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Abstract—Financial forecasting is a lucrative and compli-
cated application of machine learning. In this paper, we focus
on the finding investment opportunities. We therefore explore
four different Genetic Programming approaches and compare
their performances on real-world data. We find that the
novelties we introduced in some of these approaches indeed
improve the results. However, we also show that the Genetic
Programming process itself is still very inefficient and that
further improvements are necessary if we want this application
of GP to become successful.
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I. INTRODUCTION

Professional traders in the financial markets as well as
private investors are always looking for efficient indicators
giving information about how stock prices are likely to
develop. One way to obtain such knowledge, i.e., to solve
the financial forecasting problem, is by utilizing data mining
techniques [1]. This way, rules or patterns in the history of
stock prices can be discovered which can then be used to
support investors in their decisions.

By extracting such features [2], we turn the financial fore-
casting problem in a classification problem, dividing stocks
into such that will likely rise in value and in those which
probably will not. There are many different approaches
we could use for mining classifiers for this purpose, such
as Artificial Neural Networks [3, 4], Learning Classifier
Systems [5], Support Vector Machines [6, 7], and decision
trees[8–11].

We adopt the latter approach for two reasons: First, tree-
shaped rules are explicit and easily be understood, which
is important in real-world applications where users will not
trust suggestions coming from a system they cannot under-
stand. Second, there exists a variety of approaches to effi-
ciently synthesize highly-accurate decision trees. Amongst
these methods, Genetic Programming (GP) is one of the
most stable and efficient approaches [10–12]. Tsang, Yung,
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and Li [12–14] used GP in financial forecasting and dis-
covered patterns in stock prices. Li devised FGP (Financial
Genetic Programming) on the basis of the works [9, 12, 14]
and successfully solved further problems in financial predic-
tion.

We began our research with the aim to improve FGP.
In this paper, we explore some methods to do so. In its
original form, FGP rates the synthesized classifiers on the
basis of the accuracy metric which leads to bad performance
in imbalanced data sets. Therefore, we introduce a more
reasonable metric for rating the decision rules, the AUC [15].
Second, Li used standard GP to evolve the decision trees.
In this work, we adopt some more efficient operators[11]
and introduce improvements which have shown excellent
properties in classification problems in the past.

This paper is organized as follows: Section II gives an
introduction into related work. In Section III, we list metrics
which can be used for rating the utility of classifiers and
which, therefore, are potential fitness functions for a GP
process. In Section IV, we define the technologies and
improvements we introduced in FGP and outline our new
system (EDDIE-102). We perform various experiments with
different configurations of the Genetic Programming system
in Section V. On one hand, we show that our enhancements
increase the ability of FGP to provide useful financial
forecasts. In a critical discussion of the results, on the other
hand, we also find that none of the tested configurations is
satisfyingly efficient. We then explore possible reasons for
this issue and draw conclusions about necessary future work
in Section VI.

II. RELATED WORK

The use of GP for evolving classifiers and predictors has
a tradition of more than ten years. Since 1998, the Dynamic
Data Investment Evaluator (EDDIE, [16]) has been used to
discover interactions between variables in decision making
processes [2, 16]. It evolves rules which can be utilized for
classification or forecasting. These rules are more explicit
and clearer than rules produced by other approaches, such
as neural networks.

EDDIE-1 is the first implementation of EDDIE [16].
FGP-1, the third EDDIE release, fully focused on financial
forecasting and is thus referred to as FGP. It creates generic
decision trees which are called GDTs and which record how
a forecast was arrived at. FGP-1 takes accuracy as its target
performance metric in several financial problems [12–14].
Accuracy is a contentious metric to measure classifiers and
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more and more researchers [10, 11, 15, 17, 18] adopt the
Area under an ROC Curve (AUC) for measuring their final
results. This measure is considered to be more reasonable
than accuracy in comparing learning algorithms [19]. In this
work, we will introduce AUC into FGP in order to improve
its performance and result quality.

