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In binary classification problems, receiver operating characteristic (ROC) graphs are commonly used for

visualizing, organizing and selecting classifiers based on their performances. An important issue in the

ROC literature is to obtain the ROC convex hull (ROCCH) that covers potentially optima for a given set of

classifiers [1]. Maximizing the ROCCH means to maximize the true positive rate (tpr) and minimize the

false positive rate (fpr) for every classifier in ROC space, while tpr and fpr are conflicting with each

other. In this paper, we propose multiobjective genetic programming (MOGP) to obtain a group of

nondominated classifiers, with which the maximum ROCCH can be achieved. Four different multi-

objective frameworks, including Nondominated Sorting Genetic Algorithm II (NSGA-II), Multiobjective

Evolutionary Algorithms Based on Decomposition (MOEA/D), Multiobjective selection based on

dominated hypervolume (SMS-EMOA), and Approximation-Guided Evolutionary Multi-Objective

(AG-EMOA) are adopted into GP, because all of them are successfully applied into many problems

and have their own characters. To improve the performance of each individual in GP, we further

propose a memetic approach into GP by defining two local search strategies specifically designed for

classification problems. Experimental results based on 27 well-known UCI data sets show that MOGP

performs significantly better than single objective algorithms such as FGP, GGP, EGP, and MGP, and

other traditional machine learning algorithms such as C4.5, Naive Bayes, and PRIE. The experiments

also demonstrate the efficacy of the local search operator in the MOGP framework.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Classification [2] is one of the most important areas in
machine learning. Here, the goal is to find assignments of classes
to un-classified and unseen instances (data samples) based on
information previously learned. In the most common case,
referred to as binary classification, there are two classes or
categories and all instances in a data set belong to one of them.
Solving classification problems basically means to design good
classifier(s) which make right assignments as often as possible.

One open question is how to measure the performance of a
classifier. If classifiers are synthesized with optimization algo-
rithms, the choice of the performance measure will have tremen-
dous impact on the results that we will obtain. Simple
classification accuracy, though being used as the performance
metric for a long time, is actually not a good choice [3]. The
ll rights reserved.

. Wang),
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receiver operating characteristics, or ROC for short, has been
claimed as a generally useful performance visualizing method
because its properties are not sensitive to skewed class distribu-
tions or unequal misclassification costs, two characteristics which
are known to have a negative impact on the utility of the accuracy
measure.

The ROC graph is a technique for visualizing, organizing and
selecting classifiers based on their performance [1]. It has been
widely used in signal detection [4], medical decision making [5],
and other fields over the course of the past 40 years. In recent
years, because of the ever-increasing use of ROC graphs in the
machine learning community, the ROC analysis became a central
technique for tackling classification problems. The ROC curve, an
important topic in ROC analysis, is obtained by varying discrimi-
native thresholds over the output of a classifier [1]. The area
under the ROC curve (AUC) is accepted as a fair indicator to
measure the classifier performance for binary classification, since
it is invariant to operating conditions such as different misclassi-
fication costs and skewed class distributions [6]. ROCCH, another
important topic in classification problems, represents the convex
hull of a set of points (hard classifiers) obtained from several
0.1016/j.neucom.2012.06.054i
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curves (i.e., soft classifiers) [7]. A classifier is potentially optimal if
and only if it touches the ROCCH. Otherwise, we can always find a
better classifier. It is possible to get a potentially optimal classifier
in ROCCH even if the data sets have skewed class distributions or
misclassification costs. Actually, we can consider the ROC curve as
a special ROCCH when there is only a single soft classifier. This
means that ROCCH could work more powerfully than a plain ROC
curve. Consequently, we mainly consider the ROCCH in this paper
and we will focus on searching a group of classifiers not only to
maximize the ROCCH performance but also try to maximize the
AUC of a single soft classifier in binary classification problems.

In this paper, we utilize GP combined with multiobjective
techniques to approximate the optimal ROCCH. This work empiri-
cally investigates multiobjective genetic programming (MOGP)
with four different frameworks on binary classification problems.
We show that local search strategies can play a key role in GP for
classification problems and that special local search operators can
improve the performance.

This paper is organized as follows: Section 2 outlines the
related work and in Section 3, we introduce the background and
basic algorithms used in our research. Section 4 will describe our
framework to classification problems and presents local search
operators working in GP. Experiments are studied in Section 5
where four research questions are answered. Section 6 provides
the conclusion and a discussions on the important aspects and
future perspectives of this work.
2. Related work

2.1. ROCCH in classification

The roots of ROCCH maximization problems can be traced back
to [7]. In that work, iso-performance lines1 are translated by
operating conditions of classifiers and used to identify a portion
of the ROCCH, by which we can choose suitable classifiers for data
sets with different skewed class distribution or misclassification
costs. In [8], a combination of rule sets to produce instance scores
indicating the likelihood that an instance belongs to a given class
is described.

Flach et al. [9] investigated a method to detect and repair
concavities in ROC curves. The basic idea here is that if a point lies
below the line spanned by two other points in ROC, then it can be
mirrored to a better point which could perform well beyond the
original ROC curve. This can be used to expand the ROCCH. Prati
[10] introduced a rule selection algorithm based on ROC analysis
to find minimal rule sets with compatible AUC values. Here,
selection is based on whether a rule can improve the
current ROCCH.

In [11], a method which takes Neyman–Pearson lemma [12] as
the theoretical basis for finding the optimal combination of
classifiers to maximize the ROCCH is given. Fawcett [13] presents
a method for learning rules directly from ROC space. This method
utilizes the geometrical properties of the ROC to generate new
rules to maximize the ROC performance. Essentially, all above
works are searching a rule sets to maximize ROCCH.

2.2. Genetic programming for classification

Genetic programming (GP) [14] is a branch of evolutionary
algorithms (EAs). Standard GP has a tree-like representation
which can be generated by modular, grammatical, and
1 All classifiers corresponding to the points on one line have the same

expected costs.
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developmental methods [15]. Tree-based classifiers have a long
tradition in machine learning. They are considered to be more
explicit, intuitive, and interpretable than, e.g., neural networks.
GP therefore has widely been used for solving classification
problems [16,17].

An example of using GP to evolve regression rules for a data set
with intertwined spirals pattern is already given in Koza’s 1992
book [14]. Another early work [18] used in image recognition dates
20 years back. In the area of data mining, GP has been applied most
successful in two particular fields: one is classification for data sets
with different misclassification costs, as GP is suitable for cost-
sensitive learning. [19], e.g., focused on financial forecasting pro-
blems by consolidating two types of misclassification errors into a
single objective function. GP involving cost-sensitive learning has
furthermore been adopted in filtering junk E-mail [20].

The second field is classification of imbalanced data sets, i.e.,
data sets where one class occurs much more often than the
other—one of the areas where the accuracy metric may become
useless. Ref. [21] adopts GP to bankruptcy prediction, a prime
example for this issue as there are significantly more solvent
firms than defaulting ones. Patterson [22] gave a new fitness
function for GP applied on highly imbalanced database. Moreover,
Bhowan et al. [23] proposed a multiobjective genetic program-
ming approach to evolving accurate and diverse ensembles of
genetic program classifiers with good performance on both the
minority and majority classes.

Many technologies have been combined with GP to improve
the classification performance in these two fields, ranging from
ensemble learning over multiobjective methods to local search
strategies. As both imbalanced problems and different misclassi-
fication costs can be included in the ROCCH [7], this work will
focus on GP for maximizing the ROCCH. It should further be
mentioned that there is a strong analogy of ROCCH and the Pareto
front in multiobjective optimization [24].

