text
CCFEA Working paper WP038-10, revised November 2012;
further revised version to appear in Quantitative Finance, 2013

A Formalization of Double Auction Market Dynamics

To understand financial markets and prevent crisis we need to analyze market
microstructure. This paper formalizes the market process in the context of a
simple double auction market. The purpose of this calculus is to analyze
market dynamics and feedback loops of for example cascading margin calls
with the objective to get a better understanding of risk scenarios, not to forecast
exogenous order flow. The price trajectory is determined by the present market
state and new orders arriving in the market. By studying the market
microstructure, we can compute the impact of an order of any size, or how big
a sell order has to be to cause the market to fall by a certain percentage. Using
a definite formalism reduces ambiguity and enables rigorous reasoning. An
algorithm for assessing risk is proposed. Real markets are more complex than
the models presented in this paper and this paper is a step towards building a
solid foundation for studying market models.

Keywords: high-frequency Finance, financial markets.

1. Introduction

Financial markets are complex. Classical economics have been under serious

challenge (e.g. see Olsen, 2005; Shleifer, 2000) to explain price action and volume

flows in financial markets. One novel approach to market studies is to model the

micro-behaviour of markets (Shleifer, 2000; Solomon, et al., 2000). The attempt is to

observe micro-behaviour in the market with the aim to discover general dynamics

(Acerbi and Scandolo, 2008; Glattfelder, et al., 2008). This approach is data-driven.

Unlike classical economics, it does not depend on stringent assumptions, such as

perfect rationality by the traders (Tsang, 2008). This new approach is still in its

infancy. This paper looks at simple market models, and attempts to define the market

dynamics formally. The intended contribution of this paper is not in modelling micro-

behaviour, but in formalizing such models and analyzing their properties, to examine

what can be usefully inferred from market information.

The market can be described by states. The state of the market can be changed

by events. In this paper, we limit our attention to buy and sell events initiated by

market participants. Even though behaviour of the market participants may in general

be unpredictable, certain inferences can be made. Given a set of buy and sell orders,

the calculus can define state transitions. We can make an analogy with weather

forecasts, where we may not know the long term weather changes, but we can predict

the immediate future given the current state; e.g. air flows from high pressure to low

pressure regions.

Event calculus is useful for reasoning (Chen, 2009; Kowalski and Sergot, 1986;

Mueller, 2009). Shanahan states: “The event calculus is a logical mechanism that

infers what’s true when given what happens when and what actions do” (Shanahan,

1999). Although we have not adopted conventional event calculus, this paper

formalises the components relevant to the calculus of market transitions. It highlights

the fact that the consequences of an order (orders are the only events considered in

this paper) can be complex: the consequences are dependent on the positions and

margins held by market participants. With this analysis, one can determine, for

example, how big orders need to be to cause market crashes.

This paper formalises the obvious. But it is better to state the obvious with

mathematical rigor rather than allowing ambiguity, which needs repeated clarification

later in our research. Besides, what is obvious to some may not be obvious to others.

Stating the obvious through a formal description enables us to study micro-behaviour

rigorously.

2. Market Models

2.1 Model 1

This model is defined under a double auction market.

State + Orders  State

 Where:
State = Queue_Profile = (Bid_Queue, Offer_Queue)

Bid_Queue = ((order1, price1, volume1), (order2, price2, volume2),
 …, (ordern, pricebq, volumebq))
Where price1 > price2 > … pricebq

Offer_Queue = ((order1, price1, volume1), (order2, price2, volume2),
 …, (ordern, priceoq, volumeoq))

Where price1 < price2 < … priceoq

The Bid_Queue comprises the bids to buy. The Offer_Queue comprises offers to sell.

Buy (sell) orders having the same price are not merged.

Orders refer to a sequence of orders, where each order is either a bid or an

offer, together with its volume.