The C4.5 algorithm by Quinlan [8] is a famous tool
for classification. Because of its greedy tree construction
algorithm, it is faster than most other classification ap-
proaches. It utilizes entropy as heuristic which costs much
less computation time than AUC. We will therefore also
test how using entropy as classifier fitness influences the
performance of our Genetic Programming system.

EDDIE-1 and FGP-1 adopt a standard EA and simple
operators in the algorithms. Besides the two mentioned
novelties, we also introduce the unfitness method discussed
by Muni et al. [11] and a modified mutation operator into
EDDIE-3.

III. CLASSIFIER METRICS AND FITNESS FUNCTION

A classifier performance metric is a value which rates the
utility of the classifier. The larger (or smaller) this value is,
the better classifier. There are various metrics for measuring
classifiers and we describe the ones relevant to our work in
the following.

A. Confusion Matrix and Metrics

Table I
CONFUSION MATRIX TO CLASSIFY TWO CLASSES

TN FP TN + FP
FN TP FN + TP

TN + FN FP + TP Ntr
.

Table I sketches the blueprint of a confusion matrix for
a binary classification problem. Here, true positive (TP) is
the number of instances which are positive and which have
also been classified as positive, false negatives (FN) are the
instance which belong to class positive but are classified as
negative, and the meaning of false positives (FP) and true
negative (TN) are analogous. Ntr is the total number of
instances in the data set. From the confusion matrix, the
following metrics can be extracted:

Accuracy =
TP + TN

Ntr
(1)

True-Positive Rate(Recall) =
TP

FN + TP
(2)

False-Positive Rate (FPR) =
FP

TN + FP
(3)

Rate of Failure(RF ) =
FP

FP + TP
(4)

Rate of Missing chance(RMC) =
FN

FN + TP
(5)

Accuracy focuses on the rate of correct classification in
the whole data set but does not consider the balance [20,
21] of the data set. Assume, for example, that there is a
dataset with 90 positive instances and 10 negative instances.
A classifier always classifying an instance as positive will
then have an accuracy rating of 0.9. Although this rating is
high, it is meaningless.

B. Receiver Operating Characteristics (ROC)

Receiver operating characteristics (ROC) can be used
to illustrate the performance of a classifier. ROC graphs
are increasingly used in machine learning and data mining
research [15]. Figure 1 by Garcia-Almanza et al. [22] shows
an example ROC graph. ROC graphs depict relative tradeoffs
between benefits (true positives) and costs (false positives)
[15]. The area under an ROC curve (AUC) [15, 17, 18] is
a metric for classifier performance on binary classification
considered more objective than accuracy [19]. A perfect
classifier has an AUC equal to 1, a random classifier achieves
around 0.5 and a classifier with an AUC less than 0.5 is a
bad classifier. In the ROC graph, the top-left area denotes
good performance.

For each classifier/ensemble, not only one point in the
ROC graph exists but a whole curve. The idea is that a
classifier returns a score when classifying an instance of
the available data. The higher the score of the instance, the
more likely it should be classified as positive. If there are
M different scores, we can define M different thresholds t.
If the score of an instance is higher than t, it is classified as
positive. This way, we can create up to M different points in
the ROC graph for a classifier or ensemble. The area under
the curve defined by these points then is the AUC measure.
Details on how AUC is computed can be found in [15].
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Figure 1. Receiver Operating Characteristic (ROC) space [22]

C. Fitness Function

Evolutionary algorithms use fitness functions in order
to determine which candidate solutions are promising for



further investigation. Since our goal is to improve the AUC
metric of the evolved classifiers, we may use the AUC as
fitness directly. We refer to such a fitness function as fA.

In Li’s method [12], the cost-sensitive fitness function fC
given in Equation 6 is chosen:

fC = w1 ∗ Accuracy− w2 ∗RF − w3 ∗RMC (6)

w1, w2 and w3 are the weights of the metrics. Since our
target is to find the classifier with the maximum AUC, we
may instead take the AUC measure as fitness function. On
the other hand, we wish to explore the use of the entropy
similar to C4.5, since it has a positive correlation with AUC
but is much easier to compute.