In this paper, we use multiobjective GP (MOGP) to approx-
imate the optimal ROCCH. We empirically investigate MOGP with
four different frameworks on binary classification problems.
Additionally, we show that local search strategies can play a key
role in GP for classification problems as special local search
operators can carefully be designed to improve the performance.
3. ROCCH, classification, and multiobjective optimization

3.1. Overview of ROCCH in classification problems

3.1.1. ROC Graph and ROCCH

In binary classification problems, each instance I in the data set
is marked a certain label from the set {p, n} of positive and
negative class labels. A classifier is a mapping from instances to
predicted classes, and accuracy is the most commonly used
evaluation measure. However, its disadvantage are known for a
long time [25]. Generally, accuracy is not a suitable metric for cost
sensitive and skewed class distribution classification problems. To
overcome the weakness of accuracy, ROC analysis has been
introduced in machine learning. Ref. [26] demonstrated the value
of ROC curves in evaluating and comparing algorithms. An
important tool of ROC analysis is the ROC graph which is used
to visualize the performance of classifiers. The X-axis and Y-axis
of ROC graphs display the true positive rate(tpr) and false positive
rate (fpr). The performance of a hard or discrete classifier on a data
set can be mapped in a single point in this graph. The upper left
point (0,1) represents a perfect classifier which predicts positive
(or Yes) to all positive instances and negative (or No) to all
negative instances. The points in lower right area are conservative
classifiers which produce more negative labels than positive
0.1016/j.neucom.2012.06.054i
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labels. In contrast, the points in upper right area are liberal
classifiers. All the points along the diagonal are totally random
classifier and all classifiers below the diagonal have worse-than-
random performance. A soft classifier which produces a contin-
uous output (e.g. an estimate of an instance’s class membership
probability) can be mapped in a set of points by varying the
threshold. These points then form a ROC curve.

The ROCCH is the convex hull of the set of points in ROC space.
These can be obtained from discrete classifiers and soft classifiers
alike. The ROC curve of a soft classifier can directly be considered
as a ROCCH if there is only one soft classifier. The right side of
Fig. 1 shows a convex hull over three different ROC curves. Scott
[27] and Fawcett [1] have pointed out that two existing classifiers
can be used to create a realizable classifier whose performance
(in terms of ROC) lies on the line of connecting the performance of
its two endpoints. Hence, any classifiers whose performances are
below the ROC convex hull could be defeated by realizable
classifiers. A demonstration is shown on the right side of Fig. 1.
There are two realizable classifiers whose performance (point b

and c) are better than the performance of point a, which is under
the ROC convex hull. Point b has the same fpr with point a, but its
tpr is higher. Point c has the same tpr with a, but its fpr is lower.
More generally, all the classifiers whose performances are under
the convex hull are not optimal. In other words, a classifier is
potentially optimal if and only if it lies on the convex hull of the
set of points in ROC space [1].

In the following, we will give an example of using ROCCH to
search optimal points for different situations such as data sets
with different error costs and class distributions. One important
target of classification problems is to minimize the total error
costs. Suppose cðY,nÞ is the cost of a false positive error, cðN,pÞ is
the cost of a false negative error, and Ntr is the number of total
instances. The class distributions of the data set are noted by the
classes’ a priori probabilities pðpÞ and pðnÞ ¼ 1�pðpÞ. The total
error costs can be represented as

Cost¼Ntr � pðnÞ � fpr � cðY,nÞþNtr � pðpÞ � ð1�tprÞ � cðN,pÞ ð1Þ

If there are two points ðtpr1,fpr1Þ and ðtpr2,fpr2Þ that have the
same total error costs, we can get the following equation:

tpr1�tpr2

fpr1�fpr2
¼

cðY,nÞpðnÞ

cðN,pÞpðpÞ
¼m ð2Þ

In Eq. (2), m is defined as a slope of an iso-performance line in [7].
In other words, all the classifiers corresponding to the points on
an iso-performance line have the same expected cost. Moreover,
each set of class and cost distributions (the middle term of above
Fig. 1. ROC Graph

Please cite this article as: P. Wang, et al., (2013), http://dx.doi.org/1
equation) defines a family of iso-performance lines. Moving the
iso-performance line until it gets in contact with a point in
ROCCH, the joint point with a larger tpr-intercept (means the
tpr-intercept of the line determined by joint point and the slop in
ROC graph) represents a classifier which can produce lower
expected cost.

In Fig. 2, there are two iso-performance lines: a with m¼10 and
line b with m¼0.1. Imagine a scenario where the data set has a class
distribution where the negatives outnumber the positives by 10 to 1,
but the costs of false positives equal to the false negative costs. A
classifier with performance at C1 is suitable for this data set and
achieves the minimal expected cost in this ROCCH. Consider another
scenario in which a data set has a balanced class distribution, but
the problem is very cost sensitive. If a false negative is 10 times as
expensive as false positive, the suitable classifier is located at C2
which is on the iso-performance line b with m¼0.1.

3.2. ROCCH and multiobjective problems

Essentially, the ROCCH maximization problem aims at finding
a set of classifiers to approximate the upmost line and the
and ROCCH.

0.1016/j.neucom.2012.06.054i
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Fig. 3. ROCCH and Pareto front. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)
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leftmost line in ROC space as closely as possible. Obviously, the
ideal performance is point ð0,1Þ which is not easy (and sometimes
impossible) to reach. The goal is to find classifiers with a low fpr

and a high tpr at the same time. These two objectives are
conflicting because if the classifier labels more instances as
positives, it will produce less negatives and vice versa. That
means fpr and tpr are closely related and this relationship is not
positive. Hence, a ROCCH maximization problem can be consid-
ered as a multiobjective optimization problem. However, minor
difference exists between these two concepts. In [24], it is claimed
that ROCCH is analogous to the Pareto front (PF) in multiobjective
optimization, but no details are given. Here we will describe the
relationship between ROCCH and the PF more clearly.

Generally, multiobjective optimization problems (MOP) can be
stated as follows:

maximize FðxÞ ¼ ðf 1ðxÞ, . . . ,f mðxÞÞ

subject to xAO ð3Þ

In Eq. (3), x is the decision variable and F(x) is a vector function
representing objective values. In many MOPs, x is continuous and
all the objectives are continuous over x. These problems (3) are
called continuous MOPs. An important term in MOP is dominance

which can be defined as: let u¼ ðu1, . . . ,umÞ, v¼ ðv1, . . . ,vmÞ be two
vectors, u is said to dominate v if uirvi for all i¼ 1 . . .m, and uav,
this is noted as u!v. If u and v do not dominate each other, we
say that u and v are nondominated. The nondominated set is a set
that each item does not dominate any another one. A point x% is
called Pareto optimal if there is no xAO such that F(x) dominates
Fðx%Þ [28,29]. Pareto set (PS) is the collection of all Pareto optimal
points. The Pareto front is the set of all the Pareto objective
vectors PF ¼ fFðxÞ9xAPSg.

Most of the works on multiobjective optimization methods are
searching the PS and PF, which can be realized in many different
ways [30–33]. In this work, multiobjective optimization for
ROCCH maximization is defined as follows:

FðxÞ ¼ ðf fprðxÞ,f tprðxÞÞ

minimize F1ðxÞ ¼ f fprðxÞ

maximize F2ðxÞ ¼ f tprðxÞ

subject to x is a classifier ð4Þ

If we take F1ðxÞ ¼�f fprðxÞ, the above formulation is almost the
same as the general MOP. The only difference is that the classifier
variable x in Eq. (4) is discrete, whereas many multiobjective
optimization algorithms have been designed for numerical pro-
blems. We will discuss this issue in detail later and give techni-
ques for that situation.

First, let us discuss the relationship between the ROCCH and
the Pareto front in multiobjective optimization. In Fig. 3, ROCCH is
marked as blue lines and the Pareto front is marked with red
broken lines. Any dominated point must obviously be contained
under the ROCCH. Hence, the set of dominated solutions con-
tributes nothing to the ROCCH. The points on the ROCCH there-
fore must be in the nondominated set. Second, not all solutions in
nondominated set have contribution to the ROCCH (the points at
concavity of the nondominated set are not on the ROCCH).
However, when the curve constructed by nondominated set is
smooth enough that the difference between ROCCH and Pareto
front can be ignored. Hence, the target of using multiobjective
optimization to solve ROCCH maximization is to search the
nondominated solutions.
Please cite this article as: P. Wang, et al., (2013), http://dx.doi.org/1
4. Multiobjective genetic programming for ROCCH
maximization

As discussed, we propose to use multiobjective optimization
techniques and GP to solve ROCCH maximization problem.
Although there exist several evolutionary multiobjective frame-
works, most of them are designed for continuous MOPs, and it is
unclear which of them suits our problem best. Thus, GP is
embedded into four popular MO frameworks to find the suitable
evolutionary multiobjective algorithm (EMOA) for ROCCH max-
imization problems. In this section, we discuss a new framework
of GP for classification problem as well as different EMOA
strategies in detail. Additionally, to improve the performance of
individuals in GP, special local search operators are introduced
into multiobjective genetic programming (MOGP) system.