Orders = (Order1, Order2, …, Ordern)
We assume that the orders are processed in sequence:

State + (Order1, Order2,…, Ordern)  (State + Order1) + (Order2, …, Ordern)

For simplicity, we assume only two types of orders. A market order is to buy or sell at

the market price. A limit order is to buy a certain volume up to a price specified, or to

sell a certain volume above a price specified. For notional convenience, we write a

market buy order as a limit buy order with the price set at infinity; a market sell order

sets its price to minus infinity.

Order = (Order_No, Order_Type, Price, Volume)
Order_Type = bid | offer
Order_No = Oi

We define a symbol Inf, which stands for both infinity and minus infinity. We write a

market buy order as (buy, Inf, Volume), a market sell order as (sell, Inf, Volume).

The calculus for clearance of a limit sell order can be defined below.

 Let Bid_Queue1 = ((O1, P1, V1), (O2, P2, V2) …)
Offer_Queue1 = ((O3, P3, V3), (O4 ,P4, V4), …)

 Limit_Order = (On, sell, Pn, Vn).

The calculus for a limit order is very simple. If the price of the sell order is less than

or equal to at least the bid order at the head of the bid queue, the limit order can be

fully or partially fulfilled. The sell order of volume Vn removes from the head of the

Bid_Queue (P1, V1) the minimum of Vn or V1. If Vn is greater than V1, then the head

of the Bid_Queue is removed. If the limit price is reached, clearing stops and the

remaining unfulfilled sell order joins the offer queue. If the limit price is not yet

reached, clearing continues with the remaining Bid_Queue until Vn is reduced to 0. If

the price of the limit sell order is larger than the first bid order in the bid queue, then

the sell limit order joins the offer queue. This can be formalised as follows.

(((O1, P1, V1), (O2, P2, V2),…), ((O3, P3, V3), (O4 ,P4, V4), …)) + (On, sell, Pn, Vn) 
(((O1, P1, V1), (O2, P2, V2),…), ((O3, P3, V3), (O4 ,P4, V4), …)  (On, sell, Pn, Vn))
 if P1 < Pn

 (((O1, P1, V1(min(V1, Vn)), (O2, P2, V2), …), ((O3, P3, V3), (O4 ,P4, V4), …)) +
 (On, sell, Pn, Vn (min(V1, Vn))); Transaction Price (TP) = Pn is defined if P1 ≥ Pn

The + operation is recursive when P1≥Pn, in which case transaction takes place; it

stops when P1<Pn or Vn is reduced to 0. Here  is the queue joining operator which

simply put the orders in ascending order according to their prices.1 Cleared orders are

removed from the bid queue:

((O1, P1, 0), (O2, P2, V2),…)  ((O2, P2, V2), …)

In the above rule, we highlight Transaction Price (TP) at the point where it is defined.

We shall refer to it later.

Limit buy orders are handled symmetrically.

In the calculus above, the clearing of a market order is exactly the same as the

limit order, except that market orders do not have limit prices and hence are always

completely fulfilled as long as there are buyers (sellers). They do not join the bid or

offer queues. Generally, the handling of unmatched large market orders depends on

the order book configuration of the trading system.

1 In functional programming convention,  is defined below:

((P1, V1), (P2, V2), …)  (sell, P, V) 
((P, V), (P1, V1), (P2, V2), …) if P < P1
((P1, V1), ((P2, V2), …)  (sell, P, V))) if P ≥ P1

2.2 Example 1 for Model 1

With Model 1, the calculus for computing state transition is straight-forward. This

example shows the state change for a given market order.

State 1.1 = (Bid_Queue1.1, Offer_Queue1.1)
Bid_Queue1.1 = ((O1, 1.60, 2500), (O2, 1.59, 2000), (O3, 1.58, 2500), (O4, 1.57, 1500),

(O5, 1.56, 4000))
Offer_Queue1.1 = ((O6, 1.61, 3000), (O7, 1.62, 2000), (O8, 1.63, 1500))

Let Order1.1 = (Order9, Order10, Order11), where

Order9 = (O9, sell, Inf, 5000)
Order10 = (O10, buy, 1.57, 1000)
Order11 = (O11, buy, 1.62, 6000)