H(X) = −
n∑

i=0

p(xi) log2 p(xi) (7)

Equation 7 gives the definition of the information gain [23]
for a random variable X with n outcomes {xi : i = 1....n}.
The Shannon entropy, a measure of uncertainty is denoted
by H(X) and p(xi) is the probability mass function of the
outcomes xi.

pi =
Pi

1∑
j=0

Pj

(8)

fE =

NL∑
k=0

(
1 +

1∑
i=0

pi log2 pi

)(
1∑

j=0

(Pj − 1)

)
Ntr −NL

(9)

We can easily introduce a fitness function very similar
to Shannon’s formula as given in Equation 9.It’s a novel
decision tree structure. In a decision tree T as used in our
EDDIE-102 system, two numbers are assigned to each of
the NL leaf node: P0 is used to record how many negative
instances arrive at it and the other (P1) is used to record how
many positive instances arrived. The range of the entropy-
based fitness fE is from 0 to 1. When fE = 1, the classifier
has the best training result, fE = 0 means the classifier is a
random one.

IV. THE IMPROVED ALGORITHM: EDDIE-102

The main routine of our improved approach (called
EDDIE-102) is given in 2. It is a version of standard Genetic
Programming process extended with a local search and an
ensemble approach.

A. Crossover Steered by Badfitness

We use the badfitness bf of an individual T applied to the
training data D as guide for parent selection as the candidate
individuals for crossover or mutation. This idea stems from
[11]. According to 10, the badfitness of an individual here
stands for how far away it is from achieving the best fitness.

bf = 1− fE (10)

Algorithm EDDIE-102(M , N )
M is the maximum generation
N is the size of the ensemble
BEGIN

Let gen = 0
Initialize the population using the grow method
while (gen < M )

Evaluate fitness(fE) of each individual
Update archive of Best N individuals
Survival Selection : Tournament Selection by fE
Crossover and Mutation
Adjust Individuals with Hill-Climbing
gen = gen+ 1

end while
Ensemble the Best N individuals on test data set
END

Figure 2. The EDDIE-102 Algorithm

We also utilize some of the ideas from [11]. Crossover
plays important role in genetic programming. We produce
offspring according to a given crossover rate. All candidate
parents to be made crossover on are selected via another
tournament which is one by the participating individual
with the highest badfitness. This will give more chance
for decision tree with lager badfitness to be changed, i.e.,
to likely be improved. The crossover operation swaps two
subtrees from the two different individuals.

B. Modified Mutation

Subsequently, individuals are selected for mutation ac-
cording to the mutation rate pm. The mutation operation
is usually a destructive process. Since we do not want to
destroy the good parts of a decision tree, we create several
mutated offspring of an individual in order to find one whose
fitness is better than the one of the parent. Many mutation
operations, however, cost much training time. In [11], a
strategy to reduce computation time is adopted: 50% of
the training cases are used to evaluate the fitness fm of
the mutated individual and the fitness fo of the original
individual. If fm equals fo, the remaining 50% of the
training cases are used to get fm. If the mutated individual is
equally good or better than its parent, it is kept. Otherwise,
the mutation operation is ignored with the probability pt. In
our experiments, we set pt = 0.5.

C. Ensemble

Our system does not only return a single classifier as result
of the optimization process, but instead uses the aggregated
knowledge in the population by combining the N best
classifiers to an ensemble. In this section, we describe an
ensemble method to give scores to training and test cases
as needed for computing the AUC metric and ROC graphs.
The decision trees used by us are different from traditional
decision trees, as already mentioned in the discussion of 9.



In Figure 3 we sketch such a tree where every leaf node
records how many positive cases (in P1) and negative cases
(in P0) arrive at it. The leaf nodes will then return a score
Sc= P1/(P1+P0).
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Figure 3. Decision Tree

Our ensemble method is using several individuals to
decide the final score for one training or test case C, here
we describe a strategy to obtain the scores as follows, where
N is the number of individuals in the ensemble and Si(C)
is the score achieved by the ith individual classifier.