4.1. GP framework for classification problems

GP, like all EAs, maintains a population of candidate solutions.
In each iteration of the GP algorithm – referred to as generation –
this population undergoes selection and reproduction steps. The
three main components of the algorithm are the selection,
mutation, and crossover strategies. The latter two, of course, have
to be adapted to the tree-based structure of the candidate
solutions. Mutation is most often realized by replacing a sub-
tree of a solution with a new, randomly created one and tree-
recombination often avails to the exchange of sub-trees of two
parent individuals. For the first generation, random trees are
created by using Koza’s well-known ramped-half-and-half
method [14]. The framework of GP for classification problems is
described as Algorithm 1.

Algorithm 1. GP(M,D).
0.1016
Require: MZ03Danull
1:
 M is the maximum generation

2:
 D is the data set

Ensure: GP
3:
 Let gen¼0

4:
 Initialize the population using the ramped-half-and-half

method
/j.neucom.2012.06.054i
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while genrM do

6:
 Evaluate fitness of each individual

7:
 Update the best individual

8:
 Survival Selection þ Crossover Operation

9:
 Mutation Operation

10:
 gen¼gen þ 1

11:
 end while
4.1.1. Tree-based individuals for classification

Discriminant functions, classification rules, and decision trees
are three common tree-based classifier structures that can be
synthesized with GP. If an n-class classifier is to be found, either
n�1 discriminant functions or classification rules or n�1 thresh-
olds for a single discriminant function are needed. Because of the
lack of logical conjunctions such as AND, OR, NOT, off-the-shelf
decision trees are highly redundant. Fig. 4 shows a genetic
decision tree (GDT) [34] that combines a decision trees and
classification rules. Besides, a backus normal form (BNF) grammar
[35] for GDTs can be defined, which makes it more convenient to
Fig. 4. Genetic decision tree for classification.

ree based crossover is shown on the left side, two subtrees are selected and

which swaps two subtrees from the same individual.

e cite this article as: P. Wang, et al., (2013), http://dx.doi.org/1
generate GDT individuals with GP. In a GDT, Ai and Cj are the
index of features and index of labels in the input data set,
respectively, where 0r ir9A9, 9A9 is number of features and
0r jr9C9, 9C9 is number of labels (Fig. 5).

4.2. Multiobjective genetic programming

In this section, we will introduce multiobjective genetic
programming to maximize the ROC performance in classification
problems. There exist many efficient evolutionary multiobjective
algorithms invented to solve continuous function optimization
problems. It is, however, unclear which one is more suitable for
GP for classification problems. Therefore, we conduct an in-depth
study to identify the most appropriate framework.
4.2.1. Evolutionary multiobjective algorithms

We take four EMOAs into consideration: NSGA-II [30], MOEA/D
[31], SMS-EMOA [36], and AGEMOA [33]. The most important
factor in EMOAs is the strategy used to rank the individuals in the
population, in other words, the survival mechanism. The reason of
why we choose these EMOAs is that all of them adopt different
multiobjective frameworks which employ different metrics in
trading off conflicting objectives. Since we do not know which is
best for ROCCH maximization, we aim for maximizing the
diversity in our experiments.

A fast and elitist multiobjective genetic algorithm, which
based on nondominated sorting, called NSGA-II, is introduced in
[30]. The main contribution of NSGA-II is that it defines a method
to rank the individuals by dominance depth and crowding
distance. NSGA-II is used here as representative of algorithms
that use dominance relationships, i.e., that mainly focus on the
dominance count and rank. There are other algorithms such as
SPEA [37] and SPEA-II [38] with roughly similar structure.

Multiobjective evolutionary algorithm based on decomposi-
tion (MOEA/D) [31] decomposes a multiobjective optimization
problem into a number of scalar optimization subproblems and
optimizes them simultaneously. The basic idea of MOEA/D is that
one solution for a subproblem can use the information provided
by its neighbors to improve its performance. Because of that
swapped between different two individuals. The right side shows the mutation

0.1016/j.neucom.2012.06.054i
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character, MOEA/D has a lower computational complexity than
NSGA-II.

The hypervolume is a quality metric frequently used in
evolutionary approaches to multiobjective optimization pro-
blems. SMS-EMOA [36] applies a multiobjective selection
mechanism based on the hypervolume measure combined with
the concept of nondominated sorting. An individual will survive
with a higher probability if it makes higher contribution to the
hypervolume covered by the current estimate of the Pareto front.

Bringmann et al. [33] pointed out that the dominance relation
and other measures were used to ensure diversity in objective
space but are not guided by a formal notion of approximation. In
that work, they proposed a measure (approximate distance) to
define the additive approximation of one nondominated set to the
target set. The selection mechanism in evolutionary optimization
is that an individual will survive with higher probability when it
has higher contribution to reduce the approximate distance.
4.2.2. Operators used in MOGP

(1) Tree based crossover and mutation: First of all, we will
outline the search operators used in GP, i.e., the unary mutation
operation and the binary crossover operator [15,14,29]. In the
crossover operator, one subtree is random selected from each of
the two parent solutions. The selected subtrees are then swapped.
The most commonly used mutation operation randomly selects a
node in a tree and then substitutes the subtree rooted there with
a randomly generated one. Another possible mutation operation
randomly selects two subtrees from a parent and swaps them.
Though tree based mutation operators have been used often in GP
works, they may not work very efficiently in classification
problems because randomly re-generated subtree-based muta-
tion ignores the information obtained by its parent which is a
trained individual. We will introduce tailor-made operators for
this domain in the following.

(2) Decision tree-based local search strategies: In metaheuristic
optimization, it is common to characterize operations as either
exploitation (search focused around the currently best known
solutions) or exploration (search that visits points in areas of the
search space that more distant from the currently investigated
points) [39]. Exploration and exploitation are both emphasized in
evolutionary algorithms. Crossover and mutation are usually used
to explore the search space, they guide the search from one area
to another one with a large step. However, to improve the search
Fig. 6. Shifting operator is done

Please cite this article as: P. Wang, et al., (2013), http://dx.doi.org/1
result, exploitation in a local area around good solution is needed
as well.

In GP for classification problems, one classifier divides the
instance space into several subspaces that may contain positive
and negative instances. The classifier is perfect when all the
subspaces contain instances with only one label (positive or
negative). We design two types of local search for GP for
classification problems, shifting operators and splitting operators
are described as follows:

(2.1) Shifting operator: The right-hand side of Fig. 6 shows a
GDT and the corresponding hyperplane based classification in the
left-hand side. The shifting operator improves the performance of
the classifier by shifting the hyperplane, which corresponds to
threshold adjusting in GDT. In multiobjective optimization pro-
blems, it is not easy to improve a classifier to a better classifier
which dominates the old one. The dominance relation is a very
intensive and rigorous relationship. Therefore, the question of
how to define whether an application of the shifting operator was
successful or not arises. We choose to use the information gain to
measure the improvement. Eqs. (5) and (6) define the weighted
sum of the information gain [40]. A successful application of the
shifting operator to a classifier x increasing its information gain
E(x). In Eq. (5), PðlÞ½k� and pðl,kÞ are the number and the probability
of instances with label k in the lth decision node

pðl,kÞ ¼
PðlÞ½k�P2

i ¼ 1 PðlÞ½i�
ð5Þ

EðxÞ ¼

P
8leaves lAxð1þ

P2
k ¼ 1 pðl,kÞ log2 pðl,kÞÞð

P2
k ¼ 1 PðlÞ½k��1Þ

9All instances9�9leavesAx9
ð6Þ

(2.2) Splitting operator: The splitting operator [40] is another
type of local search operator. Different from the shifting operator,
it pays more attention to one subspace. In the left side of Fig. 6,
the shifting operator cannot make every space ‘‘pure’’ if there are
only two hyperplanes. The splitting operator can search a new
hyperplane to divide this space into two sub-subspaces, as shown
in the left side of Fig. 7. The splitting operator can work well to
make two pure subspaces. In this paper, one subspace which is
not pure (e.g., information gain o0:1) will be considered for the
splitting operator with a probability equal to the number of
instances in this subspace divided by the total number of
instances.

As mention in the discussion on the shifting operator, it not
necessary to improve the performance of a classifier to a better
on a genetic decision tree.