With Order9, which is a market order, the following transactions ensue:

2500 will be transacted at 1.60

This will result in the Bid_Queue being reduced to:

(O2, 1.59, 2000), (O3, 1.58, 2500), (O4, 1.57, 1500), (O5, 1.56, 4000))

Next, the following two transactions will take place:

2000 will be transacted at 1.59
500 will be transacted at 1.58

The resulting state is:

State 1.2 = (Bid_Queue1.2, Offer_Queue1.2)
Bid_Queue1.2 = ((O3, 1.58, 2000), (O4, 1.57, 1500), (O5, 1.56, 4000))
Offer_Queue1.2 = Offer_Queue1.1

With Limit_Order10, the offer queue is not changed as the price of the buy limit order

is less than the price of the head of the offer queue. Since Limit_Order10 is not

matched; it is added to the bid queue.

The resulting state is:

State 1.3 = (Bid_Queue1.3, Offer_Queue1.3)
Bid_Queue1.3 = ((O3, 1.58, 2000), (O4, 1.57, 1500), (O10, 1.57, 1000), (O5, 1.56, 4000))
Offer_Queue1.3 = Offer_Queue1.2

With Limit_Order11 (to buy 6000 with limit price 1.62), the offer queue is changed.

Since the price 1.62 is greater than or equal to the first two orders in the offer queue,

the following transactions will take place:

3000 will be transacted at 1.61
2000 will be transacted at 1.62

The remaining 1000 units will join the bid queue. Therefore, the resulting state is:

State 1.4 = (Bid_Queue1.4, Offer_Queue1.4)
Bid_Queue1.4 = ((O11, 1.62, 1000), (O3, 1.58, 2000), (O4, 1.57, 1500), (O10, 1.57, 1000),

 (O5, 1.56, 4000))
Offer_Queue1.4 = ((O8, 1.63, 1500))

2.4 Model 2: When Positions and Margins are considered

The market dynamics will change when traders trade with margins. A trader with

margin m, where 0<m≤1, will pay up only proportion m of the value that it trades. We

make the following assumptions in our analysis:

Assumption 2.1. For a trader with a short (long) position with margin m, its position

is closed automatically when the price rises (falls) by more than m.

For example, a trader who trades with a margin of 4% will have its short

position closed automatically when the price rises by 4% or more.

Assumption 2.2. All consequences of an automatic position closure take place before

any new event occurs.

Today, market orders are cleared by computer programs, which will typically

handle one order at a time. A program must clearly specify how orders are processed

even if they reach the computer simultaneously with parallel hardware. A calculus can

be written down for every clearly defined clearing mechanism. Without loss of

generality, we assume in this paper that the market clearing process cannot be

interrupted. We assume that the recursive application of the rule will not be

interrupted before the clearing mechanism handles new orders.

Assumption 2.32. We assume that a position cannot be adjusted and is only opened

by a market or limit order. Position closure takes place automatically through margin

calls. The relaxation of this assumption does not affect the generality of the results

shown in our paper.

Assumption 2.4. We assume that the orders, positions and margins are available.

Under this model, the description of a state must include traders’ position profiles:

State = (Queue_Profile, Position_Profile)
Where:

Queue_Profile = (Bid_Queue, Offer_Queue)
Position_Profile = {Position | Position = (Position_Code, Position_Type, Volume,
 Value, Price, Margin)}
Position_No= P(Oi), where Oi is the Order_No of the order opening the position, given

 Assumption 2.3
Position_Type = long | short
Value = the value of the order(s) against which the opening position order has been

matched. Given:
 Bid_Queue = ((O1, P1, V1), (O2, P2, V2), .., (On-1, Pn-1, Vn-1))

Order= (On, sell, Inf, Vn)
P(On)Value = (P1* min(V1,Vn)) + (P2* min(V2, (Vn-min(Vn,V2)))+...
 + (Pn-1* min(Vn-1,Vn-min(….)))