Score(C) =Si(C) : i = arg max
j∈1..N

abs(Sj − 0.5) (11)

V. EXPERIMENTS

A. Data sets

To conduct our experiments we use four examples and
four datasets defined as follows:

S&P-500 -2700 cases. This dataset stems from the Heng
Seng Index. Available to us were data from the 2nd April
1963 to the 25th January 1974 (2700 data cases). The
attributes of each case are composed by indicators which are
derived from financial technical analysis. The indicators are
based on the daily closing price. We tried to find classifiers
which detect an increase of stock value of 4% in a horizon
of 63 days. We divided the data into 1800 cases for training
and put 900 cases into the test data set.

DJIA -2800 cases. We obtain this dataset from the closing
prices of the Dow Jones Industrial Average. We choose two
ranges in DJIA to our experiments. One has 2800 cases
(from 7th of April 1969 to the 5th May 1980), the other
consists of 3035 cases (from the 7th April 1969 to the 9th
April 1981). In the first dataset (called D1), we on one hand,
again aim to detect an increase of 4% in a horizon of 63 days
(setup D11). On the other hand, we try to classify according
to an increase of 2.2% in a horizon of 21 days (setup D12).
In the second datasets, we target an increase of 2.2% in an

horizon of 21 days (setting D2).
It’s difficult to find patterns in the financial data sets

because of its timeliness. Li used FGP-1 to find some
patterns in above data sets [12], and this work is the extend
of FGP-1, so we adopt these data sets to examine EDDIE-
102 working in financial data sets. A horizon of 21 days is a
short-term prediction and 63 days is a middle-term perdition.

B. Parameters

We adopt the three different fitness functions (fA, fC , and
fE as defined in Section III-C) in FGP and run it on the four
data sets. First, we run FGP with the cost sensitive fitness
function (fC , FGP-1), second we use AUC as the fitness
function (fA, FGP-AUP), and third, we applied Equation 9,
i.e., fE (FGP-E). Besides FGP, we also tested our new
approach EDDIE-102 which is based on the entropy fitness
as well. In Table , we provide the parameters of the four
algorithm configurations used.

Table II
PARAMETERS FOR FOUR ALGORITHMS

Objective Find decision trees
which has the higher AUC

Terminals 0,1with 1 representing ”Positive”;
0 representing ”Negative”

Function set If-then-else , And, Or, Not, >, < , =.
Data sets S&P500 D11 D12 D2

Algorithms FGP-1 ,FGP-AUC ,FGP-E ,EDDIE-102
Crossover rate 0.9
Mutation rate 0.1

Parameters for GP P(Population size) = 1000;
G (Maximum generation) = 50

Number of Runs = 10
Termination criterion Maximum of G of

generation has been reached
Selection strategy Tournament selection, Size = 4

Max depth of
individual program 17

Max depth of
initial individual program 3

C. Results

We compare the algorithms using four indicators,
1) the AUC on training data,
2) the AUC on the test datasets,
3) the training time, and
4) the final decision tree’s size.

In all diagrams we provide as evaluation results, the blue line
with the plus markers stand for the performance of FGP-1,
the green line with star markers represent FGP-AUC, the red
line with circle markers belongs to FGP-E, and cyan lines
with dots are results obtained with EDDIE-102.

The incentive to apply all four GP algorithms to stock
price prediction was to get a clear, unbiased understanding
of their performance and of the hardness of the problem.
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Figure 6. Decision Tree Size on S&P500
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Figure 7. Training Results on DJIA D11
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Figure 8. Test Results on DJIA D11
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Figure 9. Decision Tree Size on DJIA D11
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Figure 10. Training Results on DJIA D12
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Figure 12. Decision Tree Size on DJIA D12
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Figure 13. Training Results on DJIA D2
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Figure 14. Test Results on DJIA D2
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Table III
TRAINING TIME ON FOUR ALGORITHMS

Time [ms] S&P500 DJIAD11 DJIAD12 DJIAD2
FGP-1 2227339 2228840 2282016 2479239
FGP-AUC 3884162 3836702 4344654 5077303
FGP-E 2613086 2734400 2745200 2839350
EDDIE-102 4839719 5247922 5377094 6833672

The primary goal was, of course, to find an algorithm
configuration which can produce better results than the de-
facto standard FGP-1.