0.1016/j.neucom.2012.06.054i
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Fig. 7. Splitting operator is done on a genetic decision tree.

Table 1
27 UCI data sets.

Data set No. of features Class distribution Data set No. of features Class distribution Data set No. of features Class distribution

australian 14 383:307 house-votes 16 168:267 pima 8 268:500

bands 36 228:312 hypothyroid 25 151:3012 wpbc 33 151:47

bcw 9 458:241 ionosphere 34 225:126 sonar 60 97:111

crx 15 307:383 kr-vs-kp 36 1669:1527 spambase 57 1813:2788

euthyroid 25 293:2870 mammographic 5 445:516 spect 22 212:55

german 24 700:300 monks-1 6 216:216 spectf 44 212:55

haberman 3 225:81 monks-2 6 290:142 tic-tac-toe 9 626:332

hill-valley 100 600:612 monks-3 6 228:204 transfusion 4 178:570

parkinsons 22 147:48 mushroom 22 3916:4208 wdbc 30 212:357
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one which dominates the old one. The success of the splitting
operator can be defined as follows: suppose one space S contains
p positive instances and n negative instances. If the splitting
operator is applied on this space, there are two subspaces. The
first subspace S1 contains p1 positive instances and p2 negative
instances. The second subspace S2 holds p�p1 positive instances
and n�n1 negative instances. The information gain improvement
is InfoGain(S) is defined as Eq. (8). InfoGain(S) is larger than 0, the
operation is a success

InfoðSÞ ¼ �
p

nþp
log2

p

nþp
þ

n

nþp
log2

n

nþp

� �
ð7Þ

InfoGainðSÞ ¼
p1þn1

nþp
InfoðS1Þþ

nþp�n1�p1

nþp
InfoðS2Þ ð8Þ

4.2.3. MOGP for classification problems

In our first set of experiments, four simple MOGP algorithms
with tree-based crossover and mutation (but without local
search) are used. We will therefore refer to them as S-NSGP-II,
S-MOGP/D, S-SMS-EMOA, and S-AG-EMOA. Additionally, we
extend these four simple MOGP methods with the local search
algorithms. These algorithms are defined in Algorithms 2– 9 and
we name them NSGP-II, MOGP/D, SMS-MOGP, and AG-MOGP. All
algorithms work similar to the frameworks of their original
version, but differ from them in two key points: first, in order
to generate the initial population, we adopt the ramped-half-and-
half method [14]. Second, simple-version MOGP methods use
tree-based crossover and mutation into their evolutionary pro-
cess. MOGP approaches with local search utilize local shifting and
Please cite this article as: P. Wang, et al., (2013), http://dx.doi.org/1
splitting operators to improve the performance of individuals.
These differences will be underlined in the algorithm pseudo-
codes. The inputs for these algorithms are classification data sets
and the results are approximations of nondominated set, which in
turn, are approximated ROCCHs.
5. Experimental studies

In the following, we will describe the data sets and give the
configurations for different algorithms. With our experiments, we
consider four important questions. First, we want to verify
whether local search operators can work well to improve the
performance of different MOGP methods for maximizing the
ROCCH. Second, we want to see whether multiobjective optimi-
zation frameworks actually work better than single-objective
algorithms. Third, we want to know whether MOGP approaches
with local search have advantages on ROCCH maximization
compared with traditional machine learning algorithms such as
Naive Bayes (NB), C4.5 and PRIE which is good at constructing
classifiers to maximize ROCCH. The last question is to find which
multiobjective optimization framework is better for classification
problems and why.

5.1. Data sets

Twenty-seven data sets are selected from the UCI repository
[41] and described in Table 1. In this paper, we focus on binary
classification problems, so all the data sets are two-class pro-
blems. Balanced and imbalanced benchmark data sets are
0.1016/j.neucom.2012.06.054i
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carefully selected. The scale in terms of the number of instances
of these data sets ranges from hundreds to thousands.

5.2. Algorithms involved

Besides the eight MOGP approaches already mentioned, we
also apply four single-objective genetic programming methods:
FGP [34], GGP [40], and EGP [40] that use the framework of GP for
classification in Algorithm 1. The fitness function is the only
difference amongst them. MGP [40] also employs the two local
search operators as described above. Table 2 lists these algo-
rithms and their characteristics.

5.3. Validation and configuration

5.3.1. Cross-validation

To verify the generalization performances of different classi-
fiers produced by different algorithms, cross-validation is
employed. We apply each algorithm on each 27 data sets with
five-fold cross-validation for 20 times. The different GP
approaches as well as the MOGP algorithms have different
convergence speed. In this work, the generation limit M for each
algorithm Alg on the different data sets Data is defined as follows.
The train part Train of the five-fold cross-validation on Data is
taken and Alg is applied to Train by five-fold cross-validation for
Table 2
15 Algorithms.

Algorithm name

S-NSGP-II

S-MOGP/D

S-SMS-MOGP

S-AG-MOGP

NSGP-II

MOGP/D

SMS-MOGP

AG-MOGP

FGP

GGP

EGP

MGP

C4.5

Naive Bayes

Prie [13]

psf and psp are the probabilities of shifting operator and splitting opera

Table 3
Parameters for 15 algorithms.

Objective Maximize R

Terminals of GP {0,1} with 1 representing ‘‘Positive’’; Function se

0 representing ‘‘Negative’’

Data sets 27 UCI data sets Algorithms

Crossover rate 0.9 Mutation ra

Shifting rate 0.1 Splitting rat

Parameters for GP P (population size)¼100; Termination

G (maximum evaluation times)¼M

Number of runs:

5-fold cross-validation 20 times

Selection strategy Tournament selection, Size¼4 Max depth

individual p

Please cite this article as: P. Wang, et al., (2013), http://dx.doi.org/1
one time. We then set M to the generation index at which Alg had
the best performance.

5.3.2. Configurations

In Table 3, we provide the parameter configurations for all
algorithms in Table 2. In this work, we take the representation
from [34] called GDT as the individual in the above eight new
multiobjective genetic programming algorithms. For binary clas-
sification problems, 0 and 1 (standing for negative and positive)
are selected as the terminals of GP. Every classifier (individual) is
constructed as if–then–else tree which involves and, or, not, 4 , o
and ¼ as operator symbols. Most offspring individuals are
obtained by the crossover operator with probability 0.9. The
mutation, shifting, and splitting operators are applied with prob-
ability 0.1. Tournament selection is adopted as the selection
strategy and the tournament size is set to 4. To avoid overfitting,
the maximum depth of each individual tree is limited to 17.

5.4. Results

Our experiments are composed of three parts. First, to verify the
effectiveness of local search in MOGP methods, we list the results
(area under the ROCCH) of MOGP approaches without and with
local search. In the second part of this discussion, we show that a
multiobjective genetic programming framework with local search
Character

psf ¼ psp ¼ 0 (without local search)

psf ¼ psp ¼ 0 (without local search)

psf ¼ psp ¼ 0 (without local search)

psf ¼ psp ¼ 0 (without local search)

psf a0,psp a0 (with local search)

psf a0,psp a0 (with local search)

psf a0,psp a0 (with local search)

psf a0,psp a0 (with local search)

Cost sensitive based fitness function

G-mean based fitness function

Entropy based fitness function

EGP þ local search operators

As described in [42]

As described in [43]

The state of the art of machine learning algorithm to

construct classifiers for ROCCH maximization

tor.

OCCH

t of GP If–then–else, and, or, not, 4 , o ,¼ .

15 algorithms in Table 2

te 0.1

e 0.1

criterion Maximum of G of evaluation time has been reached

of initial/inprocess

rogram

3/17

0.1016/j.neucom.2012.06.054i
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can work better than single-objective genetic programming without
or with local search. Finally, traditional machine learning algorithms
are compared to MOGP with local search to certify the efficiency of
our algorithms in maximizing the ROC performance.

5.4.1. Results of MOGP without and with local search

Table 4 describes the performance of MOGP methods with and
without local search on 27 UCI data sets. In the second column of
Table 4, the first sub-column shows the results of NSGP-II without
local search (named S-NSGP-II) and the results of NSGP-II with
local search (named NSGP-II) are shown in the second sub-
column. A number is printed in bold face if the results are
statistically significantly better than the other variant of the same
algorithm according to the Wilcoxon sum-rank tests [44] with a
confidence level of 0.95. The results of MOGP/D, SMS-MOGP and
AG-MOGP with and without local search are described in the
third, fourth, and fifth columns. The last row of Table 4 gives the
number of wins, the number of draws, and the number of losses
for all data sets.