Price= Unit Price= Value/Volume

The clearance calculus is exactly the same as in Model 1, except that new events,

namely new orders, can be triggered by state transitions.

The last transaction price (TP) is defined by the order clearing rule described

in Section 2.1. TP may trigger margin calls, which force some positions to be closed.

The margin-triggered set of new orders is NO:

NO = {(Oi, buy, Inf, V) | (P(Oi), short, Vol, Val P, m)  Position_Profile such that
 P× (1+m) < TP}  {(Oi, sell, Inf, V) | (P(Oi), long, Vol, Val P, m) 
 Position_Profile such that P× (1m) > TP}

Orders = Orders + NO

2 In a real market, a position is constructed via a set of orders. It can be opened, adjusted and

closed by market and limit orders. Position closure takes place as a result of either a
margin call or the trader’s decision.

Here we make no assumption on how the set of new orders (NO) join the Orders

queue; i.e. the “+” operator between orders is yet to be defined. This is left to future

refinement of the model.

2.5 Example 2 for Model 2: The effect of margin constraints

The following example shows the state transitions and how new events (which are

limited to market orders in this model) are triggered.

Let State 2.1 = ((Bid_Queue2.1, Offer_Queue2.1), Positions2.1)
BidQueue2.1 = ((O4, 1.60, 2500), (O5, 1.59, 2000), (O6, 1.58, 2500), (O7, 1.57, 1500),

 (O8, 1.56, 4000))
Offer_Queue2.1= ((O9, 1.61, 3000), (O10, 1.62, 2000), (O11, 1.63, 1500))
Positions2.1 = ((P(O1), long, 4000, 6600, 1.65 4%),

 (P(O2), long, 2000, 3280, 1.64, 4%),
 (P(O3), long, 2000, 3280, 1.64, 5%))

For illustration purposes let us assume the following:

(1) The position profile (Positions2.1) represents the current positions in the

market created from previous orders.

(2) Any new position in the market has a margin of 4%

(3) Only one market order in the queue:

Order 2.1 = ((O12, sell, Inf, 5000))

This is the same order that we used in Example 1. When it is cleared, as explained

above, the bid queue will be changed. The state will be changed to:

State 2.2 = (Bid_Queue2.2, Offer_Queue2.2, Positions2.2)
Bid_Queue2.2 = ((O6, 1.58, 2000), (O7, 1.57, 1500), (O8, 1.56, 4000))
Offer_Quene2.2 = Offer_Queue2.1
Positions2.2 = ((P(O1), long, 4000, 6600, 1.65 4%),

 (P(O2), long, 2000, 3280, 1.64, 4%),
 (P(O3), long, 2000, 3280, 1.64, 5%),
 (P(O4), long, 2500, 4000, 1.60, 4%),

 (P(O5), long, 2000, 3180, 1.59, 4%),
 (P(O6), long, 500, 790, 1.58, 4%),
 (P(O12), short, 5000, 7970, 1.594, 4%))

Where:
 P(O12) Value = (1.6*2500)+(1.59*2000)+(1.58*500)= 7970
 LastTP = 1.58 (the price of the last matched order in the Queue_Profile)

At this point, the bid queue and the position P(O1) together will trigger a new market

order. This is because 1.65×(14%) = 1.584, which is above the last transaction price,

which was 1.580. Therefore, the margin is exceeded, and this position must be closed

(Assumption 2.1). That means the order queue will be changed to:

Order 2.2 = ((O13, sell, Inf, 4000))
The following transactions take place:

2000 will be transacted at 1.58
1500 will be transacted at 1.57
500 will be transacted at 1.56

This will change the state to:

State 2.3 = ((Bid_Queue2.3, Offer_Queue2.3), Positions2.3)
Bid_Queue2.3 = ((O8, 1.56, 3500))
Offer_Quene2.3 = Offer_Queue2.2
Positions2.3 = ((P(O2), long, 2000, 3280, 1.64, 4%),

 (P(O3), long, 2000, 3280, 1.64, 5%),
 (P(O4), long, 2500, 4000, 1.60, 4%),
 (P(O5), long, 2000, 3180, 1.59, 4%),
 (P(O6), long, 2500, 3950, 1.58, 4%),
 (P(O12),short, 5000, 7970, 1.594, 4%),
 (P(O7), long, 1500, 2355, 1.57, 4%),
 (P(O8), long, 500, 780, 1.56, 4%))

Where:
LastTP = 1.56

Note that order O6 has opened a new position P(O6) in State2.2. However, it was only

partially matched. In State2.3, O6 is fully matched. Thus, we do not open a new

position but we update the already opened position P(O6).