Figures 4 to 15 illustrate the average performance of the
classifiers discovered over the course of the fifty generations
for each of the four algorithms. If we consider the end
products of the evolution, i.e., the classifiers, we can clearly
see that the three new algorithms improve FGP-1 on the
AUC measure on the test data.

When we compare the behaviors of the AUC measure of
the evolved classifiers on the training set and those on the
test set, we find a striking difference. Often, the AUC on
the training data is increasing whereas the AUC in the test
data behaves arbitrarily – compare, for instance, Figures 7
and 8. This process does not just set in after some time, but
takes place right from the start.

There are two possible reasons for this strange behavior.
First, we should be aware that financial forecasting problems
are complicated by nature. There are lots of factors (directly
or indirectly) influencing the stock market which are not
covered by the features we can use for classification, such
as political events, natural influences such as shortages of
certain products and the weather, and market sentiments. The
test data and the training data are therefore less correlated
than in other problems. Thus, we cannot a priori expect
that classifiers successful in training are also successful in
practice and vice versa. Also, the prediction character of
the task does not allow us to arbitrarily split the data into
different test and training sets or to perform crossvalidation.
Verifying the hypothesis that financial forecasting is harder
than other problems will be part of our future work, in which
we will compare this type of problem with data sets from
the well-known UCI repository [24].

Another reason why the GP process is not really able to
improve its initial, randomly created candidate solutions by
much could code bloat. Figure 6, 9, 12, and 15 all show
that the sizes of the decision trees grows fast. The fast tree
growth may create the impression that overfitting is taking
place. However, we think that this is not the case since there
is almost no improvement of the AUC metric in the test
data, i.e., all trees would have to be overfitted right from
the start. Yet, it is well known that code bloat reduces the
chance that the reproduction operations can improve (or even
change) the behavior of a program [25]. Since we assume
that this may be the reason for the apparent inefficiency

of the optimization process, it may be necessary to apply
methods which limit the tree size and/or reduce the speed
of tree growth.

In Table III, we compared the four algorithms according
to the required training time. Because of the use of the
new multi-mutation operator and the ensemble method,
EDDIE-102 has the highest time consumption. Amongst
the FGP-based approaches, FGP-AUC is most expensive in
terms of runtime, since computing the AUC metric is more
complicated than other two fitness functions.

VI. CONCLUSION AND FUTURE WORK

From our experiments we can learn two lessons.
1) We can find classifiers for financial forecasting with

Genetic Programming.
2) However, the process of evolutionary optimizing them

proofed to be highly inefficient.
With EDDIE-102, for instance, we find good solutions in
the first generation, but these are step-by-step ”optimized”
to worse and worse performance. Therefore, we want to em-
phasize that it is not sufficient to just point out that a certain
problem can be solved with GP. Instead, thorough research
also requires us to give information on when GP discovers
its solutions and how it arrives at them. This last point not
only holds for classification, but for all problem areas in
general. By providing this information in this paper, we aim
at stirring up a discussion on how the Genetic Programming
can be made more efficient for financial forecasting and what
the most challenging characteristics of this problem domain
are for GP.

In this paper, we extended the work of Li [12]. In his
FGP-1 algorithm, the accuracy metric is used to measure
the decision trees. Accuracy is not a good measure for
classificatory performance. In our experiments, we therefore
use AUC and it turns out that GP solutions to financial
forecasting are less efficient than expected. We designed
two other fitness functions for FGP and developed a new
algorithm called EDDIE-102.

We tested all four resulting configurations thoroughly
with experiments. According to our results, none of the
algorithms can always outperform the others. Although we
were able to provide some improvements with our new
approaches, the problem can still not satisfyingly be solved.

In our future work, we therefore plan to further analyze
what makes financial prediction problems hard and, based
on this analysis, suggest a more efficient algorithm. A first
step may be to impose more restrictive limits on the tree
growth in our system, since all four algorithms seem to be
vulnerable to bloat[26–29].
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