From this table we can see that S-NSGP-II wins never, loses 22
times to NSGP-II, and does not perform different in five of the 27
UCI data sets. This means that the local search operator works
well and improves the performance of S-NSGP-II. Additionally,
MOGP/D wins against S-MOGP/D on all data sets, SMS-MOGP and
AG-MOGP lose only one time against their version without local
search operators. Table 4 therefore testifies the effectiveness of
the local search in MOGP approaches for maximizing the ROC
performance.

5.4.2. Results of single-objective GP and traditional machine

learning algorithms

In this subsection, we present all results of the four single-
objective genetic programming algorithms [40] on 27 data sets. In
Table 5, the first column gives the names of the data sets involved
and the second to the fifth column the results (mean and standard
deviation are multiplied by 100). The last four rows list the
Table 4
Performance of MOGP methods without and with local search on UCI data sets, mean

Data set S-NSGP-II NSGP-II S-MOGP/D MOGP/D

australian 90.9372.52 92.0072.46 88.0975.37 91.6872
bands 71.7175.43 77.7073.49 69.0574.47 76.4774
bcw 98.1270.80 98.1970.99 97.7171.33 98.0771
crx 90.1873.12 91.7972.47 89.5374.88 91.5872
euthyroid 79.2779.20 96.7871.37 72.46710.39 94.4776
german 73.0073.94 74.0372.81 68.0875.35 73.5272
haberman 65.5576.60 67.0876.19 63.6877.17 66.6076
hill-valley 50.3071.47 53.1972.61 50.0771.47 53.0272
house-votes 97.0173.82 98.1071.39 96.5072.87 97.8471
hypothyroid 79.63711.60 97.9971.52 77.41714.60 97.1172
ionosphere 86.8176.76 91.8373.98 84.6176.73 91.4273
kr-vs-kp 88.6777.32 98.0170.85 80.4178.04 98.1270
mammographic 89.0872.05 89.7971.80 87.7172.52 89.4572
monks-1 94.8073.43 99.9370.53 88.75711.39 99.4571
monks-2 77.6579.50 93.6075.25 68.18710.74 89.8271
monks-3 98.2274.26 100.0070.00 94.5179.50 99.8470
mushroom 98.7071.61 99.9570.10 96.9373.15 99.7770
parkinsons 85.0976.58 86.1775.96 80.8778.00 86.9675
pima 77.2273.52 80.6173.21 72.5475.07 80.3572
sonar 70.4276.01 80.0975.55 67.5177.43 79.6876
spambase 70.9778.55 96.3670.57 64.1777.67 95.8070
spect 75.4775.05 76.5276.91 73.9078.34 76.9777
spectf 68.3075.95 73.3875.55 66.4378.58 73.5875
tic-tac-toe 73.3978.99 86.19711.46 67.52711.04 84.1879
transfusion 68.9774.89 72.1274.44 64.9474.75 71.8874
wdbc 93.5274.95 97.2871.49 92.4274.73 97.0271
wpbc 59.5278.15 67.4178.33 59.4277.76 66.6177

Win–draw–loss 0–5–22 22–5–0 0–0–27 27–0–0

Please cite this article as: P. Wang, et al., (2013), http://dx.doi.org/1
outcomes of Wilcoxon rank-sum tests of all seven tested
approaches versus the four MOGP methods with local search. In
Table 6, we list the outcomes of the Wilcoxon rank-sum test
applied to the results of single- and multi-objective genetic
programming algorithms. As FGP and GGP have the same repre-
sentation (GDT) with the MOGP methods without local search,
the main different factor is the multi-objective strategy. At the
same time, the main difference between the MGP and MOGP
methods with local search is the multiobjective strategy. From
this table, it becomes obvious that multiobjective strategies in
genetic programming are able to improve the ROC performance in
classification problems.

As described in Table 5, the second to fifth columns report the
results of the four single-objective genetic programming algo-
rithms on 27 data sets. From the sixth to the last column, we list
three traditional machine learning algorithms NB, C4.5, and PRIE
which is the state of art in ROCCH maximization. In the last four
rows, the Wilcoxon rank-sum test is used to compare their results
with those of the MOGP methods with local search. Taking
21�6�0 as example, AG-MOGP wins 21 times, losses 0 time,
and six times scores equal against EGP. Obviously, AG-MOGP is
far better than EGP in ROCCH maximization on the data sets we
used. From the last four Wilcoxon rank-sum test results, it is clear
that multiobjective GP strategies with local search outperform
significantly the four single-objective genetic programming algo-
rithms and the three standard machine learning algorithms.
5.4.3. Analysis on MOGP for maximizing the ROC performance

Table 7 shows the Wilcoxon rank-sum test results among the
MOGP methods with and without local search. Here, we use Fig. 8
to illustrate the relationship of these four MOGP approaches with
local search. The algorithm at the head of arrow is better than the
one at the end of arrow, and the results show that NSGP-II is the
best algorithm among the tested ones. At the same time, MOGP/D
is slightly better than SMS-MOGP and AG-MOGP which have a
roughly similar performance on all 27 data sets. Fig. 9 describes
and standard deviation, multiplied by 100, are given in this table.

S-SMS-MOGP SMS-MOGP S-AG-MOGP AG-MOGP

.44 89.1374.21 92.0272.33 90.3973.03 91.0579.49

.05 68.5174.28 75.5273.71 73.1274.91 77.0273.70

.13 97.0471.83 97.9571.14 97.9271.21 97.2579.87

.32 89.3474.56 91.6572.21 90.7173.09 90.8879.47

.91 75.05710.51 96.4971.32 80.1978.83 96.3477.45

.97 71.7574.23 73.6872.56 72.6473.51 73.1177.82

.58 65.0377.48 65.5077.12 66.8876.56 66.2779.44

.59 50.5871.37 52.6572.61 50.3071.32 52.4275.95

.46 96.9572.42 98.1371.23 97.7571.58 96.9479.89

.06 81.54712.99 97.7771.54 90.06711.45 98.13710.28

.56 84.8975.74 90.3775.02 87.4674.86 90.6779.97

.99 83.8076.48 98.2670.93 87.2077.35 97.1679.84

.00 88.1772.18 89.2371.84 89.1471.95 88.5579.11

.97 83.75712.99 97.9573.88 94.2075.97 97.48710.18
6.76 69.57710.18 85.4476.85 76.0179.69 82.80710.11
.45 92.5279.99 98.6075.08 99.5270.49 98.7679.99

.30 97.0972.71 99.7970.36 98.5972.45 99.3573.07

.02 81.7672.32 85.8275.81 83.0876.22 84.78710.20

.86 75.2074.12 80.1173.07 77.9773.62 79.1678.54

.05 69.3477.97 79.3875.93 71.7476.48 78.0479.39

.60 64.8578.94 96.0470.63 93.3870.92 95.0279.61

.85 73.1977.39 76.0077.11 75.21 7 7.27 75.20710.19

.65 68.3877.47 75.2976.31 71.5276.52 74.9079.69

.06 69.12711.85 77.0674.28 71.31710.70 75.90712.95

.63 67.0475.45 71.94 72.58 68.4075.17 70.9878.43

.63 92.9173.95 97.0871.83 94.1473.08 96.2379.86

.41 61.0078.36 66.9278.88 60.9478.36 66.0479.85

0–1–26 26–1–0 0–6–21 21–6–0
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Table 6
Wilcoxon rank-sum test results for MOGP methods without local search and single-objective genetic programming. FGP, EGP and four MOGP methods

without local search have the same representation. MGP and four local search-based MOGP approaches take shifting and splitting operators into their

search strategies.

Algorithms FGP GGP MGP

S-NSGP-II 26–0–1 20–5–1 NSGP-II 15–9–3

S-MOGP/D 25–1–1 16–6–5 MOGP/D 10–11–6

S-SMS-MOGP 26–0–1 18–6–3 SMS-MOGP 9–10–8

S-AG-MOGP 26–1–0 22–5–0 AG-MOGP 9–10–8

Table 5
Performance of single-objective genetic programming and traditional machine learning algorithms on UCI data sets.