The long position P(O2) must be closed when the last transaction price (1.56 in

this case) falls below its margin, which is 1.64×(14%) = 1.574. This means the order

queue will be updated by the new market order:

Order 2.3 = (O14 sell, Inf, 2000)

When the order (sell, Inf, 2000) is matched, 2000 will be transacted at 1.56. This will

reduce the state to:

State 2.4 = ((Bid_Queue2.4, Offer_Queue2.4), Positions2.4)

Bid_Queue2.4 = ((O8, 1.56, 1500))
Offer_Queue2.4 = Offer_Queue2.3
Positions2.4 = ((P(O3), long, 2000, 3280, 1.64, 5%),

 (P(O4), long, 2500, 4000, 1.60, 4%),
 (P(O5), long, 2000, 3180, 1.59, 4%),
 (P(O6), long, 2500, 3950, 1.58, 4%),
 (P(O12),short, 5000, 7970, 1.594, 4%),
 (P(O7), long, 1500, 2355, 1.57, 4%),
 (P(O8), long, 2500, 3900, 1.56, 4%))

Where:
LastTP = 1.56

Note that order O8 has opened a new position P(O8) in State2.3. However, O8 was

only partially matched. In State2.4, O8 is fully cleared. Thus, we update the already

opened position P(O8). The position P(O3) will only be closed when the last

transaction price falls below 1.64×(15%) = 1.558.

To summarize, a single market order of 5000 units led to the closure of two

positions, which led to a total clearance of 11000 units, and a drop of 2.5% (from

≥1.60 to 1.56) in the market. It should be useful to compute, given a particular state of

the market, how big an order is needed to drop the price by, say, 10%.

Besides, what would happen if the (P(O3), long, 2000, 3280, 1.64, 5%) position

has a 4% margin, instead of 5%? This will mean that this position has to be closed,

but only 1500 of the 2000 will be bought (by the last bid in the queue); the remaining

500 units will not be cleared. The analysis of these properties goes beyond the scope

of this simple calculus

3. Consequential Closure

One can compute the consequential closure with respect to margin constraints. By

doing so, one can evaluate the final state of any given event. For example, one would

be able to say that “a market order to sell 6 million will lead to a price drop of 4%”.

One may also compute the condition for minimum price changes, e.g. “What is the

minimum size of a market sell order to lead to a price drop of r%?” Answering

questions like this would help to assess the stability of the market and value at risk. It

could provide early warnings.

An algorithm as outlined below returns the volume of a market sell order that would

lead the price to drop to or below price Pdrop. This function traverses the bid queue and

examines the effect of hypothetical market sell orders on the underlying market state,

with respect to traders' positions and their margin constraints. The function takes three

inputs; the Queue_Profile and the Positions_Profile of the underlying market state and

the desired Pdrop. In each iteration of the function, a new market sell order is placed to

walk through the bid queue. This continues until Pdrop is reached.

Function MinDrop(Queue_Profile, Position_Profile, Pdrop)

/* Let Queue_Profile = (Bid_Queue, Offer_Queue)
 If Bid_Queue is not empty, let it be ((P1, V1), (P2, V2), …, (Pbq, Vbq)) */

i ← 1; Volume ← 0;
Bid_Queue’ ← Bid_Queue;
/* Bid_Queue’ is a working structure; if it is not empty, then let its head be (P1’, V1’) */

While P1’ > Pdrop and Bid_Queue’ is not empty

If Vi ≤ V1’ /* Vi is the volume at index i of Bid_Queue*/
Then {Volume ← Volume + Vi; i ← i + 1}
Else Volume ← Volume + V1’; /* See if incrementing Volume by V1’ makes any difference */
Queue_Profile’ ← closure(Queue_Profile, Position_Profile, (offer, Inf, Volume));
(P1’, V1’) ← Head of the bid queue in Queue_Profile’

End While

If P1’ > Pdrop Then report that Pdrop cannot be reached in this market as Bid_Queue is
exhausted

Return Volume;

The market sell order is fed into to the procedure closure (Queue_Profile,

Position_Profile,Order). The only variable input to closure is the market order, as it

has a different volume in each iteration. The procedure computes the resulting

Queue_Profile’ after consequential closure is maintained using the calculus shown in

the Model 2 Section3. This involves matching the market sell order with the bid

queue; updating the market positions profile; updating and sorting the queue profile;

checking for margin calls and its consequential forced positions closures while

keeping record of the last transaction price. The Queue_Profile’ is a working

structure, which is discarded on exit. It is used to define the potential price P1' (head

of the bid queue in Queue_Profile'), the market would reach after executing the

market sell order. If P1'> Pdrop, the colure procedure is called again to evaluate the

impact of a bigger market sell order. The algorithm increments i (which has the effect

of increasing volume) until enough volume is accumulated to see the price drop to

Pdrop. The function will terminate when Pdrop is reached or when the bid queue is

completely cleared. Once terminated, the function returns the Volume required to

reach Pdrop., giving a preview of the potential multiplied effect on the underlying

market once a market sell order of a specific volume is placed.

If the market does not have enough depth, all the buy orders will be exhausted

before Pdrop is reached. Otherwise, there exists a minimum k such that, for all the

orders (Pi, Vi) at the front of the Bid_Queue, Pdrop ≤ Pi and Volume ≤ V1+V2+...+Vk. In the

worst case, Function MinDrop has to go through all such (Pi, Vi)s4. Volume increases

monotonically in Function MinDrop. Therefore this function must terminate.

Let M be the list of positions in the Position_Profile which margin calls are

above Pdrop. In the worst case, the procedure has to go through all of them. So each

cycle of the Repeat loop will have complexity of |M|. Each “Then” part in each cycle

3Strictly speaking, the termination condition P1’ ≤ Pdrop should be replaced by LTP ≤ Pdrop,

where LTP is the Last transaction price which could be returned by the closure function.
This is simplified for clarity. When the head of the queue in Queue_Profile’ is below
Pdrop, any market order to sell will drop the price below Pdrop. Therefore, the Volume
returned is correct, which is our justification for the compromise.

4 This is an upper-bound because any margin calls that might be triggered will absorb some of

the volume.

of the Repeat loop would increase Volume to include one (Pi, Vi) pair. It is more

complex to analyse the number of times that the “Else” part could be entered. In the

worst case, each of the positions could bring the loop into the Else part through a

margin call. Therefore, the complexity of the algorithm is bounded by O(k×|M|2).

4. Market Making

The market maker is an aggregator who nets the flow of buyers and sellers. His profit

is a reward for managing the uncertainty of this process. He manages the flow by

dynamically skewing bid and ask prices. The market maker sets the “bid” and “ask”

price on a tick by tick basis. The bid price is the price at which the market maker

offers to buy; the ask price is the price at which the market maker offers to sell.

 State = (Bid_price, Ask_price, MaxVol, Queue_Profile, Position_Profile)

Where:

Bid_price and Ask_price are the bid and ask prices quoted by the market maker;

MaxVol is the maximum volume that the market maker is willing to deal per

order;

Queue_Profile and Position_Profile are the same as those defined in Model 2.

Here we assume that the clearing mechanism is completely automated. The key to the

clearing mechanism is in the way that the market maker updates its bid and ask prices.

In this paper, we make no assumption on f, which could vary from market maker to

market maker; f should be a complex function.