Data set EGP FGP GGP MGP NB Prie C4.5

australian 90.0573.06 85.5674.87 85.5473.83 90.667 2.68 89.477 2.78 91.757 2.36 85.527 4.05

bands 70.0475.05 53.9975.56 64.8874.89 76.1874.97 73.917 4.68 76.077 4.81 74.657 0.00

bcw 97.3571.37 93.7372.11 93.8572.45 97.237 1.52 98.927 0.62 98.167 1.09 95.0572.55

crx 90.6872.49 85.9173.57 86.3673.32 90.757 2.53 87.887 3.16 90.657 2.77 85.5170.00

euthyroid 93.3775.81 50.0170.11 79.41713.12 97.4771.41 91.917 2.03 96.247 1.31 92.9772.49

german 70.8173.42 51.7573.51 67.1475.36 71.697 3.30 78.427 2.94 75.957 3.25 65.3670.00

haberman 62.9777.63 50.6674.25 63.9876.68 64.1477.69 65.007 7.19 69.587 7.26 63.9670.00

hill-valley 50.1872.15 50.0971.39 49.9073.25 53.347 3.00 50.647 3.65 51.827 3.93 50.0070.00

house-votes 97.7571.63 94.6374.00 95.2373.85 97.747 1.62 98.057 1.04 97.807 1.49 96.3572.04

hypothyroid 96.5572.55 52.3573.27 93.4575.91 98.197 1.77 98.027 1.52 96.517 2.45 95.5673.23

ionosphere 87.2275.84 80.8777.60 79.8677.01 90.097 4.76 93.577 3.18 93.687 4.23 88.2075.65

kr-vs-kp 85.7176.65 62.1678.52 71.8976.02 98.447 1.06 93.217 1.00 98.267 0.44 99.7170.23

mammographic 88.9671.97 82.7673.60 84.7373.46 88.687 2.24 89.777 1.96 89.707 2.02 87.6670.00

monks-1 85.96711.96 51.2179.96 75.0375.25 99.647 1.66 73.187 4.58 70.937 5.59 75.2270.00

monks-2 80.48712.05 50.0176.29 53.2876.92 94.767 4.88 52.387 7.04 51.257 6.16 94.1775.93

monks-3 99.5970.49 87.48710.72 86.7579.04 99.907 0.29 95.947 2.17 99.607 0.27 100.0070.00

mushroom 98.6871.88 84.6778.24 89.4474.47 99.957 0.13 92.607 0.71 99.497 0.14 100.0070.00

parkinsons 81.9277.80 76.6278.22 75.9777.19 85.877 7.20 85.917 6.11 88.247 5.83 78.9179.76

pima 76.2774.94 50.8871.29 70.7373.44 78.777 3.71 81.407 3.01 79.587 2.92 75.2374.93

sonar 73.3377.01 54.1776.81 68.2277.38 77.597 7.57 80.127 7.03 69.927 8.64 73.8577.84

spambase 85.2875.53 76.1477.16 76.5874.30 94.797 1.04 93.987 0.69 96.727 0.56 93.7270.00

spect 74.3677.01 68.21710.68 71.9977.18 75.337 8.59 84.097 6.03 83.517 7.01 76.8878.91

spectf 71.7677.04 58.6979.06 69.1677.16 73.107 8.45 84.947 5.19 78.907 6.37 63.3679.07

tic-tac-toe 71.89712.11 63.3579.73 63.35710.15 90.047 10.24 61.527 14.76 70.417 12.51 84.91713.91

transfusion 71.3175.21 50.4870.89 67.4674.37 71.317 4.88 70.937 4.94 70.877 5.39 71.0875.08

wdbc 95.1272.92 87.2574.54 90.3972.83 96.057 1.92 98.147 1.33 96.587 1.94 92.7473.16

wpbc 66.8379.90 56.4777.41 60.1578.92 64.217 10.66 66.427 8.85 68.227 9.25 58.19710.77

NSGP-II 23–4–0 27–0–0 27–0–0 15–9–3 13–8–6 13–7–7 20–5–2

MOGP/D 22–5–0 27–0–0 27–0–0 10–11–6 12–8–7 9–11–7 20–2–5

SMS-MOGP 21–6–0 27–0–0 27–0–0 9–10–8 12–8–7 9–11–7 20–2–5

AG-MOGP 21–6–0 27–0–0 26–1–0 9–10–8 14–6–7 11–9–7 20–2–5

Table 7
Wilcoxon rank-sum test results for MOGP methods with and without local search.

Algorithms NSGP-II MOGP/D SMS-MOGP AG-MOGP

NSGP-II – 9–18–0 9–16–2 6–20–1

MOGP/D 0–18–9 – 3–20–4 4–20–3

SMS-MOGP 2–16–9 3–20–4 – 2–23–2

AG-MOGP 1–20–6 3–20–4 2–23–2 –

Algorithms S-AGE-MOGP S-MOGP/D S-SMS-MOGP S-NSGP-II

S-AG-MOGP – 22–5–0 19–8–0 5–20–2

S-MOGP/D 0–5–22 – 3–18–6 0–8–19

S-SMS-MOGP 0–8–19 6–18–3 – 0–9–18

S-NSGP-II 2–20–5 19–8–0 18–9–0 –
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the relationship of these MOGP approaches without local search.
Here, S-AG-MOGP is the best algorithms among four methods and
it is slightly better than S-NSGP-II which is quite a lot better than
S-SMS-MOGP. S-MOGP/D is the worst algorithm. First of all, it
should be emphasized that NSGP-II is the best algorithm of all
approaches, with and without local search.

There are two factors affecting the performance of the tested
algorithms, one is the different ranking mechanisms used in
multiobjective optimization algorithms, the other is that the local
Please cite this article as: P. Wang, et al., (2013), http://dx.doi.org/1
search operators have different efficacy when they are introduced
into different EMOAs. Comparing Fig. 9 with Fig. 8, we can find
that NSGP-II and MOGP/D are improved to the first and the
second place. This means local search operators work well in
multiobjective optimization frameworks of NSGA-II and MOEA/D,
and not as good in SMS-EMOA and AG-EMOA.

More evidence can be found in Table 10, which shows the total
time cost in seconds of all MOGP methods and the difference of
the approaches with and without local search. Local search
0.1016/j.neucom.2012.06.054i
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operators seem to consume more time in MOGP/D framework and
the second longest time in NSGP-II framework. There are no huge
differences of time cost in the SMS-MOGP and AG-MOGP frame-
works. The reason for this is that the SMS-MOGP and AG-MOGP
frameworks are very greedy strategies. As outline in Section 4.2.1,
the contribution of each individual to their target metrics (hyper-
volume or approximate distance) is directly used into select
mechanism. Additionally, the hypervolume is similar to the area
under the ROCCH and minimizing the approximated distance is
also very similar to maximizing the hypervolume. As SMS-MOGP
and AG-MOGP are greedy at searching the maximum ROCCH, it
becomes harder to escape a local optimum since the shifting and
splitting operators only perform exploitation. Hence, these two
operators cannot contribute much to SMS-MOGP and AG-MOGP.

NSGP-II, on the other hand, ranks the individuals by dom-
inance level and crowding-distance and MOGP/D just compares
individuals with others in their neighborhood. Both algorithms
are not very greedy at selecting individuals to survive and the
survivors can potentially be improved by the local search opera-
tors. From another perspective, SMS-MOGP and AG-MOGP have
Fig. 8. Comparisons among MOGP methods with local search.

Fig. 9. Comparisons among MOGP

Table 8
Time cost of MOGP algorithms in seconds.

Time (s) S-NSGP-II S-MOGP/D S-SMS-MOGP S-A

australian 30.34 5.31 42.71 2

bands 81.84 122.68 24.55 10

bcw 4.96 5.51 9.82 1

crx 83.69 131.33 197.94 30

euthyroid 154.83 22.46 238.75 31

german 64.98 46 62.84 5

haberman 5.22 5.25 26.20

hill-valley 274.38 170.05 339.33 37

house-votes 6.86 1.79 91.90 18

hypothyroid 607.35 1376.31 799.97 6

ionosphere 12.07 3.98 16.32 2

kr-vs-kp 293.09 127.52 301.78 31

mammographic 15.22 11.92 24.44 3

monks-1 29.23 27.64 37.54 4

monks-2 134.2 121.59 138.32 14

monks-3 1.1 3.81 159.33 42

mushroom 857.63 698.38 682.44 49

parkinsons 1.55 1.09 1.96

pima 25.75 4.77 22.46 1

sonar 2.76 2.34 5.94

spambase 134.62 103.62 1189.80 285

spect 7.71 2.53 13.40 1

spectf 1.1 1.08 3.33

tic-tac-toe 84.52 81.51 96.32 9

transfusion 4.71 4.36 4.52

wdbc 4.79 1.89 4.88

wpbc 0.7 3.84 1.20

Sum time 2925.20 3088.56 4538.00 595

Please cite this article as: P. Wang, et al., (2013), http://dx.doi.org/1
larger selection pressure than NSGP-II and MOGP/D in searching
genetic decision trees to maximize the ROC performance.