Let Bid_price and Ask_price be the bid and ask prices in the current state, and

Bid_price' and Ask_price' be the bid and ask prices in the next state. We generalize that

the market maker sets the Bid_price' and Ask_price' with a function f, without specifying

exactly what f is. f is a function that involves Bid_price, Ask_price, Queue_Profile,

Position_Profile and many other factors, which may include the market maker’s own

position, bid and ask prices by the other market makers, the balance of payment

between countries, interest rates, news and other economic indicators of the countries

involved.

 (Bid_price, Ask_price, MaxVol, (Bid_Queue, Offer_Queue), Positions) + (sell, P, V) 
 (Bid_price', Ask_price', MaxVol, (Bid_Queue, Offer_Queue), Positions)
 if P ≤ Bid_price & V ≤ MaxVol

 (Bid_price', Ask_price', MaxVol, (Bid_Queue, Offer_Queue), Positions)
 + (sell, P, VMaxVol)
 if P ≤ Bid_price & V > MaxVol

 (Bid_price', Ask_price', MaxVol, (Bid_Queue, Offer_Queue (sell, P, V)), Positions)
 if P > Bid_price

The queue joining operator  is defined in the Model 1 Section. For any well

specified f, we should be able to formalize market making.

5. Liquidity

Artzner, et al. (1999) proposed coherent measures of risk. This was scrutinized by

Acerbi and Scandolo (2008), for not taking full consideration of liquidity risk. Acerbi

and Scandolo (2008) introduced the marginal supply-demand curves (MSDCs), which

defines at any time instance the available prices of a given asset in the market. The

attractiveness of their formalism is that liquidity risk is measured by market data; no

assumptions are required. Fig. 1 shows the MSDC in State 2.1. After clearing of

Order 2.1, the market loses a certain amount of liquidity. This is shown by MSDC in

Fig. 2. Like Acerbi and Scandolo (2008), we are looking at the microstructure of

illiquid markets, and free from hypotheses on the dynamics of the market.

The work by Acerbi and Scandolo (2008) is based on the concept of mark-to-

market. When position and margin information are not considered (Model 1 above),

the shape of the MSDC curve depends on queue profiles alone. When position and

margin information are available, the mark-to-market values are changed. In fact, the

shape of the MSDC could be changed by the orders processing procedure above.

Therefore, this paper complements Acerbi and Scandolo’s work.

The queue profile defines how liquid an asset is at any given time. Liquidity of

an asset is therefore determined by how steep one ascends or descends in the MSDC.

Following the above example, suppose at State 2.1, two traders bid 1.60 for 500

shares, and 1.59 for another 500 shares. Although the highest bid price is still 1.60,

the new MSDC is actually steeper than the one shown in Fig. 1. This means, to sell

over 1000 shares in this market (as opposed to the market shown in Fig. 1) , the seller

must be prepared to accept lower bids.

Unfortunately, the ordinary investors/traders who have no access to order

books have no means of fully assessing their liquidity risk.5 Therefore, market making

provides investors/traders with market liquidity up to a certain limit (MaxVol in the

Market Making Section). It also offers transparency in market liquidity. The MSDC

under market making is shown in Fig. 3.

It is worth noting the obvious that, as a Queue Profile does not have to be

symmetric, an asset could be highly liquid when one wants to buy, but illiquid when

one wants to sell (and vice versa).

6. Conclusion

In this paper, we have defined a calculus for describing state changes in a market as a

consequence of new orders being posted. We base our analysis on simple market

models. This is no attempt to predict what new exogenous orders will arrive. The

purpose of this paper is to lay the foundation for analyzing market states. We show

that even with the simple calculus defined, we can ask important questions such as

5 OANDA provides information on trader positions 0. This could help conjecturing (with low

confidence) marginal supply and demands (because eventually those in long positions
have to sell, and those in short positions have to buy).

“how big a sell order would push the price down by 10%?” This research also

supports Acerbi and Scandolo’s call to measure liquidity risks with market data.