The reason for why NSGP-II is better than MOGP/D is the
discordancy of the genotype and phenotype of genetic program-
ming: two genetic programming individuals can be very similar in
decision space, but may have a very long distance in objective
space. In MOGP/D, an offspring is produced by two parents in a
neighborhood which is defined in the objective space, but it will
not be in this neighborhood. This causes the framework of MOEA/
D to not work well because it supposes that subproblems can be
optimized by individuals in their neighborhood.
5.4.4. Time cost of all algorithms

Tables 8 and 9 report the time cost of all algorithms. The
experiment environment is an 8 core CPU with 2.13 GHz and
24 GB RAM. Obviously, GP-based algorithms need much more
time than traditional machine learning algorithms. Because of the
metaheuristic character of EAs, GP needs to evaluate many
classifiers until it converges. The Naive Bayes method, on the
other hand, calculates an a posteriori probability and the C4.5
adopts uses a greedy method to increase information gain. PRIE
employs a greedy strategy to construct classifiers (more than one,
usually dozens of classifiers) to maximize the ROCCH, so it cost
a little more time than NB and C4.5, but still much less than
GP-based algorithms.

Among the single-objective GP algorithms, MGP costs much
more time than the others (EGP, FGP, GGP). The reason is that
local search operators exploit each individual. For the same
reason, MOGP methods with local search will consume more
time than their counterparts without local search.
methods without local search.

G-MOGP NSGP-II MOGP/D SMS-MOGP AG-MOGP

8.12 51.65 31.18 22.88 48.74

9.3 70.65 117.45 24.25 122.61

1.69 3.06 7.24 5.03 15.66

0.69 82.38 87.43 82.81 155.47

3.61 806.02 529.17 159.92 214

8.48 258.99 274.96 76.43 67.62

9.98 3.82 3.88 5.04 4.13

8.59 971.96 1204.87 606.45 543.85

9.56 3.85 18.23 4.29 35.59

5.32 52.5 484.17 487.80 1569.87

0.74 28.5 19.28 8.96 82.59

2.55 159.18 882.05 304.78 334.64

3.58 34.95 98.57 17.74 104.11

5.6 21.86 19.64 15.80 28.09

2.11 318.01 489.36 162.39 208.77

1.66 27.57 43.82 3.98 7.98

1.46 607.59 718.55 662.13 805.04

2.44 2.2 2.22 2.71 1.44

8.16 51.64 74.73 25.50 54.3

9.06 7.92 24.69 6.61 6.36

6.4 2910.43 3509.06 1711.28 1520.9

4.79 32.66 21.06 6.29 6.99

5.81 2.12 1.97 6.79 10.33

8.32 699.82 399.07 156.73 109.5

4.69 36.69 41.49 7.05 4.67

6.45 7.14 5.78 7.04 9.81

1.68 2.5 4.33 1.54 1.88

0.84 7255.66 9114.25 4582.20 6074.94
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Table 9
Time cost of single-objective genetic programming and machine learning algorithms.

Time(s) EGP FGP GGP MGP NB Prie C4.5 Time (s) EGP FGP GGP MGP NB Prie C4.5

australian 5.50 2.75 2.88 2.90 0.05 4.18 0.03 bands 5.50 2.50 2.70 121.26 0.09 15.85 0.08

bcw 10.93 13.55 13.14 6.77 0.03 0.53 0.01 crx 11.95 4.21 3.18 6.10 0.05 2.92 0.03

euthyroid 212.36 8.35 14.05 198.61 0.48 2.74 0.34 german 24.13 4.25 5.67 16.95 0.12 4.79 0.13

haberman 10.70 3.20 2.78 1.54 0.01 0.43 0.00 hill-valley 29.59 9.41 7.11 1507.34 0.42 380.82 0.08

house-votes 2.83 3.04 5.51 1.37 0.04 0.48 0.01 hypothyroid 79.04 47.37 48.36 45.38 0.50 3.20 0.20

ionosphere 20.76 142.17 13.91 15.67 0.05 5.77 0.04 kr-vs-kp 419.03 30.57 23.84 554.33 0.65 1.58 0.31

mammographic 20.74 7.64 5.00 46.07 0.03 0.87 0.02 monks-1 5.93 1.51 2.16 16.27 0.02 0.29 0.00

monks-2 200.47 20.76 14.98 59.35 0.01 0.30 0.01 monks-3 8.49 7.10 6.11 5.40 0.01 0.31 0.01

mushroom 1107.35 664.66 531.60 903.85 1.01 2.31 0.57 parkinsons 4.52 1.52 1.77 5.42 0.02 1.62 0.01

pima 30.50 20.73 12.10 20.81 0.03 16.46 0.02 sonar 5.90 5.77 5.56 10.12 0.05 31.45 0.03

spambase 90.32 65.99 16.67 2313.91 1.14 374.98 1.80 spect 4.92 2.91 1.04 9.35 0.03 0.39 0.02

spectf 9.71 8.76 2.88 8.62 0.05 3.81 0.03 tic-tac-toe 218.47 164.91 9.86 102.80 0.04 0.48 0.03

transfusion 33.79 93.27 3.48 6.71 0.02 4.34 0.01 wdbc 15.23 9.57 5.47 8.74 0.08 20.86 0.04

wpbc 7.77 1.96 1.36 3.04 0.02 7.89 0.04

Table 10
Total time cost of local search operator in different MOGP methods.

Algorithms Time cost Time cost Difference

S-AG-MOGP 5950.84 AG-MOGP 6074.94 124.10

S-MOGP/D 3088.56 MOGP/D 9114.25 6025.69

S-SMS-MOGP 4538.00 SMS-MOGP/D 4582.20 44.20

S-NSGP-II 2925.20 NSGP-II 7255.66 4330.46
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6. Conclusion and future work

In this work, we first pointed out that ROCCH is very suitable
to measure the ROC performance in binary classification, espe-
cially for especially if the class distribution is unknown or the
misclassification cost are skew. Then, we discussed the relation-
ship between ROCCH and the Pareto front in multiobjective
optimization: both can be considered as analogous to each other.

Maximizing the ROCCH can be archived by using evolutionary
multiobjective algorithms to search a group of nondominated solu-
tions. Four different MO frameworks for synthesizing genetic decision
trees are proposed: S-NSGP-II, S-MOGP/D, S-SMS-MOGP, and S-AG-
MOGP, each employing a different fitness measure. We then pro-
posed to use local search in genetic programming for classification
problems. Two different local search operators called shifting and
splitting are defined. They are introduced into the MOGP methods to
improve the performance in searching Pareto front.

We found that these operators contribute differently in the
different MOGP methods. NSGP-II with local search outperforms
the other the MOGP algorithms both with and without local
search. We furthermore compare the new approaches to single-
objective genetic programming algorithms and traditionally
Please cite this article as: P. Wang, et al., (2013), http://dx.doi.org/1
machine learning algorithms and found that they perform very
favorable. In conclusion, NSGP-II with local search is the best
overall algorithms for ROCCH maximization.

As pointed out in Section 3.2, ROCCH is not the same as the
Pareto front in multiobjective optimization. In this work, MOGP
approaches are adopted to search a group of nondominated genetic
decision trees to approximate the ROCCH and to maximize the area
under the curve constructed by these nondominated solutions. Our
plan for future work is to combine the concepts of ROCCH and
Pareto front in a better way in order to derive new multiobjective
evolutionary algorithms for maximizing the ROC performance.

In Section 5.4.1, we found that the contribution of the local
search methods to improve the final results strongly depends on the
MO framework. Therefore, further research should pay attention on
how local search operators work in multiobjective scenarios. Gen-
erally, the concepts of memetic computing should be investigated
more thoroughly in this domain, as they seemingly can lead to
significant improvements in ROCCH maximization problems.