We acknowledge the fact that state changes in real markets are far more

complex than what is described in this paper. It is up to the participants, including

governing bodies, market makers and traders, to define the rules in an unambiguous

mathematical and mechanical way. The aim is to create markets with properties that

can be studied formally as well as extensively in simulations and validated

empirically. Eliminating black boxes and laying the foundations for extensive

scientific analysis may be the best way to ensure stability and prevent financial crises.

We intend to extend the calculus to cover more sophisticated market mechanisms and

trading strategies.

Acknowledgements

The authors wish to thank Monira Aloud for providing us with feedback and formatting the
paper for us and the anonymous referees for providing thorough and insightful feedback.

References

Acerbi, C. and Scandolo, G., 2008. Liquidity Risk Theory and Coherent Measures of
Risk, Quantitative Finance, 8(7), pp.681-692.

Acerbi, C., 2008. Portfolio Theory in Illiquid Markets. In: Resti, A. (ed.), Pillar II in
the new Basel Accord, Riskbooks, pp. 241-272

Artzner,P., Delbaen,F. Eber, J-M. and Heath, D., 1999. Coherent measures of risk,
Math. Fin., 9(3), pp. 203-228.

Chen, C-C., 2009. Complex Event Types for Agent-Based Simulation. PhD, College of
London University.

Dacorogna, M.M., Gencay, Muller, R.U., Olsen, R.B. and Picktet, O.V., 2001. An
Introduction to High Frequency Finance. Academic Press.

Glattfelder, J.B., Dupuis, A. and Olsen R., 2008. An Extensive Set of Scaling Laws
and the FX Coastline”, Working Paper WP025-08, Centre for Computational Finance
and Economic Agents (CCFEA), University of Essex.

Kow
Gen

Mue

Com

OAN
http
[Ac

Olse
Mag

Sha
Tod
Inte

Shle
Uni

Solo
Mar

Tsan
Inte

Figu
2.1

walski, R. a
neration Co

eller, E.T., 2
Calculu

mmunication

NDA FxTra
p://fxtrade.o
ccessed 9 M

en, R., 2005
gazine, 15,

anahan, M.P
day, ed. M.J
elligence, 16

eifer, A.,200
iversity Pres

omon, S., L
rkets from I

ng, E.P.K.,
ernational J

ure 1. The M

and Sergot, M
mputing, 4(

2009. Autom
us”,
ns of the AC

ade. OAND
oanda.com/t

March 2011].

5 Classical E
pp. 84-85.

P., 1999. Th
J.Wooldridg
600, pp. 409

00. Inefficie
ss.

Levy, H. and
Investor Beh

2008. Com
Journal on A

Marginal Su

M., 1986. A
(1), pp. 67-9

mated Com

CM, 52(1), p

DA Forex O
ools/statisti
.

Economics:

he Event Cal
ge and M.Ve
9-430.

ent Markets

d Levy, M.,
haviour to M

mputational I
Automation

upply-Dem

A Logic-Bas
95.

mmonsense R

pp. 113-117

rder Book [
ical_inform

: An Emper

lculus Expl
eloso, Sprin

s: An Introd

2000. Micr
Market Phen

Intelligence
and Contro

mand Curve d

sed Calculu

Reasoning U

7.

[online] Av
ation/fx_op

ror with No

ained, in Ar
nger Lectur

duction to Be

roscopic Sim
nomena. Ac

e Determine
ol, 5(1), pp.

defined by t

s of Events

Using The E

ailable at:
pen_position

Clothes, W

rtificial Inte
e Notes in A

ehavioral F

mulation of
cademic Pre

es Effective
63-66.

the Queue P

, New

Event

n_summary

Wilmott

elligence
Artificial

Finance. Ox

f Financial
ess

Rationality

Profile at St

y

xford

y”,

tate

Figu
2.2

Figu

ure 2. The M

ure 3. The M

Marginal Su

Marginal Su

upply-Dem

upply-Dem

mand Curve d

mand Curve u

defined by t

under mark

the Queue P

ket making

Profile at Sttate