The last issue we want to tackle is the dissatisfying runtime of
our methods. This is a disadvantage for EAs in general, but may be
mitigated by using parallelization and new hardware such as GPUs.
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Appendix A. MOGP algorithms

Algorithm 2. fast-nondominated-sort(P) [30].
Require: Panull
1:
 P is a solution set

Ensure: fast-nondominated-sort

2:
 for each pAP do

3:
 Sp ¼ |
4:
 np¼0

5:
 for each qAP do

6:
 if p!q then

7:
 Sp ¼ Sp [ fqg
0.1016/j.neucom.2012.06.054i
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8:
Please c
else fq!pg
9:
 np ¼ npþ1
10:
 end if

11:
 end for

12:
 if np¼0 then

13:
 Prank ¼ 1

14:
 F1 ¼ F1 [ fpg
15:
 end if

16:
 end for

17:
 while Fia| do

18:
 Q ¼ |

19:
 for each pAFi do

20:
 for each qASp do
21:
 nq ¼ nq�1
22:
 if nq¼0 then

23:
 qrank ¼ iþ1

24:
 Q ¼Q [ fqg
25:
 end if

26:
 end for

27:
 end for

28:
 i¼ iþ1

29:
 Fi ¼Q
30:
 end while
Algorithm 3. crowding-distance-assignment (T) [30].
Require: Tanull
1:
 T is a nondominated solution set

Ensure crowding-distance-assignment

2:
 l¼ 9T9

3:
 for each iA ½1,l� do

4:
 T½i�distance ¼ 0

5:
 end for

6:
 for each objective m do

7:
 T ¼ sortðT ,mÞ

8:
 T½1�distance ¼ T½l�distance ¼1
9:
 for i¼2 to l�1 do

10:
 T½i�distance ¼ T½i�distanceþðT½iþ1�:m�T½i�1�:mÞ=ðf max

m �f min
m Þ
11:
 end for

12:
 end for
Algorithm 4. NSGP-II(P,Max,N).
i

Require: MaxZ03P¼ null3N40

1:
 Max is the maximum9evaluations
2:
 P is the population

3:
 N is the population size

Ensure: NSGA-II

4:
 Let m¼ 0,t¼ 0

5:
 Initialize the population Pt by ramped-half-and-half method
6:
 Evaluate each individual in Pt and m¼mþN
7:
 while mrMax do

8:
 Generate offspring Qt from Pt by tree-based crossover
9:
 Shifting operator with probability psf
10:
 Splitting operator with probability psp
11:
 Evaluate each changed offspring in Qt
12:
 m¼mþ9 changed-offspring 9

13:
 Rt ¼ Pt [ Qt
14:
 F¼fast- nondominated-sort ðRtÞ
15:
 Ptþ1 ¼ | and i¼0

16:
 while 9Ptþ19þ9Fi9rN do
17:
 crowding-distance-assignment(Fi)

18:
 Ptþ1 ¼ Ptþ1 [ Fi
19:
 i¼ iþ1
te this article as: P. Wang, et al., (2013), http://dx.doi.org/10.1016/j.neucom.2012.06.054i
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20:
Please ci
end while

21:
 Sort(Fi, !n)

22:
 Ptþ1 ¼ Ptþ1 [ Fi½1 : ðN�9Ptþ19Þ�

23:
 P¼ Ptþ1
24:
 t¼ tþ1

25:
 end while

26:
 Return P
Algorithm 5. MOGP/D(EP,P,N,M,T).
Require: EP¼ null3N403MZ23T40

1:
 EP(External Population) is an archive to collect pareto-optimal solutions

2:
 P is the population contains N solutions ðx1, . . . ,xNÞ where xi is the current solution for the ith subproblem

3:
 N is the population size and is also the number of subproblems in MOEA/D

4:
 M is the number of objectives

5:
 A uniform spread of N weight vectors: l1, . . . ,lN ,li

¼ ðli
1, . . . ,li

MÞ for 1r irN
6:
 T is the number of weight vectors in the neighborhood of each weight vector

7:
 Reference point zn
8:
 FV ðkÞ is the F-value of xi 1r irN
Ensure: MOGP/D

9:
 Step 1) Initialization

10:
 Step 1.1) Set EP¼ |

11:
 Step 1.2) Compute the Euclidean distances between any two weight vectors and then work out the T closest weight vectors to

each weight vector. For each i¼ 1, . . . ,N, Set BðiÞ ¼ i1, . . . ,iT , where li1 , . . . ,liT are the T closest weight vectors to li
12:
 Step 1.3) Generate an initial population ðx1, . . . xNÞby ramped-half-and-half method
13:
 Step 2) Update

14:
 for i¼ 1, . . . ,N do

15:
 Step 2.1) Reproduction: Randomly select two indexes k,l for B(i), and then generate a new solution y by xk and xl by using tree-

based crossover operators

16:
 Step 2.2) Improvement: Apply shifting operator probability psf and splitting operator with probability psp on y to produce y0
17:
 Step 2.3) Update of neighboring solutions: For each index jABðiÞ, if gteðy09lj,znÞrgteðxj9lj,znÞ, then set xj ¼ y0 and FVj
¼ Fðy0Þ
18:
 Step 2.4) Update of EP
19:
 Remove from EP all the vectors dominated by FðyiÞ
20:
 Add FV 0 to EP if no vectors in EP dominate FðyiÞ
21:
 end for

22:
 Step 3) Stopping Criteria: If stopping criteria is satisfied then stop and output EP. Otherwise, go to Step 2
Algorithm 6. Reduce (Q) [36].
Require: Q a|

1:
 Q is a solution set

Ensure: Reduce

2:
 R1, . . . ,Rv’fast-nondominated-sortðQ Þ
3:
 if v41 then

4:
 r’argmaxsARv

½dðs,Q Þ�
5:
 else

6:
 r’argminsARv

½DBðs,RvÞ�
7:
 end if

8:
 Return (Q frg)
Algorithm 7. SMS-MOGP (Max,N).
Require: Max40,N40

1:
 Max is the maximum of evaluations

2:
 N is the population size

Ensure: SMS-MOGP

3:
 P0 ¼ initðÞ by ramped-half-and-half method
4:
 t¼0

5:
 m¼0

6:
 while moMax do

7:
 qtþ1’Shifting operator with probability psf
splitting operator with probability psp are done on Pt
8:
 Ptþ1’ReduceðPt [ qtþ1Þ
te this article as: P. Wang, et al., (2013), http://dx.doi.org/10.1016/j.neucom.2012.06.054i
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9:
Please ci
t’tþ1

10:
 m’mþ1

11:
 end while
Algorithm 8. MeasureQuality(A,P) [33].
Require: Aa|3Pa|

1:
 A Archive

2:
 P Population

Ensure: MeasureQuality

3:
 S’|

4:
 for each aAA do

5:
 d’1

6:
 for each pAP do

7:
 r’�1

8:
 for i’d do

9:
 r’maxfr,ai�pig
10:
 end for

11:
 d’minfd,rg

12:
 end for

13:
 S’S [ d

14:
 end for

15:
 sort S decreasingly

16:
 Return S
Algorithm 9. AG-MOGP(Max,A,P, m, l).
Require: A¼ |3P¼ |3Max403m403l40

1:
 A Archive

2:
 P Population

3:
 Max is the maximum of evaluations

4:
 m and l are the size of parent and offspring population

Ensure AGEMOA

5:
 Initialize population P with m by ramped-half-and-half method
6:
 Set archive A’P, m’0

7:
 while moMax do

8:
 Initialize offspring population O’|

9:
 for j’1 to l do

10:
 Select two random individuals from P
11:
 Apply crossover operator

12:
 Shifting operator with probability psf
13:
 Splitting operator with probability psp
14:
 Add new individual into O
15:
 end for

16:
 for each pAO do

17:
 Insert offspring p in archive A
18:
 end for

19:
 Add offsprings to population, i.e., P’P [ O
20:
 while 9P94m do
21:
 for each pAP do

22:
 MeasureQuality(A, P\fpg)

23:
 end for

24:
 Remove p from P for which SaðA,P\fpgÞ is lexicographically smallest

25:
 end while

26:
 end while
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